1 /* 2 * ARM SBSA Reference Platform emulation 3 * 4 * Copyright (c) 2018 Linaro Limited 5 * Written by Hongbo Zhang <hongbo.zhang@linaro.org> 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/datadir.h" 22 #include "qapi/error.h" 23 #include "qemu/error-report.h" 24 #include "qemu/units.h" 25 #include "sysemu/device_tree.h" 26 #include "sysemu/numa.h" 27 #include "sysemu/runstate.h" 28 #include "sysemu/sysemu.h" 29 #include "exec/hwaddr.h" 30 #include "kvm_arm.h" 31 #include "hw/arm/boot.h" 32 #include "hw/arm/smmuv3.h" 33 #include "hw/block/flash.h" 34 #include "hw/boards.h" 35 #include "hw/ide/internal.h" 36 #include "hw/ide/ahci_internal.h" 37 #include "hw/intc/arm_gicv3_common.h" 38 #include "hw/loader.h" 39 #include "hw/pci-host/gpex.h" 40 #include "hw/qdev-properties.h" 41 #include "hw/usb.h" 42 #include "hw/char/pl011.h" 43 #include "hw/watchdog/sbsa_gwdt.h" 44 #include "net/net.h" 45 #include "qom/object.h" 46 47 #define RAMLIMIT_GB 8192 48 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB) 49 50 #define NUM_IRQS 256 51 #define NUM_SMMU_IRQS 4 52 #define NUM_SATA_PORTS 6 53 54 #define VIRTUAL_PMU_IRQ 7 55 #define ARCH_GIC_MAINT_IRQ 9 56 #define ARCH_TIMER_VIRT_IRQ 11 57 #define ARCH_TIMER_S_EL1_IRQ 13 58 #define ARCH_TIMER_NS_EL1_IRQ 14 59 #define ARCH_TIMER_NS_EL2_IRQ 10 60 61 enum { 62 SBSA_FLASH, 63 SBSA_MEM, 64 SBSA_CPUPERIPHS, 65 SBSA_GIC_DIST, 66 SBSA_GIC_REDIST, 67 SBSA_SECURE_EC, 68 SBSA_GWDT_WS0, 69 SBSA_GWDT_REFRESH, 70 SBSA_GWDT_CONTROL, 71 SBSA_SMMU, 72 SBSA_UART, 73 SBSA_RTC, 74 SBSA_PCIE, 75 SBSA_PCIE_MMIO, 76 SBSA_PCIE_MMIO_HIGH, 77 SBSA_PCIE_PIO, 78 SBSA_PCIE_ECAM, 79 SBSA_GPIO, 80 SBSA_SECURE_UART, 81 SBSA_SECURE_UART_MM, 82 SBSA_SECURE_MEM, 83 SBSA_AHCI, 84 SBSA_EHCI, 85 }; 86 87 struct SBSAMachineState { 88 MachineState parent; 89 struct arm_boot_info bootinfo; 90 int smp_cpus; 91 void *fdt; 92 int fdt_size; 93 int psci_conduit; 94 DeviceState *gic; 95 PFlashCFI01 *flash[2]; 96 }; 97 98 #define TYPE_SBSA_MACHINE MACHINE_TYPE_NAME("sbsa-ref") 99 OBJECT_DECLARE_SIMPLE_TYPE(SBSAMachineState, SBSA_MACHINE) 100 101 static const MemMapEntry sbsa_ref_memmap[] = { 102 /* 512M boot ROM */ 103 [SBSA_FLASH] = { 0, 0x20000000 }, 104 /* 512M secure memory */ 105 [SBSA_SECURE_MEM] = { 0x20000000, 0x20000000 }, 106 /* Space reserved for CPU peripheral devices */ 107 [SBSA_CPUPERIPHS] = { 0x40000000, 0x00040000 }, 108 [SBSA_GIC_DIST] = { 0x40060000, 0x00010000 }, 109 [SBSA_GIC_REDIST] = { 0x40080000, 0x04000000 }, 110 [SBSA_SECURE_EC] = { 0x50000000, 0x00001000 }, 111 [SBSA_GWDT_REFRESH] = { 0x50010000, 0x00001000 }, 112 [SBSA_GWDT_CONTROL] = { 0x50011000, 0x00001000 }, 113 [SBSA_UART] = { 0x60000000, 0x00001000 }, 114 [SBSA_RTC] = { 0x60010000, 0x00001000 }, 115 [SBSA_GPIO] = { 0x60020000, 0x00001000 }, 116 [SBSA_SECURE_UART] = { 0x60030000, 0x00001000 }, 117 [SBSA_SECURE_UART_MM] = { 0x60040000, 0x00001000 }, 118 [SBSA_SMMU] = { 0x60050000, 0x00020000 }, 119 /* Space here reserved for more SMMUs */ 120 [SBSA_AHCI] = { 0x60100000, 0x00010000 }, 121 [SBSA_EHCI] = { 0x60110000, 0x00010000 }, 122 /* Space here reserved for other devices */ 123 [SBSA_PCIE_PIO] = { 0x7fff0000, 0x00010000 }, 124 /* 32-bit address PCIE MMIO space */ 125 [SBSA_PCIE_MMIO] = { 0x80000000, 0x70000000 }, 126 /* 256M PCIE ECAM space */ 127 [SBSA_PCIE_ECAM] = { 0xf0000000, 0x10000000 }, 128 /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */ 129 [SBSA_PCIE_MMIO_HIGH] = { 0x100000000ULL, 0xFF00000000ULL }, 130 [SBSA_MEM] = { 0x10000000000ULL, RAMLIMIT_BYTES }, 131 }; 132 133 static const int sbsa_ref_irqmap[] = { 134 [SBSA_UART] = 1, 135 [SBSA_RTC] = 2, 136 [SBSA_PCIE] = 3, /* ... to 6 */ 137 [SBSA_GPIO] = 7, 138 [SBSA_SECURE_UART] = 8, 139 [SBSA_SECURE_UART_MM] = 9, 140 [SBSA_AHCI] = 10, 141 [SBSA_EHCI] = 11, 142 [SBSA_SMMU] = 12, /* ... to 15 */ 143 [SBSA_GWDT_WS0] = 16, 144 }; 145 146 static const char * const valid_cpus[] = { 147 ARM_CPU_TYPE_NAME("cortex-a57"), 148 ARM_CPU_TYPE_NAME("cortex-a72"), 