1 /* 2 * ARM SBSA Reference Platform emulation 3 * 4 * Copyright (c) 2018 Linaro Limited 5 * Written by Hongbo Zhang <hongbo.zhang@linaro.org> 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/datadir.h" 22 #include "qapi/error.h" 23 #include "qemu/error-report.h" 24 #include "qemu/units.h" 25 #include "sysemu/device_tree.h" 26 #include "sysemu/kvm.h" 27 #include "sysemu/numa.h" 28 #include "sysemu/runstate.h" 29 #include "sysemu/sysemu.h" 30 #include "exec/hwaddr.h" 31 #include "kvm_arm.h" 32 #include "hw/arm/boot.h" 33 #include "hw/arm/fdt.h" 34 #include "hw/arm/smmuv3.h" 35 #include "hw/block/flash.h" 36 #include "hw/boards.h" 37 #include "hw/ide/internal.h" 38 #include "hw/ide/ahci_internal.h" 39 #include "hw/intc/arm_gicv3_common.h" 40 #include "hw/intc/arm_gicv3_its_common.h" 41 #include "hw/loader.h" 42 #include "hw/pci-host/gpex.h" 43 #include "hw/qdev-properties.h" 44 #include "hw/usb.h" 45 #include "hw/usb/xhci.h" 46 #include "hw/char/pl011.h" 47 #include "hw/watchdog/sbsa_gwdt.h" 48 #include "net/net.h" 49 #include "qom/object.h" 50 51 #define RAMLIMIT_GB 8192 52 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB) 53 54 #define NUM_IRQS 256 55 #define NUM_SMMU_IRQS 4 56 #define NUM_SATA_PORTS 6 57 58 #define VIRTUAL_PMU_IRQ 7 59 #define ARCH_GIC_MAINT_IRQ 9 60 #define ARCH_TIMER_VIRT_IRQ 11 61 #define ARCH_TIMER_S_EL1_IRQ 13 62 #define ARCH_TIMER_NS_EL1_IRQ 14 63 #define ARCH_TIMER_NS_EL2_IRQ 10 64 65 enum { 66 SBSA_FLASH, 67 SBSA_MEM, 68 SBSA_CPUPERIPHS, 69 SBSA_GIC_DIST, 70 SBSA_GIC_REDIST, 71 SBSA_GIC_ITS, 72 SBSA_SECURE_EC, 73 SBSA_GWDT_WS0, 74 SBSA_GWDT_REFRESH, 75 SBSA_GWDT_CONTROL, 76 SBSA_SMMU, 77 SBSA_UART, 78 SBSA_RTC, 79 SBSA_PCIE, 80 SBSA_PCIE_MMIO, 81 SBSA_PCIE_MMIO_HIGH, 82 SBSA_PCIE_PIO, 83 SBSA_PCIE_ECAM, 84 SBSA_GPIO, 85 SBSA_SECURE_UART, 86 SBSA_SECURE_UART_MM, 87 SBSA_SECURE_MEM, 88 SBSA_AHCI, 89 SBSA_XHCI, 90 }; 91 92 struct SBSAMachineState { 93 MachineState parent; 94 struct arm_boot_info bootinfo; 95 int smp_cpus; 96 void *fdt; 97 int fdt_size; 98 int psci_conduit; 99 DeviceState *gic; 100 PFlashCFI01 *flash[2]; 101 }; 102 103 #define TYPE_SBSA_MACHINE MACHINE_TYPE_NAME("sbsa-ref") 104 OBJECT_DECLARE_SIMPLE_TYPE(SBSAMachineState, SBSA_MACHINE) 105 106 static const MemMapEntry sbsa_ref_memmap[] = { 107 /* 512M boot ROM */ 108 [SBSA_FLASH] = { 0, 0x20000000 }, 109 /* 512M secure memory */ 110 [SBSA_SECURE_MEM] = { 0x20000000, 0x20000000 }, 111 /* Space reserved for CPU peripheral devices */ 112 [SBSA_CPUPERIPHS] = { 0x40000000, 0x00040000 }, 113 [SBSA_GIC_DIST] = { 0x40060000, 0x00010000 }, 114 [SBSA_GIC_REDIST] = { 0x40080000, 0x04000000 }, 115 [SBSA_GIC_ITS] = { 0x44081000, 0x00020000 }, 116 [SBSA_SECURE_EC] = { 0x50000000, 0x00001000 }, 117 [SBSA_GWDT_REFRESH] = { 0x50010000, 0x00001000 }, 118 [SBSA_GWDT_CONTROL] = { 0x50011000, 0x00001000 }, 119 [SBSA_UART] = { 0x60000000, 0x00001000 }, 120 [SBSA_RTC] = { 0x60010000, 0x00001000 }, 121 [SBSA_GPIO] = { 0x60020000, 0x00001000 }, 122 [SBSA_SECURE_UART] = { 0x60030000, 0x00001000 }, 123 [SBSA_SECURE_UART_MM] = { 0x60040000, 0x00001000 }, 124 [SBSA_SMMU] = { 0x60050000, 0x00020000 }, 125 /* Space here reserved for more SMMUs */ 126 [SBSA_AHCI] = { 0x60100000, 0x00010000 }, 127 [SBSA_XHCI] = { 0x60110000, 0x00010000 }, 128 /* Space here reserved for other devices */ 129 [SBSA_PCIE_PIO] = { 0x7fff0000, 0x00010000 }, 130 /* 32-bit address PCIE MMIO space */ 131 [SBSA_PCIE_MMIO] = { 0x80000000, 0x70000000 }, 132 /* 256M PCIE ECAM space */ 133 [SBSA_PCIE_ECAM] = { 0xf0000000, 0x10000000 }, 134 /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */ 135 [SBSA_PCIE_MMIO_HIGH] = { 0x100000000ULL, 0xFF00000000ULL }, 136 [SBSA_MEM] = { 