xref: /openbmc/qemu/hw/arm/sbsa-ref.c (revision 05caa062)
1 /*
2  * ARM SBSA Reference Platform emulation
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Copyright (c) 2023 Qualcomm Innovation Center, Inc. All rights reserved.
6  * Written by Hongbo Zhang <hongbo.zhang@linaro.org>
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2 or later, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/datadir.h"
23 #include "qapi/error.h"
24 #include "qemu/error-report.h"
25 #include "qemu/units.h"
26 #include "sysemu/device_tree.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/numa.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/sysemu.h"
31 #include "exec/hwaddr.h"
32 #include "kvm_arm.h"
33 #include "hw/arm/boot.h"
34 #include "hw/arm/bsa.h"
35 #include "hw/arm/fdt.h"
36 #include "hw/arm/smmuv3.h"
37 #include "hw/block/flash.h"
38 #include "hw/boards.h"
39 #include "hw/ide/ide-bus.h"
40 #include "hw/ide/ahci-sysbus.h"
41 #include "hw/intc/arm_gicv3_common.h"
42 #include "hw/intc/arm_gicv3_its_common.h"
43 #include "hw/loader.h"
44 #include "hw/pci-host/gpex.h"
45 #include "hw/qdev-properties.h"
46 #include "hw/usb.h"
47 #include "hw/usb/xhci.h"
48 #include "hw/char/pl011.h"
49 #include "hw/watchdog/sbsa_gwdt.h"
50 #include "net/net.h"
51 #include "qapi/qmp/qlist.h"
52 #include "qom/object.h"
53 #include "target/arm/cpu-qom.h"
54 #include "target/arm/gtimer.h"
55 
56 #define RAMLIMIT_GB 8192
57 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
58 
59 #define NUM_IRQS        256
60 #define NUM_SMMU_IRQS   4
61 #define NUM_SATA_PORTS  6
62 
63 /*
64  * Generic timer frequency in Hz (which drives both the CPU generic timers
65  * and the SBSA watchdog-timer). Older (<2.11) versions of the TF-A firmware
66  * assumed 62.5MHz here.
67  *
68  * Starting with Armv8.6 CPU 1GHz timer frequency is mandated.
69  */
70 #define SBSA_GTIMER_HZ 1000000000
71 
72 enum {
73     SBSA_FLASH,
74     SBSA_MEM,
75     SBSA_CPUPERIPHS,
76     SBSA_GIC_DIST,
77     SBSA_GIC_REDIST,
78     SBSA_GIC_ITS,
79     SBSA_SECURE_EC,
80     SBSA_GWDT_WS0,
81     SBSA_GWDT_REFRESH,
82     SBSA_GWDT_CONTROL,
83     SBSA_SMMU,
84     SBSA_UART,
85     SBSA_RTC,
86     SBSA_PCIE,
87     SBSA_PCIE_MMIO,
88     SBSA_PCIE_MMIO_HIGH,
89     SBSA_PCIE_PIO,
90     SBSA_PCIE_ECAM,
91     SBSA_GPIO,
92     SBSA_SECURE_UART,
93     SBSA_SECURE_UART_MM,
94     SBSA_SECURE_MEM,
95     SBSA_AHCI,
96     SBSA_XHCI,
97 };
98 
99 struct SBSAMachineState {
100     MachineState parent;
101     struct arm_boot_info bootinfo;
102     int smp_cpus;
103     void *fdt;
104     int fdt_size;
105     int psci_conduit;
106     DeviceState *gic;
107     PFlashCFI01 *flash[2];
108 };
109 
110 #define TYPE_SBSA_MACHINE   MACHINE_TYPE_NAME("sbsa-ref")
111 OBJECT_DECLARE_SIMPLE_TYPE(SBSAMachineState, SBSA_MACHINE)
112 
113 static const MemMapEntry sbsa_ref_memmap[] = {
114     /* 512M boot ROM */
115     [SBSA_FLASH] =              {          0, 0x20000000 },
116     /* 512M secure memory */
117     [SBSA_SECURE_MEM] =         { 0x20000000, 0x20000000 },
118     /* Space reserved for CPU peripheral devices */
119     [SBSA_CPUPERIPHS] =         { 0x40000000, 0x00040000 },
120     [SBSA_GIC_DIST] =           { 0x40060000, 0x00010000 },
