xref: /openbmc/qemu/hw/arm/sbsa-ref.c (revision 31eb7ddd)
1 /*
2  * ARM SBSA Reference Platform emulation
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Hongbo Zhang <hongbo.zhang@linaro.org>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
23 #include "qemu/error-report.h"
24 #include "qemu/units.h"
25 #include "sysemu/device_tree.h"
26 #include "sysemu/numa.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/sysemu.h"
29 #include "exec/address-spaces.h"
30 #include "exec/hwaddr.h"
31 #include "kvm_arm.h"
32 #include "hw/arm/boot.h"
33 #include "hw/block/flash.h"
34 #include "hw/boards.h"
35 #include "hw/ide/internal.h"
36 #include "hw/ide/ahci_internal.h"
37 #include "hw/intc/arm_gicv3_common.h"
38 #include "hw/loader.h"
39 #include "hw/pci-host/gpex.h"
40 #include "hw/qdev-properties.h"
41 #include "hw/usb.h"
42 #include "net/net.h"
43 
44 #define RAMLIMIT_GB 8192
45 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
46 
47 #define NUM_IRQS        256
48 #define NUM_SMMU_IRQS   4
49 #define NUM_SATA_PORTS  6
50 
51 #define VIRTUAL_PMU_IRQ        7
52 #define ARCH_GIC_MAINT_IRQ     9
53 #define ARCH_TIMER_VIRT_IRQ    11
54 #define ARCH_TIMER_S_EL1_IRQ   13
55 #define ARCH_TIMER_NS_EL1_IRQ  14
56 #define ARCH_TIMER_NS_EL2_IRQ  10
57 
58 enum {
59     SBSA_FLASH,
60     SBSA_MEM,
61     SBSA_CPUPERIPHS,
62     SBSA_GIC_DIST,
63     SBSA_GIC_REDIST,
64     SBSA_SMMU,
65     SBSA_UART,
66     SBSA_RTC,
67     SBSA_PCIE,
68     SBSA_PCIE_MMIO,
69     SBSA_PCIE_MMIO_HIGH,
70     SBSA_PCIE_PIO,
71     SBSA_PCIE_ECAM,
72     SBSA_GPIO,
73     SBSA_SECURE_UART,
74     SBSA_SECURE_UART_MM,
75     SBSA_SECURE_MEM,
76     SBSA_AHCI,
77     SBSA_EHCI,
78 };
79 
80 typedef struct MemMapEntry {
81     hwaddr base;
82     hwaddr size;
83 } MemMapEntry;
84 
85 typedef struct {
86     MachineState parent;
87     struct arm_boot_info bootinfo;
88     int smp_cpus;
89     void *fdt;
90     int fdt_size;
91     int psci_conduit;
92     PFlashCFI01 *flash[2];
93 } SBSAMachineState;
94 
95 #define TYPE_SBSA_MACHINE   MACHINE_TYPE_NAME("sbsa-ref")
96 #define SBSA_MACHINE(obj) \
97     OBJECT_CHECK(SBSAMachineState, (obj), TYPE_SBSA_MACHINE)
98 
99 static const MemMapEntry sbsa_ref_memmap[] = {
100     /* 512M boot ROM */
101     [SBSA_FLASH] =              {          0, 0x20000000 },
102     /* 512M secure memory */
103     [SBSA_SECURE_MEM] =         { 0x20000000, 0x20000000 },
104     /* Space reserved for CPU peripheral devices */
105     [SBSA_CPUPERIPHS] =         { 0x40000000, 0x00040000 },
106     [SBSA_GIC_DIST] =           { 0x40060000, 0x00010000 },
107     [SBSA_GIC_REDIST] =         { 0x40080000, 0x04000000 },
108     [SBSA_UART] =               { 0x60000000, 0x00001000 },
109     [SBSA_RTC] =                { 0x60010000, 0x00001000 },
110     [SBSA_GPIO] =               { 0x60020000, 0x00001000 },
111     [SBSA_SECURE_UART] =        { 0x60030000, 0x00001000 },
112     [SBSA_SECURE_UART_MM] =     { 0x60040000, 0x00001000 },
113     [SBSA_SMMU] =               { 0x60050000, 0x00020000 },
114     /* Space here reserved for more SMMUs */
115     [SBSA_AHCI] =               { 0x60100000, 0x00010000 },
116     [SBSA_EHCI] =               { 0x60110000, 0x00010000 },
117     /* Space here reserved for other devices */
118     [SBSA_PCIE_PIO] =           { 0x7fff0000, 0x00010000 },
119     /* 32-bit address PCIE MMIO space */
120     [SBSA_PCIE_MMIO] =          { 0x80000000, 0x70000000 },
121     /* 256M PCIE ECAM space */
122     [SBSA_PCIE_ECAM] =          { 0xf0000000, 0x10000000 },
123     /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
124     [SBSA_PCIE_MMIO_HIGH] =     { 0x100000000ULL, 0xFF00000000ULL },
125     [SBSA_MEM] =                { 0x10000000000ULL, RAMLIMIT_BYTES },
126 };
127 
128 static const int sbsa_ref_irqmap[] = {
129     [SBSA_UART] = 1,
130     [SBSA_RTC] = 2,
131     [SBSA_PCIE] = 3, /* ... to 6 */
132     [SBSA_GPIO] = 7,
133     [SBSA_SECURE_UART] = 8,
134     [SBSA_SECURE_UART_MM] = 9,
135     [SBSA_AHCI] = 10,
136     [SBSA_EHCI] = 11,
137 };
138 
139 /*
140  * Firmware on this machine only uses ACPI table to load OS, these limited
141  * device tree nodes are just to let firmware know the info which varies from
142  * command line parameters, so it is not necessary to be fully compatible
143  * with the kernel CPU and NUMA binding rules.