0x10000000000ULL, RAMLIMIT_BYTES }, 137 }; 138 139 static const int sbsa_ref_irqmap[] = { 140 [SBSA_UART] = 1, 141 [SBSA_RTC] = 2, 142 [SBSA_PCIE] = 3, /* ... to 6 */ 143 [SBSA_GPIO] = 7, 144 [SBSA_SECURE_UART] = 8, 145 [SBSA_SECURE_UART_MM] = 9, 146 [SBSA_AHCI] = 10, 147 [SBSA_XHCI] = 11, 148 [SBSA_SMMU] = 12, /* ... to 15 */ 149 [SBSA_GWDT_WS0] = 16, 150 }; 151 152 static const char * const valid_cpus[] = { 153 ARM_CPU_TYPE_NAME("cortex-a57"), 154 ARM_CPU_TYPE_NAME("cortex-a72"), 155 ARM_CPU_TYPE_NAME("neoverse-n1"), 156 ARM_CPU_TYPE_NAME("max"), 157 }; 158 159 static bool cpu_type_valid(const char *cpu) 160 { 161 int i; 162 163 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) { 164 if (strcmp(cpu, valid_cpus[i]) == 0) { 165 return true; 166 } 167 } 168 return false; 169 } 170 171 static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx) 172 { 173 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; 174 return arm_cpu_mp_affinity(idx, clustersz); 175 } 176 177 static void sbsa_fdt_add_gic_node(SBSAMachineState *sms) 178 { 179 char *nodename; 180 181 nodename = g_strdup_printf("/intc"); 182 qemu_fdt_add_subnode(sms->fdt, nodename); 183 qemu_fdt_setprop_sized_cells(sms->fdt, nodename, "reg", 184 2, sbsa_ref_memmap[SBSA_GIC_DIST].base, 185 2, sbsa_ref_memmap[SBSA_GIC_DIST].size, 186 2, sbsa_ref_memmap[SBSA_GIC_REDIST].base, 187 2, sbsa_ref_memmap[SBSA_GIC_REDIST].size); 188 189 nodename = g_strdup_printf("/intc/its"); 190 qemu_fdt_add_subnode(sms->fdt, nodename); 191 qemu_fdt_setprop_sized_cells(sms->fdt, nodename, "reg", 192 2, sbsa_ref_memmap[SBSA_GIC_ITS].base, 193 2, sbsa_ref_memmap[SBSA_GIC_ITS].size); 194 195 g_free(nodename); 196 } 197 198 /* 199 * Firmware on this machine only uses ACPI table to load OS, these limited 200 * device tree nodes are just to let firmware know the info which varies from 201 * command line parameters, so it is not necessary to be fully compatible 202 * with the kernel CPU and NUMA binding rules. 203 */ 204 static void create_fdt(SBSAMachineState *sms) 205 { 206 void *fdt = create_device_tree(&sms->fdt_size); 207 const MachineState *ms = MACHINE(sms); 208 int nb_numa_nodes = ms->numa_state->num_nodes; 209 int cpu; 210 211 if (!fdt) { 212 error_report("create_device_tree() failed"); 213 exit(1); 214 } 215 216 sms->fdt = fdt; 217 218 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref"); 219 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 220 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 221 222 /* 223 * This versioning scheme is for informing platform fw only. It is neither: 224 * - A QEMU versioned machine type; a given version of QEMU will emulate 225 * a given version of the platform. 226 * - A reflection of level of SBSA (now SystemReady SR) support provided. 227 * 228 * machine-version-major: updated when changes breaking fw compatibility 229 * are introduced. 230 * machine-version-minor: updated when features are added that don't break 231 * fw compatibility. 232 */ 233 qemu_fdt_setprop_cell(fdt, "/", "machine-version-major", 0); 234 qemu_fdt_setprop_cell(fdt, "/", "machine-version-minor", 3); 235 236 if (ms->numa_state->have_numa_distance) { 237 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 238 uint32_t *matrix = g_malloc0(size); 239 int idx, i, j; 240 241 for (i = 0; i < nb_numa_nodes; i++) { 242 for (j = 0; j < nb_numa_nodes; j++) { 243 idx = (i * nb_numa_nodes + j) * 3; 244 matrix[idx + 0] = cpu_to_be32(i); 245 matrix[idx + 1] = cpu_to_be32(j); 246 matrix[idx + 2] = 247 cpu_to_be32(ms->numa_state->nodes[i].distance[j]); 248 } 249 } 250 251 qemu_fdt_add_subnode(fdt, "/distance-map"); 252 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 253 matrix, size); 254 g_free(matrix); 255 } 256 257 /* 258 * From Documentation/devicetree/bindings/arm/cpus.yaml 259 * On ARM v8 64-bit systems this property is required 260 * and matches the MPIDR_EL1 register affinity bits. 261 * 262 * * If cpus node's #address-cells property is set to 2 263 * 264 * The first reg cell bits [7:0] must be set to 265 * bits [39:32] of MPIDR_EL1. 