xref: /openbmc/qemu/hw/arm/sbsa-ref.c (revision 057f7680)
1 /*
2  * ARM SBSA Reference Platform emulation
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Copyright (c) 2023 Qualcomm Innovation Center, Inc. All rights reserved.
6  * Written by Hongbo Zhang <hongbo.zhang@linaro.org>
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2 or later, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/datadir.h"
23 #include "qapi/error.h"
24 #include "qemu/error-report.h"
25 #include "qemu/units.h"
26 #include "sysemu/device_tree.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/numa.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/sysemu.h"
31 #include "exec/hwaddr.h"
32 #include "kvm_arm.h"
33 #include "hw/arm/boot.h"
34 #include "hw/arm/bsa.h"
35 #include "hw/arm/fdt.h"
36 #include "hw/arm/smmuv3.h"
37 #include "hw/block/flash.h"
38 #include "hw/boards.h"
39 #include "hw/ide/ide-bus.h"
40 #include "hw/ide/ahci-sysbus.h"
41 #include "hw/intc/arm_gicv3_common.h"
42 #include "hw/intc/arm_gicv3_its_common.h"
43 #include "hw/loader.h"
44 #include "hw/pci-host/gpex.h"
45 #include "hw/qdev-properties.h"
46 #include "hw/usb.h"
47 #include "hw/usb/xhci.h"
48 #include "hw/char/pl011.h"
49 #include "hw/watchdog/sbsa_gwdt.h"
50 #include "net/net.h"
51 #include "qapi/qmp/qlist.h"
52 #include "qom/object.h"
53 #include "target/arm/cpu-qom.h"
54 #include "target/arm/gtimer.h"
55 
56 #define RAMLIMIT_GB 8192
57 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
58 
59 #define NUM_IRQS        256
60 #define NUM_SMMU_IRQS   4
61 #define NUM_SATA_PORTS  6
62 
63 /*
64  * Generic timer frequency in Hz (which drives both the CPU generic timers
65  * and the SBSA watchdog-timer). Older (<2.11) versions of the TF-A firmware
66  * assumed 62.5MHz here.
67  *
68  * Starting with Armv8.6 CPU 1GHz timer frequency is mandated.
69  */
70 #define SBSA_GTIMER_HZ 1000000000
71 
72 enum {
73     SBSA_FLASH,
74     SBSA_MEM,
75     SBSA_CPUPERIPHS,
76     SBSA_GIC_DIST,
77     SBSA_GIC_REDIST,
78     SBSA_GIC_ITS,
79     SBSA_SECURE_EC,
80     SBSA_GWDT_WS0,
81     SBSA_GWDT_REFRESH,
82     SBSA_GWDT_CONTROL,
83     SBSA_SMMU,
84     SBSA_UART,
85     SBSA_RTC,
86     SBSA_PCIE,
87     SBSA_PCIE_MMIO,
88     SBSA_PCIE_MMIO_HIGH,
89     SBSA_PCIE_PIO,
90     SBSA_PCIE_ECAM,
91     SBSA_GPIO,
92     SBSA_SECURE_UART,
93     SBSA_SECURE_UART_MM,
94     SBSA_SECURE_MEM,
95     SBSA_AHCI,
96     SBSA_XHCI,
97 };
98 
99 struct SBSAMachineState {
100     MachineState parent;
101     struct arm_boot_info bootinfo;
102     int smp_cpus;
103     void *fdt;
104     int fdt_size;
105     int psci_conduit;
106     DeviceState *gic;
107     PFlashCFI01 *flash[2];
108 };
109 
110 #define TYPE_SBSA_MACHINE   MACHINE_TYPE_NAME("sbsa-ref")
111 OBJECT_DECLARE_SIMPLE_TYPE(SBSAMachineState, SBSA_MACHINE)
112 
113 static const MemMapEntry sbsa_ref_memmap[] = {
114     /* 512M boot ROM */
115     [SBSA_FLASH] =              {          0, 0x20000000 },
116     /* 512M secure memory */
117     [SBSA_SECURE_MEM] =         { 0x20000000, 0x20000000 },
118     /* Space reserved for CPU peripheral devices */
119     [SBSA_CPUPERIPHS] =         { 0x40000000, 0x00040000 },
120     [SBSA_GIC_DIST] =           { 0x40060000, 0x00010000 },