144  */
145 static void create_fdt(SBSAMachineState *sms)
146 {
147     void *fdt = create_device_tree(&sms->fdt_size);
148     const MachineState *ms = MACHINE(sms);
149     int cpu;
150 
151     if (!fdt) {
152         error_report("create_device_tree() failed");
153         exit(1);
154     }
155 
156     sms->fdt = fdt;
157 
158     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref");
159     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
160     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
161 
162     if (have_numa_distance) {
163         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
164         uint32_t *matrix = g_malloc0(size);
165         int idx, i, j;
166 
167         for (i = 0; i < nb_numa_nodes; i++) {
168             for (j = 0; j < nb_numa_nodes; j++) {
169                 idx = (i * nb_numa_nodes + j) * 3;
170                 matrix[idx + 0] = cpu_to_be32(i);
171                 matrix[idx + 1] = cpu_to_be32(j);
172                 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
173             }
174         }
175 
176         qemu_fdt_add_subnode(fdt, "/distance-map");
177         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
178                          matrix, size);
179         g_free(matrix);
180     }
181 
182     qemu_fdt_add_subnode(sms->fdt, "/cpus");
183 
184     for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) {
185         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
186         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
187         CPUState *cs = CPU(armcpu);
188 
189         qemu_fdt_add_subnode(sms->fdt, nodename);
190 
191         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
192             qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id",
193                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
194         }
195 
196         g_free(nodename);
197     }
198 }
199 
200 #define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
201 
202 static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms,
203                                         const char *name,
204                                         const char *alias_prop_name)
205 {
206     /*
207      * Create a single flash device.  We use the same parameters as
208      * the flash devices on the Versatile Express board.
209      */
210     DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
211 
212     qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE);
213     qdev_prop_set_uint8(dev, "width", 4);
214     qdev_prop_set_uint8(dev, "device-width", 2);
215     qdev_prop_set_bit(dev, "big-endian", false);
216     qdev_prop_set_uint16(dev, "id0", 0x89);
217     qdev_prop_set_uint16(dev, "id1", 0x18);
218     qdev_prop_set_uint16(dev, "id2", 0x00);
219     qdev_prop_set_uint16(dev, "id3", 0x00);
220     qdev_prop_set_string(dev, "name", name);
221     object_property_add_child(OBJECT(sms), name, OBJECT(dev),
222                               &error_abort);
223     object_property_add_alias(OBJECT(sms), alias_prop_name,
224                               OBJECT(dev), "drive", &error_abort);
225     return PFLASH_CFI01(dev);
226 }
227 
228 static void sbsa_flash_create(SBSAMachineState *sms)
229 {
230     sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0");
231     sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1");
232 }
233 
234 static void sbsa_flash_map1(PFlashCFI01 *flash,
235                             hwaddr base, hwaddr size,
236                             MemoryRegion *sysmem)
237 {
238     DeviceState *dev = DEVICE(flash);
239 
240     assert(size % SBSA_FLASH_SECTOR_SIZE == 0);
241     assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX);
242     qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE);
243     qdev_init_nofail(dev);
244 
245     memory_region_add_subregion(sysmem, base,
246                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
247                                                        0));
248 }
249 
250 static void sbsa_flash_map(SBSAMachineState *sms,
251                            MemoryRegion *sysmem,
252                            MemoryRegion *secure_sysmem)
253 {
254     /*
255      * Map two flash devices to fill the SBSA_FLASH space in the memmap.
