1 /* 2 * ARM SBSA Reference Platform emulation 3 * 4 * Copyright (c) 2018 Linaro Limited 5 * Written by Hongbo Zhang <hongbo.zhang@linaro.org> 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu-common.h" 22 #include "qapi/error.h" 23 #include "qemu/error-report.h" 24 #include "qemu/units.h" 25 #include "sysemu/device_tree.h" 26 #include "sysemu/numa.h" 27 #include "sysemu/runstate.h" 28 #include "sysemu/sysemu.h" 29 #include "exec/address-spaces.h" 30 #include "exec/hwaddr.h" 31 #include "kvm_arm.h" 32 #include "hw/arm/boot.h" 33 #include "hw/block/flash.h" 34 #include "hw/boards.h" 35 #include "hw/ide/internal.h" 36 #include "hw/ide/ahci_internal.h" 37 #include "hw/intc/arm_gicv3_common.h" 38 #include "hw/loader.h" 39 #include "hw/pci-host/gpex.h" 40 #include "hw/qdev-properties.h" 41 #include "hw/usb.h" 42 #include "net/net.h" 43 44 #define RAMLIMIT_GB 8192 45 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB) 46 47 #define NUM_IRQS 256 48 #define NUM_SMMU_IRQS 4 49 #define NUM_SATA_PORTS 6 50 51 #define VIRTUAL_PMU_IRQ 7 52 #define ARCH_GIC_MAINT_IRQ 9 53 #define ARCH_TIMER_VIRT_IRQ 11 54 #define ARCH_TIMER_S_EL1_IRQ 13 55 #define ARCH_TIMER_NS_EL1_IRQ 14 56 #define ARCH_TIMER_NS_EL2_IRQ 10 57 58 enum { 59 SBSA_FLASH, 60 SBSA_MEM, 61 SBSA_CPUPERIPHS, 62 SBSA_GIC_DIST, 63 SBSA_GIC_REDIST, 64 SBSA_SMMU, 65 SBSA_UART, 66 SBSA_RTC, 67 SBSA_PCIE, 68 SBSA_PCIE_MMIO, 69 SBSA_PCIE_MMIO_HIGH, 70 SBSA_PCIE_PIO, 71 SBSA_PCIE_ECAM, 72 SBSA_GPIO, 73 SBSA_SECURE_UART, 74 SBSA_SECURE_UART_MM, 75 SBSA_SECURE_MEM, 76 SBSA_AHCI, 77 SBSA_EHCI, 78 }; 79 80 typedef struct MemMapEntry { 81 hwaddr base; 82 hwaddr size; 83 } MemMapEntry; 84 85 typedef struct { 86 MachineState parent; 87 struct arm_boot_info bootinfo; 88 int smp_cpus; 89 void *fdt; 90 int fdt_size; 91 int psci_conduit; 92 DeviceState *gic; 93 PFlashCFI01 *flash[2]; 94 } SBSAMachineState; 95 96 #define TYPE_SBSA_MACHINE MACHINE_TYPE_NAME("sbsa-ref") 97 #define SBSA_MACHINE(obj) \ 98 OBJECT_CHECK(SBSAMachineState, (obj), TYPE_SBSA_MACHINE) 99 100 static const MemMapEntry sbsa_ref_memmap[] = { 101 /* 512M boot ROM */ 102 [SBSA_FLASH] = { 0, 0x20000000 }, 103 /* 512M secure memory */ 104 [SBSA_SECURE_MEM] = { 0x20000000, 0x20000000 }, 105 /* Space reserved for CPU peripheral devices */ 106 [SBSA_CPUPERIPHS] = { 0x40000000, 0x00040000 }, 107 [SBSA_GIC_DIST] = { 0x40060000, 0x00010000 }, 108 [SBSA_GIC_REDIST] = { 0x40080000, 0x04000000 }, 109 [SBSA_UART] = { 0x60000000, 0x00001000 }, 110 [SBSA_RTC] = { 0x60010000, 0x00001000 }, 111 [SBSA_GPIO] = { 0x60020000, 0x00001000 }, 112 [SBSA_SECURE_UART] = { 0x60030000, 0x00001000 }, 113 [SBSA_SECURE_UART_MM] = { 0x60040000, 0x00001000 }, 114 [SBSA_SMMU] = { 0x60050000, 0x00020000 }, 115 /* Space here reserved for more SMMUs */ 116 [SBSA_AHCI] = { 0x60100000, 0x00010000 }, 117 [SBSA_EHCI] = { 0x60110000, 0x00010000 }, 118 /* Space here reserved for other devices */ 119 [SBSA_PCIE_PIO] = { 0x7fff0000, 0x00010000 }, 120 /* 32-bit address PCIE MMIO space */ 121 [SBSA_PCIE_MMIO] = { 0x80000000, 0x70000000 }, 122 /* 256M PCIE ECAM space */ 123 [SBSA_PCIE_ECAM] = { 0xf0000000, 0x10000000 }, 124 /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */ 125 [SBSA_PCIE_MMIO_HIGH] = { 0x100000000ULL, 0xFF00000000ULL }, 126 [SBSA_MEM] = { 0x10000000000ULL, RAMLIMIT_BYTES }, 127 }; 128 129 static const int sbsa_ref_irqmap[] = { 130 [SBSA_UART] = 1, 131 [SBSA_RTC] = 2, 132 [SBSA_PCIE] = 3, /* ... to 6 */ 133 [SBSA_GPIO] = 7, 134 [SBSA_SECURE_UART] = 8, 135 [SBSA_SECURE_UART_MM] = 9, 136 [SBSA_AHCI] = 10, 137 [SBSA_EHCI] = 11, 138 }; 139 140 /* 141 * Firmware on this machine only uses ACPI table to load OS, these limited 142 * device tree nodes are just to let firmware know the info which varies from 143 * command line parameters, so it is not necessary to be fully compatible 144 * with the kernel CPU and NUMA binding rules. 