xref: /openbmc/qemu/hw/arm/sbsa-ref.c (revision 1d76437b45ab9982307b95d325d627f7b6f06088)
1 /*
2  * ARM SBSA Reference Platform emulation
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Hongbo Zhang <hongbo.zhang@linaro.org>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/datadir.h"
23 #include "qapi/error.h"
24 #include "qemu/error-report.h"
25 #include "qemu/units.h"
26 #include "sysemu/device_tree.h"
27 #include "sysemu/numa.h"
28 #include "sysemu/runstate.h"
29 #include "sysemu/sysemu.h"
30 #include "exec/hwaddr.h"
31 #include "kvm_arm.h"
32 #include "hw/arm/boot.h"
33 #include "hw/block/flash.h"
34 #include "hw/boards.h"
35 #include "hw/ide/internal.h"
36 #include "hw/ide/ahci_internal.h"
37 #include "hw/intc/arm_gicv3_common.h"
38 #include "hw/loader.h"
39 #include "hw/pci-host/gpex.h"
40 #include "hw/qdev-properties.h"
41 #include "hw/usb.h"
42 #include "hw/char/pl011.h"
43 #include "hw/watchdog/sbsa_gwdt.h"
44 #include "net/net.h"
45 #include "qom/object.h"
46 
47 #define RAMLIMIT_GB 8192
48 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
49 
50 #define NUM_IRQS        256
51 #define NUM_SMMU_IRQS   4
52 #define NUM_SATA_PORTS  6
53 
54 #define VIRTUAL_PMU_IRQ        7
55 #define ARCH_GIC_MAINT_IRQ     9
56 #define ARCH_TIMER_VIRT_IRQ    11
57 #define ARCH_TIMER_S_EL1_IRQ   13
58 #define ARCH_TIMER_NS_EL1_IRQ  14
59 #define ARCH_TIMER_NS_EL2_IRQ  10
60 
61 enum {
62     SBSA_FLASH,
63     SBSA_MEM,
64     SBSA_CPUPERIPHS,
65     SBSA_GIC_DIST,
66     SBSA_GIC_REDIST,
67     SBSA_SECURE_EC,
68     SBSA_GWDT_WS0,
69     SBSA_GWDT_REFRESH,
70     SBSA_GWDT_CONTROL,
71     SBSA_SMMU,
72     SBSA_UART,
73     SBSA_RTC,
74     SBSA_PCIE,
75     SBSA_PCIE_MMIO,
76     SBSA_PCIE_MMIO_HIGH,
77     SBSA_PCIE_PIO,
78     SBSA_PCIE_ECAM,
79     SBSA_GPIO,
80     SBSA_SECURE_UART,
81     SBSA_SECURE_UART_MM,
82     SBSA_SECURE_MEM,
83     SBSA_AHCI,
84     SBSA_EHCI,
85 };
86 
87 struct SBSAMachineState {
88     MachineState parent;
89     struct arm_boot_info bootinfo;
90     int smp_cpus;
91     void *fdt;
92     int fdt_size;
93     int psci_conduit;
94     DeviceState *gic;
95     PFlashCFI01 *flash[2];
96 };
97 
98 #define TYPE_SBSA_MACHINE   MACHINE_TYPE_NAME("sbsa-ref")
99 OBJECT_DECLARE_SIMPLE_TYPE(SBSAMachineState, SBSA_MACHINE)
100 
101 static const MemMapEntry sbsa_ref_memmap[] = {
102     /* 512M boot ROM */
103     [SBSA_FLASH] =              {          0, 0x20000000 },
104     /* 512M secure memory */
105     [SBSA_SECURE_MEM] =         { 0x20000000, 0x20000000 },
106     /* Space reserved for CPU peripheral devices */
107     [SBSA_CPUPERIPHS] =         { 0x40000000, 0x00040000 },
108     [SBSA_GIC_DIST] =           { 0x40060000, 0x00010000 },
109     [SBSA_GIC_REDIST] =         { 0x40080000, 0x04000000 },
110     [SBSA_SECURE_EC] =          { 0x50000000, 0x00001000 },
111     [SBSA_GWDT_REFRESH] =       { 0x50010000, 0x00001000 },
112     [SBSA_GWDT_CONTROL] =       { 0x50011000, 0x00001000 },
113     [SBSA_UART] =               { 0x60000000, 0x00001000 },
114     [SBSA_RTC] =                { 0x60010000, 0x00001000 },
115     [SBSA_GPIO] =               { 0x60020000, 0x00001000 },
116     [SBSA_SECURE_UART] =        { 0x60030000, 0x00001000 },
117     [SBSA_SECURE_UART_MM] =     { 0x60040000, 0x00001000 },
118     [SBSA_SMMU] =               { 0x60050000, 0x00020000 },
119     /* Space here reserved for more SMMUs */
120     [SBSA_AHCI] =               { 0x60100000, 0x00010000 },
