xref: /openbmc/qemu/hw/arm/sbsa-ref.c (revision 1b65b4f5)
1 /*
2  * ARM SBSA Reference Platform emulation
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Hongbo Zhang <hongbo.zhang@linaro.org>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qapi/error.h"
23 #include "qemu/error-report.h"
24 #include "qemu/units.h"
25 #include "sysemu/device_tree.h"
26 #include "sysemu/numa.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/sysemu.h"
29 #include "exec/hwaddr.h"
30 #include "kvm_arm.h"
31 #include "hw/arm/boot.h"
32 #include "hw/arm/fdt.h"
33 #include "hw/arm/smmuv3.h"
34 #include "hw/block/flash.h"
35 #include "hw/boards.h"
36 #include "hw/ide/internal.h"
37 #include "hw/ide/ahci_internal.h"
38 #include "hw/intc/arm_gicv3_common.h"
39 #include "hw/loader.h"
40 #include "hw/pci-host/gpex.h"
41 #include "hw/qdev-properties.h"
42 #include "hw/usb.h"
43 #include "hw/char/pl011.h"
44 #include "hw/watchdog/sbsa_gwdt.h"
45 #include "net/net.h"
46 #include "qom/object.h"
47 
48 #define RAMLIMIT_GB 8192
49 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
50 
51 #define NUM_IRQS        256
52 #define NUM_SMMU_IRQS   4
53 #define NUM_SATA_PORTS  6
54 
55 #define VIRTUAL_PMU_IRQ        7
56 #define ARCH_GIC_MAINT_IRQ     9
57 #define ARCH_TIMER_VIRT_IRQ    11
58 #define ARCH_TIMER_S_EL1_IRQ   13
59 #define ARCH_TIMER_NS_EL1_IRQ  14
60 #define ARCH_TIMER_NS_EL2_IRQ  10
61 
62 enum {
63     SBSA_FLASH,
64     SBSA_MEM,
65     SBSA_CPUPERIPHS,
66     SBSA_GIC_DIST,
67     SBSA_GIC_REDIST,
68     SBSA_GIC_ITS,
69     SBSA_SECURE_EC,
70     SBSA_GWDT_WS0,
71     SBSA_GWDT_REFRESH,
72     SBSA_GWDT_CONTROL,
73     SBSA_SMMU,
74     SBSA_UART,
75     SBSA_RTC,
76     SBSA_PCIE,
77     SBSA_PCIE_MMIO,
78     SBSA_PCIE_MMIO_HIGH,
79     SBSA_PCIE_PIO,
80     SBSA_PCIE_ECAM,
81     SBSA_GPIO,
82     SBSA_SECURE_UART,
83     SBSA_SECURE_UART_MM,
84     SBSA_SECURE_MEM,
85     SBSA_AHCI,
86     SBSA_EHCI,
87 };
88 
89 struct SBSAMachineState {
90     MachineState parent;
91     struct arm_boot_info bootinfo;
92     int smp_cpus;
93     void *fdt;
94     int fdt_size;
95     int psci_conduit;
96     DeviceState *gic;
97     PFlashCFI01 *flash[2];
98 };
99 
100 #define TYPE_SBSA_MACHINE   MACHINE_TYPE_NAME("sbsa-ref")
101 OBJECT_DECLARE_SIMPLE_TYPE(SBSAMachineState, SBSA_MACHINE)
102 
103 static const MemMapEntry sbsa_ref_memmap[] = {
104     /* 512M boot ROM */
105     [SBSA_FLASH] =              {          0, 0x20000000 },
106     /* 512M secure memory */
107     [SBSA_SECURE_MEM] =         { 0x20000000, 0x20000000 },
108     /* Space reserved for CPU peripheral devices */
109     [SBSA_CPUPERIPHS] =         { 0x40000000, 0x00040000 },
110     [SBSA_GIC_DIST] =           { 0x40060000, 0x00010000 },
111     [SBSA_GIC_REDIST] =         { 0x40080000, 0x04000000 },
112     [SBSA_GIC_ITS] =            { 0x44081000, 0x00020000 },
113     [SBSA_SECURE_EC] =          { 0x50000000, 0x00001000 },
114     [SBSA_GWDT_REFRESH] =       { 0x50010000, 0x00001000 },
115     [SBSA_GWDT_CONTROL] =       { 0x50011000, 0x00001000 },
116     [SBSA_UART] =               { 0x60000000, 0x00001000 },
117     [SBSA_RTC] =                { 0x60010000, 0x00001000 },
