xref: /openbmc/qemu/hw/arm/sbsa-ref.c (revision 59964b4f)
1 /*
2  * ARM SBSA Reference Platform emulation
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Hongbo Zhang <hongbo.zhang@linaro.org>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/datadir.h"
23 #include "qapi/error.h"
24 #include "qemu/error-report.h"
25 #include "qemu/units.h"
26 #include "sysemu/device_tree.h"
27 #include "sysemu/numa.h"
28 #include "sysemu/runstate.h"
29 #include "sysemu/sysemu.h"
30 #include "exec/address-spaces.h"
31 #include "exec/hwaddr.h"
32 #include "kvm_arm.h"
33 #include "hw/arm/boot.h"
34 #include "hw/block/flash.h"
35 #include "hw/boards.h"
36 #include "hw/ide/internal.h"
37 #include "hw/ide/ahci_internal.h"
38 #include "hw/intc/arm_gicv3_common.h"
39 #include "hw/loader.h"
40 #include "hw/pci-host/gpex.h"
41 #include "hw/qdev-properties.h"
42 #include "hw/usb.h"
43 #include "hw/char/pl011.h"
44 #include "hw/watchdog/sbsa_gwdt.h"
45 #include "net/net.h"
46 #include "qom/object.h"
47 
48 #define RAMLIMIT_GB 8192
49 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
50 
51 #define NUM_IRQS        256
52 #define NUM_SMMU_IRQS   4
53 #define NUM_SATA_PORTS  6
54 
55 #define VIRTUAL_PMU_IRQ        7
56 #define ARCH_GIC_MAINT_IRQ     9
57 #define ARCH_TIMER_VIRT_IRQ    11
58 #define ARCH_TIMER_S_EL1_IRQ   13
59 #define ARCH_TIMER_NS_EL1_IRQ  14
60 #define ARCH_TIMER_NS_EL2_IRQ  10
61 
62 enum {
63     SBSA_FLASH,
64     SBSA_MEM,
65     SBSA_CPUPERIPHS,
66     SBSA_GIC_DIST,
67     SBSA_GIC_REDIST,
68     SBSA_SECURE_EC,
69     SBSA_GWDT,
70     SBSA_GWDT_REFRESH,
71     SBSA_GWDT_CONTROL,
72     SBSA_SMMU,
73     SBSA_UART,
74     SBSA_RTC,
75     SBSA_PCIE,
76     SBSA_PCIE_MMIO,
77     SBSA_PCIE_MMIO_HIGH,
78     SBSA_PCIE_PIO,
79     SBSA_PCIE_ECAM,
80     SBSA_GPIO,
81     SBSA_SECURE_UART,
82     SBSA_SECURE_UART_MM,
83     SBSA_SECURE_MEM,
84     SBSA_AHCI,
85     SBSA_EHCI,
86 };
87 
88 struct SBSAMachineState {
89     MachineState parent;
90     struct arm_boot_info bootinfo;
91     int smp_cpus;
92     void *fdt;
93     int fdt_size;
94     int psci_conduit;
95     DeviceState *gic;
96     PFlashCFI01 *flash[2];
97 };
98 
99 #define TYPE_SBSA_MACHINE   MACHINE_TYPE_NAME("sbsa-ref")
100 OBJECT_DECLARE_SIMPLE_TYPE(SBSAMachineState, SBSA_MACHINE)
101 
102 static const MemMapEntry sbsa_ref_memmap[] = {
103     /* 512M boot ROM */
104     [SBSA_FLASH] =              {          0, 0x20000000 },
105     /* 512M secure memory */
106     [SBSA_SECURE_MEM] =         { 0x20000000, 0x20000000 },
107     /* Space reserved for CPU peripheral devices */
108     [SBSA_CPUPERIPHS] =         { 0x40000000, 0x00040000 },
109     [SBSA_GIC_DIST] =           { 0x40060000, 0x00010000 },
110     [SBSA_GIC_REDIST] =         { 0x40080000, 0x04000000 },
111     [SBSA_SECURE_EC] =          { 0x50000000, 0x00001000 },
112     [SBSA_GWDT_REFRESH] =       { 0x50010000, 0x00001000 },
113     [SBSA_GWDT_CONTROL] =       { 0x50011000, 0x00001000 },
114     [SBSA_UART] =               { 0x60000000, 0x00001000 },
115     [SBSA_RTC] =                { 0x60010000, 0x00001000 },
116     [SBSA_GPIO] =               { 0x60020000, 0x00001000 },
117     [SBSA_SECURE_UART] =        { 0x60030000, 0x00001000 },
118     [SBSA_SECURE_UART_MM] =     { 0x60040000, 0x00001000 },
119     [SBSA_SMMU] =               { 0x60050000, 0x00020000 },
120     /* Space here reserved for more SMMUs */
121     [SBSA_AHCI] =               { 0x60100000, 0x00010000 },