149 ARM_CPU_TYPE_NAME("neoverse-n1"), 150 ARM_CPU_TYPE_NAME("max"), 151 }; 152 153 static bool cpu_type_valid(const char *cpu) 154 { 155 int i; 156 157 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) { 158 if (strcmp(cpu, valid_cpus[i]) == 0) { 159 return true; 160 } 161 } 162 return false; 163 } 164 165 static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx) 166 { 167 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; 168 return arm_cpu_mp_affinity(idx, clustersz); 169 } 170 171 /* 172 * Firmware on this machine only uses ACPI table to load OS, these limited 173 * device tree nodes are just to let firmware know the info which varies from 174 * command line parameters, so it is not necessary to be fully compatible 175 * with the kernel CPU and NUMA binding rules. 176 */ 177 static void create_fdt(SBSAMachineState *sms) 178 { 179 void *fdt = create_device_tree(&sms->fdt_size); 180 const MachineState *ms = MACHINE(sms); 181 int nb_numa_nodes = ms->numa_state->num_nodes; 182 int cpu; 183 184 if (!fdt) { 185 error_report("create_device_tree() failed"); 186 exit(1); 187 } 188 189 sms->fdt = fdt; 190 191 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref"); 192 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 193 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 194 195 /* 196 * This versioning scheme is for informing platform fw only. It is neither: 197 * - A QEMU versioned machine type; a given version of QEMU will emulate 198 * a given version of the platform. 199 * - A reflection of level of SBSA (now SystemReady SR) support provided. 200 * 201 * machine-version-major: updated when changes breaking fw compatibility 202 * are introduced. 203 * machine-version-minor: updated when features are added that don't break 204 * fw compatibility. 205 */ 206 qemu_fdt_setprop_cell(fdt, "/", "machine-version-major", 0); 207 qemu_fdt_setprop_cell(fdt, "/", "machine-version-minor", 0); 208 209 if (ms->numa_state->have_numa_distance) { 210 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 211 uint32_t *matrix = g_malloc0(size); 212 int idx, i, j; 213 214 for (i = 0; i < nb_numa_nodes; i++) { 215 for (j = 0; j < nb_numa_nodes; j++) { 216 idx = (i * nb_numa_nodes + j) * 3; 217 matrix[idx + 0] = cpu_to_be32(i); 218 matrix[idx + 1] = cpu_to_be32(j); 219 matrix[idx + 2] = 220 cpu_to_be32(ms->numa_state->nodes[i].distance[j]); 221 } 222 } 223 224 qemu_fdt_add_subnode(fdt, "/distance-map"); 225 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 226 matrix, size); 227 g_free(matrix); 228 } 229 230 /* 231 * From Documentation/devicetree/bindings/arm/cpus.yaml 232 * On ARM v8 64-bit systems this property is required 233 * and matches the MPIDR_EL1 register affinity bits. 234 * 235 * * If cpus node's #address-cells property is set to 2 236 * 237 * The first reg cell bits [7:0] must be set to 238 * bits [39:32] of MPIDR_EL1. 239 * 240 * The second reg cell bits [23:0] must be set to 241 * bits [23:0] of MPIDR_EL1. 242 */ 243 qemu_fdt_add_subnode(sms->fdt, "/cpus"); 244 qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#address-cells", 2); 245 qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#size-cells", 0x0); 246 247 for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) { 248 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 249 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 250 CPUState *cs = CPU(armcpu); 251 uint64_t mpidr = sbsa_ref_cpu_mp_affinity(sms, cpu); 252 253 qemu_fdt_add_subnode(sms->fdt, nodename); 254 qemu_fdt_setprop_u64(sms->fdt, nodename, "reg", mpidr); 255 256 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 257 qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id", 258 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 259 } 260 261 g_free(nodename); 262 } 263 } 264 265 #define SBSA_FLASH_SECTOR_SIZE (256 * KiB) 266 267 static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms, 268 const char *name, 269 const char *alias_prop_name) 270 { 271 /* 272 * Create a single flash device. We use the same parameters as 273 * the flash devices on the Versatile Express board. 