118     [SBSA_GPIO] =               { 0x60020000, 0x00001000 },
119     [SBSA_SECURE_UART] =        { 0x60030000, 0x00001000 },
120     [SBSA_SECURE_UART_MM] =     { 0x60040000, 0x00001000 },
121     [SBSA_SMMU] =               { 0x60050000, 0x00020000 },
122     /* Space here reserved for more SMMUs */
123     [SBSA_AHCI] =               { 0x60100000, 0x00010000 },
124     [SBSA_EHCI] =               { 0x60110000, 0x00010000 },
125     /* Space here reserved for other devices */
126     [SBSA_PCIE_PIO] =           { 0x7fff0000, 0x00010000 },
127     /* 32-bit address PCIE MMIO space */
128     [SBSA_PCIE_MMIO] =          { 0x80000000, 0x70000000 },
129     /* 256M PCIE ECAM space */
130     [SBSA_PCIE_ECAM] =          { 0xf0000000, 0x10000000 },
131     /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
132     [SBSA_PCIE_MMIO_HIGH] =     { 0x100000000ULL, 0xFF00000000ULL },
133     [SBSA_MEM] =                { 0x10000000000ULL, RAMLIMIT_BYTES },
134 };
135 
136 static const int sbsa_ref_irqmap[] = {
137     [SBSA_UART] = 1,
138     [SBSA_RTC] = 2,
139     [SBSA_PCIE] = 3, /* ... to 6 */
140     [SBSA_GPIO] = 7,
141     [SBSA_SECURE_UART] = 8,
142     [SBSA_SECURE_UART_MM] = 9,
143     [SBSA_AHCI] = 10,
144     [SBSA_EHCI] = 11,
145     [SBSA_SMMU] = 12, /* ... to 15 */
146     [SBSA_GWDT_WS0] = 16,
147 };
148 
149 static const char * const valid_cpus[] = {
150     ARM_CPU_TYPE_NAME("cortex-a57"),
151     ARM_CPU_TYPE_NAME("cortex-a72"),
152     ARM_CPU_TYPE_NAME("neoverse-n1"),
153     ARM_CPU_TYPE_NAME("max"),
154 };
155 
156 static bool cpu_type_valid(const char *cpu)
157 {
158     int i;
159 
160     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
161         if (strcmp(cpu, valid_cpus[i]) == 0) {
162             return true;
163         }
164     }
165     return false;
166 }
167 
168 static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
169 {
170     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
171     return arm_cpu_mp_affinity(idx, clustersz);
172 }
173 
174 static void sbsa_fdt_add_gic_node(SBSAMachineState *sms)
175 {
176     char *nodename;
177 
178     nodename = g_strdup_printf("/intc");
179     qemu_fdt_add_subnode(sms->fdt, nodename);
180     qemu_fdt_setprop_sized_cells(sms->fdt, nodename, "reg",
181                                  2, sbsa_ref_memmap[SBSA_GIC_DIST].base,
182                                  2, sbsa_ref_memmap[SBSA_GIC_DIST].size,
183                                  2, sbsa_ref_memmap[SBSA_GIC_REDIST].base,
184                                  2, sbsa_ref_memmap[SBSA_GIC_REDIST].size);
185 
186     nodename = g_strdup_printf("/intc/its");
187     qemu_fdt_add_subnode(sms->fdt, nodename);
188     qemu_fdt_setprop_sized_cells(sms->fdt, nodename, "reg",
189                                  2, sbsa_ref_memmap[SBSA_GIC_ITS].base,
190                                  2, sbsa_ref_memmap[SBSA_GIC_ITS].size);
191 
192     g_free(nodename);
193 }
194 
195 /*
196  * Firmware on this machine only uses ACPI table to load OS, these limited
197  * device tree nodes are just to let firmware know the info which varies from
198  * command line parameters, so it is not necessary to be fully compatible
199  * with the kernel CPU and NUMA binding rules.