122     [SBSA_EHCI] =               { 0x60110000, 0x00010000 },
123     /* Space here reserved for other devices */
124     [SBSA_PCIE_PIO] =           { 0x7fff0000, 0x00010000 },
125     /* 32-bit address PCIE MMIO space */
126     [SBSA_PCIE_MMIO] =          { 0x80000000, 0x70000000 },
127     /* 256M PCIE ECAM space */
128     [SBSA_PCIE_ECAM] =          { 0xf0000000, 0x10000000 },
129     /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
130     [SBSA_PCIE_MMIO_HIGH] =     { 0x100000000ULL, 0xFF00000000ULL },
131     [SBSA_MEM] =                { 0x10000000000ULL, RAMLIMIT_BYTES },
132 };
133 
134 static const int sbsa_ref_irqmap[] = {
135     [SBSA_UART] = 1,
136     [SBSA_RTC] = 2,
137     [SBSA_PCIE] = 3, /* ... to 6 */
138     [SBSA_GPIO] = 7,
139     [SBSA_SECURE_UART] = 8,
140     [SBSA_SECURE_UART_MM] = 9,
141     [SBSA_AHCI] = 10,
142     [SBSA_EHCI] = 11,
143     [SBSA_SMMU] = 12, /* ... to 15 */
144     [SBSA_GWDT] = 16,
145 };
146 
147 static const char * const valid_cpus[] = {
148     ARM_CPU_TYPE_NAME("cortex-a57"),
149     ARM_CPU_TYPE_NAME("cortex-a72"),
150     ARM_CPU_TYPE_NAME("max"),
151 };
152 
153 static bool cpu_type_valid(const char *cpu)
154 {
155     int i;
156 
157     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
158         if (strcmp(cpu, valid_cpus[i]) == 0) {
159             return true;
160         }
161     }
162     return false;
163 }
164 
165 static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
166 {
167     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
168     return arm_cpu_mp_affinity(idx, clustersz);
169 }
170 
171 /*
172  * Firmware on this machine only uses ACPI table to load OS, these limited
173  * device tree nodes are just to let firmware know the info which varies from
174  * command line parameters, so it is not necessary to be fully compatible
175  * with the kernel CPU and NUMA binding rules.
176  */
177 static void create_fdt(SBSAMachineState *sms)
178 {
179     void *fdt = create_device_tree(&sms->fdt_size);
180     const MachineState *ms = MACHINE(sms);
181     int nb_numa_nodes = ms->numa_state->num_nodes;
182     int cpu;
183 
184     if (!fdt) {
185         error_report("create_device_tree() failed");
186         exit(1);
187     }
188 
189     sms->fdt = fdt;
190 
191     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref");
192     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
193     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
194 
195     if (ms->numa_state->have_numa_distance) {
196         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
197         uint32_t *matrix = g_malloc0(size);
198         int idx, i, j;
199 
200         for (i = 0; i < nb_numa_nodes; i++) {
201             for (j = 0; j < nb_numa_nodes; j++) {
202                 idx = (i * nb_numa_nodes + j) * 3;
203                 matrix[idx + 0] = cpu_to_be32(i);
204                 matrix[idx + 1] = cpu_to_be32(j);
205                 matrix[idx + 2] =
206                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
207             }
208         }
209 
210         qemu_fdt_add_subnode(fdt, "/distance-map");
211         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
212                          matrix, size);
213         g_free(matrix);
214     }
215 
216     /*
217      * From Documentation/devicetree/bindings/arm/cpus.yaml
218      *  On ARM v8 64-bit systems this property is required
219      *    and matches the MPIDR_EL1 register affinity bits.