121     [SBSA_GIC_REDIST] =         { 0x40080000, 0x04000000 },
122     [SBSA_GIC_ITS] =            { 0x44081000, 0x00020000 },
123     [SBSA_SECURE_EC] =          { 0x50000000, 0x00001000 },
124     [SBSA_GWDT_REFRESH] =       { 0x50010000, 0x00001000 },
125     [SBSA_GWDT_CONTROL] =       { 0x50011000, 0x00001000 },
126     [SBSA_UART] =               { 0x60000000, 0x00001000 },
127     [SBSA_RTC] =                { 0x60010000, 0x00001000 },
128     [SBSA_GPIO] =               { 0x60020000, 0x00001000 },
129     [SBSA_SECURE_UART] =        { 0x60030000, 0x00001000 },
130     [SBSA_SECURE_UART_MM] =     { 0x60040000, 0x00001000 },
131     [SBSA_SMMU] =               { 0x60050000, 0x00020000 },
132     /* Space here reserved for more SMMUs */
133     [SBSA_AHCI] =               { 0x60100000, 0x00010000 },
134     [SBSA_XHCI] =               { 0x60110000, 0x00010000 },
135     /* Space here reserved for other devices */
136     [SBSA_PCIE_PIO] =           { 0x7fff0000, 0x00010000 },
137     /* 32-bit address PCIE MMIO space */
138     [SBSA_PCIE_MMIO] =          { 0x80000000, 0x70000000 },
139     /* 256M PCIE ECAM space */
140     [SBSA_PCIE_ECAM] =          { 0xf0000000, 0x10000000 },
141     /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
142     [SBSA_PCIE_MMIO_HIGH] =     { 0x100000000ULL, 0xFF00000000ULL },
143     [SBSA_MEM] =                { 0x10000000000ULL, RAMLIMIT_BYTES },
144 };
145 
146 static const int sbsa_ref_irqmap[] = {
147     [SBSA_UART] = 1,
148     [SBSA_RTC] = 2,
149     [SBSA_PCIE] = 3, /* ... to 6 */
150     [SBSA_GPIO] = 7,
151     [SBSA_SECURE_UART] = 8,
152     [SBSA_SECURE_UART_MM] = 9,
153     [SBSA_AHCI] = 10,
154     [SBSA_XHCI] = 11,
155     [SBSA_SMMU] = 12, /* ... to 15 */
156     [SBSA_GWDT_WS0] = 16,
157 };
158 
159 static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
160 {
161     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
162     return arm_build_mp_affinity(idx, clustersz);
163 }
164 
165 static void sbsa_fdt_add_gic_node(SBSAMachineState *sms)
166 {
167     char *nodename;
168 
169     nodename = g_strdup_printf("/intc");
170     qemu_fdt_add_subnode(sms->fdt, nodename);
171     qemu_fdt_setprop_sized_cells(sms->fdt, nodename, "reg",
172                                  2, sbsa_ref_memmap[SBSA_GIC_DIST].base,
173                                  2, sbsa_ref_memmap[SBSA_GIC_DIST].size,
174                                  2, sbsa_ref_memmap[SBSA_GIC_REDIST].base,
175                                  2, sbsa_ref_memmap[SBSA_GIC_REDIST].size);
176 
177     nodename = g_strdup_printf("/intc/its");
178     qemu_fdt_add_subnode(sms->fdt, nodename);
179     qemu_fdt_setprop_sized_cells(sms->fdt, nodename, "reg",
180                                  2, sbsa_ref_memmap[SBSA_GIC_ITS].base,
181                                  2, sbsa_ref_memmap[SBSA_GIC_ITS].size);
182 
183     g_free(nodename);
184 }
185 
186 /*
187  * Firmware on this machine only uses ACPI table to load OS, these limited
188  * device tree nodes are just to let firmware know the info which varies from
189  * command line parameters, so it is not necessary to be fully compatible
190  * with the kernel CPU and NUMA binding rules.