145 */ 146 static void create_fdt(SBSAMachineState *sms) 147 { 148 void *fdt = create_device_tree(&sms->fdt_size); 149 const MachineState *ms = MACHINE(sms); 150 int nb_numa_nodes = ms->numa_state->num_nodes; 151 int cpu; 152 153 if (!fdt) { 154 error_report("create_device_tree() failed"); 155 exit(1); 156 } 157 158 sms->fdt = fdt; 159 160 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref"); 161 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 162 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 163 164 if (ms->numa_state->have_numa_distance) { 165 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 166 uint32_t *matrix = g_malloc0(size); 167 int idx, i, j; 168 169 for (i = 0; i < nb_numa_nodes; i++) { 170 for (j = 0; j < nb_numa_nodes; j++) { 171 idx = (i * nb_numa_nodes + j) * 3; 172 matrix[idx + 0] = cpu_to_be32(i); 173 matrix[idx + 1] = cpu_to_be32(j); 174 matrix[idx + 2] = 175 cpu_to_be32(ms->numa_state->nodes[i].distance[j]); 176 } 177 } 178 179 qemu_fdt_add_subnode(fdt, "/distance-map"); 180 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 181 matrix, size); 182 g_free(matrix); 183 } 184 185 qemu_fdt_add_subnode(sms->fdt, "/cpus"); 186 187 for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) { 188 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 189 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 190 CPUState *cs = CPU(armcpu); 191 192 qemu_fdt_add_subnode(sms->fdt, nodename); 193 194 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 195 qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id", 196 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 197 } 198 199 g_free(nodename); 200 } 201 } 202 203 #define SBSA_FLASH_SECTOR_SIZE (256 * KiB) 204 205 static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms, 206 const char *name, 207 const char *alias_prop_name) 208 { 209 /* 210 * Create a single flash device. We use the same parameters as 211 * the flash devices on the Versatile Express board. 212 */ 213 DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01); 214 215 qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE); 216 qdev_prop_set_uint8(dev, "width", 4); 217 qdev_prop_set_uint8(dev, "device-width", 2); 218 qdev_prop_set_bit(dev, "big-endian", false); 219 qdev_prop_set_uint16(dev, "id0", 0x89); 220 qdev_prop_set_uint16(dev, "id1", 0x18); 221 qdev_prop_set_uint16(dev, "id2", 0x00); 222 qdev_prop_set_uint16(dev, "id3", 0x00); 223 qdev_prop_set_string(dev, "name", name); 224 object_property_add_child(OBJECT(sms), name, OBJECT(dev), 225 &error_abort); 226 object_property_add_alias(OBJECT(sms), alias_prop_name, 227 OBJECT(dev), "drive", &error_abort); 228 return PFLASH_CFI01(dev); 229 } 230 231 static void sbsa_flash_create(SBSAMachineState *sms) 232 { 233 sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0"); 234 sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1"); 235 } 236 237 static void sbsa_flash_map1(PFlashCFI01 *flash, 238 hwaddr base, hwaddr size, 239 MemoryRegion *sysmem) 240 { 241 DeviceState *dev = DEVICE(flash); 242 243 assert(size % SBSA_FLASH_SECTOR_SIZE == 0); 244 assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX); 245 qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE); 246 qdev_init_nofail(dev); 247 248 memory_region_add_subregion(sysmem, base, 249 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 250 0)); 251 } 252 253 static void sbsa_flash_map(SBSAMachineState *sms, 254 MemoryRegion *sysmem, 255 MemoryRegion *secure_sysmem) 256 { 257 /* 258 * Map two flash devices to fill the SBSA_FLASH space in the memmap. 