220      *
221      *    * If cpus node's #address-cells property is set to 2
222      *
223      *      The first reg cell bits [7:0] must be set to
224      *      bits [39:32] of MPIDR_EL1.
225      *
226      *      The second reg cell bits [23:0] must be set to
227      *      bits [23:0] of MPIDR_EL1.
228      */
229     qemu_fdt_add_subnode(sms->fdt, "/cpus");
230     qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#address-cells", 2);
231     qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#size-cells", 0x0);
232 
233     for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) {
234         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
235         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
236         CPUState *cs = CPU(armcpu);
237         uint64_t mpidr = sbsa_ref_cpu_mp_affinity(sms, cpu);
238 
239         qemu_fdt_add_subnode(sms->fdt, nodename);
240         qemu_fdt_setprop_u64(sms->fdt, nodename, "reg", mpidr);
241 
242         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
243             qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id",
244                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
245         }
246 
247         g_free(nodename);
248     }
249 }
250 
251 #define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
252 
253 static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms,
254                                         const char *name,
255                                         const char *alias_prop_name)
256 {
257     /*
258      * Create a single flash device.  We use the same parameters as
259      * the flash devices on the Versatile Express board.
260      */
261     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
262 
263     qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE);
264     qdev_prop_set_uint8(dev, "width", 4);
265     qdev_prop_set_uint8(dev, "device-width", 2);
266     qdev_prop_set_bit(dev, "big-endian", false);
267     qdev_prop_set_uint16(dev, "id0", 0x89);
268     qdev_prop_set_uint16(dev, "id1", 0x18);
269     qdev_prop_set_uint16(dev, "id2", 0x00);
270     qdev_prop_set_uint16(dev, "id3", 0x00);
271     qdev_prop_set_string(dev, "name", name);
272     object_property_add_child(OBJECT(sms), name, OBJECT(dev));
273     object_property_add_alias(OBJECT(sms), alias_prop_name,
274                               OBJECT(dev), "drive");
275     return PFLASH_CFI01(dev);
276 }
277 
278 static void sbsa_flash_create(SBSAMachineState *sms)
279 {
280     sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0");
281     sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1");
282 }
283 
284 static void sbsa_flash_map1(PFlashCFI01 *flash,
285                             hwaddr base, hwaddr size,
286                             MemoryRegion *sysmem)
287 {
288     DeviceState *dev = DEVICE(flash);
289 
290     assert(QEMU_IS_ALIGNED(size, SBSA_FLASH_SECTOR_SIZE));
291     assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX);
292     qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE);
293     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
294 
295     memory_region_add_subregion(sysmem, base,
296                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
297                                                        0));
298 }
299 
300 static void sbsa_flash_map(SBSAMachineState *sms,
301                            MemoryRegion *sysmem,
302                            MemoryRegion *secure_sysmem)
303 {
304     /*
305      * Map two flash devices to fill the SBSA_FLASH space in the memmap.
306      * sysmem is the system memory space. secure_sysmem is the secure view
307      * of the system, and the first flash device should be made visible only
308      * there. The second flash device is visible to both secure and nonsecure.