200  */
201 static void create_fdt(SBSAMachineState *sms)
202 {
203     void *fdt = create_device_tree(&sms->fdt_size);
204     const MachineState *ms = MACHINE(sms);
205     int nb_numa_nodes = ms->numa_state->num_nodes;
206     int cpu;
207 
208     if (!fdt) {
209         error_report("create_device_tree() failed");
210         exit(1);
211     }
212 
213     sms->fdt = fdt;
214 
215     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref");
216     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
217     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
218 
219     /*
220      * This versioning scheme is for informing platform fw only. It is neither:
221      * - A QEMU versioned machine type; a given version of QEMU will emulate
222      *   a given version of the platform.
223      * - A reflection of level of SBSA (now SystemReady SR) support provided.
224      *
225      * machine-version-major: updated when changes breaking fw compatibility
226      *                        are introduced.
227      * machine-version-minor: updated when features are added that don't break
228      *                        fw compatibility.
229      */
230     qemu_fdt_setprop_cell(fdt, "/", "machine-version-major", 0);
231     qemu_fdt_setprop_cell(fdt, "/", "machine-version-minor", 2);
232 
233     if (ms->numa_state->have_numa_distance) {
234         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
235         uint32_t *matrix = g_malloc0(size);
236         int idx, i, j;
237 
238         for (i = 0; i < nb_numa_nodes; i++) {
239             for (j = 0; j < nb_numa_nodes; j++) {
240                 idx = (i * nb_numa_nodes + j) * 3;
241                 matrix[idx + 0] = cpu_to_be32(i);
242                 matrix[idx + 1] = cpu_to_be32(j);
243                 matrix[idx + 2] =
244                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
245             }
246         }
247 
248         qemu_fdt_add_subnode(fdt, "/distance-map");
249         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
250                          matrix, size);
251         g_free(matrix);
252     }
253 
254     /*
255      * From Documentation/devicetree/bindings/arm/cpus.yaml
256      *  On ARM v8 64-bit systems this property is required
257      *    and matches the MPIDR_EL1 register affinity bits.
258      *
259      *    * If cpus node's #address-cells property is set to 2
260      *
261      *      The first reg cell bits [7:0] must be set to
262      *      bits [39:32] of MPIDR_EL1.
263      *
264      *      The second reg cell bits [23:0] must be set to
265      *      bits [23:0] of MPIDR_EL1.
266      */
267     qemu_fdt_add_subnode(sms->fdt, "/cpus");
268     qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#address-cells", 2);
269     qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#size-cells", 0x0);
270 
271     for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) {
272         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
273         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
274         CPUState *cs = CPU(armcpu);
275         uint64_t mpidr = sbsa_ref_cpu_mp_affinity(sms, cpu);
276 
277         qemu_fdt_add_subnode(sms->fdt, nodename);
278         qemu_fdt_setprop_u64(sms->fdt, nodename, "reg", mpidr);
279 
280         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
281             qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id",
282                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
283         }
284 
285         g_free(nodename);
286     }
287 
288     sbsa_fdt_add_gic_node(sms);
289 }
290 
291 #define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
292 
293 static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms,
294                                         const char *name,
295                                         const char *alias_prop_name)
296 {
297     /*
298      * Create a single flash device.  We use the same parameters as
299      * the flash devices on the Versatile Express board.