266 * 267 * The second reg cell bits [23:0] must be set to 268 * bits [23:0] of MPIDR_EL1. 269 */ 270 qemu_fdt_add_subnode(sms->fdt, "/cpus"); 271 qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#address-cells", 2); 272 qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#size-cells", 0x0); 273 274 for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) { 275 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 276 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 277 CPUState *cs = CPU(armcpu); 278 uint64_t mpidr = sbsa_ref_cpu_mp_affinity(sms, cpu); 279 280 qemu_fdt_add_subnode(sms->fdt, nodename); 281 qemu_fdt_setprop_u64(sms->fdt, nodename, "reg", mpidr); 282 283 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 284 qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id", 285 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 286 } 287 288 g_free(nodename); 289 } 290 291 sbsa_fdt_add_gic_node(sms); 292 } 293 294 #define SBSA_FLASH_SECTOR_SIZE (256 * KiB) 295 296 static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms, 297 const char *name, 298 const char *alias_prop_name) 299 { 300 /* 301 * Create a single flash device. We use the same parameters as 302 * the flash devices on the Versatile Express board. 303 */ 304 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01); 305 306 qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE); 307 qdev_prop_set_uint8(dev, "width", 4); 308 qdev_prop_set_uint8(dev, "device-width", 2); 309 qdev_prop_set_bit(dev, "big-endian", false); 310 qdev_prop_set_uint16(dev, "id0", 0x89); 311 qdev_prop_set_uint16(dev, "id1", 0x18); 312 qdev_prop_set_uint16(dev, "id2", 0x00); 313 qdev_prop_set_uint16(dev, "id3", 0x00); 314 qdev_prop_set_string(dev, "name", name); 315 object_property_add_child(OBJECT(sms), name, OBJECT(dev)); 316 object_property_add_alias(OBJECT(sms), alias_prop_name, 317 OBJECT(dev), "drive"); 318 return PFLASH_CFI01(dev); 319 } 320 321 static void sbsa_flash_create(SBSAMachineState *sms) 322 { 323 sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0"); 324 sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1"); 325 } 326 327 static void sbsa_flash_map1(PFlashCFI01 *flash, 328 hwaddr base, hwaddr size, 329 MemoryRegion *sysmem) 330 { 331 DeviceState *dev = DEVICE(flash); 332 333 assert(QEMU_IS_ALIGNED(size, SBSA_FLASH_SECTOR_SIZE)); 334 assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX); 335 qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE); 336 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 337 338 memory_region_add_subregion(sysmem, base, 339 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 340 0)); 341 } 342 343 static void sbsa_flash_map(SBSAMachineState *sms, 344 MemoryRegion *sysmem, 345 MemoryRegion *secure_sysmem) 346 { 347 /* 348 * Map two flash devices to fill the SBSA_FLASH space in the memmap. 349 * sysmem is the system memory space. secure_sysmem is the secure view 350 * of the system, and the first flash device should be made visible only 351 * there. The second flash device is visible to both secure and nonsecure. 