121     [SBSA_GIC_REDIST] =         { 0x40080000, 0x04000000 },
122     [SBSA_GIC_ITS] =            { 0x44081000, 0x00020000 },
123     [SBSA_SECURE_EC] =          { 0x50000000, 0x00001000 },
124     [SBSA_GWDT_REFRESH] =       { 0x50010000, 0x00001000 },
125     [SBSA_GWDT_CONTROL] =       { 0x50011000, 0x00001000 },
126     [SBSA_UART] =               { 0x60000000, 0x00001000 },
127     [SBSA_RTC] =                { 0x60010000, 0x00001000 },
128     [SBSA_GPIO] =               { 0x60020000, 0x00001000 },
129     [SBSA_SECURE_UART] =        { 0x60030000, 0x00001000 },
130     [SBSA_SECURE_UART_MM] =     { 0x60040000, 0x00001000 },
131     [SBSA_SMMU] =               { 0x60050000, 0x00020000 },
132     /* Space here reserved for more SMMUs */
133     [SBSA_AHCI] =               { 0x60100000, 0x00010000 },
134     [SBSA_XHCI] =               { 0x60110000, 0x00010000 },
135     /* Space here reserved for other devices */
136     [SBSA_PCIE_PIO] =           { 0x7fff0000, 0x00010000 },
137     /* 32-bit address PCIE MMIO space */
138     [SBSA_PCIE_MMIO] =          { 0x80000000, 0x70000000 },
139     /* 256M PCIE ECAM space */
140     [SBSA_PCIE_ECAM] =          { 0xf0000000, 0x10000000 },
141     /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
142     [SBSA_PCIE_MMIO_HIGH] =     { 0x100000000ULL, 0xFF00000000ULL },
143     [SBSA_MEM] =                { 0x10000000000ULL, RAMLIMIT_BYTES },
144 };
145 
146 static const int sbsa_ref_irqmap[] = {
147     [SBSA_UART] = 1,
148     [SBSA_RTC] = 2,
149     [SBSA_PCIE] = 3, /* ... to 6 */
150     [SBSA_GPIO] = 7,
151     [SBSA_SECURE_UART] = 8,
152     [SBSA_SECURE_UART_MM] = 9,
153     [SBSA_AHCI] = 10,
154     [SBSA_XHCI] = 11,
155     [SBSA_SMMU] = 12, /* ... to 15 */
156     [SBSA_GWDT_WS0] = 16,
157 };
158 
159 static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
160 {
161     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
162     return arm_build_mp_affinity(idx, clustersz);
163 }
164 
165 static void sbsa_fdt_add_gic_node(SBSAMachineState *sms)
166 {
167     char *nodename;
168 
169     nodename = g_strdup_printf("/intc");
170     qemu_fdt_add_subnode(sms->fdt, nodename);
171     qemu_fdt_setprop_sized_cells(sms->fdt, nodename, "reg",
172                                  2, sbsa_ref_memmap[SBSA_GIC_DIST].base,
173                                  2, sbsa_ref_memmap[SBSA_GIC_DIST].size,
174                                  2, sbsa_ref_memmap[SBSA_GIC_REDIST].base,
175                                  2, sbsa_ref_memmap[SBSA_GIC_REDIST].size);
176 
177     nodename = g_strdup_printf("/intc/its");
178     qemu_fdt_add_subnode(sms->fdt, nodename);
179     qemu_fdt_setprop_sized_cells(sms->fdt, nodename, "reg",
180                                  2, sbsa_ref_memmap[SBSA_GIC_ITS].base,
181                                  2, sbsa_ref_memmap[SBSA_GIC_ITS].size);
182 
183     g_free(nodename);
184 }
185 
186 /*
187  * Firmware on this machine only uses ACPI table to load OS, these limited
188  * device tree nodes are just to let firmware know the info which varies from
189  * command line parameters, so it is not necessary to be fully compatible
190  * with the kernel CPU and NUMA binding rules.