300      */
301     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
302 
303     qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE);
304     qdev_prop_set_uint8(dev, "width", 4);
305     qdev_prop_set_uint8(dev, "device-width", 2);
306     qdev_prop_set_bit(dev, "big-endian", false);
307     qdev_prop_set_uint16(dev, "id0", 0x89);
308     qdev_prop_set_uint16(dev, "id1", 0x18);
309     qdev_prop_set_uint16(dev, "id2", 0x00);
310     qdev_prop_set_uint16(dev, "id3", 0x00);
311     qdev_prop_set_string(dev, "name", name);
312     object_property_add_child(OBJECT(sms), name, OBJECT(dev));
313     object_property_add_alias(OBJECT(sms), alias_prop_name,
314                               OBJECT(dev), "drive");
315     return PFLASH_CFI01(dev);
316 }
317 
318 static void sbsa_flash_create(SBSAMachineState *sms)
319 {
320     sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0");
321     sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1");
322 }
323 
324 static void sbsa_flash_map1(PFlashCFI01 *flash,
325                             hwaddr base, hwaddr size,
326                             MemoryRegion *sysmem)
327 {
328     DeviceState *dev = DEVICE(flash);
329 
330     assert(QEMU_IS_ALIGNED(size, SBSA_FLASH_SECTOR_SIZE));
331     assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX);
332     qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE);
333     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
334 
335     memory_region_add_subregion(sysmem, base,
336                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
337                                                        0));
338 }
339 
340 static void sbsa_flash_map(SBSAMachineState *sms,
341                            MemoryRegion *sysmem,
342                            MemoryRegion *secure_sysmem)
343 {
344     /*
345      * Map two flash devices to fill the SBSA_FLASH space in the memmap.
346      * sysmem is the system memory space. secure_sysmem is the secure view
347      * of the system, and the first flash device should be made visible only
348      * there. The second flash device is visible to both secure and nonsecure.
349      */
350     hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2;
351     hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base;
352 
353     sbsa_flash_map1(sms->flash[0], flashbase, flashsize,
354                     secure_sysmem);
355     sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize,
356                     sysmem);
357 }
358 
359 static bool sbsa_firmware_init(SBSAMachineState *sms,
360                                MemoryRegion *sysmem,
361                                MemoryRegion *secure_sysmem)
362 {
363     const char *bios_name;
364     int i;
365     BlockBackend *pflash_blk0;
366 
367     /* Map legacy -drive if=pflash to machine properties */
368     for (i = 0; i < ARRAY_SIZE(sms->flash); i++) {
369         pflash_cfi01_legacy_drive(sms->flash[i],
370                                   drive_get(IF_PFLASH, 0, i));
371     }
372 
373     sbsa_flash_map(sms, sysmem, secure_sysmem);
374 
375     pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]);
376 
377     bios_name = MACHINE(sms)->firmware;
378     if (bios_name) {
379         char *fname;
380         MemoryRegion *mr;
381         int image_size;
382 
383         if (pflash_blk0) {
384             error_report("The contents of the first flash device may be "
385                          "specified with -bios or with -drive if=pflash... "
386                          "but you cannot use both options at once");
387             exit(1);
388         }
389 
390         /* Fall back to -bios */
391 
392         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
393         if (!fname) {
394             error_report("Could not find ROM image '%s'", bios_name);
395             exit(1);
396         }
397         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0);
398         image_size = load_image_mr(fname, mr);
399         g_free(fname);
400         if (image_size < 0) {
401             error_report("Could not load ROM image '%s'", bios_name);
402             exit(1);
403         }
404     }
405 
406     return pflash_blk0 || bios_name;
407 }
408 
409 static void create_secure_ram(SBSAMachineState *sms,
410                               MemoryRegion *secure_sysmem)
411 {
412     MemoryRegion *secram = g_new(MemoryRegion, 1);
413     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base;
414     hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size;
415 
416     memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size,
417                            &error_fatal);
418     memory_region_add_subregion(secure_sysmem, base, secram);
419 }
420 
421 static void create_its(SBSAMachineState *sms)
422 {
423     const char *itsclass = its_class_name();
424     DeviceState *dev;
425 
426     dev = qdev_new(itsclass);
427 
428     object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(sms->gic),
429                              &error_abort);
430     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
431     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, sbsa_ref_memmap[SBSA_GIC_ITS].base);
432 }
433 
434 static void create_gic(SBSAMachineState *sms, MemoryRegion *mem)
435 {
436     unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
437     SysBusDevice *gicbusdev;
438     const char *gictype;
439     uint32_t redist0_capacity, redist0_count;
440     int i;
441 
442     gictype = gicv3_class_name();
443 
444     sms->gic = qdev_new(gictype);
445     qdev_prop_set_uint32(sms->gic, "revision", 3);
446     qdev_prop_set_uint32(sms->gic, "num-cpu", smp_cpus);
447     /*
448      * Note that the num-irq property counts both internal and external
449      * interrupts; there are always 32 of the former (mandated by GIC spec).