256      * sysmem is the system memory space. secure_sysmem is the secure view
257      * of the system, and the first flash device should be made visible only
258      * there. The second flash device is visible to both secure and nonsecure.
259      */
260     hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2;
261     hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base;
262 
263     sbsa_flash_map1(sms->flash[0], flashbase, flashsize,
264                     secure_sysmem);
265     sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize,
266                     sysmem);
267 }
268 
269 static bool sbsa_firmware_init(SBSAMachineState *sms,
270                                MemoryRegion *sysmem,
271                                MemoryRegion *secure_sysmem)
272 {
273     int i;
274     BlockBackend *pflash_blk0;
275 
276     /* Map legacy -drive if=pflash to machine properties */
277     for (i = 0; i < ARRAY_SIZE(sms->flash); i++) {
278         pflash_cfi01_legacy_drive(sms->flash[i],
279                                   drive_get(IF_PFLASH, 0, i));
280     }
281 
282     sbsa_flash_map(sms, sysmem, secure_sysmem);
283 
284     pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]);
285 
286     if (bios_name) {
287         char *fname;
288         MemoryRegion *mr;
289         int image_size;
290 
291         if (pflash_blk0) {
292             error_report("The contents of the first flash device may be "
293                          "specified with -bios or with -drive if=pflash... "
294                          "but you cannot use both options at once");
295             exit(1);
296         }
297 
298         /* Fall back to -bios */
299 
300         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
301         if (!fname) {
302             error_report("Could not find ROM image '%s'", bios_name);
303             exit(1);
304         }
305         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0);
306         image_size = load_image_mr(fname, mr);
307         g_free(fname);
308         if (image_size < 0) {
309             error_report("Could not load ROM image '%s'", bios_name);
310             exit(1);
311         }
312     }
313 
314     return pflash_blk0 || bios_name;
315 }
316 
317 static void create_secure_ram(SBSAMachineState *sms,
318                               MemoryRegion *secure_sysmem)
319 {
320     MemoryRegion *secram = g_new(MemoryRegion, 1);
321     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base;
322     hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size;
323 
324     memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size,
325                            &error_fatal);
326     memory_region_add_subregion(secure_sysmem, base, secram);
327 }
328 
329 static void create_gic(SBSAMachineState *sms, qemu_irq *pic)
330 {
331     unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
332     DeviceState *gicdev;
333     SysBusDevice *gicbusdev;
334     const char *gictype;
335     uint32_t redist0_capacity, redist0_count;
336     int i;
337 
338     gictype = gicv3_class_name();
339 
340     gicdev = qdev_create(NULL, gictype);
341     qdev_prop_set_uint32(gicdev, "revision", 3);
342     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
343     /*
344      * Note that the num-irq property counts both internal and external
345      * interrupts; there are always 32 of the former (mandated by GIC spec).
346      */
347     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
348     qdev_prop_set_bit(gicdev, "has-security-extensions", true);
349 
350     redist0_capacity =
351                 sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
352     redist0_count = MIN(smp_cpus, redist0_capacity);
353 
354     qdev_prop_set_uint32(gicdev, "len-redist-region-count", 1);
355     qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
356 
357     qdev_init_nofail(gicdev);
358     gicbusdev = SYS_BUS_DEVICE(gicdev);
359     sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
360     sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base);
361 
362     /*
363      * Wire the outputs from each CPU's generic timer and the GICv3
364      * maintenance interrupt signal to the appropriate GIC PPI inputs,
365      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
366      */
367     for (i = 0; i < smp_cpus; i++) {
368         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
369         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
370         int irq;
371         /*
372          * Mapping from the output timer irq lines from the CPU to the
373          * GIC PPI inputs used for this board.