191  */
192 static void create_fdt(SBSAMachineState *sms)
193 {
194     void *fdt = create_device_tree(&sms->fdt_size);
195     const MachineState *ms = MACHINE(sms);
196     int nb_numa_nodes = ms->numa_state->num_nodes;
197     int cpu;
198 
199     if (!fdt) {
200         error_report("create_device_tree() failed");
201         exit(1);
202     }
203 
204     sms->fdt = fdt;
205 
206     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref");
207     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
208     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
209 
210     /*
211      * This versioning scheme is for informing platform fw only. It is neither:
212      * - A QEMU versioned machine type; a given version of QEMU will emulate
213      *   a given version of the platform.
214      * - A reflection of level of SBSA (now SystemReady SR) support provided.
215      *
216      * machine-version-major: updated when changes breaking fw compatibility
217      *                        are introduced.
218      * machine-version-minor: updated when features are added that don't break
219      *                        fw compatibility.
220      */
221     qemu_fdt_setprop_cell(fdt, "/", "machine-version-major", 0);
222     qemu_fdt_setprop_cell(fdt, "/", "machine-version-minor", 3);
223 
224     if (ms->numa_state->have_numa_distance) {
225         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
226         uint32_t *matrix = g_malloc0(size);
227         int idx, i, j;
228 
229         for (i = 0; i < nb_numa_nodes; i++) {
230             for (j = 0; j < nb_numa_nodes; j++) {
231                 idx = (i * nb_numa_nodes + j) * 3;
232                 matrix[idx + 0] = cpu_to_be32(i);
233                 matrix[idx + 1] = cpu_to_be32(j);
234                 matrix[idx + 2] =
235                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
236             }
237         }
238 
239         qemu_fdt_add_subnode(fdt, "/distance-map");
240         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
241                          matrix, size);
242         g_free(matrix);
243     }
244 
245     /*
246      * From Documentation/devicetree/bindings/arm/cpus.yaml
247      *  On ARM v8 64-bit systems this property is required
248      *    and matches the MPIDR_EL1 register affinity bits.
249      *
250      *    * If cpus node's #address-cells property is set to 2
251      *
252      *      The first reg cell bits [7:0] must be set to
253      *      bits [39:32] of MPIDR_EL1.
254      *
255      *      The second reg cell bits [23:0] must be set to
256      *      bits [23:0] of MPIDR_EL1.
257      */
258     qemu_fdt_add_subnode(sms->fdt, "/cpus");
259     qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#address-cells", 2);
260     qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#size-cells", 0x0);
261 
262     for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) {
263         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
264         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
265         CPUState *cs = CPU(armcpu);
266         uint64_t mpidr = sbsa_ref_cpu_mp_affinity(sms, cpu);
267 
268         qemu_fdt_add_subnode(sms->fdt, nodename);
269         qemu_fdt_setprop_u64(sms->fdt, nodename, "reg", mpidr);
270 
271         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
272             qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id",
273                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
274         }
275 
276         g_free(nodename);
277     }
278 
279     sbsa_fdt_add_gic_node(sms);
280 }
281 
282 #define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
283 
284 static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms,
285                                         const char *name,
286                                         const char *alias_prop_name)
287 {
288     /*
289      * Create a single flash device.  We use the same parameters as
290      * the flash devices on the Versatile Express board.
291      */
292     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
293 
294     qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE);
295     qdev_prop_set_uint8(dev, "width", 4);
296     qdev_prop_set_uint8(dev, "device-width", 2);
297     qdev_prop_set_bit(dev, "big-endian", false);
298     qdev_prop_set_uint16(dev, "id0", 0x89);
299     qdev_prop_set_uint16(dev, "id1", 0x18);
300     qdev_prop_set_uint16(dev, "id2", 0x00);
301     qdev_prop_set_uint16(dev, "id3", 0x00);
302     qdev_prop_set_string(dev, "name", name);
303     object_property_add_child(OBJECT(sms), name, OBJECT(dev));
304     object_property_add_alias(OBJECT(sms), alias_prop_name,
305                               OBJECT(dev), "drive");
306     return PFLASH_CFI01(dev);
307 }
308 
309 static void sbsa_flash_create(SBSAMachineState *sms)
310 {
311     sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0");
312     sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1");
313 }
314 
315 static void sbsa_flash_map1(PFlashCFI01 *flash,
316                             hwaddr base, hwaddr size,
317                             MemoryRegion *sysmem)
318 {
319     DeviceState *dev = DEVICE(flash);
320 
321     assert(QEMU_IS_ALIGNED(size, SBSA_FLASH_SECTOR_SIZE));
322     assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX);
323     qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE);
324     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
325 
326     memory_region_add_subregion(sysmem, base,
327                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
328                                                        0));
329 }
330 
331 static void sbsa_flash_map(SBSAMachineState *sms,
332                            MemoryRegion *sysmem,
333                            MemoryRegion *secure_sysmem)
334 {
335     /*
336      * Map two flash devices to fill the SBSA_FLASH space in the memmap.