274 */ 275 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01); 276 277 qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE); 278 qdev_prop_set_uint8(dev, "width", 4); 279 qdev_prop_set_uint8(dev, "device-width", 2); 280 qdev_prop_set_bit(dev, "big-endian", false); 281 qdev_prop_set_uint16(dev, "id0", 0x89); 282 qdev_prop_set_uint16(dev, "id1", 0x18); 283 qdev_prop_set_uint16(dev, "id2", 0x00); 284 qdev_prop_set_uint16(dev, "id3", 0x00); 285 qdev_prop_set_string(dev, "name", name); 286 object_property_add_child(OBJECT(sms), name, OBJECT(dev)); 287 object_property_add_alias(OBJECT(sms), alias_prop_name, 288 OBJECT(dev), "drive"); 289 return PFLASH_CFI01(dev); 290 } 291 292 static void sbsa_flash_create(SBSAMachineState *sms) 293 { 294 sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0"); 295 sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1"); 296 } 297 298 static void sbsa_flash_map1(PFlashCFI01 *flash, 299 hwaddr base, hwaddr size, 300 MemoryRegion *sysmem) 301 { 302 DeviceState *dev = DEVICE(flash); 303 304 assert(QEMU_IS_ALIGNED(size, SBSA_FLASH_SECTOR_SIZE)); 305 assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX); 306 qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE); 307 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 308 309 memory_region_add_subregion(sysmem, base, 310 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 311 0)); 312 } 313 314 static void sbsa_flash_map(SBSAMachineState *sms, 315 MemoryRegion *sysmem, 316 MemoryRegion *secure_sysmem) 317 { 318 /* 319 * Map two flash devices to fill the SBSA_FLASH space in the memmap. 320 * sysmem is the system memory space. secure_sysmem is the secure view 321 * of the system, and the first flash device should be made visible only 322 * there. The second flash device is visible to both secure and nonsecure. 323 */ 324 hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2; 325 hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base; 326 327 sbsa_flash_map1(sms->flash[0], flashbase, flashsize, 328 secure_sysmem); 329 sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize, 330 sysmem); 331 } 332 333 static bool sbsa_firmware_init(SBSAMachineState *sms, 334 MemoryRegion *sysmem, 335 MemoryRegion *secure_sysmem) 336 { 337 const char *bios_name; 338 int i; 339 BlockBackend *pflash_blk0; 340 341 /* Map legacy -drive if=pflash to machine properties */ 342 for (i = 0; i < ARRAY_SIZE(sms->flash); i++) { 343 pflash_cfi01_legacy_drive(sms->flash[i], 344 drive_get(IF_PFLASH, 0, i)); 345 } 346 347 sbsa_flash_map(sms, sysmem, secure_sysmem); 348 349 pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]); 350 351 bios_name = MACHINE(sms)->firmware; 352 if (bios_name) { 353 char *fname; 354 MemoryRegion *mr; 355 int image_size; 356 357 if (pflash_blk0) { 358 error_report("The contents of the first flash device may be " 359 "specified with -bios or with -drive if=pflash... " 360 "but you cannot use both options at once"); 361 exit(1); 362 } 363 364 /* Fall back to -bios */ 365 366 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 367 if (!fname) { 368 error_report("Could not find ROM image '%s'", bios_name); 369 exit(1); 370 } 371 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0); 372 image_size = load_image_mr(fname, mr); 373 g_free(fname); 374 if (image_size < 0) { 375 error_report("Could not load ROM image '%s'", bios_name); 376 exit(1); 377 } 378 } 379 380 return pflash_blk0 || bios_name; 381 } 382 383 static void create_secure_ram(SBSAMachineState *sms, 384 MemoryRegion *secure_sysmem) 385 { 386 MemoryRegion *secram = g_new(MemoryRegion, 1); 387 hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base; 388 hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size; 389 390 memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size, 