374          */
375         const int timer_irq[] = {
376             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
377             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
378             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
379             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
380         };
381 
382         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
383             qdev_connect_gpio_out(cpudev, irq,
384                                   qdev_get_gpio_in(gicdev,
385                                                    ppibase + timer_irq[irq]));
386         }
387 
388         qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
389                                     qdev_get_gpio_in(gicdev, ppibase
390                                                      + ARCH_GIC_MAINT_IRQ));
391         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
392                                     qdev_get_gpio_in(gicdev, ppibase
393                                                      + VIRTUAL_PMU_IRQ));
394 
395         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
396         sysbus_connect_irq(gicbusdev, i + smp_cpus,
397                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
398         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
399                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
400         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
401                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
402     }
403 
404     for (i = 0; i < NUM_IRQS; i++) {
405         pic[i] = qdev_get_gpio_in(gicdev, i);
406     }
407 }
408 
409 static void create_uart(const SBSAMachineState *sms, qemu_irq *pic, int uart,
410                         MemoryRegion *mem, Chardev *chr)
411 {
412     hwaddr base = sbsa_ref_memmap[uart].base;
413     int irq = sbsa_ref_irqmap[uart];
414     DeviceState *dev = qdev_create(NULL, "pl011");
415     SysBusDevice *s = SYS_BUS_DEVICE(dev);
416 
417     qdev_prop_set_chr(dev, "chardev", chr);
418     qdev_init_nofail(dev);
419     memory_region_add_subregion(mem, base,
420                                 sysbus_mmio_get_region(s, 0));
421     sysbus_connect_irq(s, 0, pic[irq]);
422 }
423 
424 static void create_rtc(const SBSAMachineState *sms, qemu_irq *pic)
425 {
426     hwaddr base = sbsa_ref_memmap[SBSA_RTC].base;
427     int irq = sbsa_ref_irqmap[SBSA_RTC];
428 
429     sysbus_create_simple("pl031", base, pic[irq]);
430 }
431 
432 static DeviceState *gpio_key_dev;
433 static void sbsa_ref_powerdown_req(Notifier *n, void *opaque)
434 {
435     /* use gpio Pin 3 for power button event */
436     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
437 }
438 
439 static Notifier sbsa_ref_powerdown_notifier = {
440     .notify = sbsa_ref_powerdown_req
441 };
442 
443 static void create_gpio(const SBSAMachineState *sms, qemu_irq *pic)
444 {
445     DeviceState *pl061_dev;
446     hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base;
447     int irq = sbsa_ref_irqmap[SBSA_GPIO];
448 
449     pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
450 
451     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
452                                         qdev_get_gpio_in(pl061_dev, 3));
453 
454     /* connect powerdown request */
455     qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier);
456 }
457 
458 static void create_ahci(const SBSAMachineState *sms, qemu_irq *pic)
459 {
460     hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base;
461     int irq = sbsa_ref_irqmap[SBSA_AHCI];
462     DeviceState *dev;
463     DriveInfo *hd[NUM_SATA_PORTS];
464     SysbusAHCIState *sysahci;
465     AHCIState *ahci;
466     int i;
467 
468     dev = qdev_create(NULL, "sysbus-ahci");
469     qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS);
470     qdev_init_nofail(dev);
471     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
472     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, pic[irq]);
473 
474     sysahci = SYSBUS_AHCI(dev);
475     ahci = &sysahci->ahci;
476     ide_drive_get(hd, ARRAY_SIZE(hd));
477     for (i = 0; i < ahci->ports; i++) {
478         if (hd[i] == NULL) {
479             continue;
480         }
481         ide_create_drive(&ahci->dev[i].port, 0, hd[i]);
482     }
483 }
484 
485 static void create_ehci(const SBSAMachineState *sms, qemu_irq *pic)
486 {
487     hwaddr base = sbsa_ref_memmap[SBSA_EHCI].base;
488     int irq = sbsa_ref_irqmap[SBSA_EHCI];
489 
490     sysbus_create_simple("platform-ehci-usb", base, pic[irq]);
491 }
492 
493 static void create_smmu(const SBSAMachineState *sms, qemu_irq *pic,
494                         PCIBus *bus)
495 {
496     hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base;
497     int irq =  sbsa_ref_irqmap[SBSA_SMMU];
498     DeviceState *dev;
499     int i;
500 
501     dev = qdev_create(NULL, "arm-smmuv3");
502 
503     object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
504                              &error_abort);
505     qdev_init_nofail(dev);