259 * sysmem is the system memory space. secure_sysmem is the secure view 260 * of the system, and the first flash device should be made visible only 261 * there. The second flash device is visible to both secure and nonsecure. 262 */ 263 hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2; 264 hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base; 265 266 sbsa_flash_map1(sms->flash[0], flashbase, flashsize, 267 secure_sysmem); 268 sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize, 269 sysmem); 270 } 271 272 static bool sbsa_firmware_init(SBSAMachineState *sms, 273 MemoryRegion *sysmem, 274 MemoryRegion *secure_sysmem) 275 { 276 int i; 277 BlockBackend *pflash_blk0; 278 279 /* Map legacy -drive if=pflash to machine properties */ 280 for (i = 0; i < ARRAY_SIZE(sms->flash); i++) { 281 pflash_cfi01_legacy_drive(sms->flash[i], 282 drive_get(IF_PFLASH, 0, i)); 283 } 284 285 sbsa_flash_map(sms, sysmem, secure_sysmem); 286 287 pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]); 288 289 if (bios_name) { 290 char *fname; 291 MemoryRegion *mr; 292 int image_size; 293 294 if (pflash_blk0) { 295 error_report("The contents of the first flash device may be " 296 "specified with -bios or with -drive if=pflash... " 297 "but you cannot use both options at once"); 298 exit(1); 299 } 300 301 /* Fall back to -bios */ 302 303 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 304 if (!fname) { 305 error_report("Could not find ROM image '%s'", bios_name); 306 exit(1); 307 } 308 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0); 309 image_size = load_image_mr(fname, mr); 310 g_free(fname); 311 if (image_size < 0) { 312 error_report("Could not load ROM image '%s'", bios_name); 313 exit(1); 314 } 315 } 316 317 return pflash_blk0 || bios_name; 318 } 319 320 static void create_secure_ram(SBSAMachineState *sms, 321 MemoryRegion *secure_sysmem) 322 { 323 MemoryRegion *secram = g_new(MemoryRegion, 1); 324 hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base; 325 hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size; 326 327 memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size, 328 &error_fatal); 329 memory_region_add_subregion(secure_sysmem, base, secram); 330 } 331 332 static void create_gic(SBSAMachineState *sms) 333 { 334 unsigned int smp_cpus = MACHINE(sms)->smp.cpus; 335 SysBusDevice *gicbusdev; 336 const char *gictype; 337 uint32_t redist0_capacity, redist0_count; 338 int i; 339 340 gictype = gicv3_class_name(); 341 342 sms->gic = qdev_create(NULL, gictype); 343 qdev_prop_set_uint32(sms->gic, "revision", 3); 344 qdev_prop_set_uint32(sms->gic, "num-cpu", smp_cpus); 345 /* 346 * Note that the num-irq property counts both internal and external 347 * interrupts; there are always 32 of the former (mandated by GIC spec). 348 */ 349 qdev_prop_set_uint32(sms->gic, "num-irq", NUM_IRQS + 32); 350 qdev_prop_set_bit(sms->gic, "has-security-extensions", true); 351 352 redist0_capacity = 353 sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE; 354 redist0_count = MIN(smp_cpus, redist0_capacity); 355 356 qdev_prop_set_uint32(sms->gic, "len-redist-region-count", 1); 357 qdev_prop_set_uint32(sms->gic, "redist-region-count[0]", redist0_count); 358 359 qdev_init_nofail(sms->gic); 360 gicbusdev = SYS_BUS_DEVICE(sms->gic); 361 sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base); 362 sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base); 363 364 /* 365 * Wire the outputs from each CPU's generic timer and the GICv3 366 * maintenance interrupt signal to the appropriate GIC PPI inputs, 367 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. 