450      */
451     qdev_prop_set_uint32(sms->gic, "num-irq", NUM_IRQS + 32);
452     qdev_prop_set_bit(sms->gic, "has-security-extensions", true);
453 
454     redist0_capacity =
455                 sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
456     redist0_count = MIN(smp_cpus, redist0_capacity);
457 
458     qdev_prop_set_uint32(sms->gic, "len-redist-region-count", 1);
459     qdev_prop_set_uint32(sms->gic, "redist-region-count[0]", redist0_count);
460 
461     object_property_set_link(OBJECT(sms->gic), "sysmem",
462                              OBJECT(mem), &error_fatal);
463     qdev_prop_set_bit(sms->gic, "has-lpi", true);
464 
465     gicbusdev = SYS_BUS_DEVICE(sms->gic);
466     sysbus_realize_and_unref(gicbusdev, &error_fatal);
467     sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
468     sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base);
469 
470     /*
471      * Wire the outputs from each CPU's generic timer and the GICv3
472      * maintenance interrupt signal to the appropriate GIC PPI inputs,
473      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
474      */
475     for (i = 0; i < smp_cpus; i++) {
476         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
477         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
478         int irq;
479         /*
480          * Mapping from the output timer irq lines from the CPU to the
481          * GIC PPI inputs used for this board.
482          */
483         const int timer_irq[] = {
484             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
485             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
486             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
487             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
488         };
489 
490         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
491             qdev_connect_gpio_out(cpudev, irq,
492                                   qdev_get_gpio_in(sms->gic,
493                                                    ppibase + timer_irq[irq]));
494         }
495 
496         qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
497                                     qdev_get_gpio_in(sms->gic, ppibase
498                                                      + ARCH_GIC_MAINT_IRQ));
499         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
500                                     qdev_get_gpio_in(sms->gic, ppibase
501                                                      + VIRTUAL_PMU_IRQ));
502 
503         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
504         sysbus_connect_irq(gicbusdev, i + smp_cpus,
505                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
506         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
507                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
508         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
509                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
510     }
511     create_its(sms);
512 }
513 
514 static void create_uart(const SBSAMachineState *sms, int uart,
515                         MemoryRegion *mem, Chardev *chr)
516 {
517     hwaddr base = sbsa_ref_memmap[uart].base;
518     int irq = sbsa_ref_irqmap[uart];
519     DeviceState *dev = qdev_new(TYPE_PL011);
520     SysBusDevice *s = SYS_BUS_DEVICE(dev);
521 
522     qdev_prop_set_chr(dev, "chardev", chr);
523     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
524     memory_region_add_subregion(mem, base,
525                                 sysbus_mmio_get_region(s, 0));
526     sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
527 }
528 
529 static void create_rtc(const SBSAMachineState *sms)
530 {
531     hwaddr base = sbsa_ref_memmap[SBSA_RTC].base;
532     int irq = sbsa_ref_irqmap[SBSA_RTC];
533 
534     sysbus_create_simple("pl031", base, qdev_get_gpio_in(sms->gic, irq));
535 }
536 
537 static void create_wdt(const SBSAMachineState *sms)
538 {
539     hwaddr rbase = sbsa_ref_memmap[SBSA_GWDT_REFRESH].base;
540     hwaddr cbase = sbsa_ref_memmap[SBSA_GWDT_CONTROL].base;
541     DeviceState *dev = qdev_new(TYPE_WDT_SBSA);
542     SysBusDevice *s = SYS_BUS_DEVICE(dev);
543     int irq = sbsa_ref_irqmap[SBSA_GWDT_WS0];
544 
545     sysbus_realize_and_unref(s, &error_fatal);
546     sysbus_mmio_map(s, 0, rbase);
547     sysbus_mmio_map(s, 1, cbase);
548     sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
549 }
550 
551 static DeviceState *gpio_key_dev;
