xref: /openbmc/qemu/hw/arm/sbsa-ref.c (revision 284d697c)
1 /*
2  * ARM SBSA Reference Platform emulation
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Hongbo Zhang <hongbo.zhang@linaro.org>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
23 #include "qemu/error-report.h"
24 #include "qemu/units.h"
25 #include "sysemu/device_tree.h"
26 #include "sysemu/numa.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/sysemu.h"
29 #include "exec/address-spaces.h"
30 #include "exec/hwaddr.h"
31 #include "kvm_arm.h"
32 #include "hw/arm/boot.h"
33 #include "hw/block/flash.h"
34 #include "hw/boards.h"
35 #include "hw/ide/internal.h"
36 #include "hw/ide/ahci_internal.h"
37 #include "hw/intc/arm_gicv3_common.h"
38 #include "hw/loader.h"
39 #include "hw/pci-host/gpex.h"
40 #include "hw/qdev-properties.h"
41 #include "hw/usb.h"
42 #include "hw/char/pl011.h"
43 #include "hw/watchdog/sbsa_gwdt.h"
44 #include "net/net.h"
45 #include "qom/object.h"
46 
47 #define RAMLIMIT_GB 8192
48 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
49 
50 #define NUM_IRQS        256
51 #define NUM_SMMU_IRQS   4
52 #define NUM_SATA_PORTS  6
53 
54 #define VIRTUAL_PMU_IRQ        7
55 #define ARCH_GIC_MAINT_IRQ     9
56 #define ARCH_TIMER_VIRT_IRQ    11
57 #define ARCH_TIMER_S_EL1_IRQ   13
58 #define ARCH_TIMER_NS_EL1_IRQ  14
59 #define ARCH_TIMER_NS_EL2_IRQ  10
60 
61 enum {
62     SBSA_FLASH,
63     SBSA_MEM,
64     SBSA_CPUPERIPHS,
65     SBSA_GIC_DIST,
66     SBSA_GIC_REDIST,
67     SBSA_SECURE_EC,
68     SBSA_GWDT,
69     SBSA_GWDT_REFRESH,
70     SBSA_GWDT_CONTROL,
71     SBSA_SMMU,
72     SBSA_UART,
73     SBSA_RTC,
74     SBSA_PCIE,
75     SBSA_PCIE_MMIO,
76     SBSA_PCIE_MMIO_HIGH,
77     SBSA_PCIE_PIO,
78     SBSA_PCIE_ECAM,
79     SBSA_GPIO,
80     SBSA_SECURE_UART,
81     SBSA_SECURE_UART_MM,
82     SBSA_SECURE_MEM,
83     SBSA_AHCI,
84     SBSA_EHCI,
85 };
86 
87 struct SBSAMachineState {
88     MachineState parent;
89     struct arm_boot_info bootinfo;
90     int smp_cpus;
91     void *fdt;
92     int fdt_size;
93     int psci_conduit;
94     DeviceState *gic;
95     PFlashCFI01 *flash[2];
96 };
97 
98 #define TYPE_SBSA_MACHINE   MACHINE_TYPE_NAME("sbsa-ref")
99 OBJECT_DECLARE_SIMPLE_TYPE(SBSAMachineState, SBSA_MACHINE)
100 
101 static const MemMapEntry sbsa_ref_memmap[] = {
102     /* 512M boot ROM */
103     [SBSA_FLASH] =              {          0, 0x20000000 },
104     /* 512M secure memory */
105     [SBSA_SECURE_MEM] =         { 0x20000000, 0x20000000 },
106     /* Space reserved for CPU peripheral devices */
107     [SBSA_CPUPERIPHS] =         { 0x40000000, 0x00040000 },
108     [SBSA_GIC_DIST] =           { 0x40060000, 0x00010000 },
109     [SBSA_GIC_REDIST] =         { 0x40080000, 0x04000000 },
110     [SBSA_SECURE_EC] =          { 0x50000000, 0x00001000 },
111     [SBSA_GWDT_REFRESH] =       { 0x50010000, 0x00001000 },
112     [SBSA_GWDT_CONTROL] =       { 0x50011000, 0x00001000 },
113     [SBSA_UART] =               { 0x60000000, 0x00001000 },
114     [SBSA_RTC] =                { 0x60010000, 0x00001000 },
115     [SBSA_GPIO] =               { 0x60020000, 0x00001000 },
116     [SBSA_SECURE_UART] =        { 0x60030000, 0x00001000 },
117     [SBSA_SECURE_UART_MM] =     { 0x60040000, 0x00001000 },
118     [SBSA_SMMU] =               { 0x60050000, 0x00020000 },
119     /* Space here reserved for more SMMUs */
120     [SBSA_AHCI] =               { 0x60100000, 0x00010000 },