506     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
507     for (i = 0; i < NUM_SMMU_IRQS; i++) {
508         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
509     }
510 }
511 
512 static void create_pcie(SBSAMachineState *sms, qemu_irq *pic)
513 {
514     hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base;
515     hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size;
516     hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base;
517     hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size;
518     hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base;
519     hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size;
520     hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base;
521     int irq = sbsa_ref_irqmap[SBSA_PCIE];
522     MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg;
523     MemoryRegion *ecam_alias, *ecam_reg;
524     DeviceState *dev;
525     PCIHostState *pci;
526     int i;
527 
528     dev = qdev_create(NULL, TYPE_GPEX_HOST);
529     qdev_init_nofail(dev);
530 
531     /* Map ECAM space */
532     ecam_alias = g_new0(MemoryRegion, 1);
533     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
534     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
535                              ecam_reg, 0, size_ecam);
536     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
537 
538     /* Map the MMIO space */
539     mmio_alias = g_new0(MemoryRegion, 1);
540     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
541     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
542                              mmio_reg, base_mmio, size_mmio);
543     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
544 
545     /* Map the MMIO_HIGH space */
546     mmio_alias_high = g_new0(MemoryRegion, 1);
547     memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high",
548                              mmio_reg, base_mmio_high, size_mmio_high);
549     memory_region_add_subregion(get_system_memory(), base_mmio_high,
550                                 mmio_alias_high);
551 
552     /* Map IO port space */
553     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
554 
555     for (i = 0; i < GPEX_NUM_IRQS; i++) {
556         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
557         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
558     }
559 
560     pci = PCI_HOST_BRIDGE(dev);
561     if (pci->bus) {
562         for (i = 0; i < nb_nics; i++) {
563             NICInfo *nd = &nd_table[i];
564 
565             if (!nd->model) {
566                 nd->model = g_strdup("e1000e");
567             }
568 
569             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
570         }
571     }
572 
573     pci_create_simple(pci->bus, -1, "VGA");
574 
575     create_smmu(sms, pic, pci->bus);
576 }
577 
578 static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size)
579 {
580     const SBSAMachineState *board = container_of(binfo, SBSAMachineState,
581                                                  bootinfo);
582 
583     *fdt_size = board->fdt_size;
584     return board->fdt;
585 }
586 
587 static void sbsa_ref_init(MachineState *machine)
588 {
589     unsigned int smp_cpus = machine->smp.cpus;
590     unsigned int max_cpus = machine->smp.max_cpus;
591     SBSAMachineState *sms = SBSA_MACHINE(machine);
592     MachineClass *mc = MACHINE_GET_CLASS(machine);
593     MemoryRegion *sysmem = get_system_memory();
594     MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1);
595     MemoryRegion *ram = g_new(MemoryRegion, 1);
596     bool firmware_loaded;
597     const CPUArchIdList *possible_cpus;
598     int n, sbsa_max_cpus;
599     qemu_irq pic[NUM_IRQS];
600 
601     if (strcmp(machine->cpu_type, ARM_CPU_TYPE_NAME("cortex-a57"))) {
602         error_report("sbsa-ref: CPU type other than the built-in "
603                      "cortex-a57 not supported");
604         exit(1);
605     }
606 
607     if (kvm_enabled()) {
608         error_report("sbsa-ref: KVM is not supported for this machine");
609         exit(1);
610     }
611 
612     /*
613      * The Secure view of the world is the same as the NonSecure,
614      * but with a few extra devices. Create it as a container region
615      * containing the system memory at low priority; any secure-only
616      * devices go in at higher priority and take precedence.
617      */
618     memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
619                        UINT64_MAX);
620     memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
621 
622     firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem);
623 
624     if (machine->kernel_filename && firmware_loaded) {
625         error_report("sbsa-ref: No fw_cfg device on this machine, "
626                      "so -kernel option is not supported when firmware loaded, "
627                      "please load OS from hard disk instead");
628         exit(1);
629     }
630 
631     /*
632      * This machine has EL3 enabled, external firmware should supply PSCI
633      * implementation, so the QEMU's internal PSCI is disabled.