337      * sysmem is the system memory space. secure_sysmem is the secure view
338      * of the system, and the first flash device should be made visible only
339      * there. The second flash device is visible to both secure and nonsecure.
340      */
341     hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2;
342     hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base;
343 
344     sbsa_flash_map1(sms->flash[0], flashbase, flashsize,
345                     secure_sysmem);
346     sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize,
347                     sysmem);
348 }
349 
350 static bool sbsa_firmware_init(SBSAMachineState *sms,
351                                MemoryRegion *sysmem,
352                                MemoryRegion *secure_sysmem)
353 {
354     const char *bios_name;
355     int i;
356     BlockBackend *pflash_blk0;
357 
358     /* Map legacy -drive if=pflash to machine properties */
359     for (i = 0; i < ARRAY_SIZE(sms->flash); i++) {
360         pflash_cfi01_legacy_drive(sms->flash[i],
361                                   drive_get(IF_PFLASH, 0, i));
362     }
363 
364     sbsa_flash_map(sms, sysmem, secure_sysmem);
365 
366     pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]);
367 
368     bios_name = MACHINE(sms)->firmware;
369     if (bios_name) {
370         char *fname;
371         MemoryRegion *mr;
372         int image_size;
373 
374         if (pflash_blk0) {
375             error_report("The contents of the first flash device may be "
376                          "specified with -bios or with -drive if=pflash... "
377                          "but you cannot use both options at once");
378             exit(1);
379         }
380 
381         /* Fall back to -bios */
382 
383         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
384         if (!fname) {
385             error_report("Could not find ROM image '%s'", bios_name);
386             exit(1);
387         }
388         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0);
389         image_size = load_image_mr(fname, mr);
390         g_free(fname);
391         if (image_size < 0) {
392             error_report("Could not load ROM image '%s'", bios_name);
393             exit(1);
394         }
395     }
396 
397     return pflash_blk0 || bios_name;
398 }
399 
400 static void create_secure_ram(SBSAMachineState *sms,
401                               MemoryRegion *secure_sysmem)
402 {
403     MemoryRegion *secram = g_new(MemoryRegion, 1);
404     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base;
405     hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size;
406 
407     memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size,
408                            &error_fatal);
409     memory_region_add_subregion(secure_sysmem, base, secram);
410 }
411 
412 static void create_its(SBSAMachineState *sms)
413 {
414     const char *itsclass = its_class_name();
415     DeviceState *dev;
416 
417     dev = qdev_new(itsclass);
418 
419     object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(sms->gic),
420                              &error_abort);
421     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
422     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, sbsa_ref_memmap[SBSA_GIC_ITS].base);
423 }
424 
425 static void create_gic(SBSAMachineState *sms, MemoryRegion *mem)
426 {
427     unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
428     SysBusDevice *gicbusdev;
429     const char *gictype;
430     uint32_t redist0_capacity, redist0_count;
431     QList *redist_region_count;
432     int i;
433 
434     gictype = gicv3_class_name();
435 
436     sms->gic = qdev_new(gictype);
437     qdev_prop_set_uint32(sms->gic, "revision", 3);
438     qdev_prop_set_uint32(sms->gic, "num-cpu", smp_cpus);
439     /*
440      * Note that the num-irq property counts both internal and external
441      * interrupts; there are always 32 of the former (mandated by GIC spec).