368 */ 369 for (i = 0; i < smp_cpus; i++) { 370 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 371 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 372 int irq; 373 /* 374 * Mapping from the output timer irq lines from the CPU to the 375 * GIC PPI inputs used for this board. 376 */ 377 const int timer_irq[] = { 378 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 379 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 380 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 381 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 382 }; 383 384 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 385 qdev_connect_gpio_out(cpudev, irq, 386 qdev_get_gpio_in(sms->gic, 387 ppibase + timer_irq[irq])); 388 } 389 390 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0, 391 qdev_get_gpio_in(sms->gic, ppibase 392 + ARCH_GIC_MAINT_IRQ)); 393 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 394 qdev_get_gpio_in(sms->gic, ppibase 395 + VIRTUAL_PMU_IRQ)); 396 397 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 398 sysbus_connect_irq(gicbusdev, i + smp_cpus, 399 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 400 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 401 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 402 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 403 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 404 } 405 } 406 407 static void create_uart(const SBSAMachineState *sms, int uart, 408 MemoryRegion *mem, Chardev *chr) 409 { 410 hwaddr base = sbsa_ref_memmap[uart].base; 411 int irq = sbsa_ref_irqmap[uart]; 412 DeviceState *dev = qdev_create(NULL, "pl011"); 413 SysBusDevice *s = SYS_BUS_DEVICE(dev); 414 415 qdev_prop_set_chr(dev, "chardev", chr); 416 qdev_init_nofail(dev); 417 memory_region_add_subregion(mem, base, 418 sysbus_mmio_get_region(s, 0)); 419 sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq)); 420 } 421 422 static void create_rtc(const SBSAMachineState *sms) 423 { 424 hwaddr base = sbsa_ref_memmap[SBSA_RTC].base; 425 int irq = sbsa_ref_irqmap[SBSA_RTC]; 426 427 sysbus_create_simple("pl031", base, qdev_get_gpio_in(sms->gic, irq)); 428 } 429 430 static DeviceState *gpio_key_dev; 431 static void sbsa_ref_powerdown_req(Notifier *n, void *opaque) 432 { 433 /* use gpio Pin 3 for power button event */ 434 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 435 } 436 437 static Notifier sbsa_ref_powerdown_notifier = { 438 .notify = sbsa_ref_powerdown_req 439 }; 440 441 static void create_gpio(const SBSAMachineState *sms) 442 { 443 DeviceState *pl061_dev; 444 hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base; 445 int irq = sbsa_ref_irqmap[SBSA_GPIO]; 446 447 pl061_dev = sysbus_create_simple("pl061", base, 448 qdev_get_gpio_in(sms->gic, irq)); 449 450 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 451 qdev_get_gpio_in(pl061_dev, 3)); 452 453 /* connect powerdown request */ 454 qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier); 455 } 456 457 static void create_ahci(const SBSAMachineState *sms) 458 { 459 hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base; 460 int irq = sbsa_ref_irqmap[SBSA_AHCI]; 461 DeviceState *dev; 462 DriveInfo *hd[NUM_SATA_PORTS]; 463 