309      */
310     hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2;
311     hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base;
312 
313     sbsa_flash_map1(sms->flash[0], flashbase, flashsize,
314                     secure_sysmem);
315     sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize,
316                     sysmem);
317 }
318 
319 static bool sbsa_firmware_init(SBSAMachineState *sms,
320                                MemoryRegion *sysmem,
321                                MemoryRegion *secure_sysmem)
322 {
323     const char *bios_name;
324     int i;
325     BlockBackend *pflash_blk0;
326 
327     /* Map legacy -drive if=pflash to machine properties */
328     for (i = 0; i < ARRAY_SIZE(sms->flash); i++) {
329         pflash_cfi01_legacy_drive(sms->flash[i],
330                                   drive_get(IF_PFLASH, 0, i));
331     }
332 
333     sbsa_flash_map(sms, sysmem, secure_sysmem);
334 
335     pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]);
336 
337     bios_name = MACHINE(sms)->firmware;
338     if (bios_name) {
339         char *fname;
340         MemoryRegion *mr;
341         int image_size;
342 
343         if (pflash_blk0) {
344             error_report("The contents of the first flash device may be "
345                          "specified with -bios or with -drive if=pflash... "
346                          "but you cannot use both options at once");
347             exit(1);
348         }
349 
350         /* Fall back to -bios */
351 
352         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
353         if (!fname) {
354             error_report("Could not find ROM image '%s'", bios_name);
355             exit(1);
356         }
357         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0);
358         image_size = load_image_mr(fname, mr);
359         g_free(fname);
360         if (image_size < 0) {
361             error_report("Could not load ROM image '%s'", bios_name);
362             exit(1);
363         }
364     }
365 
366     return pflash_blk0 || bios_name;
367 }
368 
369 static void create_secure_ram(SBSAMachineState *sms,
370                               MemoryRegion *secure_sysmem)
371 {
372     MemoryRegion *secram = g_new(MemoryRegion, 1);
373     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base;
374     hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size;
375 
376     memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size,
377                            &error_fatal);
378     memory_region_add_subregion(secure_sysmem, base, secram);
379 }
380 
381 static void create_gic(SBSAMachineState *sms)
382 {
383     unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
384     SysBusDevice *gicbusdev;
385     const char *gictype;
386     uint32_t redist0_capacity, redist0_count;
387     int i;
388 
389     gictype = gicv3_class_name();
390 
391     sms->gic = qdev_new(gictype);
392     qdev_prop_set_uint32(sms->gic, "revision", 3);
393     qdev_prop_set_uint32(sms->gic, "num-cpu", smp_cpus);
394     /*
395      * Note that the num-irq property counts both internal and external
396      * interrupts; there are always 32 of the former (mandated by GIC spec).
397      */
398     qdev_prop_set_uint32(sms->gic, "num-irq", NUM_IRQS + 32);
399     qdev_prop_set_bit(sms->gic, "has-security-extensions", true);
400 
401     redist0_capacity =
402                 sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
403     redist0_count = MIN(smp_cpus, redist0_capacity);
404 
405     qdev_prop_set_uint32(sms->gic, "len-redist-region-count", 1);
406     qdev_prop_set_uint32(sms->gic, "redist-region-count[0]", redist0_count);
407 
408     gicbusdev = SYS_BUS_DEVICE(sms->gic);
409     sysbus_realize_and_unref(gicbusdev, &error_fatal);
410     sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
411     sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base);
412 
413     /*
414      * Wire the outputs from each CPU's generic timer and the GICv3
415      * maintenance interrupt signal to the appropriate GIC PPI inputs,
416      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
417      */
418     for (i = 0; i < smp_cpus; i++) {
419         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
420         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
421         int irq;
422         /*
423          * Mapping from the output timer irq lines from the CPU to the
424          * GIC PPI inputs used for this board.
425          */
426         const int timer_irq[] = {
427             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
428             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
429             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
430             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
431         };
432 
433         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
434             qdev_connect_gpio_out(cpudev, irq,
435                                   qdev_get_gpio_in(sms->gic,
436                                                    ppibase + timer_irq[irq]));
437         }
438 
439         qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