191  */
192 static void create_fdt(SBSAMachineState *sms)
193 {
194     void *fdt = create_device_tree(&sms->fdt_size);
195     const MachineState *ms = MACHINE(sms);
196     int nb_numa_nodes = ms->numa_state->num_nodes;
197     int cpu;
198 
199     if (!fdt) {
200         error_report("create_device_tree() failed");
201         exit(1);
202     }
203 
204     sms->fdt = fdt;
205 
206     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref");
207     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
208     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
209 
210     /*
211      * This versioning scheme is for informing platform fw only. It is neither:
212      * - A QEMU versioned machine type; a given version of QEMU will emulate
213      *   a given version of the platform.
214      * - A reflection of level of SBSA (now SystemReady SR) support provided.
215      *
216      * machine-version-major: updated when changes breaking fw compatibility
217      *                        are introduced.
218      * machine-version-minor: updated when features are added that don't break
219      *                        fw compatibility.
220      */
221     qemu_fdt_setprop_cell(fdt, "/", "machine-version-major", 0);
222     qemu_fdt_setprop_cell(fdt, "/", "machine-version-minor", 4);
223 
224     if (ms->numa_state->have_numa_distance) {
225         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
226         uint32_t *matrix = g_malloc0(size);
227         int idx, i, j;
228 
229         for (i = 0; i < nb_numa_nodes; i++) {
230             for (j = 0; j < nb_numa_nodes; j++) {
231                 idx = (i * nb_numa_nodes + j) * 3;
232                 matrix[idx + 0] = cpu_to_be32(i);
233                 matrix[idx + 1] = cpu_to_be32(j);
234                 matrix[idx + 2] =
235                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
236             }
237         }
238 
239         qemu_fdt_add_subnode(fdt, "/distance-map");
240         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
241                          matrix, size);
242         g_free(matrix);
243     }
244 
245     /*
246      * From Documentation/devicetree/bindings/arm/cpus.yaml
247      *  On ARM v8 64-bit systems this property is required
248      *    and matches the MPIDR_EL1 register affinity bits.
249      *
250      *    * If cpus node's #address-cells property is set to 2
251      *
252      *      The first reg cell bits [7:0] must be set to
253      *      bits [39:32] of MPIDR_EL1.
254      *
255      *      The second reg cell bits [23:0] must be set to
256      *      bits [23:0] of MPIDR_EL1.
257      */
258     qemu_fdt_add_subnode(sms->fdt, "/cpus");
259     qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#address-cells", 2);
260     qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#size-cells", 0x0);
261 
262     for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) {
263         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
264         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
265         CPUState *cs = CPU(armcpu);
266         uint64_t mpidr = sbsa_ref_cpu_mp_affinity(sms, cpu);
267 
268         qemu_fdt_add_subnode(sms->fdt, nodename);
269         qemu_fdt_setprop_u64(sms->fdt, nodename, "reg", mpidr);
270 
271         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
272             qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id",
273                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
274         }
275 
276         g_free(nodename);
277     }
278 
279     /* Add CPU topology description through fdt node topology. */
280     qemu_fdt_add_subnode(sms->fdt, "/cpus/topology");
281 
282     qemu_fdt_setprop_cell(sms->fdt, "/cpus/topology", "sockets", ms->smp.sockets);
283     qemu_fdt_setprop_cell(sms->fdt, "/cpus/topology", "clusters", ms->smp.clusters);
284     qemu_fdt_setprop_cell(sms->fdt, "/cpus/topology", "cores", ms->smp.cores);
285     qemu_fdt_setprop_cell(sms->fdt, "/cpus/topology", "threads", ms->smp.threads);
286 
287     sbsa_fdt_add_gic_node(sms);
288 }
289 
290 #define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
291 
292 static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms,
293                                         const char *name,
294                                         const char *alias_prop_name)
295 {
296     /*
297      * Create a single flash device.  We use the same parameters as
298      * the flash devices on the Versatile Express board.