121     [SBSA_EHCI] =               { 0x60110000, 0x00010000 },
122     /* Space here reserved for other devices */
123     [SBSA_PCIE_PIO] =           { 0x7fff0000, 0x00010000 },
124     /* 32-bit address PCIE MMIO space */
125     [SBSA_PCIE_MMIO] =          { 0x80000000, 0x70000000 },
126     /* 256M PCIE ECAM space */
127     [SBSA_PCIE_ECAM] =          { 0xf0000000, 0x10000000 },
128     /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
129     [SBSA_PCIE_MMIO_HIGH] =     { 0x100000000ULL, 0xFF00000000ULL },
130     [SBSA_MEM] =                { 0x10000000000ULL, RAMLIMIT_BYTES },
131 };
132 
133 static const int sbsa_ref_irqmap[] = {
134     [SBSA_UART] = 1,
135     [SBSA_RTC] = 2,
136     [SBSA_PCIE] = 3, /* ... to 6 */
137     [SBSA_GPIO] = 7,
138     [SBSA_SECURE_UART] = 8,
139     [SBSA_SECURE_UART_MM] = 9,
140     [SBSA_AHCI] = 10,
141     [SBSA_EHCI] = 11,
142     [SBSA_SMMU] = 12, /* ... to 15 */
143     [SBSA_GWDT] = 16,
144 };
145 
146 static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
147 {
148     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
149     return arm_cpu_mp_affinity(idx, clustersz);
150 }
151 
152 /*
153  * Firmware on this machine only uses ACPI table to load OS, these limited
154  * device tree nodes are just to let firmware know the info which varies from
155  * command line parameters, so it is not necessary to be fully compatible
156  * with the kernel CPU and NUMA binding rules.
157  */
158 static void create_fdt(SBSAMachineState *sms)
159 {
160     void *fdt = create_device_tree(&sms->fdt_size);
161     const MachineState *ms = MACHINE(sms);
162     int nb_numa_nodes = ms->numa_state->num_nodes;
163     int cpu;
164 
165     if (!fdt) {
166         error_report("create_device_tree() failed");
167         exit(1);
168     }
169 
170     sms->fdt = fdt;
171 
172     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref");
173     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
174     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
175 
176     if (ms->numa_state->have_numa_distance) {
177         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
178         uint32_t *matrix = g_malloc0(size);
179         int idx, i, j;
180 
181         for (i = 0; i < nb_numa_nodes; i++) {
182             for (j = 0; j < nb_numa_nodes; j++) {
183                 idx = (i * nb_numa_nodes + j) * 3;
184                 matrix[idx + 0] = cpu_to_be32(i);
185                 matrix[idx + 1] = cpu_to_be32(j);
186                 matrix[idx + 2] =
187                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
188             }
189         }
190 
191         qemu_fdt_add_subnode(fdt, "/distance-map");
192         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
193                          matrix, size);
194         g_free(matrix);
195     }
196 
197     /*
198      * From Documentation/devicetree/bindings/arm/cpus.yaml
199      *  On ARM v8 64-bit systems this property is required
200      *    and matches the MPIDR_EL1 register affinity bits.
201      *
202      *    * If cpus node's #address-cells property is set to 2
203      *
204      *      The first reg cell bits [7:0] must be set to
205      *      bits [39:32] of MPIDR_EL1.
206      *
207      *      The second reg cell bits [23:0] must be set to
208      *      bits [23:0] of MPIDR_EL1.