352 */ 353 hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2; 354 hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base; 355 356 sbsa_flash_map1(sms->flash[0], flashbase, flashsize, 357 secure_sysmem); 358 sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize, 359 sysmem); 360 } 361 362 static bool sbsa_firmware_init(SBSAMachineState *sms, 363 MemoryRegion *sysmem, 364 MemoryRegion *secure_sysmem) 365 { 366 const char *bios_name; 367 int i; 368 BlockBackend *pflash_blk0; 369 370 /* Map legacy -drive if=pflash to machine properties */ 371 for (i = 0; i < ARRAY_SIZE(sms->flash); i++) { 372 pflash_cfi01_legacy_drive(sms->flash[i], 373 drive_get(IF_PFLASH, 0, i)); 374 } 375 376 sbsa_flash_map(sms, sysmem, secure_sysmem); 377 378 pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]); 379 380 bios_name = MACHINE(sms)->firmware; 381 if (bios_name) { 382 char *fname; 383 MemoryRegion *mr; 384 int image_size; 385 386 if (pflash_blk0) { 387 error_report("The contents of the first flash device may be " 388 "specified with -bios or with -drive if=pflash... " 389 "but you cannot use both options at once"); 390 exit(1); 391 } 392 393 /* Fall back to -bios */ 394 395 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 396 if (!fname) { 397 error_report("Could not find ROM image '%s'", bios_name); 398 exit(1); 399 } 400 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0); 401 image_size = load_image_mr(fname, mr); 402 g_free(fname); 403 if (image_size < 0) { 404 error_report("Could not load ROM image '%s'", bios_name); 405 exit(1); 406 } 407 } 408 409 return pflash_blk0 || bios_name; 410 } 411 412 static void create_secure_ram(SBSAMachineState *sms, 413 MemoryRegion *secure_sysmem) 414 { 415 MemoryRegion *secram = g_new(MemoryRegion, 1); 416 hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base; 417 hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size; 418 419 memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size, 420 &error_fatal); 421 memory_region_add_subregion(secure_sysmem, base, secram); 422 } 423 424 static void create_its(SBSAMachineState *sms) 425 { 426 const char *itsclass = its_class_name(); 427 DeviceState *dev; 428 429 dev = qdev_new(itsclass); 430 431 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(sms->gic), 432 &error_abort); 433 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 434 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, sbsa_ref_memmap[SBSA_GIC_ITS].base); 435 } 436 437 static void create_gic(SBSAMachineState *sms, MemoryRegion *mem) 438 { 439 unsigned int smp_cpus = MACHINE(sms)->smp.cpus; 440 SysBusDevice *gicbusdev; 441 const char *gictype; 442 uint32_t redist0_capacity, redist0_count; 443 int i; 444 445 gictype = gicv3_class_name(); 446 447 sms->gic = qdev_new(gictype); 448 qdev_prop_set_uint32(sms->gic, "revision", 3); 449 qdev_prop_set_uint32(sms->gic, "num-cpu", smp_cpus); 450 /* 451 * Note that the num-irq property counts both internal and external 452 * interrupts; there are always 32 of the former (mandated by GIC spec). 453 */ 454 qdev_prop_set_uint32(sms->gic, "num-irq", NUM_IRQS + 32); 455 qdev_prop_set_bit(sms->gic, "has-security-extensions", true); 456 457 redist0_capacity = 458 sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE; 459 redist0_count = MIN(smp_cpus, redist0_capacity); 460 461 qdev_prop_set_uint32(sms->gic, "len-redist-region-count", 1); 462 qdev_prop_set_uint32(sms->gic, "redist-region-count[0]", redist0_count); 463 464 object_property_set_link(OBJECT(sms->gic), "sysmem", 465 OBJECT(mem), &error_fatal); 466 qdev_prop_set_bit(sms->gic, "has-lpi", true); 467 468 gicbusdev = SYS_BUS_DEVICE(sms->gic); 469 sysbus_realize_and_unref(gicbusdev, &error_fatal); 470 sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base); 471 sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base); 472 473 /* 474 * Wire the outputs from each CPU's generic timer and the GICv3 475 * maintenance interrupt signal to the appropriate GIC PPI inputs, 476 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. 