552 static void sbsa_ref_powerdown_req(Notifier *n, void *opaque)
553 {
554     /* use gpio Pin 3 for power button event */
555     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
556 }
557 
558 static Notifier sbsa_ref_powerdown_notifier = {
559     .notify = sbsa_ref_powerdown_req
560 };
561 
562 static void create_gpio(const SBSAMachineState *sms)
563 {
564     DeviceState *pl061_dev;
565     hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base;
566     int irq = sbsa_ref_irqmap[SBSA_GPIO];
567 
568     pl061_dev = sysbus_create_simple("pl061", base,
569                                      qdev_get_gpio_in(sms->gic, irq));
570 
571     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
572                                         qdev_get_gpio_in(pl061_dev, 3));
573 
574     /* connect powerdown request */
575     qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier);
576 }
577 
578 static void create_ahci(const SBSAMachineState *sms)
579 {
580     hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base;
581     int irq = sbsa_ref_irqmap[SBSA_AHCI];
582     DeviceState *dev;
583     DriveInfo *hd[NUM_SATA_PORTS];
584     SysbusAHCIState *sysahci;
585     AHCIState *ahci;
586     int i;
587 
588     dev = qdev_new("sysbus-ahci");
589     qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS);
590     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
591     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
592     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
593 
594     sysahci = SYSBUS_AHCI(dev);
595     ahci = &sysahci->ahci;
596     ide_drive_get(hd, ARRAY_SIZE(hd));
597     for (i = 0; i < ahci->ports; i++) {
598         if (hd[i] == NULL) {
599             continue;
600         }
601         ide_bus_create_drive(&ahci->dev[i].port, 0, hd[i]);
602     }
603 }
604 
605 static void create_ehci(const SBSAMachineState *sms)
606 {
607     hwaddr base = sbsa_ref_memmap[SBSA_EHCI].base;
608     int irq = sbsa_ref_irqmap[SBSA_EHCI];
609 
610     sysbus_create_simple("platform-ehci-usb", base,
611                          qdev_get_gpio_in(sms->gic, irq));
612 }
613 
614 static void create_smmu(const SBSAMachineState *sms, PCIBus *bus)
615 {
616     hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base;
617     int irq =  sbsa_ref_irqmap[SBSA_SMMU];
618     DeviceState *dev;
619     int i;
620 
621     dev = qdev_new(TYPE_ARM_SMMUV3);
622 
623     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
624                              &error_abort);
625     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
626     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
627     for (i = 0; i < NUM_SMMU_IRQS; i++) {
628         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
629                            qdev_get_gpio_in(sms->gic, irq + i));
630     }
631 }
632 
633 static void create_pcie(SBSAMachineState *sms)
634 {
635     hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base;
636     hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size;
637     hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base;
638     hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size;
639     hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base;
640     hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size;
641     hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base;
642     int irq = sbsa_ref_irqmap[SBSA_PCIE];
643     MachineClass *mc = MACHINE_GET_CLASS(sms);
644     MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg;
645     MemoryRegion *ecam_alias, *ecam_reg;
646     DeviceState *dev;
647     PCIHostState *pci;
648     int i;
649 
650     dev = qdev_new(TYPE_GPEX_HOST);
651     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
652 
653     /* Map ECAM space */
654     ecam_alias = g_new0(MemoryRegion, 1);
655     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
656     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
657                              ecam_reg, 0, size_ecam);
658     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
659 
660     /* Map the MMIO space */
661     mmio_alias = g_new0(MemoryRegion, 1);
662     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
663     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
664                              mmio_reg, base_mmio, size_mmio);
665     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
666 
667     /* Map the MMIO_HIGH space */
668     mmio_alias_high = g_new0(MemoryRegion, 1);
669     memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high",