121     [SBSA_EHCI] =               { 0x60110000, 0x00010000 },
122     /* Space here reserved for other devices */
123     [SBSA_PCIE_PIO] =           { 0x7fff0000, 0x00010000 },
124     /* 32-bit address PCIE MMIO space */
125     [SBSA_PCIE_MMIO] =          { 0x80000000, 0x70000000 },
126     /* 256M PCIE ECAM space */
127     [SBSA_PCIE_ECAM] =          { 0xf0000000, 0x10000000 },
128     /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
129     [SBSA_PCIE_MMIO_HIGH] =     { 0x100000000ULL, 0xFF00000000ULL },
130     [SBSA_MEM] =                { 0x10000000000ULL, RAMLIMIT_BYTES },
131 };
132 
133 static const int sbsa_ref_irqmap[] = {
134     [SBSA_UART] = 1,
135     [SBSA_RTC] = 2,
136     [SBSA_PCIE] = 3, /* ... to 6 */
137     [SBSA_GPIO] = 7,
138     [SBSA_SECURE_UART] = 8,
139     [SBSA_SECURE_UART_MM] = 9,
140     [SBSA_AHCI] = 10,
141     [SBSA_EHCI] = 11,
142     [SBSA_SMMU] = 12, /* ... to 15 */
143     [SBSA_GWDT_WS0] = 16,
144 };
145 
146 static const char * const valid_cpus[] = {
147     ARM_CPU_TYPE_NAME("cortex-a57"),
148     ARM_CPU_TYPE_NAME("cortex-a72"),
149     ARM_CPU_TYPE_NAME("max"),
150 };
151 
152 static bool cpu_type_valid(const char *cpu)
153 {
154     int i;
155 
156     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
157         if (strcmp(cpu, valid_cpus[i]) == 0) {
158             return true;
159         }
160     }
161     return false;
162 }
163 
164 static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
165 {
166     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
167     return arm_cpu_mp_affinity(idx, clustersz);
168 }
169 
170 /*
171  * Firmware on this machine only uses ACPI table to load OS, these limited
172  * device tree nodes are just to let firmware know the info which varies from
173  * command line parameters, so it is not necessary to be fully compatible
174  * with the kernel CPU and NUMA binding rules.
175  */
176 static void create_fdt(SBSAMachineState *sms)
177 {
178     void *fdt = create_device_tree(&sms->fdt_size);
179     const MachineState *ms = MACHINE(sms);
180     int nb_numa_nodes = ms->numa_state->num_nodes;
181     int cpu;
182 
183     if (!fdt) {
184         error_report("create_device_tree() failed");
185         exit(1);
186     }
187 
188     sms->fdt = fdt;
189 
190     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref");
191     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
192     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
193 
194     if (ms->numa_state->have_numa_distance) {
195         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
196         uint32_t *matrix = g_malloc0(size);
197         int idx, i, j;
198 
199         for (i = 0; i < nb_numa_nodes; i++) {
200             for (j = 0; j < nb_numa_nodes; j++) {
201                 idx = (i * nb_numa_nodes + j) * 3;
202                 matrix[idx + 0] = cpu_to_be32(i);
203                 matrix[idx + 1] = cpu_to_be32(j);
204                 matrix[idx + 2] =
205                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
206             }
207         }
208 
209         qemu_fdt_add_subnode(fdt, "/distance-map");
210         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
211                          matrix, size);
212         g_free(matrix);
213     }
214 
215     /*
216      * From Documentation/devicetree/bindings/arm/cpus.yaml
217      *  On ARM v8 64-bit systems this property is required
218      *    and matches the MPIDR_EL1 register affinity bits.