209      */
210     qemu_fdt_add_subnode(sms->fdt, "/cpus");
211     qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#address-cells", 2);
212     qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#size-cells", 0x0);
213 
214     for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) {
215         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
216         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
217         CPUState *cs = CPU(armcpu);
218         uint64_t mpidr = sbsa_ref_cpu_mp_affinity(sms, cpu);
219 
220         qemu_fdt_add_subnode(sms->fdt, nodename);
221         qemu_fdt_setprop_u64(sms->fdt, nodename, "reg", mpidr);
222 
223         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
224             qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id",
225                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
226         }
227 
228         g_free(nodename);
229     }
230 }
231 
232 #define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
233 
234 static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms,
235                                         const char *name,
236                                         const char *alias_prop_name)
237 {
238     /*
239      * Create a single flash device.  We use the same parameters as
240      * the flash devices on the Versatile Express board.
241      */
242     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
243 
244     qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE);
245     qdev_prop_set_uint8(dev, "width", 4);
246     qdev_prop_set_uint8(dev, "device-width", 2);
247     qdev_prop_set_bit(dev, "big-endian", false);
248     qdev_prop_set_uint16(dev, "id0", 0x89);
249     qdev_prop_set_uint16(dev, "id1", 0x18);
250     qdev_prop_set_uint16(dev, "id2", 0x00);
251     qdev_prop_set_uint16(dev, "id3", 0x00);
252     qdev_prop_set_string(dev, "name", name);
253     object_property_add_child(OBJECT(sms), name, OBJECT(dev));
254     object_property_add_alias(OBJECT(sms), alias_prop_name,
255                               OBJECT(dev), "drive");
256     return PFLASH_CFI01(dev);
257 }
258 
259 static void sbsa_flash_create(SBSAMachineState *sms)
260 {
261     sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0");
262     sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1");
263 }
264 
265 static void sbsa_flash_map1(PFlashCFI01 *flash,
266                             hwaddr base, hwaddr size,
267                             MemoryRegion *sysmem)
268 {
269     DeviceState *dev = DEVICE(flash);
270 
271     assert(QEMU_IS_ALIGNED(size, SBSA_FLASH_SECTOR_SIZE));
272     assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX);
273     qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE);
274     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
275 
276     memory_region_add_subregion(sysmem, base,
277                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
278                                                        0));
279 }
280 
281 static void sbsa_flash_map(SBSAMachineState *sms,
282                            MemoryRegion *sysmem,
283                            MemoryRegion *secure_sysmem)
284 {
285     /*
286      * Map two flash devices to fill the SBSA_FLASH space in the memmap.
287      * sysmem is the system memory space. secure_sysmem is the secure view
288      * of the system, and the first flash device should be made visible only
289      * there. The second flash device is visible to both secure and nonsecure.
290      */
291     hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2;
292     hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base;
293 
294     sbsa_flash_map1(sms->flash[0], flashbase, flashsize,
295                     secure_sysmem);
296     sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize,
297                     sysmem);
298 }
299 
300 static bool sbsa_firmware_init(SBSAMachineState *sms,
301                                MemoryRegion *sysmem,
302                                MemoryRegion *secure_sysmem)
303 {
304     int i;
305     BlockBackend *pflash_blk0;
306 
307     /* Map legacy -drive if=pflash to machine properties */
308     for (i = 0; i < ARRAY_SIZE(sms->flash); i++) {
309         pflash_cfi01_legacy_drive(sms->flash[i],
310                                   drive_get(IF_PFLASH, 0, i));
311     }
312 
313     sbsa_flash_map(sms, sysmem, secure_sysmem);
314 
315     pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]);
316 
317     if (bios_name) {
318         char *fname;
319         MemoryRegion *mr;
320         int image_size;
321 
322         if (pflash_blk0) {
323             error_report("The contents of the first flash device may be "
324                          "specified with -bios or with -drive if=pflash... "
325                          "but you cannot use both options at once");
326             exit(1);
327         }
328 
329         /* Fall back to -bios */
330 
331         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
332         if (!fname) {
333             error_report("Could not find ROM image '%s'", bios_name);
334             exit(1);
335         }
336         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0);
337         image_size = load_image_mr(fname, mr);
338         g_free(fname);
339         if (image_size < 0) {
340             error_report("Could not load ROM image '%s'", bios_name);
341             exit(1);
342         }
343     }
344 
345     return pflash_blk0 || bios_name;
346 }
347 
348 static void create_secure_ram(SBSAMachineState *sms,
349                               MemoryRegion *secure_sysmem)
350 {
351     MemoryRegion *secram = g_new(MemoryRegion, 1);
352     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base;
353     hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size;
354 
355     memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size,
356                            &error_fatal);
357     memory_region_add_subregion(secure_sysmem, base, secram);
358 }
359 
360 static void create_gic(SBSAMachineState *sms)
361 {
362     unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
363     SysBusDevice *gicbusdev;
364     const char *gictype;
365     uint32_t redist0_capacity, redist0_count;
366     int i;
367 
368     gictype = gicv3_class_name();
369 
370     sms->gic = qdev_new(gictype);
371     qdev_prop_set_uint32(sms->gic, "revision", 3);
372     qdev_prop_set_uint32(sms->gic, "num-cpu", smp_cpus);
373     /*
374      * Note that the num-irq property counts both internal and external
375      * interrupts; there are always 32 of the former (mandated by GIC spec).