670                              mmio_reg, base_mmio_high, size_mmio_high);
671     memory_region_add_subregion(get_system_memory(), base_mmio_high,
672                                 mmio_alias_high);
673 
674     /* Map IO port space */
675     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
676 
677     for (i = 0; i < GPEX_NUM_IRQS; i++) {
678         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
679                            qdev_get_gpio_in(sms->gic, irq + i));
680         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
681     }
682 
683     pci = PCI_HOST_BRIDGE(dev);
684     if (pci->bus) {
685         for (i = 0; i < nb_nics; i++) {
686             NICInfo *nd = &nd_table[i];
687 
688             if (!nd->model) {
689                 nd->model = g_strdup(mc->default_nic);
690             }
691 
692             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
693         }
694     }
695 
696     pci_create_simple(pci->bus, -1, "bochs-display");
697 
698     create_smmu(sms, pci->bus);
699 }
700 
701 static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size)
702 {
703     const SBSAMachineState *board = container_of(binfo, SBSAMachineState,
704                                                  bootinfo);
705 
706     *fdt_size = board->fdt_size;
707     return board->fdt;
708 }
709 
710 static void create_secure_ec(MemoryRegion *mem)
711 {
712     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_EC].base;
713     DeviceState *dev = qdev_new("sbsa-ec");
714     SysBusDevice *s = SYS_BUS_DEVICE(dev);
715 
716     memory_region_add_subregion(mem, base,
717                                 sysbus_mmio_get_region(s, 0));
718 }
719 
720 static void sbsa_ref_init(MachineState *machine)
721 {
722     unsigned int smp_cpus = machine->smp.cpus;
723     unsigned int max_cpus = machine->smp.max_cpus;
724     SBSAMachineState *sms = SBSA_MACHINE(machine);
725     MachineClass *mc = MACHINE_GET_CLASS(machine);
726     MemoryRegion *sysmem = get_system_memory();
727     MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1);
728     bool firmware_loaded;
729     const CPUArchIdList *possible_cpus;
730     int n, sbsa_max_cpus;
731 
732     if (!cpu_type_valid(machine->cpu_type)) {
733         error_report("sbsa-ref: CPU type %s not supported", machine->cpu_type);
734         exit(1);
735     }
736 
737     if (kvm_enabled()) {
738         error_report("sbsa-ref: KVM is not supported for this machine");
739         exit(1);
740     }
741 
742     /*
743      * The Secure view of the world is the same as the NonSecure,
744      * but with a few extra devices. Create it as a container region
745      * containing the system memory at low priority; any secure-only
746      * devices go in at higher priority and take precedence.
747      */
748     memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
749                        UINT64_MAX);
750     memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
751 
752     firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem);
753 
754     /*
755      * This machine has EL3 enabled, external firmware should supply PSCI
756      * implementation, so the QEMU's internal PSCI is disabled.
757      */
758     sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
759 
760     sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
761 
762     if (max_cpus > sbsa_max_cpus) {
763         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
764                      "supported by machine 'sbsa-ref' (%d)",
765                      max_cpus, sbsa_max_cpus);
766         exit(1);
767     }
768 
769     sms->smp_cpus = smp_cpus;
770 
771     if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
772         error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
773         exit(1);
774     }
775 
776     possible_cpus = mc->possible_cpu_arch_ids(machine);
777     for (n = 0; n < possible_cpus->len; n++) {
778         Object *cpuobj;
779         CPUState *cs;
780 
781         if (n >= smp_cpus) {
782             break;
783         }
784 
785         cpuobj = object_new(possible_cpus->cpus[n].type);
786         object_property_set_int(cpuobj, "mp-affinity",
787                                 possible_cpus->cpus[n].arch_id, NULL);
788 
789         cs = CPU(cpuobj);
790         cs->cpu_index = n;
791 
792         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
793                           &error_fatal);
794 
795         if (object_property_find(cpuobj, "reset-cbar")) {