391 &error_fatal); 392 memory_region_add_subregion(secure_sysmem, base, secram); 393 } 394 395 static void create_gic(SBSAMachineState *sms) 396 { 397 unsigned int smp_cpus = MACHINE(sms)->smp.cpus; 398 SysBusDevice *gicbusdev; 399 const char *gictype; 400 uint32_t redist0_capacity, redist0_count; 401 int i; 402 403 gictype = gicv3_class_name(); 404 405 sms->gic = qdev_new(gictype); 406 qdev_prop_set_uint32(sms->gic, "revision", 3); 407 qdev_prop_set_uint32(sms->gic, "num-cpu", smp_cpus); 408 /* 409 * Note that the num-irq property counts both internal and external 410 * interrupts; there are always 32 of the former (mandated by GIC spec). 411 */ 412 qdev_prop_set_uint32(sms->gic, "num-irq", NUM_IRQS + 32); 413 qdev_prop_set_bit(sms->gic, "has-security-extensions", true); 414 415 redist0_capacity = 416 sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE; 417 redist0_count = MIN(smp_cpus, redist0_capacity); 418 419 qdev_prop_set_uint32(sms->gic, "len-redist-region-count", 1); 420 qdev_prop_set_uint32(sms->gic, "redist-region-count[0]", redist0_count); 421 422 gicbusdev = SYS_BUS_DEVICE(sms->gic); 423 sysbus_realize_and_unref(gicbusdev, &error_fatal); 424 sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base); 425 sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base); 426 427 /* 428 * Wire the outputs from each CPU's generic timer and the GICv3 429 * maintenance interrupt signal to the appropriate GIC PPI inputs, 430 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. 431 */ 432 for (i = 0; i < smp_cpus; i++) { 433 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 434 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 435 int irq; 436 /* 437 * Mapping from the output timer irq lines from the CPU to the 438 * GIC PPI inputs used for this board. 439 */ 440 const int timer_irq[] = { 441 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 442 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 443 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 444 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 445 }; 446 447 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 448 qdev_connect_gpio_out(cpudev, irq, 449 qdev_get_gpio_in(sms->gic, 450 ppibase + timer_irq[irq])); 451 } 452 453 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0, 454 qdev_get_gpio_in(sms->gic, ppibase 455 + ARCH_GIC_MAINT_IRQ)); 456 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 457 qdev_get_gpio_in(sms->gic, ppibase 458 + VIRTUAL_PMU_IRQ)); 459 460 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 461 sysbus_connect_irq(gicbusdev, i + smp_cpus, 462 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 463 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 464 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 465 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 466 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 467 } 468 } 469 470 static void create_uart(const SBSAMachineState *sms, int uart, 471 MemoryRegion *mem, Chardev *chr) 472 { 473 hwaddr base = sbsa_ref_memmap[uart].base; 474 int irq = sbsa_ref_irqmap[uart]; 475 DeviceState *dev = qdev_new(TYPE_PL011); 476 SysBusDevice *s = SYS_BUS_DEVICE(dev); 477 478 qdev_prop_set_chr(dev, "chardev", chr); 479 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 480 memory_region_add_subregion(mem, base, 481 sysbus_mmio_get_region(s, 0)); 482 sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq)); 483 } 484 485 static void create_rtc(const SBSAMachineState *sms) 486 { 487 hwaddr base = sbsa_ref_memmap[SBSA_RTC].base; 488 int irq = sbsa_ref_irqmap[SBSA_RTC]; 489 490 sysbus_create_simple("pl031", base, qdev_get_gpio_in(sms->gic, irq)); 491 } 492 493 static void create_wdt(const SBSAMachineState *sms) 494 { 495 hwaddr rbase = sbsa_ref_memmap[SBSA_GWDT_REFRESH].base; 496 hwaddr cbase = sbsa_ref_memmap[SBSA_GWDT_CONTROL].base; 497 DeviceState *dev = qdev_new(TYPE_WDT_SBSA); 498 SysBusDevice *s = SYS_BUS_DEVICE(dev); 499 int irq = sbsa_ref_irqmap[SBSA_GWDT_WS0]; 500 501 sysbus_realize_and_unref(s, &error_fatal); 502 sysbus_mmio_map(s, 0, rbase); 503 sysbus_mmio_map(s, 1, cbase); 504 sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq)); 505 } 506 507 static DeviceState *gpio_key_dev; 508 static void sbsa_ref_powerdown_req(Notifier *n, void *opaque) 509 { 510 /* use gpio Pin 3 for power button event */ 511 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 512 } 513 514 static Notifier sbsa_ref_powerdown_notifier = { 515 .notify = sbsa_ref_powerdown_req 516 }; 517 518 static void create_gpio(const SBSAMachineState *sms) 519 { 520 DeviceState *pl061_dev; 521 hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base; 522 int irq = sbsa_ref_irqmap[SBSA_GPIO]; 523 524 pl061_dev = sysbus_create_simple("pl061", base, 525 qdev_get_gpio_in(sms->gic, irq)); 526 527 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 528 qdev_get_gpio_in(pl061_dev, 3)); 529 530 /* connect powerdown request */ 531 qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier); 532 } 533 534 static void create_ahci(const SBSAMachineState *sms) 535 { 536 hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base; 537 int irq = sbsa_ref_irqmap[SBSA_AHCI]; 538 DeviceState *dev; 539 DriveInfo *hd[NUM_SATA_PORTS]; 540 SysbusAHCIState *sysahci; 541 AHCIState *ahci; 542 int i; 543 544 dev = qdev_new("sysbus-ahci"); 545 qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS); 546 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 547 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 548 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq)); 549 550 sysahci = SYSBUS_AHCI(dev); 551 ahci = &sysahci->ahci; 552 ide_drive_get(hd, ARRAY_SIZE(hd)); 553 for (i = 0; i < ahci->ports; i++) { 554 if (hd[i] == NULL) { 555 continue; 556 } 557 ide_create_drive(&ahci->dev[i].port, 0, hd[i]); 558 } 559 } 560 561 static void create_ehci(const SBSAMachineState *sms) 562 { 563 hwaddr base = sbsa_ref_memmap[SBSA_EHCI].base; 564 int irq = sbsa_ref_irqmap[SBSA_EHCI]; 565 566 sysbus_create_simple("platform-ehci-usb", base, 567 qdev_get_gpio_in(sms->gic, irq)); 568 } 569 570 static void create_smmu(const SBSAMachineState *sms, PCIBus *bus) 571 { 572 hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base; 573 int irq = sbsa_ref_irqmap[SBSA_SMMU]; 574 DeviceState *dev; 575 int i; 576 577 dev = qdev_new(TYPE_ARM_SMMUV3); 578 579 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus), 580 &error_abort); 581 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 582 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 583 for (i = 0; i < NUM_SMMU_IRQS; i++) { 584 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 585 qdev_get_gpio_in(sms->gic, irq + i)); 586 } 587 } 588 589 static void create_pcie(SBSAMachineState *sms) 590 { 591 hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base; 592 hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size; 593 hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base; 594 hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size; 595 hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base; 596 hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size; 597 hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base; 598 int irq = sbsa_ref_irqmap[SBSA_PCIE]; 599 MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg; 600 MemoryRegion *ecam_alias, *ecam_reg; 601 DeviceState *dev; 602 PCIHostState *pci; 603 int i; 604 605 dev = qdev_new(TYPE_GPEX_HOST); 606 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 607 608 /* Map ECAM space */ 609 ecam_alias = g_new0(MemoryRegion, 1); 610 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 611 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 612 ecam_reg, 0, size_ecam); 613 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 614 615 /* Map the MMIO space */ 616 mmio_alias = g_new0(MemoryRegion, 1); 617 