219      *
220      *    * If cpus node's #address-cells property is set to 2
221      *
222      *      The first reg cell bits [7:0] must be set to
223      *      bits [39:32] of MPIDR_EL1.
224      *
225      *      The second reg cell bits [23:0] must be set to
226      *      bits [23:0] of MPIDR_EL1.
227      */
228     qemu_fdt_add_subnode(sms->fdt, "/cpus");
229     qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#address-cells", 2);
230     qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#size-cells", 0x0);
231 
232     for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) {
233         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
234         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
235         CPUState *cs = CPU(armcpu);
236         uint64_t mpidr = sbsa_ref_cpu_mp_affinity(sms, cpu);
237 
238         qemu_fdt_add_subnode(sms->fdt, nodename);
239         qemu_fdt_setprop_u64(sms->fdt, nodename, "reg", mpidr);
240 
241         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
242             qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id",
243                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
244         }
245 
246         g_free(nodename);
247     }
248 }
249 
250 #define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
251 
252 static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms,
253                                         const char *name,
254                                         const char *alias_prop_name)
255 {
256     /*
257      * Create a single flash device.  We use the same parameters as
258      * the flash devices on the Versatile Express board.
259      */
260     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
261 
262     qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE);
263     qdev_prop_set_uint8(dev, "width", 4);
264     qdev_prop_set_uint8(dev, "device-width", 2);
265     qdev_prop_set_bit(dev, "big-endian", false);
266     qdev_prop_set_uint16(dev, "id0", 0x89);
267     qdev_prop_set_uint16(dev, "id1", 0x18);
268     qdev_prop_set_uint16(dev, "id2", 0x00);
269     qdev_prop_set_uint16(dev, "id3", 0x00);
270     qdev_prop_set_string(dev, "name", name);
271     object_property_add_child(OBJECT(sms), name, OBJECT(dev));
272     object_property_add_alias(OBJECT(sms), alias_prop_name,
273                               OBJECT(dev), "drive");
274     return PFLASH_CFI01(dev);
275 }
276 
277 static void sbsa_flash_create(SBSAMachineState *sms)
278 {
279     sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0");
280     sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1");
281 }
282 
283 static void sbsa_flash_map1(PFlashCFI01 *flash,
284                             hwaddr base, hwaddr size,
285                             MemoryRegion *sysmem)
286 {
287     DeviceState *dev = DEVICE(flash);
288 
289     assert(QEMU_IS_ALIGNED(size, SBSA_FLASH_SECTOR_SIZE));
290     assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX);
291     qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE);
292     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
293 
294     memory_region_add_subregion(sysmem, base,
295                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
296                                                        0));
297 }
298 
299 static void sbsa_flash_map(SBSAMachineState *sms,
300                            MemoryRegion *sysmem,
301                            MemoryRegion *secure_sysmem)
302 {
303     /*
304      * Map two flash devices to fill the SBSA_FLASH space in the memmap.
305      * sysmem is the system memory space. secure_sysmem is the secure view
306      * of the system, and the first flash device should be made visible only
307      * there. The second flash device is visible to both secure and nonsecure.