SysbusAHCIState *sysahci; 464 AHCIState *ahci; 465 int i; 466 467 dev = qdev_create(NULL, "sysbus-ahci"); 468 qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS); 469 qdev_init_nofail(dev); 470 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 471 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq)); 472 473 sysahci = SYSBUS_AHCI(dev); 474 ahci = &sysahci->ahci; 475 ide_drive_get(hd, ARRAY_SIZE(hd)); 476 for (i = 0; i < ahci->ports; i++) { 477 if (hd[i] == NULL) { 478 continue; 479 } 480 ide_create_drive(&ahci->dev[i].port, 0, hd[i]); 481 } 482 } 483 484 static void create_ehci(const SBSAMachineState *sms) 485 { 486 hwaddr base = sbsa_ref_memmap[SBSA_EHCI].base; 487 int irq = sbsa_ref_irqmap[SBSA_EHCI]; 488 489 sysbus_create_simple("platform-ehci-usb", base, 490 qdev_get_gpio_in(sms->gic, irq)); 491 } 492 493 static void create_smmu(const SBSAMachineState *sms, PCIBus *bus) 494 { 495 hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base; 496 int irq = sbsa_ref_irqmap[SBSA_SMMU]; 497 DeviceState *dev; 498 int i; 499 500 dev = qdev_create(NULL, "arm-smmuv3"); 501 502 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus", 503 &error_abort); 504 qdev_init_nofail(dev); 505 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 506 for (i = 0; i < NUM_SMMU_IRQS; i++) { 507 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 508 qdev_get_gpio_in(sms->gic, irq + 1)); 509 } 510 } 511 512 static void create_pcie(SBSAMachineState *sms) 513 { 514 hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base; 515 hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size; 516 hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base; 517 hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size; 518 hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base; 519 hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size; 520 hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base; 521 int irq = sbsa_ref_irqmap[SBSA_PCIE]; 522 MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg; 523 MemoryRegion *ecam_alias, *ecam_reg; 524 DeviceState *dev; 525 PCIHostState *pci; 526 int i; 527 528 dev = qdev_create(NULL, TYPE_GPEX_HOST); 529 qdev_init_nofail(dev); 530 531 /* Map ECAM space */ 532 ecam_alias = g_new0(MemoryRegion, 1); 533 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 534 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 535 ecam_reg, 0, size_ecam); 536 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 537 538 /* Map the MMIO space */ 539 mmio_alias = g_new0(MemoryRegion, 1); 540 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 541 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 542 mmio_reg, base_mmio, size_mmio); 543 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 544 545 /* Map the MMIO_HIGH space */ 546 mmio_alias_high = g_new0(MemoryRegion, 1); 547 memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high", 548 mmio_reg, base_mmio_high, size_mmio_high); 549 memory_region_add_subregion(get_system_memory(), base_mmio_high, 550 mmio_alias_high); 551 552 /* Map IO port space */ 553 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 554 555 for (i = 0; i < GPEX_NUM_IRQS; i++) { 556 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 557 qdev_get_gpio_in(sms->gic, irq + 1)); 558 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 559 } 560 561 pci = PCI_HOST_BRIDGE(dev); 562 if (pci->bus) { 563 for (i = 0; i < nb_nics; i++) { 564 NICInfo *nd = &nd_table[i]; 565 566 if (!nd->model) { 567 nd->model = g_strdup("e1000e"); 568 } 569 570 