477 */ 478 for (i = 0; i < smp_cpus; i++) { 479 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 480 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 481 int irq; 482 /* 483 * Mapping from the output timer irq lines from the CPU to the 484 * GIC PPI inputs used for this board. 485 */ 486 const int timer_irq[] = { 487 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 488 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 489 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 490 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 491 }; 492 493 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 494 qdev_connect_gpio_out(cpudev, irq, 495 qdev_get_gpio_in(sms->gic, 496 ppibase + timer_irq[irq])); 497 } 498 499 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0, 500 qdev_get_gpio_in(sms->gic, ppibase 501 + ARCH_GIC_MAINT_IRQ)); 502 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 503 qdev_get_gpio_in(sms->gic, ppibase 504 + VIRTUAL_PMU_IRQ)); 505 506 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 507 sysbus_connect_irq(gicbusdev, i + smp_cpus, 508 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 509 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 510 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 511 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 512 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 513 } 514 create_its(sms); 515 } 516 517 static void create_uart(const SBSAMachineState *sms, int uart, 518 MemoryRegion *mem, Chardev *chr) 519 { 520 hwaddr base = sbsa_ref_memmap[uart].base; 521 int irq = sbsa_ref_irqmap[uart]; 522 DeviceState *dev = qdev_new(TYPE_PL011); 523 SysBusDevice *s = SYS_BUS_DEVICE(dev); 524 525 qdev_prop_set_chr(dev, "chardev", chr); 526 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 527 memory_region_add_subregion(mem, base, 528 sysbus_mmio_get_region(s, 0)); 529 sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq)); 530 } 531 532 static void create_rtc(const SBSAMachineState *sms) 533 { 534 hwaddr base = sbsa_ref_memmap[SBSA_RTC].base; 535 int irq = sbsa_ref_irqmap[SBSA_RTC]; 536 537 sysbus_create_simple("pl031", base, qdev_get_gpio_in(sms->gic, irq)); 538 } 539 540 static void create_wdt(const SBSAMachineState *sms) 541 { 542 hwaddr rbase = sbsa_ref_memmap[SBSA_GWDT_REFRESH].base; 543 hwaddr cbase = sbsa_ref_memmap[SBSA_GWDT_CONTROL].base; 544 DeviceState *dev = qdev_new(TYPE_WDT_SBSA); 545 SysBusDevice *s = SYS_BUS_DEVICE(dev); 546 int irq = sbsa_ref_irqmap[SBSA_GWDT_WS0]; 547 548 sysbus_realize_and_unref(s, &error_fatal); 549 sysbus_mmio_map(s, 0, rbase); 550 sysbus_mmio_map(s, 1, cbase); 551 sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq)); 552 } 553 554 static DeviceState *gpio_key_dev; 555 static void sbsa_ref_powerdown_req(Notifier *n, void *opaque) 556 { 557 /* use gpio Pin 3 for power button event */ 558 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 559 } 560 561 static Notifier sbsa_ref_powerdown_notifier = { 562 .notify = sbsa_ref_powerdown_req 563 }; 564 565 static void create_gpio(const SBSAMachineState *sms) 566 { 567 DeviceState *pl061_dev; 568 hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base; 569 int irq = sbsa_ref_irqmap[SBSA_GPIO]; 570 571 pl061_dev = sysbus_create_simple("pl061", base, 572 qdev_get_gpio_in(sms->gic, irq)); 573 574 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 575 qdev_get_gpio_in(pl061_dev, 3)); 576 577 /* connect powerdown request */ 578 qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier); 579 } 580 581 static void create_ahci(const