308      */
309     hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2;
310     hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base;
311 
312     sbsa_flash_map1(sms->flash[0], flashbase, flashsize,
313                     secure_sysmem);
314     sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize,
315                     sysmem);
316 }
317 
318 static bool sbsa_firmware_init(SBSAMachineState *sms,
319                                MemoryRegion *sysmem,
320                                MemoryRegion *secure_sysmem)
321 {
322     const char *bios_name;
323     int i;
324     BlockBackend *pflash_blk0;
325 
326     /* Map legacy -drive if=pflash to machine properties */
327     for (i = 0; i < ARRAY_SIZE(sms->flash); i++) {
328         pflash_cfi01_legacy_drive(sms->flash[i],
329                                   drive_get(IF_PFLASH, 0, i));
330     }
331 
332     sbsa_flash_map(sms, sysmem, secure_sysmem);
333 
334     pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]);
335 
336     bios_name = MACHINE(sms)->firmware;
337     if (bios_name) {
338         char *fname;
339         MemoryRegion *mr;
340         int image_size;
341 
342         if (pflash_blk0) {
343             error_report("The contents of the first flash device may be "
344                          "specified with -bios or with -drive if=pflash... "
345                          "but you cannot use both options at once");
346             exit(1);
347         }
348 
349         /* Fall back to -bios */
350 
351         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
352         if (!fname) {
353             error_report("Could not find ROM image '%s'", bios_name);
354             exit(1);
355         }
356         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0);
357         image_size = load_image_mr(fname, mr);
358         g_free(fname);
359         if (image_size < 0) {
360             error_report("Could not load ROM image '%s'", bios_name);
361             exit(1);
362         }
363     }
364 
365     return pflash_blk0 || bios_name;
366 }
367 
368 static void create_secure_ram(SBSAMachineState *sms,
369                               MemoryRegion *secure_sysmem)
370 {
371     MemoryRegion *secram = g_new(MemoryRegion, 1);
372     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base;
373     hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size;
374 
375     memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size,
376                            &error_fatal);
377     memory_region_add_subregion(secure_sysmem, base, secram);
378 }
379 
380 static void create_gic(SBSAMachineState *sms)
381 {
382     unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
383     SysBusDevice *gicbusdev;
384     const char *gictype;
385     uint32_t redist0_capacity, redist0_count;
386     int i;
387 
388     gictype = gicv3_class_name();
389 
390     sms->gic = qdev_new(gictype);
391     qdev_prop_set_uint32(sms->gic, "revision", 3);
392     qdev_prop_set_uint32(sms->gic, "num-cpu", smp_cpus);
393     /*
394      * Note that the num-irq property counts both internal and external
395      * interrupts; there are always 32 of the former (mandated by GIC spec).
396      */
397     qdev_prop_set_uint32(sms->gic, "num-irq", NUM_IRQS + 32);
398     qdev_prop_set_bit(sms->gic, "has-security-extensions", true);
399 
400     redist0_capacity =
401                 sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
402     redist0_count = MIN(smp_cpus, redist0_capacity);
403 
404     qdev_prop_set_uint32(sms->gic, "len-redist-region-count", 1);
405     qdev_prop_set_uint32(sms->gic, "redist-region-count[0]", redist0_count);
406 
407     gicbusdev = SYS_BUS_DEVICE(sms->gic);
408     sysbus_realize_and_unref(gicbusdev, &error_fatal);
409     sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
410     sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base);
411 
412     /*
413      * Wire the outputs from each CPU's generic timer and the GICv3
414      * maintenance interrupt signal to the appropriate GIC PPI inputs,
415      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
416      */
417     for (i = 0; i < smp_cpus; i++) {
418         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
419         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
420         int irq;
421         /*
422          * Mapping from the output timer irq lines from the CPU to the
423          * GIC PPI inputs used for this board.
424          */
425         const int timer_irq[] = {
426             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
427             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
428             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
429             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
430         };
431 
432         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
433             qdev_connect_gpio_out(cpudev, irq,
434                                   qdev_get_gpio_in(sms->gic,
435                                                    ppibase + timer_irq[irq]));