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 618 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 619 mmio_reg, base_mmio, size_mmio); 620 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 621 622 /* Map the MMIO_HIGH space */ 623 mmio_alias_high = g_new0(MemoryRegion, 1); 624 memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high", 625 mmio_reg, base_mmio_high, size_mmio_high); 626 memory_region_add_subregion(get_system_memory(), base_mmio_high, 627 mmio_alias_high); 628 629 /* Map IO port space */ 630 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 631 632 for (i = 0; i < GPEX_NUM_IRQS; i++) { 633 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 634 qdev_get_gpio_in(sms->gic, irq + i)); 635 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 636 } 637 638 pci = PCI_HOST_BRIDGE(dev); 639 if (pci->bus) { 640 for (i = 0; i < nb_nics; i++) { 641 NICInfo *nd = &nd_table[i]; 642 643 if (!nd->model) { 644 nd->model = g_strdup("e1000e"); 645 } 646 647 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); 648 } 649 } 650 651 pci_create_simple(pci->bus, -1, "VGA"); 652 653 create_smmu(sms, pci->bus); 654 } 655 656 static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size) 657 { 658 const SBSAMachineState *board = container_of(binfo, SBSAMachineState, 659 bootinfo); 660 661 *fdt_size = board->fdt_size; 662 return board->fdt; 663 } 664 665 static void create_secure_ec(MemoryRegion *mem) 666 { 667 hwaddr base = sbsa_ref_memmap[SBSA_SECURE_EC].base; 668 DeviceState *dev = qdev_new("sbsa-ec"); 669 SysBusDevice *s = SYS_BUS_DEVICE(dev); 670 671 memory_region_add_subregion(mem, base, 672 sysbus_mmio_get_region(s, 0)); 673 } 674 675 static void sbsa_ref_init(MachineState *machine) 676 { 677 unsigned int smp_cpus = machine->smp.cpus; 678 unsigned int max_cpus = machine->smp.max_cpus; 679 SBSAMachineState *sms = SBSA_MACHINE(machine); 680 MachineClass *mc = MACHINE_GET_CLASS(machine); 681 MemoryRegion *sysmem = get_system_memory(); 682 MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1); 683 bool firmware_loaded; 684 const CPUArchIdList *possible_cpus; 685 int n, sbsa_max_cpus; 686 687 if (!cpu_type_valid(machine->cpu_type)) { 688 error_report("sbsa-ref: CPU type %s not supported", machine->cpu_type); 689 exit(1); 690 } 691 692 if (kvm_enabled()) { 693 error_report("sbsa-ref: KVM is not supported for this machine"); 694 exit(1); 695 } 696 697 /* 698 * The Secure view of the world is the same as the NonSecure, 699 * but with a few extra devices. Create it as a container region 700 * containing the system memory at low priority; any secure-only 701 * devices go in at higher priority and take precedence. 702 */ 703 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 704 UINT64_MAX); 705 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 706 707 firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem); 708 709 /* 710 * This machine has EL3 enabled, external firmware should supply PSCI 711 * implementation, so the QEMU's internal PSCI is disabled. 712 */ 713 sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 714 715 sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE; 716 717 if (max_cpus > sbsa_max_cpus) { 718 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 719 "supported by machine 'sbsa-ref' (%d)", 720 max_cpus, sbsa_max_cpus); 721 exit(1); 722 } 723 724 sms->smp_cpus = smp_cpus; 725 726 if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) { 727 error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB); 728 exit(1); 729 } 730 731 possible_cpus = mc->possible_cpu_arch_ids(machine); 732 for (n = 0; n < possible_cpus->len; n++) { 733 Object *cpuobj; 734 CPUState *cs; 735 736 if (n >= smp_cpus) { 737 break; 738 } 739 740 cpuobj = object_new(possible_cpus->cpus[n].type); 741 object_property_set_int(cpuobj, "mp-affinity", 742 possible_cpus->cpus[n].arch_id, NULL); 743 744 cs = CPU(cpuobj); 745 cs->cpu_index = n; 746 747 