SBSAMachineState *sms) 582 { 583 hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base; 584 int irq = sbsa_ref_irqmap[SBSA_AHCI]; 585 DeviceState *dev; 586 DriveInfo *hd[NUM_SATA_PORTS]; 587 SysbusAHCIState *sysahci; 588 AHCIState *ahci; 589 int i; 590 591 dev = qdev_new("sysbus-ahci"); 592 qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS); 593 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 594 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 595 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq)); 596 597 sysahci = SYSBUS_AHCI(dev); 598 ahci = &sysahci->ahci; 599 ide_drive_get(hd, ARRAY_SIZE(hd)); 600 for (i = 0; i < ahci->ports; i++) { 601 if (hd[i] == NULL) { 602 continue; 603 } 604 ide_bus_create_drive(&ahci->dev[i].port, 0, hd[i]); 605 } 606 } 607 608 static void create_xhci(const SBSAMachineState *sms) 609 { 610 hwaddr base = sbsa_ref_memmap[SBSA_XHCI].base; 611 int irq = sbsa_ref_irqmap[SBSA_XHCI]; 612 DeviceState *dev = qdev_new(TYPE_XHCI_SYSBUS); 613 614 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 615 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 616 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq)); 617 } 618 619 static void create_smmu(const SBSAMachineState *sms, PCIBus *bus) 620 { 621 hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base; 622 int irq = sbsa_ref_irqmap[SBSA_SMMU]; 623 DeviceState *dev; 624 int i; 625 626 dev = qdev_new(TYPE_ARM_SMMUV3); 627 628 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus), 629 &error_abort); 630 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 631 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 632 for (i = 0; i < NUM_SMMU_IRQS; i++) { 633 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 634 qdev_get_gpio_in(sms->gic, irq + i)); 635 } 636 } 637 638 static void create_pcie(SBSAMachineState *sms) 639 { 640 hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base; 641 hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size; 642 hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base; 643 hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size; 644 hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base; 645 hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size; 646 hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base; 647 int irq = sbsa_ref_irqmap[SBSA_PCIE]; 648 MachineClass *mc = MACHINE_GET_CLASS(sms); 649 MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg; 650 MemoryRegion *ecam_alias, *ecam_reg; 651 DeviceState *dev; 652 PCIHostState *pci; 653 int i; 654 655 dev = qdev_new(TYPE_GPEX_HOST); 656 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 657 658 /* Map ECAM space */ 659 ecam_alias = g_new0(MemoryRegion, 1); 660 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 661 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 662 ecam_reg, 0, size_ecam); 663 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 664 665 /* Map the MMIO space */ 666 mmio_alias = g_new0(MemoryRegion, 1); 667 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 668 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 669 mmio_reg, base_mmio, size_mmio); 670 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 671 672 /* Map the MMIO_HIGH space */ 673 mmio_alias_high = g_new0(MemoryRegion, 1); 674 memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high", 675 mmio_reg, base_mmio_high, size_mmio_high); 676 memory_region_add_subregion(get_system_memory(), base_mmio_high, 677 mmio_alias_high); 678 679 /* Map IO port space */ 680 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 681 682 for (i = 0; i < GPEX_NUM_IRQS; i++) { 683 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 