436         }
437 
438         qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
439                                     qdev_get_gpio_in(sms->gic, ppibase
440                                                      + ARCH_GIC_MAINT_IRQ));
441         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
442                                     qdev_get_gpio_in(sms->gic, ppibase
443                                                      + VIRTUAL_PMU_IRQ));
444 
445         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
446         sysbus_connect_irq(gicbusdev, i + smp_cpus,
447                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
448         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
449                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
450         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
451                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
452     }
453 }
454 
455 static void create_uart(const SBSAMachineState *sms, int uart,
456                         MemoryRegion *mem, Chardev *chr)
457 {
458     hwaddr base = sbsa_ref_memmap[uart].base;
459     int irq = sbsa_ref_irqmap[uart];
460     DeviceState *dev = qdev_new(TYPE_PL011);
461     SysBusDevice *s = SYS_BUS_DEVICE(dev);
462 
463     qdev_prop_set_chr(dev, "chardev", chr);
464     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
465     memory_region_add_subregion(mem, base,
466                                 sysbus_mmio_get_region(s, 0));
467     sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
468 }
469 
470 static void create_rtc(const SBSAMachineState *sms)
471 {
472     hwaddr base = sbsa_ref_memmap[SBSA_RTC].base;
473     int irq = sbsa_ref_irqmap[SBSA_RTC];
474 
475     sysbus_create_simple("pl031", base, qdev_get_gpio_in(sms->gic, irq));
476 }
477 
478 static void create_wdt(const SBSAMachineState *sms)
479 {
480     hwaddr rbase = sbsa_ref_memmap[SBSA_GWDT_REFRESH].base;
481     hwaddr cbase = sbsa_ref_memmap[SBSA_GWDT_CONTROL].base;
482     DeviceState *dev = qdev_new(TYPE_WDT_SBSA);
483     SysBusDevice *s = SYS_BUS_DEVICE(dev);
484     int irq = sbsa_ref_irqmap[SBSA_GWDT_WS0];
485 
486     sysbus_realize_and_unref(s, &error_fatal);
487     sysbus_mmio_map(s, 0, rbase);
488     sysbus_mmio_map(s, 1, cbase);
489     sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
490 }
491 
492 static DeviceState *gpio_key_dev;
493 static void sbsa_ref_powerdown_req(Notifier *n, void *opaque)
494 {
495     /* use gpio Pin 3 for power button event */
496     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
497 }
498 
499 static Notifier sbsa_ref_powerdown_notifier = {
500     .notify = sbsa_ref_powerdown_req
501 };
502 
503 static void create_gpio(const SBSAMachineState *sms)
504 {
505     DeviceState *pl061_dev;
506     hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base;
507     int irq = sbsa_ref_irqmap[SBSA_GPIO];
508 
509     pl061_dev = sysbus_create_simple("pl061", base,
510                                      qdev_get_gpio_in(sms->gic, irq));
511 
512     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
513                                         qdev_get_gpio_in(pl061_dev, 3));
514 
515     /* connect powerdown request */
516     qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier);
517 }
518 
519 static void create_ahci(const SBSAMachineState *sms)
520 {
521     hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base;
522     int irq = sbsa_ref_irqmap[SBSA_AHCI];
523     DeviceState *dev;
524     DriveInfo *hd[NUM_SATA_PORTS];
525     SysbusAHCIState *sysahci;
526     AHCIState *ahci;
527     int i;
528 
529     dev = qdev_new("sysbus-ahci");
530     qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS);
531     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
532     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
533     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
534 
535     sysahci = SYSBUS_AHCI(dev);
536     ahci = &sysahci->ahci;
537     ide_drive_get(hd, ARRAY_SIZE(hd));
538     for (i = 0; i < ahci->ports; i++) {
539         if (hd[i] == NULL) {
540             continue;
541         }
542         ide_create_drive(&ahci->dev[i].port, 0, hd[i]);
543     }
544 }
545 
546 static void create_ehci(const SBSAMachineState *sms)
547 {
548     hwaddr base = sbsa_ref_memmap[SBSA_EHCI].base;
549     int irq = sbsa_ref_irqmap[SBSA_EHCI];
550 
551     sysbus_create_simple("platform-ehci-usb", base,
552                          qdev_get_gpio_in(sms->gic, irq));
553 }
554 
555 static void create_smmu(const SBSAMachineState *sms, PCIBus *bus)
556 {
557     hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base;
558     int irq =  sbsa_ref_irqmap[SBSA_SMMU];
559     DeviceState *dev;
560     int i;
561 
562     dev = qdev_new("arm-smmuv3");
563 
564     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
565                              &error_abort);
566     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
567     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