440                                     qdev_get_gpio_in(sms->gic, ppibase
441                                                      + ARCH_GIC_MAINT_IRQ));
442         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
443                                     qdev_get_gpio_in(sms->gic, ppibase
444                                                      + VIRTUAL_PMU_IRQ));
445 
446         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
447         sysbus_connect_irq(gicbusdev, i + smp_cpus,
448                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
449         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
450                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
451         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
452                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
453     }
454 }
455 
456 static void create_uart(const SBSAMachineState *sms, int uart,
457                         MemoryRegion *mem, Chardev *chr)
458 {
459     hwaddr base = sbsa_ref_memmap[uart].base;
460     int irq = sbsa_ref_irqmap[uart];
461     DeviceState *dev = qdev_new(TYPE_PL011);
462     SysBusDevice *s = SYS_BUS_DEVICE(dev);
463 
464     qdev_prop_set_chr(dev, "chardev", chr);
465     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
466     memory_region_add_subregion(mem, base,
467                                 sysbus_mmio_get_region(s, 0));
468     sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
469 }
470 
471 static void create_rtc(const SBSAMachineState *sms)
472 {
473     hwaddr base = sbsa_ref_memmap[SBSA_RTC].base;
474     int irq = sbsa_ref_irqmap[SBSA_RTC];
475 
476     sysbus_create_simple("pl031", base, qdev_get_gpio_in(sms->gic, irq));
477 }
478 
479 static void create_wdt(const SBSAMachineState *sms)
480 {
481     hwaddr rbase = sbsa_ref_memmap[SBSA_GWDT_REFRESH].base;
482     hwaddr cbase = sbsa_ref_memmap[SBSA_GWDT_CONTROL].base;
483     DeviceState *dev = qdev_new(TYPE_WDT_SBSA);
484     SysBusDevice *s = SYS_BUS_DEVICE(dev);
485     int irq = sbsa_ref_irqmap[SBSA_GWDT];
486 
487     sysbus_realize_and_unref(s, &error_fatal);
488     sysbus_mmio_map(s, 0, rbase);
489     sysbus_mmio_map(s, 1, cbase);
490     sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
491 }
492 
493 static DeviceState *gpio_key_dev;
494 static void sbsa_ref_powerdown_req(Notifier *n, void *opaque)
495 {
496     /* use gpio Pin 3 for power button event */
497     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
498 }
499 
500 static Notifier sbsa_ref_powerdown_notifier = {
501     .notify = sbsa_ref_powerdown_req
502 };
503 
504 static void create_gpio(const SBSAMachineState *sms)
505 {
506     DeviceState *pl061_dev;
507     hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base;
508     int irq = sbsa_ref_irqmap[SBSA_GPIO];
509 
510     pl061_dev = sysbus_create_simple("pl061", base,
511                                      qdev_get_gpio_in(sms->gic, irq));
512 
513     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
514                                         qdev_get_gpio_in(pl061_dev, 3));
515 
516     /* connect powerdown request */
517     qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier);
518 }
519 
520 static void create_ahci(const SBSAMachineState *sms)
521 {
522     hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base;
523     int irq = sbsa_ref_irqmap[SBSA_AHCI];
524     DeviceState *dev;
525     DriveInfo *hd[NUM_SATA_PORTS];
526     SysbusAHCIState *sysahci;
527     AHCIState *ahci;
528     int i;
529 
530     dev = qdev_new("sysbus-ahci");
531     qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS);
532     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
533     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
534     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
535 
536     sysahci = SYSBUS_AHCI(dev);
537     ahci = &sysahci->ahci;
538     ide_drive_get(hd, ARRAY_SIZE(hd));
539     for (i = 0; i < ahci->ports; i++) {
540         if (hd[i] == NULL) {
541             continue;
542         }
543         ide_create_drive(&ahci->dev[i].port, 0, hd[i]);
544     }
545 }
546 
547 static void create_ehci(const SBSAMachineState *sms)
548 {
549     hwaddr base = sbsa_ref_memmap[SBSA_EHCI].base;
550     int irq = sbsa_ref_irqmap[SBSA_EHCI];
551 
552     sysbus_create_simple("platform-ehci-usb", base,
553                          qdev_get_gpio_in(sms->gic, irq));
554 }
555 
556 static void create_smmu(const SBSAMachineState *sms, PCIBus *bus)
557 {
558     hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base;
559     int irq =  sbsa_ref_irqmap[SBSA_SMMU];
560     DeviceState *dev;
561     int i;
562 
563     dev = qdev_new("arm-smmuv3");
564 
565     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
566                              &error_abort);
567     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
568     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
569     for (i = 0; i < NUM_SMMU_IRQS; i++) {
570         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
571                            qdev_get_gpio_in(sms->gic, irq + i));
572     }
573 }
574 