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); 571 } 572 } 573 574 pci_create_simple(pci->bus, -1, "VGA"); 575 576 create_smmu(sms, pci->bus); 577 } 578 579 static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size) 580 { 581 const SBSAMachineState *board = container_of(binfo, SBSAMachineState, 582 bootinfo); 583 584 *fdt_size = board->fdt_size; 585 return board->fdt; 586 } 587 588 static void sbsa_ref_init(MachineState *machine) 589 { 590 unsigned int smp_cpus = machine->smp.cpus; 591 unsigned int max_cpus = machine->smp.max_cpus; 592 SBSAMachineState *sms = SBSA_MACHINE(machine); 593 MachineClass *mc = MACHINE_GET_CLASS(machine); 594 MemoryRegion *sysmem = get_system_memory(); 595 MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1); 596 MemoryRegion *ram = g_new(MemoryRegion, 1); 597 bool firmware_loaded; 598 const CPUArchIdList *possible_cpus; 599 int n, sbsa_max_cpus; 600 601 if (strcmp(machine->cpu_type, ARM_CPU_TYPE_NAME("cortex-a57"))) { 602 error_report("sbsa-ref: CPU type other than the built-in " 603 "cortex-a57 not supported"); 604 exit(1); 605 } 606 607 if (kvm_enabled()) { 608 error_report("sbsa-ref: KVM is not supported for this machine"); 609 exit(1); 610 } 611 612 /* 613 * The Secure view of the world is the same as the NonSecure, 614 * but with a few extra devices. Create it as a container region 615 * containing the system memory at low priority; any secure-only 616 * devices go in at higher priority and take precedence. 617 */ 618 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 619 UINT64_MAX); 620 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 621 622 firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem); 623 624 if (machine->kernel_filename && firmware_loaded) { 625 error_report("sbsa-ref: No fw_cfg device on this machine, " 626 "so -kernel option is not supported when firmware loaded, " 627 "please load OS from hard disk instead"); 628 exit(1); 629 } 630 631 /* 632 * This machine has EL3 enabled, external firmware should supply PSCI 633 * implementation, so the QEMU's internal PSCI is disabled. 634 */ 635 sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 636 637 sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE; 638 639 if (max_cpus > sbsa_max_cpus) { 640 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 641 "supported by machine 'sbsa-ref' (%d)", 642 max_cpus, sbsa_max_cpus); 643 exit(1); 644 } 645 646 sms->smp_cpus = smp_cpus; 647 648 if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) { 649 error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB); 650 exit(1); 651 } 652 653 possible_cpus = mc->possible_cpu_arch_ids(machine); 654 for (n = 0; n < possible_cpus->len; n++) { 655 Object *cpuobj; 656 CPUState *cs; 657 658 if (n >= smp_cpus) { 659 break; 660 } 661 662 cpuobj = object_new(possible_cpus->cpus[n].type); 663 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id, 664 "mp-affinity", NULL); 665 666 cs = CPU(cpuobj); 667 cs->cpu_index = n; 668 669 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 670 &error_fatal); 671 672 if (object_property_find(cpuobj, "reset-cbar", NULL)) { 673 object_property_set_int(cpuobj, 674 sbsa_ref_memmap[SBSA_CPUPERIPHS].base, 675 "reset-cbar", &error_abort); 676 } 677 678 object_property_set_link(cpuobj, OBJECT(sysmem), "memory", 679 &error_abort); 680 681 object_property_set_link(cpuobj, OBJECT(secure_sysmem), 682 "secure-memory", &error_abort); 683 684 object_property_set_bool(cpuobj, true, "realized", &error_fatal); 685 object_unref(cpuobj); 686 } 687 688 memory_region_allocate_system_memory(ram, NULL, "sbsa-ref.ram", 