684 qdev_get_gpio_in(sms->gic, irq + i)); 685 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 686 } 687 688 pci = PCI_HOST_BRIDGE(dev); 689 if (pci->bus) { 690 for (i = 0; i < nb_nics; i++) { 691 NICInfo *nd = &nd_table[i]; 692 693 if (!nd->model) { 694 nd->model = g_strdup(mc->default_nic); 695 } 696 697 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); 698 } 699 } 700 701 pci_create_simple(pci->bus, -1, "bochs-display"); 702 703 create_smmu(sms, pci->bus); 704 } 705 706 static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size) 707 { 708 const SBSAMachineState *board = container_of(binfo, SBSAMachineState, 709 bootinfo); 710 711 *fdt_size = board->fdt_size; 712 return board->fdt; 713 } 714 715 static void create_secure_ec(MemoryRegion *mem) 716 { 717 hwaddr base = sbsa_ref_memmap[SBSA_SECURE_EC].base; 718 DeviceState *dev = qdev_new("sbsa-ec"); 719 SysBusDevice *s = SYS_BUS_DEVICE(dev); 720 721 memory_region_add_subregion(mem, base, 722 sysbus_mmio_get_region(s, 0)); 723 } 724 725 static void sbsa_ref_init(MachineState *machine) 726 { 727 unsigned int smp_cpus = machine->smp.cpus; 728 unsigned int max_cpus = machine->smp.max_cpus; 729 SBSAMachineState *sms = SBSA_MACHINE(machine); 730 MachineClass *mc = MACHINE_GET_CLASS(machine); 731 MemoryRegion *sysmem = get_system_memory(); 732 MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1); 733 bool firmware_loaded; 734 const CPUArchIdList *possible_cpus; 735 int n, sbsa_max_cpus; 736 737 if (!cpu_type_valid(machine->cpu_type)) { 738 error_report("sbsa-ref: CPU type %s not supported", machine->cpu_type); 739 exit(1); 740 } 741 742 if (kvm_enabled()) { 743 error_report("sbsa-ref: KVM is not supported for this machine"); 744 exit(1); 745 } 746 747 /* 748 * The Secure view of the world is the same as the NonSecure, 749 * but with a few extra devices. Create it as a container region 750 * containing the system memory at low priority; any secure-only 751 * devices go in at higher priority and take precedence. 752 */ 753 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 754 UINT64_MAX); 755 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 756 757 firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem); 758 759 /* 760 * This machine has EL3 enabled, external firmware should supply PSCI 761 * implementation, so the QEMU's internal PSCI is disabled. 762 */ 763 sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 764 765 sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE; 766 767 if (max_cpus > sbsa_max_cpus) { 768 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 769 "supported by machine 'sbsa-ref' (%d)", 770 max_cpus, sbsa_max_cpus); 771 exit(1); 772 } 773 774 sms->smp_cpus = smp_cpus; 775 776 if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) { 777 error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB); 778 exit(1); 779 } 780 781 possible_cpus = mc->possible_cpu_arch_ids(machine); 782 for (n = 0; n < possible_cpus->len; n++) { 783 Object *cpuobj; 784 CPUState *cs; 785 786 if (n >= smp_cpus) { 787 break; 788 } 789 790 cpuobj = object_new(possible_cpus->cpus[n].type); 791 object_property_set_int(cpuobj, "mp-affinity", 792 possible_cpus->cpus[n].arch_id, NULL); 793 794 cs = CPU(cpuobj); 795 cs->cpu_index = n; 796 797 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 798 &error_fatal); 799 800 if (object_property_find(cpuobj, "reset-cbar")) { 801 object_property_set_int(cpuobj, "reset-cbar", 802 sbsa_ref_memmap[SBSA_CPUPERIPHS].base, 803 &error_abort); 804 } 805 806 object_property_set_link(cpuobj, "memory", OBJECT(sysmem), 807 &error_abort); 808 809 object_property_set_link(cpuobj, "secure-memory", 810 