442      */
443     qdev_prop_set_uint32(sms->gic, "num-irq", NUM_IRQS + 32);
444     qdev_prop_set_bit(sms->gic, "has-security-extensions", true);
445 
446     redist0_capacity =
447                 sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
448     redist0_count = MIN(smp_cpus, redist0_capacity);
449 
450     redist_region_count = qlist_new();
451     qlist_append_int(redist_region_count, redist0_count);
452     qdev_prop_set_array(sms->gic, "redist-region-count", redist_region_count);
453 
454     object_property_set_link(OBJECT(sms->gic), "sysmem",
455                              OBJECT(mem), &error_fatal);
456     qdev_prop_set_bit(sms->gic, "has-lpi", true);
457 
458     gicbusdev = SYS_BUS_DEVICE(sms->gic);
459     sysbus_realize_and_unref(gicbusdev, &error_fatal);
460     sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
461     sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base);
462 
463     /*
464      * Wire the outputs from each CPU's generic timer and the GICv3
465      * maintenance interrupt signal to the appropriate GIC PPI inputs,
466      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
467      */
468     for (i = 0; i < smp_cpus; i++) {
469         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
470         int intidbase = NUM_IRQS + i * GIC_INTERNAL;
471         int irq;
472         /*
473          * Mapping from the output timer irq lines from the CPU to the
474          * GIC PPI inputs used for this board.
475          */
476         const int timer_irq[] = {
477             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
478             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
479             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
480             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
481             [GTIMER_HYPVIRT] = ARCH_TIMER_NS_EL2_VIRT_IRQ,
482         };
483 
484         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
485             qdev_connect_gpio_out(cpudev, irq,
486                                   qdev_get_gpio_in(sms->gic,
487                                                    intidbase + timer_irq[irq]));
488         }
489 
490         qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
491                                     qdev_get_gpio_in(sms->gic,
492                                                      intidbase
493                                                      + ARCH_GIC_MAINT_IRQ));
494 
495         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
496                                     qdev_get_gpio_in(sms->gic,
497                                                      intidbase
498                                                      + VIRTUAL_PMU_IRQ));
499 
500         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
501         sysbus_connect_irq(gicbusdev, i + smp_cpus,
502                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
503         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
504                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
505         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
506                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
507     }
508     create_its(sms);
509 }
510 
511 static void create_uart(const SBSAMachineState *sms, int uart,
512                         MemoryRegion *mem, Chardev *chr)
513 {
514     hwaddr base = sbsa_ref_memmap[uart].base;
515     int irq = sbsa_ref_irqmap[uart];
516     DeviceState *dev = qdev_new(TYPE_PL011);
517     SysBusDevice *s = SYS_BUS_DEVICE(dev);
518 
519     qdev_prop_set_chr(dev, "chardev", chr);
520     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
521     memory_region_add_subregion(mem, base,
522                                 sysbus_mmio_get_region(s, 0));
523     sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
524 }
525 
526 static void create_rtc(const SBSAMachineState *sms)
527 {
528     hwaddr base = sbsa_ref_memmap[SBSA_RTC].base;
529     int irq = sbsa_ref_irqmap[SBSA_RTC];
530 
531     sysbus_create_simple("pl031", base, qdev_get_gpio_in(sms->gic, irq));
532 }
533 
534 static void create_wdt(const SBSAMachineState *sms)
535 {
536     hwaddr rbase = sbsa_ref_memmap[SBSA_GWDT_REFRESH].base;
537     hwaddr cbase = sbsa_ref_memmap[SBSA_GWDT_CONTROL].base;
538     DeviceState *dev = qdev_new(TYPE_WDT_SBSA);
539     SysBusDevice *s = SYS_BUS_DEVICE(dev);
540     int irq = sbsa_ref_irqmap[SBSA_GWDT_WS0];
541 
542     qdev_prop_set_uint64(dev, "clock-frequency", SBSA_GTIMER_HZ);
543     sysbus_realize_and_unref(s, &error_fatal);
544     sysbus_mmio_map(s, 0, rbase);
545     sysbus_mmio_map(s, 1, cbase);
546     sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
547 }
548 
549 static DeviceState *gpio_key_dev;
550 static void sbsa_ref_powerdown_req(Notifier *n, void *opaque)
551 {
552     /* use gpio Pin 3 for power button event */
553     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
554 }
555 
556 static Notifier sbsa_ref_powerdown_notifier = {
557     .notify = sbsa_ref_powerdown_req
558 };
559 
560 static void create_gpio(const SBSAMachineState *sms)
561 {
562     DeviceState *pl061_dev;