299      */
300     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
301 
302     qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE);
303     qdev_prop_set_uint8(dev, "width", 4);
304     qdev_prop_set_uint8(dev, "device-width", 2);
305     qdev_prop_set_bit(dev, "big-endian", false);
306     qdev_prop_set_uint16(dev, "id0", 0x89);
307     qdev_prop_set_uint16(dev, "id1", 0x18);
308     qdev_prop_set_uint16(dev, "id2", 0x00);
309     qdev_prop_set_uint16(dev, "id3", 0x00);
310     qdev_prop_set_string(dev, "name", name);
311     object_property_add_child(OBJECT(sms), name, OBJECT(dev));
312     object_property_add_alias(OBJECT(sms), alias_prop_name,
313                               OBJECT(dev), "drive");
314     return PFLASH_CFI01(dev);
315 }
316 
317 static void sbsa_flash_create(SBSAMachineState *sms)
318 {
319     sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0");
320     sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1");
321 }
322 
323 static void sbsa_flash_map1(PFlashCFI01 *flash,
324                             hwaddr base, hwaddr size,
325                             MemoryRegion *sysmem)
326 {
327     DeviceState *dev = DEVICE(flash);
328 
329     assert(QEMU_IS_ALIGNED(size, SBSA_FLASH_SECTOR_SIZE));
330     assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX);
331     qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE);
332     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
333 
334     memory_region_add_subregion(sysmem, base,
335                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
336                                                        0));
337 }
338 
339 static void sbsa_flash_map(SBSAMachineState *sms,
340                            MemoryRegion *sysmem,
341                            MemoryRegion *secure_sysmem)
342 {
343     /*
344      * Map two flash devices to fill the SBSA_FLASH space in the memmap.
345      * sysmem is the system memory space. secure_sysmem is the secure view
346      * of the system, and the first flash device should be made visible only
347      * there. The second flash device is visible to both secure and nonsecure.
348      */
349     hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2;
350     hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base;
351 
352     sbsa_flash_map1(sms->flash[0], flashbase, flashsize,
353                     secure_sysmem);
354     sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize,
355                     sysmem);
356 }
357 
358 static bool sbsa_firmware_init(SBSAMachineState *sms,
359                                MemoryRegion *sysmem,
360                                MemoryRegion *secure_sysmem)
361 {
362     const char *bios_name;
363     int i;
364     BlockBackend *pflash_blk0;
365 
366     /* Map legacy -drive if=pflash to machine properties */
367     for (i = 0; i < ARRAY_SIZE(sms->flash); i++) {
368         pflash_cfi01_legacy_drive(sms->flash[i],
369                                   drive_get(IF_PFLASH, 0, i));
370     }
371 
372     sbsa_flash_map(sms, sysmem, secure_sysmem);
373 
374     pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]);
375 
376     bios_name = MACHINE(sms)->firmware;
377     if (bios_name) {
378         char *fname;
379         MemoryRegion *mr;
380         int image_size;
381 
382         if (pflash_blk0) {
383             error_report("The contents of the first flash device may be "
384                          "specified with -bios or with -drive if=pflash... "
385                          "but you cannot use both options at once");
386             exit(1);
387         }
388 
389         /* Fall back to -bios */
390 
391         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
392         if (!fname) {
393             error_report("Could not find ROM image '%s'", bios_name);
394             exit(1);
395         }
396         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0);
397         image_size = load_image_mr(fname, mr);
398         g_free(fname);
399         if (image_size < 0) {
400             error_report("Could not load ROM image '%s'", bios_name);
401             exit(1);
402         }
403     }
404 
405     return pflash_blk0 || bios_name;
406 }
407 
408 static void create_secure_ram(SBSAMachineState *sms,
409                               MemoryRegion *secure_sysmem)
410 {
411     MemoryRegion *secram = g_new(MemoryRegion, 1);
412     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base;
413     hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size;
414 
415     memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size,
416                            &error_fatal);
417     memory_region_add_subregion(secure_sysmem, base, secram);
418 }
419 
420 static void create_its(SBSAMachineState *sms)
421 {
422     const char *itsclass = its_class_name();
423     DeviceState *dev;
424 
425     dev = qdev_new(itsclass);
426 
427     object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(sms->gic),
428                              &error_abort);
429     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
430     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, sbsa_ref_memmap[SBSA_GIC_ITS].base);
431 }
432 
433 static void create_gic(SBSAMachineState *sms, MemoryRegion *mem)
434 {
435     unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
436     SysBusDevice *gicbusdev;
437     const char *gictype;
438     uint32_t redist0_capacity, redist0_count;
439     QList *redist_region_count;
440     int i;
441 
442     gictype = gicv3_class_name();
443 
444     sms->gic = qdev_new(gictype);
445     qdev_prop_set_uint32(sms->gic, "revision", 3);
446     qdev_prop_set_uint32(sms->gic, "num-cpu", smp_cpus);
447     /*
448      * Note that the num-irq property counts both internal and external
449      * interrupts; there are always 32 of the former (mandated by GIC spec).