634      */
635     sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
636 
637     sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
638 
639     if (max_cpus > sbsa_max_cpus) {
640         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
641                      "supported by machine 'sbsa-ref' (%d)",
642                      max_cpus, sbsa_max_cpus);
643         exit(1);
644     }
645 
646     sms->smp_cpus = smp_cpus;
647 
648     if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
649         error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
650         exit(1);
651     }
652 
653     possible_cpus = mc->possible_cpu_arch_ids(machine);
654     for (n = 0; n < possible_cpus->len; n++) {
655         Object *cpuobj;
656         CPUState *cs;
657 
658         if (n >= smp_cpus) {
659             break;
660         }
661 
662         cpuobj = object_new(possible_cpus->cpus[n].type);
663         object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
664                                 "mp-affinity", NULL);
665 
666         cs = CPU(cpuobj);
667         cs->cpu_index = n;
668 
669         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
670                           &error_fatal);
671 
672         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
673             object_property_set_int(cpuobj,
674                                     sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
675                                     "reset-cbar", &error_abort);
676         }
677 
678         object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
679                                  &error_abort);
680 
681         object_property_set_link(cpuobj, OBJECT(secure_sysmem),
682                                  "secure-memory", &error_abort);
683 
684         object_property_set_bool(cpuobj, true, "realized", &error_fatal);
685         object_unref(cpuobj);
686     }
687 
688     memory_region_allocate_system_memory(ram, NULL, "sbsa-ref.ram",
689                                          machine->ram_size);
690     memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base, ram);
691 
692     create_fdt(sms);
693 
694     create_secure_ram(sms, secure_sysmem);
695 
696     create_gic(sms, pic);
697 
698     create_uart(sms, pic, SBSA_UART, sysmem, serial_hd(0));
699     create_uart(sms, pic, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));
700     /* Second secure UART for RAS and MM from EL0 */
701     create_uart(sms, pic, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2));
702 
703     create_rtc(sms, pic);
704 
705     create_gpio(sms, pic);
706 
707     create_ahci(sms, pic);
708 
709     create_ehci(sms, pic);
710 
711     create_pcie(sms, pic);
712 
713     sms->bootinfo.ram_size = machine->ram_size;
714     sms->bootinfo.kernel_filename = machine->kernel_filename;
715     sms->bootinfo.nb_cpus = smp_cpus;
716     sms->bootinfo.board_id = -1;
717     sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
718     sms->bootinfo.get_dtb = sbsa_ref_dtb;
719     sms->bootinfo.firmware_loaded = firmware_loaded;
720     arm_load_kernel(ARM_CPU(first_cpu), &sms->bootinfo);
721 }
722 
723 static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
724 {
725     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
726     return arm_cpu_mp_affinity(idx, clustersz);
727 }
728 
729 static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
730 {
731     unsigned int max_cpus = ms->smp.max_cpus;
732     SBSAMachineState *sms = SBSA_MACHINE(ms);
733     int n;
734 
735     if (ms->possible_cpus) {
736         assert(ms->possible_cpus->len == max_cpus);
737         return ms->possible_cpus;
738     }
739 
740     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
741                                   sizeof(CPUArchId) * max_cpus);
742     ms->possible_cpus->len = max_cpus;
743     for (n = 0; n < ms->possible_cpus->len; n++) {
744         ms->possible_cpus->cpus[n].type = ms->cpu_type;
745         ms->possible_cpus->cpus[n].arch_id =
746             sbsa_ref_cpu_mp_affinity(sms, n);
747         ms->possible_cpus->cpus[n].props.has_thread_id = true;
748         ms->possible_cpus->cpus[n].props.thread_id = n;
749     }
750     return ms->possible_cpus;
751 }
752 
753 static CpuInstanceProperties
754 sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
755 {
756     MachineClass *mc = MACHINE_GET_CLASS(ms);
757     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
758 
759     assert(cpu_index < possible_cpus->len);
760     return possible_cpus->cpus[cpu_index].props;
761 }
762 
763 static int64_t
764 sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
765 {
766     return idx % nb_numa_nodes;
767 }
768 
769 static void sbsa_ref_instance_init(Object *obj)
770 {
771     SBSAMachineState *sms = SBSA_MACHINE(obj);
772 
773     sbsa_flash_create(sms);
774 }
775 
776 static void sbsa_ref_class_init(ObjectClass *oc, void *data)
777 {
778     MachineClass *mc = MACHINE_CLASS(oc);
779 
780     mc->init = sbsa_ref_init;
781     mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
782     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a57");
783     mc->max_cpus = 512;
784     mc->pci_allow_0_address = true;
785     mc->minimum_page_bits = 12;
786     mc->block_default_type = IF_IDE;
787     mc->no_cdrom = 1;
788     mc->default_ram_size = 1 * GiB;
789     mc->default_cpus = 4;
790     mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
791     mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
792     mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
793 }
794 
795 static const TypeInfo sbsa_ref_info = {
796     .name          = TYPE_SBSA_MACHINE,
797     .parent        = TYPE_MACHINE,
798     .instance_init = sbsa_ref_instance_init,
799     .class_init    = sbsa_ref_class_init,
800     .instance_size = sizeof(SBSAMachineState),
801 };
802 
803 static void sbsa_ref_machine_init(void)
804 {
805     type_register_static(&sbsa_ref_info);
806 }
807 
808 type_init(sbsa_ref_machine_init);
809