575 static void create_pcie(SBSAMachineState *sms)
576 {
577     hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base;
578     hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size;
579     hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base;
580     hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size;
581     hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base;
582     hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size;
583     hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base;
584     int irq = sbsa_ref_irqmap[SBSA_PCIE];
585     MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg;
586     MemoryRegion *ecam_alias, *ecam_reg;
587     DeviceState *dev;
588     PCIHostState *pci;
589     int i;
590 
591     dev = qdev_new(TYPE_GPEX_HOST);
592     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
593 
594     /* Map ECAM space */
595     ecam_alias = g_new0(MemoryRegion, 1);
596     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
597     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
598                              ecam_reg, 0, size_ecam);
599     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
600 
601     /* Map the MMIO space */
602     mmio_alias = g_new0(MemoryRegion, 1);
603     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
604     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
605                              mmio_reg, base_mmio, size_mmio);
606     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
607 
608     /* Map the MMIO_HIGH space */
609     mmio_alias_high = g_new0(MemoryRegion, 1);
610     memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high",
611                              mmio_reg, base_mmio_high, size_mmio_high);
612     memory_region_add_subregion(get_system_memory(), base_mmio_high,
613                                 mmio_alias_high);
614 
615     /* Map IO port space */
616     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
617 
618     for (i = 0; i < GPEX_NUM_IRQS; i++) {
619         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
620                            qdev_get_gpio_in(sms->gic, irq + i));
621         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
622     }
623 
624     pci = PCI_HOST_BRIDGE(dev);
625     if (pci->bus) {
626         for (i = 0; i < nb_nics; i++) {
627             NICInfo *nd = &nd_table[i];
628 
629             if (!nd->model) {
630                 nd->model = g_strdup("e1000e");
631             }
632 
633             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
634         }
635     }
636 
637     pci_create_simple(pci->bus, -1, "VGA");
638 
639     create_smmu(sms, pci->bus);
640 }
641 
642 static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size)
643 {
644     const SBSAMachineState *board = container_of(binfo, SBSAMachineState,
645                                                  bootinfo);
646 
647     *fdt_size = board->fdt_size;
648     return board->fdt;
649 }
650 
651 static void create_secure_ec(MemoryRegion *mem)
652 {
653     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_EC].base;
654     DeviceState *dev = qdev_new("sbsa-ec");
655     SysBusDevice *s = SYS_BUS_DEVICE(dev);
656 
657     memory_region_add_subregion(mem, base,
658                                 sysbus_mmio_get_region(s, 0));
659 }
660 
661 static void sbsa_ref_init(MachineState *machine)
662 {
663     unsigned int smp_cpus = machine->smp.cpus;
664     unsigned int max_cpus = machine->smp.max_cpus;
665     SBSAMachineState *sms = SBSA_MACHINE(machine);
666     MachineClass *mc = MACHINE_GET_CLASS(machine);
667     MemoryRegion *sysmem = get_system_memory();
668     MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1);
669     bool firmware_loaded;
670     const CPUArchIdList *possible_cpus;
671     int n, sbsa_max_cpus;
672 
673     if (!cpu_type_valid(machine->cpu_type)) {
674         error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
675         exit(1);
676     }
677 
678     if (kvm_enabled()) {
679         error_report("sbsa-ref: KVM is not supported for this machine");
680         exit(1);
681     }
682 
683     /*
684      * The Secure view of the world is the same as the NonSecure,
685      * but with a few extra devices. Create it as a container region
686      * containing the system memory at low priority; any secure-only
687      * devices go in at higher priority and take precedence.
688      */
689     memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
690                        UINT64_MAX);
691     memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
692 
693     firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem);
694 
695     if (machine->kernel_filename && firmware_loaded) {
696         error_report("sbsa-ref: No fw_cfg device on this machine, "
697                      "so -kernel option is not supported when firmware loaded, "
698                      "please load OS from hard disk instead");
699         exit(1);
700     }
701 
702     /*
703      * This machine has EL3 enabled, external firmware should supply PSCI
704      * implementation, so the QEMU's internal PSCI is disabled.