450      */
451     qdev_prop_set_uint32(sms->gic, "num-irq", NUM_IRQS + 32);
452     qdev_prop_set_bit(sms->gic, "has-security-extensions", true);
453 
454     redist0_capacity =
455                 sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
456     redist0_count = MIN(smp_cpus, redist0_capacity);
457 
458     redist_region_count = qlist_new();
459     qlist_append_int(redist_region_count, redist0_count);
460     qdev_prop_set_array(sms->gic, "redist-region-count", redist_region_count);
461 
462     object_property_set_link(OBJECT(sms->gic), "sysmem",
463                              OBJECT(mem), &error_fatal);
464     qdev_prop_set_bit(sms->gic, "has-lpi", true);
465 
466     gicbusdev = SYS_BUS_DEVICE(sms->gic);
467     sysbus_realize_and_unref(gicbusdev, &error_fatal);
468     sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
469     sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base);
470 
471     /*
472      * Wire the outputs from each CPU's generic timer and the GICv3
473      * maintenance interrupt signal to the appropriate GIC PPI inputs,
474      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
475      */
476     for (i = 0; i < smp_cpus; i++) {
477         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
478         int intidbase = NUM_IRQS + i * GIC_INTERNAL;
479         int irq;
480         /*
481          * Mapping from the output timer irq lines from the CPU to the
482          * GIC PPI inputs used for this board.
483          */
484         const int timer_irq[] = {
485             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
486             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
487             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
488             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
489             [GTIMER_HYPVIRT] = ARCH_TIMER_NS_EL2_VIRT_IRQ,
490         };
491 
492         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
493             qdev_connect_gpio_out(cpudev, irq,
494                                   qdev_get_gpio_in(sms->gic,
495                                                    intidbase + timer_irq[irq]));
496         }
497 
498         qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
499                                     qdev_get_gpio_in(sms->gic,
500                                                      intidbase
501                                                      + ARCH_GIC_MAINT_IRQ));
502 
503         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
504                                     qdev_get_gpio_in(sms->gic,
505                                                      intidbase
506                                                      + VIRTUAL_PMU_IRQ));
507 
508         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
509         sysbus_connect_irq(gicbusdev, i + smp_cpus,
510                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
511         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
512                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
513         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
514                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
515     }
516     create_its(sms);
517 }
518 
519 static void create_uart(const SBSAMachineState *sms, int uart,
520                         MemoryRegion *mem, Chardev *chr)
521 {
522     hwaddr base = sbsa_ref_memmap[uart].base;
523     int irq = sbsa_ref_irqmap[uart];
524     DeviceState *dev = qdev_new(TYPE_PL011);
525     SysBusDevice *s = SYS_BUS_DEVICE(dev);
526 
527     qdev_prop_set_chr(dev, "chardev", chr);
528     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
529     memory_region_add_subregion(mem, base,
530                                 sysbus_mmio_get_region(s, 0));
531     sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
532 }
533 
534 static void create_rtc(const SBSAMachineState *sms)
535 {
536     hwaddr base = sbsa_ref_memmap[SBSA_RTC].base;
537     int irq = sbsa_ref_irqmap[SBSA_RTC];
538 
539     sysbus_create_simple("pl031", base, qdev_get_gpio_in(sms->gic, irq));
540 }
541 
542 static void create_wdt(const SBSAMachineState *sms)
543 {
544     hwaddr rbase = sbsa_ref_memmap[SBSA_GWDT_REFRESH].base;
545     hwaddr cbase = sbsa_ref_memmap[SBSA_GWDT_CONTROL].base;
546     DeviceState *dev = qdev_new(TYPE_WDT_SBSA);
547     SysBusDevice *s = SYS_BUS_DEVICE(dev);
548     int irq = sbsa_ref_irqmap[SBSA_GWDT_WS0];
549 
550     qdev_prop_set_uint64(dev, "clock-frequency", SBSA_GTIMER_HZ);
551     sysbus_realize_and_unref(s, &error_fatal);
552     sysbus_mmio_map(s, 0, rbase);