OBJECT(secure_sysmem), &error_abort); 811 812 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal); 813 object_unref(cpuobj); 814 } 815 816 memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base, 817 machine->ram); 818 819 create_fdt(sms); 820 821 create_secure_ram(sms, secure_sysmem); 822 823 create_gic(sms, sysmem); 824 825 create_uart(sms, SBSA_UART, sysmem, serial_hd(0)); 826 create_uart(sms, SBSA_SECURE_UART, secure_sysmem, serial_hd(1)); 827 /* Second secure UART for RAS and MM from EL0 */ 828 create_uart(sms, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2)); 829 830 create_rtc(sms); 831 832 create_wdt(sms); 833 834 create_gpio(sms); 835 836 create_ahci(sms); 837 838 create_xhci(sms); 839 840 create_pcie(sms); 841 842 create_secure_ec(secure_sysmem); 843 844 sms->bootinfo.ram_size = machine->ram_size; 845 sms->bootinfo.board_id = -1; 846 sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base; 847 sms->bootinfo.get_dtb = sbsa_ref_dtb; 848 sms->bootinfo.firmware_loaded = firmware_loaded; 849 arm_load_kernel(ARM_CPU(first_cpu), machine, &sms->bootinfo); 850 } 851 852 static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms) 853 { 854 unsigned int max_cpus = ms->smp.max_cpus; 855 SBSAMachineState *sms = SBSA_MACHINE(ms); 856 int n; 857 858 if (ms->possible_cpus) { 859 assert(ms->possible_cpus->len == max_cpus); 860 return ms->possible_cpus; 861 } 862 863 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 864 sizeof(CPUArchId) * max_cpus); 865 ms->possible_cpus->len = max_cpus; 866 for (n = 0; n < ms->possible_cpus->len; n++) { 867 ms->possible_cpus->cpus[n].type = ms->cpu_type; 868 ms->possible_cpus->cpus[n].arch_id = 869 sbsa_ref_cpu_mp_affinity(sms, n); 870 ms->possible_cpus->cpus[n].props.has_thread_id = true; 871 ms->possible_cpus->cpus[n].props.thread_id = n; 872 } 873 return ms->possible_cpus; 874 } 875 876 static CpuInstanceProperties 877 sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 878 { 879 MachineClass *mc = MACHINE_GET_CLASS(ms); 880 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 881 882 assert(cpu_index < possible_cpus->len); 883 return possible_cpus->cpus[cpu_index].props; 884 } 885 886 static int64_t 887 sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx) 888 { 889 return idx % ms->numa_state->num_nodes; 890 } 891 892 static void sbsa_ref_instance_init(Object *obj) 893 { 894 SBSAMachineState *sms = SBSA_MACHINE(obj); 895 896 sbsa_flash_create(sms); 897 } 898 899 static void sbsa_ref_class_init(ObjectClass *oc, void *data) 900 { 901 MachineClass *mc = MACHINE_CLASS(oc); 902 903 mc->init = sbsa_ref_init; 904 mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine"; 905 mc->default_cpu_type = ARM_CPU_TYPE_NAME("neoverse-n1"); 906 mc->max_cpus = 512; 907 mc->pci_allow_0_address = true; 908 mc->minimum_page_bits = 12; 909 mc->block_default_type = IF_IDE; 910 mc->no_cdrom = 1; 911 mc->default_nic = "e1000e"; 912 mc->default_ram_size = 1 * GiB; 913 mc->default_ram_id = "sbsa-ref.ram"; 914 mc->default_cpus = 4; 915 mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids; 916 mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props; 917 mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id; 918 /* platform instead of architectural choice */ 919 mc->cpu_cluster_has_numa_boundary = true; 920 } 921 922 static const TypeInfo sbsa_ref_info = { 923 .name = TYPE_SBSA_MACHINE, 924 .parent = TYPE_MACHINE, 925 .instance_init = sbsa_ref_instance_init, 926 .class_init = sbsa_ref_class_init, 927 .instance_size = sizeof(SBSAMachineState), 928 }; 929 930 static void sbsa_ref_machine_init(void) 931 { 932 type_register_static(&sbsa_ref_info); 933 } 934 935 type_init(sbsa_ref_machine_init); 936