376      */
377     qdev_prop_set_uint32(sms->gic, "num-irq", NUM_IRQS + 32);
378     qdev_prop_set_bit(sms->gic, "has-security-extensions", true);
379 
380     redist0_capacity =
381                 sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
382     redist0_count = MIN(smp_cpus, redist0_capacity);
383 
384     qdev_prop_set_uint32(sms->gic, "len-redist-region-count", 1);
385     qdev_prop_set_uint32(sms->gic, "redist-region-count[0]", redist0_count);
386 
387     gicbusdev = SYS_BUS_DEVICE(sms->gic);
388     sysbus_realize_and_unref(gicbusdev, &error_fatal);
389     sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
390     sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base);
391 
392     /*
393      * Wire the outputs from each CPU's generic timer and the GICv3
394      * maintenance interrupt signal to the appropriate GIC PPI inputs,
395      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
396      */
397     for (i = 0; i < smp_cpus; i++) {
398         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
399         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
400         int irq;
401         /*
402          * Mapping from the output timer irq lines from the CPU to the
403          * GIC PPI inputs used for this board.
404          */
405         const int timer_irq[] = {
406             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
407             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
408             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
409             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
410         };
411 
412         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
413             qdev_connect_gpio_out(cpudev, irq,
414                                   qdev_get_gpio_in(sms->gic,
415                                                    ppibase + timer_irq[irq]));
416         }
417 
418         qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
419                                     qdev_get_gpio_in(sms->gic, ppibase
420                                                      + ARCH_GIC_MAINT_IRQ));
421         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
422                                     qdev_get_gpio_in(sms->gic, ppibase
423                                                      + VIRTUAL_PMU_IRQ));
424 
425         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
426         sysbus_connect_irq(gicbusdev, i + smp_cpus,
427                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
428         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
429                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
430         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
431                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
432     }
433 }
434 
435 static void create_uart(const SBSAMachineState *sms, int uart,
436                         MemoryRegion *mem, Chardev *chr)
437 {
438     hwaddr base = sbsa_ref_memmap[uart].base;
439     int irq = sbsa_ref_irqmap[uart];
440     DeviceState *dev = qdev_new(TYPE_PL011);
441     SysBusDevice *s = SYS_BUS_DEVICE(dev);
442 
443     qdev_prop_set_chr(dev, "chardev", chr);
444     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
445     memory_region_add_subregion(mem, base,
446                                 sysbus_mmio_get_region(s, 0));
447     sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
448 }
449 
450 static void create_rtc(const SBSAMachineState *sms)
451 {
452     hwaddr base = sbsa_ref_memmap[SBSA_RTC].base;
453     int irq = sbsa_ref_irqmap[SBSA_RTC];
454 
455     sysbus_create_simple("pl031", base, qdev_get_gpio_in(sms->gic, irq));
456 }
457 
458 static void create_wdt(const SBSAMachineState *sms)
459 {
460     hwaddr rbase = sbsa_ref_memmap[SBSA_GWDT_REFRESH].base;
461     hwaddr cbase = sbsa_ref_memmap[SBSA_GWDT_CONTROL].base;
462     DeviceState *dev = qdev_new(TYPE_WDT_SBSA);
463     SysBusDevice *s = SYS_BUS_DEVICE(dev);
464     int irq = sbsa_ref_irqmap[SBSA_GWDT];
465 
466     sysbus_realize_and_unref(s, &error_fatal);
467     sysbus_mmio_map(s, 0, rbase);