553     sysbus_mmio_map(s, 1, cbase);
554     sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
555 }
556 
557 static DeviceState *gpio_key_dev;
558 static void sbsa_ref_powerdown_req(Notifier *n, void *opaque)
559 {
560     /* use gpio Pin 3 for power button event */
561     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
562 }
563 
564 static Notifier sbsa_ref_powerdown_notifier = {
565     .notify = sbsa_ref_powerdown_req
566 };
567 
568 static void create_gpio(const SBSAMachineState *sms)
569 {
570     DeviceState *pl061_dev;
571     hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base;
572     int irq = sbsa_ref_irqmap[SBSA_GPIO];
573 
574     pl061_dev = sysbus_create_simple("pl061", base,
575                                      qdev_get_gpio_in(sms->gic, irq));
576 
577     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
578                                         qdev_get_gpio_in(pl061_dev, 3));
579 
580     /* connect powerdown request */
581     qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier);
582 }
583 
584 static void create_ahci(const SBSAMachineState *sms)
585 {
586     hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base;
587     int irq = sbsa_ref_irqmap[SBSA_AHCI];
588     DeviceState *dev;
589     DriveInfo *hd[NUM_SATA_PORTS];
590     SysbusAHCIState *sysahci;
591 
592     dev = qdev_new("sysbus-ahci");
593     qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS);
594     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
595     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
596     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
597 
598     sysahci = SYSBUS_AHCI(dev);
599     ide_drive_get(hd, ARRAY_SIZE(hd));
600     ahci_ide_create_devs(&sysahci->ahci, hd);
601 }
602 
603 static void create_xhci(const SBSAMachineState *sms)
604 {
605     hwaddr base = sbsa_ref_memmap[SBSA_XHCI].base;
606     int irq = sbsa_ref_irqmap[SBSA_XHCI];
607     DeviceState *dev = qdev_new(TYPE_XHCI_SYSBUS);
608     qdev_prop_set_uint32(dev, "slots", XHCI_MAXSLOTS);
609 
610     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
611     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
612     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
613 }
614 
615 static void create_smmu(const SBSAMachineState *sms, PCIBus *bus)
616 {
617     hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base;
618     int irq =  sbsa_ref_irqmap[SBSA_SMMU];
619     DeviceState *dev;
620     int i;
621 
622     dev = qdev_new(TYPE_ARM_SMMUV3);
623 
624     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
625                              &error_abort);
626     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
627     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
628     for (i = 0; i < NUM_SMMU_IRQS; i++) {
629         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
630                            qdev_get_gpio_in(sms->gic, irq + i));
631     }
632 }
633 
634 static void create_pcie(SBSAMachineState *sms)
635 {
636     hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base;
637     hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size;
638     hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base;
639     hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size;
640     hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base;
641     hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size;
642     hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base;
643     int irq = sbsa_ref_irqmap[SBSA_PCIE];
644     MachineClass *mc = MACHINE_GET_CLASS(sms);
645     MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg;
646     MemoryRegion *ecam_alias, *ecam_reg;
647     DeviceState *dev;
648     PCIHostState *pci;
649     int i;
650 
651     dev = qdev_new(TYPE_GPEX_HOST);
652     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
653 
654     /* Map ECAM space */
655     ecam_alias = g_new0(MemoryRegion, 1);
656     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
657     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
658                              ecam_reg, 0, size_ecam);
659     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
660 
661     /* Map the MMIO space */
662     mmio_alias = g_new0(MemoryRegion, 1);
663     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
664     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
665                              mmio_reg, base_mmio, size_mmio);
666     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
667 
668     /* Map the MMIO_HIGH space */
669     mmio_alias_high = g_new0(MemoryRegion, 1);