796             object_property_set_int(cpuobj, "reset-cbar",
797                                     sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
798                                     &error_abort);
799         }
800 
801         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
802                                  &error_abort);
803 
804         object_property_set_link(cpuobj, "secure-memory",
805                                  OBJECT(secure_sysmem), &error_abort);
806 
807         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
808         object_unref(cpuobj);
809     }
810 
811     memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base,
812                                 machine->ram);
813 
814     create_fdt(sms);
815 
816     create_secure_ram(sms, secure_sysmem);
817 
818     create_gic(sms, sysmem);
819 
820     create_uart(sms, SBSA_UART, sysmem, serial_hd(0));
821     create_uart(sms, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));
822     /* Second secure UART for RAS and MM from EL0 */
823     create_uart(sms, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2));
824 
825     create_rtc(sms);
826 
827     create_wdt(sms);
828 
829     create_gpio(sms);
830 
831     create_ahci(sms);
832 
833     create_ehci(sms);
834 
835     create_pcie(sms);
836 
837     create_secure_ec(secure_sysmem);
838 
839     sms->bootinfo.ram_size = machine->ram_size;
840     sms->bootinfo.board_id = -1;
841     sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
842     sms->bootinfo.get_dtb = sbsa_ref_dtb;
843     sms->bootinfo.firmware_loaded = firmware_loaded;
844     arm_load_kernel(ARM_CPU(first_cpu), machine, &sms->bootinfo);
845 }
846 
847 static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
848 {
849     unsigned int max_cpus = ms->smp.max_cpus;
850     SBSAMachineState *sms = SBSA_MACHINE(ms);
851     int n;
852 
853     if (ms->possible_cpus) {
854         assert(ms->possible_cpus->len == max_cpus);
855         return ms->possible_cpus;
856     }
857 
858     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
859                                   sizeof(CPUArchId) * max_cpus);
860     ms->possible_cpus->len = max_cpus;
861     for (n = 0; n < ms->possible_cpus->len; n++) {
862         ms->possible_cpus->cpus[n].type = ms->cpu_type;
863         ms->possible_cpus->cpus[n].arch_id =
864             sbsa_ref_cpu_mp_affinity(sms, n);
865         ms->possible_cpus->cpus[n].props.has_thread_id = true;
866         ms->possible_cpus->cpus[n].props.thread_id = n;
867     }
868     return ms->possible_cpus;
869 }
870 
871 static CpuInstanceProperties
872 sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
873 {
874     MachineClass *mc = MACHINE_GET_CLASS(ms);
875     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
876 
877     assert(cpu_index < possible_cpus->len);
878     return possible_cpus->cpus[cpu_index].props;
879 }
880 
881 static int64_t
882 sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
883 {
884     return idx % ms->numa_state->num_nodes;
885 }
886 
887 static void sbsa_ref_instance_init(Object *obj)
888 {
889     SBSAMachineState *sms = SBSA_MACHINE(obj);
890 
891     sbsa_flash_create(sms);
892 }
893 
894 static void sbsa_ref_class_init(ObjectClass *oc, void *data)
895 {
896     MachineClass *mc = MACHINE_CLASS(oc);
897 
898     mc->init = sbsa_ref_init;
899     mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
900     mc->default_cpu_type = ARM_CPU_TYPE_NAME("neoverse-n1");
901     mc->max_cpus = 512;
902     mc->pci_allow_0_address = true;
903     mc->minimum_page_bits = 12;
904     mc->block_default_type = IF_IDE;
905     mc->no_cdrom = 1;
906     mc->default_nic = "e1000e";
907     mc->default_ram_size = 1 * GiB;
908     mc->default_ram_id = "sbsa-ref.ram";
909     mc->default_cpus = 4;
910     mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
911     mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
912     mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
913     /* platform instead of architectural choice */
914     mc->cpu_cluster_has_numa_boundary = true;
915 }
916 
917 static const TypeInfo sbsa_ref_info = {
918     .name          = TYPE_SBSA_MACHINE,
919     .parent        = TYPE_MACHINE,
920     .instance_init = sbsa_ref_instance_init,
921     .class_init    = sbsa_ref_class_init,
922     .instance_size = sizeof(SBSAMachineState),
923 };
924 
925 static void sbsa_ref_machine_init(void)
926 {
927     type_register_static(&sbsa_ref_info);
928 }
929 
930 type_init(sbsa_ref_machine_init);
931