468     sysbus_mmio_map(s, 1, cbase);
469     sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
470 }
471 
472 static DeviceState *gpio_key_dev;
473 static void sbsa_ref_powerdown_req(Notifier *n, void *opaque)
474 {
475     /* use gpio Pin 3 for power button event */
476     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
477 }
478 
479 static Notifier sbsa_ref_powerdown_notifier = {
480     .notify = sbsa_ref_powerdown_req
481 };
482 
483 static void create_gpio(const SBSAMachineState *sms)
484 {
485     DeviceState *pl061_dev;
486     hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base;
487     int irq = sbsa_ref_irqmap[SBSA_GPIO];
488 
489     pl061_dev = sysbus_create_simple("pl061", base,
490                                      qdev_get_gpio_in(sms->gic, irq));
491 
492     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
493                                         qdev_get_gpio_in(pl061_dev, 3));
494 
495     /* connect powerdown request */
496     qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier);
497 }
498 
499 static void create_ahci(const SBSAMachineState *sms)
500 {
501     hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base;
502     int irq = sbsa_ref_irqmap[SBSA_AHCI];
503     DeviceState *dev;
504     DriveInfo *hd[NUM_SATA_PORTS];
505     SysbusAHCIState *sysahci;
506     AHCIState *ahci;
507     int i;
508 
509     dev = qdev_new("sysbus-ahci");
510     qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS);
511     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
512     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
513     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
514 
515     sysahci = SYSBUS_AHCI(dev);
516     ahci = &sysahci->ahci;
517     ide_drive_get(hd, ARRAY_SIZE(hd));
518     for (i = 0; i < ahci->ports; i++) {
519         if (hd[i] == NULL) {
520             continue;
521         }
522         ide_create_drive(&ahci->dev[i].port, 0, hd[i]);
523     }
524 }
525 
526 static void create_ehci(const SBSAMachineState *sms)
527 {
528     hwaddr base = sbsa_ref_memmap[SBSA_EHCI].base;
529     int irq = sbsa_ref_irqmap[SBSA_EHCI];
530 
531     sysbus_create_simple("platform-ehci-usb", base,
532                          qdev_get_gpio_in(sms->gic, irq));
533 }
534 
535 static void create_smmu(const SBSAMachineState *sms, PCIBus *bus)
536 {
537     hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base;
538     int irq =  sbsa_ref_irqmap[SBSA_SMMU];
539     DeviceState *dev;
540     int i;
541 
542     dev = qdev_new("arm-smmuv3");
543 
544     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
545                              &error_abort);
546     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
547     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
548     for (i = 0; i < NUM_SMMU_IRQS; i++) {
549         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
550                            qdev_get_gpio_in(sms->gic, irq + i));
551     }
552 }
553 
554 static void create_pcie(SBSAMachineState *sms)
555 {
556     hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base;
557     hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size;
558     hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base;
559     hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size;
560     hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base;
561     hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size;
562     hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base;
563     int irq = sbsa_ref_irqmap[SBSA_PCIE];
564     MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg;
565     MemoryRegion *ecam_alias, *ecam_reg;
566     DeviceState *dev;
567     PCIHostState *pci;
568     int i;
569 
570     dev = qdev_new(TYPE_GPEX_HOST);
571     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
572 
573     /* Map ECAM space */
574     ecam_alias = g_new0(MemoryRegion, 1);
575     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
576     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
577                              ecam_reg, 0, size_ecam);