670     memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high",
671                              mmio_reg, base_mmio_high, size_mmio_high);
672     memory_region_add_subregion(get_system_memory(), base_mmio_high,
673                                 mmio_alias_high);
674 
675     /* Map IO port space */
676     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
677 
678     for (i = 0; i < GPEX_NUM_IRQS; i++) {
679         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
680                            qdev_get_gpio_in(sms->gic, irq + i));
681         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
682     }
683 
684     pci = PCI_HOST_BRIDGE(dev);
685 
686     pci_init_nic_devices(pci->bus, mc->default_nic);
687 
688     pci_create_simple(pci->bus, -1, "bochs-display");
689 
690     create_smmu(sms, pci->bus);
691 }
692 
693 static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size)
694 {
695     const SBSAMachineState *board = container_of(binfo, SBSAMachineState,
696                                                  bootinfo);
697 
698     *fdt_size = board->fdt_size;
699     return board->fdt;
700 }
701 
702 static void create_secure_ec(MemoryRegion *mem)
703 {
704     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_EC].base;
705     DeviceState *dev = qdev_new("sbsa-ec");
706     SysBusDevice *s = SYS_BUS_DEVICE(dev);
707 
708     memory_region_add_subregion(mem, base,
709                                 sysbus_mmio_get_region(s, 0));
710 }
711 
712 static void sbsa_ref_init(MachineState *machine)
713 {
714     unsigned int smp_cpus = machine->smp.cpus;
715     unsigned int max_cpus = machine->smp.max_cpus;
716     SBSAMachineState *sms = SBSA_MACHINE(machine);
717     MachineClass *mc = MACHINE_GET_CLASS(machine);
718     MemoryRegion *sysmem = get_system_memory();
719     MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1);
720     bool firmware_loaded;
721     const CPUArchIdList *possible_cpus;
722     int n, sbsa_max_cpus;
723 
724     if (kvm_enabled()) {
725         error_report("sbsa-ref: KVM is not supported for this machine");
726         exit(1);
727     }
728 
729     /*
730      * The Secure view of the world is the same as the NonSecure,
731      * but with a few extra devices. Create it as a container region
732      * containing the system memory at low priority; any secure-only
733      * devices go in at higher priority and take precedence.
734      */
735     memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
736                        UINT64_MAX);
737     memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
738 
739     firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem);
740 
741     /*
742      * This machine has EL3 enabled, external firmware should supply PSCI
743      * implementation, so the QEMU's internal PSCI is disabled.
744      */
745     sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
746 
747     sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
748 
749     if (max_cpus > sbsa_max_cpus) {
750         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
751                      "supported by machine 'sbsa-ref' (%d)",
752                      max_cpus, sbsa_max_cpus);
753         exit(1);
754     }
755 
756     sms->smp_cpus = smp_cpus;
757 
758     if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
759         error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
760         exit(1);
761     }
762 
763     possible_cpus = mc->possible_cpu_arch_ids(machine);
764     for (n = 0; n < possible_cpus->len; n++) {
765         Object *cpuobj;
766         CPUState *cs;
767 
768         if (n >= smp_cpus) {
769             break;
770         }
771 
772         cpuobj = object_new(possible_cpus->cpus[n].type);
773         object_property_set_int(cpuobj, "mp-affinity",
774                                 possible_cpus->cpus[n].arch_id, NULL);
775 
776         cs = CPU(cpuobj);
777         cs->cpu_index = n;
778 
779         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
780                           &error_fatal);
781 
782         if (object_property_find(cpuobj, "reset-cbar")) {
783             object_property_set_int(cpuobj, "reset-cbar",
784                                     sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
785                                     &error_abort);
786         }
787 
788         object_property_set_int(cpuobj, "cntfrq", SBSA_GTIMER_HZ, &error_abort);
789 
790         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
791                                  &error_abort);
792 