568     for (i = 0; i < NUM_SMMU_IRQS; i++) {
569         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
570                            qdev_get_gpio_in(sms->gic, irq + i));
571     }
572 }
573 
574 static void create_pcie(SBSAMachineState *sms)
575 {
576     hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base;
577     hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size;
578     hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base;
579     hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size;
580     hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base;
581     hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size;
582     hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base;
583     int irq = sbsa_ref_irqmap[SBSA_PCIE];
584     MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg;
585     MemoryRegion *ecam_alias, *ecam_reg;
586     DeviceState *dev;
587     PCIHostState *pci;
588     int i;
589 
590     dev = qdev_new(TYPE_GPEX_HOST);
591     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
592 
593     /* Map ECAM space */
594     ecam_alias = g_new0(MemoryRegion, 1);
595     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
596     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
597                              ecam_reg, 0, size_ecam);
598     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
599 
600     /* Map the MMIO space */
601     mmio_alias = g_new0(MemoryRegion, 1);
602     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
603     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
604                              mmio_reg, base_mmio, size_mmio);
605     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
606 
607     /* Map the MMIO_HIGH space */
608     mmio_alias_high = g_new0(MemoryRegion, 1);
609     memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high",
610                              mmio_reg, base_mmio_high, size_mmio_high);
611     memory_region_add_subregion(get_system_memory(), base_mmio_high,
612                                 mmio_alias_high);
613 
614     /* Map IO port space */
615     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
616 
617     for (i = 0; i < GPEX_NUM_IRQS; i++) {
618         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
619                            qdev_get_gpio_in(sms->gic, irq + i));
620         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
621     }
622 
623     pci = PCI_HOST_BRIDGE(dev);
624     if (pci->bus) {
625         for (i = 0; i < nb_nics; i++) {
626             NICInfo *nd = &nd_table[i];
627 
628             if (!nd->model) {
629                 nd->model = g_strdup("e1000e");
630             }
631 
632             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
633         }
634     }
635 
636     pci_create_simple(pci->bus, -1, "VGA");
637 
638     create_smmu(sms, pci->bus);
639 }
640 
641 static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size)
642 {
643     const SBSAMachineState *board = container_of(binfo, SBSAMachineState,
644                                                  bootinfo);
645 
646     *fdt_size = board->fdt_size;
647     return board->fdt;
648 }
649 
650 static void create_secure_ec(MemoryRegion *mem)
651 {
652     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_EC].base;
653     DeviceState *dev = qdev_new("sbsa-ec");
654     SysBusDevice *s = SYS_BUS_DEVICE(dev);
655 
656     memory_region_add_subregion(mem, base,
657                                 sysbus_mmio_get_region(s, 0));
658 }
659 
660 static void sbsa_ref_init(MachineState *machine)
661 {
662     unsigned int smp_cpus = machine->smp.cpus;
663     unsigned int max_cpus = machine->smp.max_cpus;
664     SBSAMachineState *sms = SBSA_MACHINE(machine);
665     MachineClass *mc = MACHINE_GET_CLASS(machine);
666     MemoryRegion *sysmem = get_system_memory();
667     MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1);
668     bool firmware_loaded;
669     const CPUArchIdList *possible_cpus;
670     int n, sbsa_max_cpus;
671 
672     if (!cpu_type_valid(machine->cpu_type)) {
673         error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
674         exit(1);
675     }
676 
677     if (kvm_enabled()) {
678         error_report("sbsa-ref: KVM is not supported for this machine");
679         exit(1);
680     }
681 
682     /*
683      * The Secure view of the world is the same as the NonSecure,
684      * but with a few extra devices. Create it as a container region
685      * containing the system memory at low priority; any secure-only
686      * devices go in at higher priority and take precedence.
687      */
688     memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
689                        UINT64_MAX);
690     memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
691 
692     firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem);
693 
694     /*
695      * This machine has EL3 enabled, external firmware should supply PSCI
696      * implementation, so the QEMU's internal PSCI is disabled.