578     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
579 
580     /* Map the MMIO space */
581     mmio_alias = g_new0(MemoryRegion, 1);
582     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
583     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
584                              mmio_reg, base_mmio, size_mmio);
585     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
586 
587     /* Map the MMIO_HIGH space */
588     mmio_alias_high = g_new0(MemoryRegion, 1);
589     memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high",
590                              mmio_reg, base_mmio_high, size_mmio_high);
591     memory_region_add_subregion(get_system_memory(), base_mmio_high,
592                                 mmio_alias_high);
593 
594     /* Map IO port space */
595     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
596 
597     for (i = 0; i < GPEX_NUM_IRQS; i++) {
598         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
599                            qdev_get_gpio_in(sms->gic, irq + i));
600         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
601     }
602 
603     pci = PCI_HOST_BRIDGE(dev);
604     if (pci->bus) {
605         for (i = 0; i < nb_nics; i++) {
606             NICInfo *nd = &nd_table[i];
607 
608             if (!nd->model) {
609                 nd->model = g_strdup("e1000e");
610             }
611 
612             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
613         }
614     }
615 
616     pci_create_simple(pci->bus, -1, "VGA");
617 
618     create_smmu(sms, pci->bus);
619 }
620 
621 static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size)
622 {
623     const SBSAMachineState *board = container_of(binfo, SBSAMachineState,
624                                                  bootinfo);
625 
626     *fdt_size = board->fdt_size;
627     return board->fdt;
628 }
629 
630 static void create_secure_ec(MemoryRegion *mem)
631 {
632     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_EC].base;
633     DeviceState *dev = qdev_new("sbsa-ec");
634     SysBusDevice *s = SYS_BUS_DEVICE(dev);
635 
636     memory_region_add_subregion(mem, base,
637                                 sysbus_mmio_get_region(s, 0));
638 }
639 
640 static void sbsa_ref_init(MachineState *machine)
641 {
642     unsigned int smp_cpus = machine->smp.cpus;
643     unsigned int max_cpus = machine->smp.max_cpus;
644     SBSAMachineState *sms = SBSA_MACHINE(machine);
645     MachineClass *mc = MACHINE_GET_CLASS(machine);
646     MemoryRegion *sysmem = get_system_memory();
647     MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1);
648     bool firmware_loaded;
649     const CPUArchIdList *possible_cpus;
650     int n, sbsa_max_cpus;
651 
652     if (strcmp(machine->cpu_type, ARM_CPU_TYPE_NAME("cortex-a57"))) {
653         error_report("sbsa-ref: CPU type other than the built-in "
654                      "cortex-a57 not supported");
655         exit(1);
656     }
657 
658     if (kvm_enabled()) {
659         error_report("sbsa-ref: KVM is not supported for this machine");
660         exit(1);
661     }
662 
663     /*
664      * The Secure view of the world is the same as the NonSecure,
665      * but with a few extra devices. Create it as a container region
666      * containing the system memory at low priority; any secure-only
667      * devices go in at higher priority and take precedence.
668      */
669     memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
670                        UINT64_MAX);
671     memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
672 
673     firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem);
674 
675     if (machine->kernel_filename && firmware_loaded) {
676         error_report("sbsa-ref: No fw_cfg device on this machine, "
677                      "so -kernel option is not supported when firmware loaded, "
678                      "please load OS from hard disk instead");
679         exit(1);
680     }
681 
682     /*
683      * This machine has EL3 enabled, external firmware should supply PSCI
684      * implementation, so the QEMU's internal PSCI is disabled.