689 machine->ram_size); 690 memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base, ram); 691 692 create_fdt(sms); 693 694 create_secure_ram(sms, secure_sysmem); 695 696 create_gic(sms); 697 698 create_uart(sms, SBSA_UART, sysmem, serial_hd(0)); 699 create_uart(sms, SBSA_SECURE_UART, secure_sysmem, serial_hd(1)); 700 /* Second secure UART for RAS and MM from EL0 */ 701 create_uart(sms, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2)); 702 703 create_rtc(sms); 704 705 create_gpio(sms); 706 707 create_ahci(sms); 708 709 create_ehci(sms); 710 711 create_pcie(sms); 712 713 sms->bootinfo.ram_size = machine->ram_size; 714 sms->bootinfo.nb_cpus = smp_cpus; 715 sms->bootinfo.board_id = -1; 716 sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base; 717 sms->bootinfo.get_dtb = sbsa_ref_dtb; 718 sms->bootinfo.firmware_loaded = firmware_loaded; 719 arm_load_kernel(ARM_CPU(first_cpu), machine, &sms->bootinfo); 720 } 721 722 static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx) 723 { 724 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; 725 return arm_cpu_mp_affinity(idx, clustersz); 726 } 727 728 static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms) 729 { 730 unsigned int max_cpus = ms->smp.max_cpus; 731 SBSAMachineState *sms = SBSA_MACHINE(ms); 732 int n; 733 734 if (ms->possible_cpus) { 735 assert(ms->possible_cpus->len == max_cpus); 736 return ms->possible_cpus; 737 } 738 739 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 740 sizeof(CPUArchId) * max_cpus); 741 ms->possible_cpus->len = max_cpus; 742 for (n = 0; n < ms->possible_cpus->len; n++) { 743 ms->possible_cpus->cpus[n].type = ms->cpu_type; 744 ms->possible_cpus->cpus[n].arch_id = 745 sbsa_ref_cpu_mp_affinity(sms, n); 746 ms->possible_cpus->cpus[n].props.has_thread_id = true; 747 ms->possible_cpus->cpus[n].props.thread_id = n; 748 } 749 return ms->possible_cpus; 750 } 751 752 static CpuInstanceProperties 753 sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 754 { 755 MachineClass *mc = MACHINE_GET_CLASS(ms); 756 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 757 758 assert(cpu_index < possible_cpus->len); 759 return possible_cpus->cpus[cpu_index].props; 760 } 761 762 static int64_t 763 sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx) 764 { 765 return idx % ms->numa_state->num_nodes; 766 } 767 768 static void sbsa_ref_instance_init(Object *obj) 769 { 770 SBSAMachineState *sms = SBSA_MACHINE(obj); 771 772 sbsa_flash_create(sms); 773 } 774 775 static void sbsa_ref_class_init(ObjectClass *oc, void *data) 776 { 777 MachineClass *mc = MACHINE_CLASS(oc); 778 779 mc->init = sbsa_ref_init; 780 mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine"; 781 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a57"); 782 mc->max_cpus = 512; 783 mc->pci_allow_0_address = true; 784 mc->minimum_page_bits = 12; 785 mc->block_default_type = IF_IDE; 786 mc->no_cdrom = 1; 787 mc->default_ram_size = 1 * GiB; 788 mc->default_cpus = 4; 789 mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids; 790 mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props; 791 mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id; 792 } 793 794 static const TypeInfo sbsa_ref_info = { 795 .name = TYPE_SBSA_MACHINE, 796 .parent = TYPE_MACHINE, 797 .instance_init = sbsa_ref_instance_init, 798 .class_init = sbsa_ref_class_init, 799 .instance_size = sizeof(SBSAMachineState), 800 }; 801 802 static void sbsa_ref_machine_init(void) 803 { 804 type_register_static(&sbsa_ref_info); 805 } 806 807 type_init(sbsa_ref_machine_init); 808