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 748 &error_fatal); 749 750 if (object_property_find(cpuobj, "reset-cbar")) { 751 object_property_set_int(cpuobj, "reset-cbar", 752 sbsa_ref_memmap[SBSA_CPUPERIPHS].base, 753 &error_abort); 754 } 755 756 object_property_set_link(cpuobj, "memory", OBJECT(sysmem), 757 &error_abort); 758 759 object_property_set_link(cpuobj, "secure-memory", 760 OBJECT(secure_sysmem), &error_abort); 761 762 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal); 763 object_unref(cpuobj); 764 } 765 766 memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base, 767 machine->ram); 768 769 create_fdt(sms); 770 771 create_secure_ram(sms, secure_sysmem); 772 773 create_gic(sms); 774 775 create_uart(sms, SBSA_UART, sysmem, serial_hd(0)); 776 create_uart(sms, SBSA_SECURE_UART, secure_sysmem, serial_hd(1)); 777 /* Second secure UART for RAS and MM from EL0 */ 778 create_uart(sms, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2)); 779 780 create_rtc(sms); 781 782 create_wdt(sms); 783 784 create_gpio(sms); 785 786 create_ahci(sms); 787 788 create_ehci(sms); 789 790 create_pcie(sms); 791 792 create_secure_ec(secure_sysmem); 793 794 sms->bootinfo.ram_size = machine->ram_size; 795 sms->bootinfo.board_id = -1; 796 sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base; 797 sms->bootinfo.get_dtb = sbsa_ref_dtb; 798 sms->bootinfo.firmware_loaded = firmware_loaded; 799 arm_load_kernel(ARM_CPU(first_cpu), machine, &sms->bootinfo); 800 } 801 802 static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms) 803 { 804 unsigned int max_cpus = ms->smp.max_cpus; 805 SBSAMachineState *sms = SBSA_MACHINE(ms); 806 int n; 807 808 if (ms->possible_cpus) { 809 assert(ms->possible_cpus->len == max_cpus); 810 return ms->possible_cpus; 811 } 812 813 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 814 sizeof(CPUArchId) * max_cpus); 815 ms->possible_cpus->len = max_cpus; 816 for (n = 0; n < ms->possible_cpus->len; n++) { 817 ms->possible_cpus->cpus[n].type = ms->cpu_type; 818 ms->possible_cpus->cpus[n].arch_id = 819 sbsa_ref_cpu_mp_affinity(sms, n); 820 ms->possible_cpus->cpus[n].props.has_thread_id = true; 821 ms->possible_cpus->cpus[n].props.thread_id = n; 822 } 823 return ms->possible_cpus; 824 } 825 826 static CpuInstanceProperties 827 sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 828 { 829 MachineClass *mc = MACHINE_GET_CLASS(ms); 830 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 831 832 assert(cpu_index < possible_cpus->len); 833 return possible_cpus->cpus[cpu_index].props; 834 } 835 836 static int64_t 837 sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx) 838 { 839 return idx % ms->numa_state->num_nodes; 840 } 841 842 static void sbsa_ref_instance_init(Object *obj) 843 { 844 SBSAMachineState *sms = SBSA_MACHINE(obj); 845 846 sbsa_flash_create(sms); 847 } 848 849 static void sbsa_ref_class_init(ObjectClass *oc, void *data) 850 { 851 MachineClass *mc = MACHINE_CLASS(oc); 852 853 mc->init = sbsa_ref_init; 854 mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine"; 855 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a57"); 856 mc->max_cpus = 512; 857 mc->pci_allow_0_address = true; 858 mc->minimum_page_bits = 12; 859 mc->block_default_type = IF_IDE; 860 mc->no_cdrom = 1; 861 mc->default_ram_size = 1 * GiB; 862 mc->default_ram_id = "sbsa-ref.ram"; 863 mc->default_cpus = 4; 864 mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids; 865 mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props; 866 mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id; 867 } 868 869 static const TypeInfo sbsa_ref_info = { 870 .name = TYPE_SBSA_MACHINE, 871 .parent = TYPE_MACHINE, 872 .instance_init = sbsa_ref_instance_init, 873 .class_init = sbsa_ref_class_init, 874 .instance_size = sizeof(SBSAMachineState), 875 }; 876 877 static void sbsa_ref_machine_init(void) 878 { 879 type_register_static(&sbsa_ref_info); 880 } 881 882 type_init(sbsa_ref_machine_init); 883