697      */
698     sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
699 
700     sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
701 
702     if (max_cpus > sbsa_max_cpus) {
703         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
704                      "supported by machine 'sbsa-ref' (%d)",
705                      max_cpus, sbsa_max_cpus);
706         exit(1);
707     }
708 
709     sms->smp_cpus = smp_cpus;
710 
711     if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
712         error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
713         exit(1);
714     }
715 
716     possible_cpus = mc->possible_cpu_arch_ids(machine);
717     for (n = 0; n < possible_cpus->len; n++) {
718         Object *cpuobj;
719         CPUState *cs;
720 
721         if (n >= smp_cpus) {
722             break;
723         }
724 
725         cpuobj = object_new(possible_cpus->cpus[n].type);
726         object_property_set_int(cpuobj, "mp-affinity",
727                                 possible_cpus->cpus[n].arch_id, NULL);
728 
729         cs = CPU(cpuobj);
730         cs->cpu_index = n;
731 
732         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
733                           &error_fatal);
734 
735         if (object_property_find(cpuobj, "reset-cbar")) {
736             object_property_set_int(cpuobj, "reset-cbar",
737                                     sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
738                                     &error_abort);
739         }
740 
741         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
742                                  &error_abort);
743 
744         object_property_set_link(cpuobj, "secure-memory",
745                                  OBJECT(secure_sysmem), &error_abort);
746 
747         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
748         object_unref(cpuobj);
749     }
750 
751     memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base,
752                                 machine->ram);
753 
754     create_fdt(sms);
755 
756     create_secure_ram(sms, secure_sysmem);
757 
758     create_gic(sms);
759 
760     create_uart(sms, SBSA_UART, sysmem, serial_hd(0));
761     create_uart(sms, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));
762     /* Second secure UART for RAS and MM from EL0 */
763     create_uart(sms, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2));
764 
765     create_rtc(sms);
766 
767     create_wdt(sms);
768 
769     create_gpio(sms);
770 
771     create_ahci(sms);
772 
773     create_ehci(sms);
774 
775     create_pcie(sms);
776 
777     create_secure_ec(secure_sysmem);
778 
779     sms->bootinfo.ram_size = machine->ram_size;
780     sms->bootinfo.nb_cpus = smp_cpus;
781     sms->bootinfo.board_id = -1;
782     sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
783     sms->bootinfo.get_dtb = sbsa_ref_dtb;
784     sms->bootinfo.firmware_loaded = firmware_loaded;
785     arm_load_kernel(ARM_CPU(first_cpu), machine, &sms->bootinfo);
786 }
787 
788 static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
789 {
790     unsigned int max_cpus = ms->smp.max_cpus;
791     SBSAMachineState *sms = SBSA_MACHINE(ms);
792     int n;
793 
794     if (ms->possible_cpus) {
795         assert(ms->possible_cpus->len == max_cpus);
796         return ms->possible_cpus;
797     }
798 
799     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
800                                   sizeof(CPUArchId) * max_cpus);
801     ms->possible_cpus->len = max_cpus;
802     for (n = 0; n < ms->possible_cpus->len; n++) {
803         ms->possible_cpus->cpus[n].type = ms->cpu_type;
804         ms->possible_cpus->cpus[n].arch_id =
805             sbsa_ref_cpu_mp_affinity(sms, n);
806         ms->possible_cpus->cpus[n].props.has_thread_id = true;
807         ms->possible_cpus->cpus[n].props.thread_id = n;
808     }
809     return ms->possible_cpus;
810 }
811 
812 static CpuInstanceProperties
813 sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
814 {
815     MachineClass *mc = MACHINE_GET_CLASS(ms);
816     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
817 
818     assert(cpu_index < possible_cpus->len);
819     return possible_cpus->cpus[cpu_index].props;
820 }
821 
822 static int64_t
823 sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
824 {
825     return idx % ms->numa_state->num_nodes;
826 }
827 
828 static void sbsa_ref_instance_init(Object *obj)
829 {
830     SBSAMachineState *sms = SBSA_MACHINE(obj);
831 
832     sbsa_flash_create(sms);
833 }
834 
835 static void sbsa_ref_class_init(ObjectClass *oc, void *data)
836 {
837     MachineClass *mc = MACHINE_CLASS(oc);
838 
839     mc->init = sbsa_ref_init;
840     mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
841     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a57");
842     mc->max_cpus = 512;
843     mc->pci_allow_0_address = true;
844     mc->minimum_page_bits = 12;
845     mc->block_default_type = IF_IDE;
846     mc->no_cdrom = 1;
847     mc->default_ram_size = 1 * GiB;
848     mc->default_ram_id = "sbsa-ref.ram";
849     mc->default_cpus = 4;
850     mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
851     mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
852     mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
853 }
854 
855 static const TypeInfo sbsa_ref_info = {
856     .name          = TYPE_SBSA_MACHINE,
857     .parent        = TYPE_MACHINE,
858     .instance_init = sbsa_ref_instance_init,
859     .class_init    = sbsa_ref_class_init,
860     .instance_size = sizeof(SBSAMachineState),
861 };
862 
863 static void sbsa_ref_machine_init(void)
864 {
865     type_register_static(&sbsa_ref_info);
866 }
867 
868 type_init(sbsa_ref_machine_init);
869