793         object_property_set_link(cpuobj, "secure-memory",
794                                  OBJECT(secure_sysmem), &error_abort);
795 
796         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
797         object_unref(cpuobj);
798     }
799 
800     memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base,
801                                 machine->ram);
802 
803     create_fdt(sms);
804 
805     create_secure_ram(sms, secure_sysmem);
806 
807     create_gic(sms, sysmem);
808 
809     create_uart(sms, SBSA_UART, sysmem, serial_hd(0));
810     create_uart(sms, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));
811     /* Second secure UART for RAS and MM from EL0 */
812     create_uart(sms, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2));
813 
814     create_rtc(sms);
815 
816     create_wdt(sms);
817 
818     create_gpio(sms);
819 
820     create_ahci(sms);
821 
822     create_xhci(sms);
823 
824     create_pcie(sms);
825 
826     create_secure_ec(secure_sysmem);
827 
828     sms->bootinfo.ram_size = machine->ram_size;
829     sms->bootinfo.board_id = -1;
830     sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
831     sms->bootinfo.get_dtb = sbsa_ref_dtb;
832     sms->bootinfo.firmware_loaded = firmware_loaded;
833     arm_load_kernel(ARM_CPU(first_cpu), machine, &sms->bootinfo);
834 }
835 
836 static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
837 {
838     unsigned int max_cpus = ms->smp.max_cpus;
839     SBSAMachineState *sms = SBSA_MACHINE(ms);
840     int n;
841 
842     if (ms->possible_cpus) {
843         assert(ms->possible_cpus->len == max_cpus);
844         return ms->possible_cpus;
845     }
846 
847     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
848                                   sizeof(CPUArchId) * max_cpus);
849     ms->possible_cpus->len = max_cpus;
850     for (n = 0; n < ms->possible_cpus->len; n++) {
851         ms->possible_cpus->cpus[n].type = ms->cpu_type;
852         ms->possible_cpus->cpus[n].arch_id =
853             sbsa_ref_cpu_mp_affinity(sms, n);
854         ms->possible_cpus->cpus[n].props.has_thread_id = true;
855         ms->possible_cpus->cpus[n].props.thread_id = n;
856     }
857     return ms->possible_cpus;
858 }
859 
860 static CpuInstanceProperties
861 sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
862 {
863     MachineClass *mc = MACHINE_GET_CLASS(ms);
864     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
865 
866     assert(cpu_index < possible_cpus->len);
867     return possible_cpus->cpus[cpu_index].props;
868 }
869 
870 static int64_t
871 sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
872 {
873     return idx % ms->numa_state->num_nodes;
874 }
875 
876 static void sbsa_ref_instance_init(Object *obj)
877 {
878     SBSAMachineState *sms = SBSA_MACHINE(obj);
879 
880     sbsa_flash_create(sms);
881 }
882 
883 static void sbsa_ref_class_init(ObjectClass *oc, void *data)
884 {
885     MachineClass *mc = MACHINE_CLASS(oc);
886     static const char * const valid_cpu_types[] = {
887         ARM_CPU_TYPE_NAME("cortex-a57"),
888         ARM_CPU_TYPE_NAME("cortex-a72"),
889         ARM_CPU_TYPE_NAME("neoverse-n1"),
890         ARM_CPU_TYPE_NAME("neoverse-v1"),
891         ARM_CPU_TYPE_NAME("neoverse-n2"),
892         ARM_CPU_TYPE_NAME("max"),
893         NULL,
894     };
895 
896     mc->init = sbsa_ref_init;
897     mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
898     mc->default_cpu_type = ARM_CPU_TYPE_NAME("neoverse-n2");
899     mc->valid_cpu_types = valid_cpu_types;
900     mc->max_cpus = 512;
901     mc->pci_allow_0_address = true;
902     mc->minimum_page_bits = 12;
903     mc->block_default_type = IF_IDE;
904     mc->no_cdrom = 1;
905     mc->default_nic = "e1000e";
906     mc->default_ram_size = 1 * GiB;
907     mc->default_ram_id = "sbsa-ref.ram";
908     mc->default_cpus = 4;
909     mc->smp_props.clusters_supported = true;
910     mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
911     mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
912     mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
913     /* platform instead of architectural choice */
914     mc->cpu_cluster_has_numa_boundary = true;
915 }
916 
917 static const TypeInfo sbsa_ref_info = {
918     .name          = TYPE_SBSA_MACHINE,
919     .parent        = TYPE_MACHINE,
920     .instance_init = sbsa_ref_instance_init,
921     .class_init    = sbsa_ref_class_init,
922     .instance_size = sizeof(SBSAMachineState),
923 };
924 
925 static void sbsa_ref_machine_init(void)
926 {
927     type_register_static(&sbsa_ref_info);
928 }
929 
930 type_init(sbsa_ref_machine_init);
931