685      */
686     sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
687 
688     sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
689 
690     if (max_cpus > sbsa_max_cpus) {
691         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
692                      "supported by machine 'sbsa-ref' (%d)",
693                      max_cpus, sbsa_max_cpus);
694         exit(1);
695     }
696 
697     sms->smp_cpus = smp_cpus;
698 
699     if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
700         error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
701         exit(1);
702     }
703 
704     possible_cpus = mc->possible_cpu_arch_ids(machine);
705     for (n = 0; n < possible_cpus->len; n++) {
706         Object *cpuobj;
707         CPUState *cs;
708 
709         if (n >= smp_cpus) {
710             break;
711         }
712 
713         cpuobj = object_new(possible_cpus->cpus[n].type);
714         object_property_set_int(cpuobj, "mp-affinity",
715                                 possible_cpus->cpus[n].arch_id, NULL);
716 
717         cs = CPU(cpuobj);
718         cs->cpu_index = n;
719 
720         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
721                           &error_fatal);
722 
723         if (object_property_find(cpuobj, "reset-cbar")) {
724             object_property_set_int(cpuobj, "reset-cbar",
725                                     sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
726                                     &error_abort);
727         }
728 
729         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
730                                  &error_abort);
731 
732         object_property_set_link(cpuobj, "secure-memory",
733                                  OBJECT(secure_sysmem), &error_abort);
734 
735         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
736         object_unref(cpuobj);
737     }
738 
739     memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base,
740                                 machine->ram);
741 
742     create_fdt(sms);
743 
744     create_secure_ram(sms, secure_sysmem);
745 
746     create_gic(sms);
747 
748     create_uart(sms, SBSA_UART, sysmem, serial_hd(0));
749     create_uart(sms, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));
750     /* Second secure UART for RAS and MM from EL0 */
751     create_uart(sms, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2));
752 
753     create_rtc(sms);
754 
755     create_wdt(sms);
756 
757     create_gpio(sms);
758 
759     create_ahci(sms);
760 
761     create_ehci(sms);
762 
763     create_pcie(sms);
764 
765     create_secure_ec(secure_sysmem);
766 
767     sms->bootinfo.ram_size = machine->ram_size;
768     sms->bootinfo.nb_cpus = smp_cpus;
769     sms->bootinfo.board_id = -1;
770     sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
771     sms->bootinfo.get_dtb = sbsa_ref_dtb;
772     sms->bootinfo.firmware_loaded = firmware_loaded;
773     arm_load_kernel(ARM_CPU(first_cpu), machine, &sms->bootinfo);
774 }
775 
776 static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
777 {
778     unsigned int max_cpus = ms->smp.max_cpus;
779     SBSAMachineState *sms = SBSA_MACHINE(ms);
780     int n;
781 
782     if (ms->possible_cpus) {
783         assert(ms->possible_cpus->len == max_cpus);
784         return ms->possible_cpus;
785     }
786 
787     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
788                                   sizeof(CPUArchId) * max_cpus);
789     ms->possible_cpus->len = max_cpus;
790     for (n = 0; n < ms->possible_cpus->len; n++) {
791         ms->possible_cpus->cpus[n].type = ms->cpu_type;
792         ms->possible_cpus->cpus[n].arch_id =
793             sbsa_ref_cpu_mp_affinity(sms, n);
794         ms->possible_cpus->cpus[n].props.has_thread_id = true;
795         ms->possible_cpus->cpus[n].props.thread_id = n;
796     }
797     return ms->possible_cpus;
798 }
799 
800 static CpuInstanceProperties
801 sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
802 {
803     MachineClass *mc = MACHINE_GET_CLASS(ms);
804     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
805 
806     assert(cpu_index < possible_cpus->len);
807     return possible_cpus->cpus[cpu_index].props;
808 }
809 
810 static int64_t
811 sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
812 {
813     return idx % ms->numa_state->num_nodes;
814 }
815 
816 static void sbsa_ref_instance_init(Object *obj)
817 {
818     SBSAMachineState *sms = SBSA_MACHINE(obj);
819 
820     sbsa_flash_create(sms);
821 }
822 
823 static void sbsa_ref_class_init(ObjectClass *oc, void *data)
824 {
825     MachineClass *mc = MACHINE_CLASS(oc);
826 
827     mc->init = sbsa_ref_init;
828     mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
829     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a57");
830     mc->max_cpus = 512;
831     mc->pci_allow_0_address = true;
832     mc->minimum_page_bits = 12;
833     mc->block_default_type = IF_IDE;
834     mc->no_cdrom = 1;
835     mc->default_ram_size = 1 * GiB;
836     mc->default_ram_id = "sbsa-ref.ram";
837     mc->default_cpus = 4;
838     mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
839     mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
840     mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
841 }
842 
843 static const TypeInfo sbsa_ref_info = {
844     .name          = TYPE_SBSA_MACHINE,
845     .parent        = TYPE_MACHINE,
846     .instance_init = sbsa_ref_instance_init,
847     .class_init    = sbsa_ref_class_init,
848     .instance_size = sizeof(SBSAMachineState),
849 };
850 
851 static void sbsa_ref_machine_init(void)
852 {
853     type_register_static(&sbsa_ref_info);
854 }
855 
856 type_init(sbsa_ref_machine_init);
857