705      */
706     sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
707 
708     sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
709 
710     if (max_cpus > sbsa_max_cpus) {
711         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
712                      "supported by machine 'sbsa-ref' (%d)",
713                      max_cpus, sbsa_max_cpus);
714         exit(1);
715     }
716 
717     sms->smp_cpus = smp_cpus;
718 
719     if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
720         error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
721         exit(1);
722     }
723 
724     possible_cpus = mc->possible_cpu_arch_ids(machine);
725     for (n = 0; n < possible_cpus->len; n++) {
726         Object *cpuobj;
727         CPUState *cs;
728 
729         if (n >= smp_cpus) {
730             break;
731         }
732 
733         cpuobj = object_new(possible_cpus->cpus[n].type);
734         object_property_set_int(cpuobj, "mp-affinity",
735                                 possible_cpus->cpus[n].arch_id, NULL);
736 
737         cs = CPU(cpuobj);
738         cs->cpu_index = n;
739 
740         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
741                           &error_fatal);
742 
743         if (object_property_find(cpuobj, "reset-cbar")) {
744             object_property_set_int(cpuobj, "reset-cbar",
745                                     sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
746                                     &error_abort);
747         }
748 
749         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
750                                  &error_abort);
751 
752         object_property_set_link(cpuobj, "secure-memory",
753                                  OBJECT(secure_sysmem), &error_abort);
754 
755         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
756         object_unref(cpuobj);
757     }
758 
759     memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base,
760                                 machine->ram);
761 
762     create_fdt(sms);
763 
764     create_secure_ram(sms, secure_sysmem);
765 
766     create_gic(sms);
767 
768     create_uart(sms, SBSA_UART, sysmem, serial_hd(0));
769     create_uart(sms, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));
770     /* Second secure UART for RAS and MM from EL0 */
771     create_uart(sms, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2));
772 
773     create_rtc(sms);
774 
775     create_wdt(sms);
776 
777     create_gpio(sms);
778 
779     create_ahci(sms);
780 
781     create_ehci(sms);
782 
783     create_pcie(sms);
784 
785     create_secure_ec(secure_sysmem);
786 
787     sms->bootinfo.ram_size = machine->ram_size;
788     sms->bootinfo.nb_cpus = smp_cpus;
789     sms->bootinfo.board_id = -1;
790     sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
791     sms->bootinfo.get_dtb = sbsa_ref_dtb;
792     sms->bootinfo.firmware_loaded = firmware_loaded;
793     arm_load_kernel(ARM_CPU(first_cpu), machine, &sms->bootinfo);
794 }
795 
796 static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
797 {
798     unsigned int max_cpus = ms->smp.max_cpus;
799     SBSAMachineState *sms = SBSA_MACHINE(ms);
800     int n;
801 
802     if (ms->possible_cpus) {
803         assert(ms->possible_cpus->len == max_cpus);
804         return ms->possible_cpus;
805     }
806 
807     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
808                                   sizeof(CPUArchId) * max_cpus);
809     ms->possible_cpus->len = max_cpus;
810     for (n = 0; n < ms->possible_cpus->len; n++) {
811         ms->possible_cpus->cpus[n].type = ms->cpu_type;
812         ms->possible_cpus->cpus[n].arch_id =
813             sbsa_ref_cpu_mp_affinity(sms, n);
814         ms->possible_cpus->cpus[n].props.has_thread_id = true;
815         ms->possible_cpus->cpus[n].props.thread_id = n;
816     }
817     return ms->possible_cpus;
818 }
819 
820 static CpuInstanceProperties
821 sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
822 {
823     MachineClass *mc = MACHINE_GET_CLASS(ms);
824     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
825 
826     assert(cpu_index < possible_cpus->len);
827     return possible_cpus->cpus[cpu_index].props;
828 }
829 
830 static int64_t
831 sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
832 {
833     return idx % ms->numa_state->num_nodes;
834 }
835 
836 static void sbsa_ref_instance_init(Object *obj)
837 {
838     SBSAMachineState *sms = SBSA_MACHINE(obj);
839 
840     sbsa_flash_create(sms);
841 }
842 
843 static void sbsa_ref_class_init(ObjectClass *oc, void *data)
844 {
845     MachineClass *mc = MACHINE_CLASS(oc);
846 
847     mc->init = sbsa_ref_init;
848     mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
849     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a57");
850     mc->max_cpus = 512;
851     mc->pci_allow_0_address = true;
852     mc->minimum_page_bits = 12;
853     mc->block_default_type = IF_IDE;
854     mc->no_cdrom = 1;
855     mc->default_ram_size = 1 * GiB;
856     mc->default_ram_id = "sbsa-ref.ram";
857     mc->default_cpus = 4;
858     mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
859     mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
860     mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
861 }
862 
863 static const TypeInfo sbsa_ref_info = {
864     .name          = TYPE_SBSA_MACHINE,
865     .parent        = TYPE_MACHINE,
866     .instance_init = sbsa_ref_instance_init,
867     .class_init    = sbsa_ref_class_init,
868     .instance_size = sizeof(SBSAMachineState),
869 };
870 
871 static void sbsa_ref_machine_init(void)
872 {
873     type_register_static(&sbsa_ref_info);
874 }
875 
876 type_init(sbsa_ref_machine_init);
877