563     hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base;
564     int irq = sbsa_ref_irqmap[SBSA_GPIO];
565 
566     pl061_dev = sysbus_create_simple("pl061", base,
567                                      qdev_get_gpio_in(sms->gic, irq));
568 
569     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
570                                         qdev_get_gpio_in(pl061_dev, 3));
571 
572     /* connect powerdown request */
573     qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier);
574 }
575 
576 static void create_ahci(const SBSAMachineState *sms)
577 {
578     hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base;
579     int irq = sbsa_ref_irqmap[SBSA_AHCI];
580     DeviceState *dev;
581     DriveInfo *hd[NUM_SATA_PORTS];
582     SysbusAHCIState *sysahci;
583 
584     dev = qdev_new("sysbus-ahci");
585     qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS);
586     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
587     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
588     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
589 
590     sysahci = SYSBUS_AHCI(dev);
591     ide_drive_get(hd, ARRAY_SIZE(hd));
592     ahci_ide_create_devs(&sysahci->ahci, hd);
593 }
594 
595 static void create_xhci(const SBSAMachineState *sms)
596 {
597     hwaddr base = sbsa_ref_memmap[SBSA_XHCI].base;
598     int irq = sbsa_ref_irqmap[SBSA_XHCI];
599     DeviceState *dev = qdev_new(TYPE_XHCI_SYSBUS);
600     qdev_prop_set_uint32(dev, "slots", XHCI_MAXSLOTS);
601 
602     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
603     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
604     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
605 }
606 
607 static void create_smmu(const SBSAMachineState *sms, PCIBus *bus)
608 {
609     hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base;
610     int irq =  sbsa_ref_irqmap[SBSA_SMMU];
611     DeviceState *dev;
612     int i;
613 
614     dev = qdev_new(TYPE_ARM_SMMUV3);
615 
616     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
617                              &error_abort);
618     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
619     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
620     for (i = 0; i < NUM_SMMU_IRQS; i++) {
621         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
622                            qdev_get_gpio_in(sms->gic, irq + i));
623     }
624 }
625 
626 static void create_pcie(SBSAMachineState *sms)
627 {
628     hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base;
629     hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size;
630     hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base;
631     hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size;
632     hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base;
633     hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size;
634     hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base;
635     int irq = sbsa_ref_irqmap[SBSA_PCIE];
636     MachineClass *mc = MACHINE_GET_CLASS(sms);
637     MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg;
638     MemoryRegion *ecam_alias, *ecam_reg;
639     DeviceState *dev;
640     PCIHostState *pci;
641     int i;
642 
643     dev = qdev_new(TYPE_GPEX_HOST);
644     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
645 
646     /* Map ECAM space */
647     ecam_alias = g_new0(MemoryRegion, 1);
648     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
649     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
650                              ecam_reg, 0, size_ecam);
651     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
652 
653     /* Map the MMIO space */
654     mmio_alias = g_new0(MemoryRegion, 1);
655     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
656     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
657                              mmio_reg, base_mmio, size_mmio);
658     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
659 
660     /* Map the MMIO_HIGH space */
661     mmio_alias_high = g_new0(MemoryRegion, 1);
662     memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high",
663                              mmio_reg, base_mmio_high, size_mmio_high);
664     memory_region_add_subregion(get_system_memory(), base_mmio_high,
665                                 mmio_alias_high);
666 
667     /* Map IO port space */
668     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
669 
670     for (i = 0; i < GPEX_NUM_IRQS; i++) {
671         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
672                            qdev_get_gpio_in(sms->gic, irq + i));
673         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
674     }
675 
676     pci = PCI_HOST_BRIDGE(dev);
677 
678     pci_init_nic_devices(pci->bus, mc->default_nic);
679 
680     pci_create_simple(pci->bus, -1, "bochs-display");
681 
682     create_smmu(sms, pci->bus);
683 }
684 
685 static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size)
686 {
687     const SBSAMachineState *board = container_of(binfo, SBSAMachineState,
688                                                  bootinfo);
689 
690     *fdt_size = board->fdt_size;
691     return board->fdt;
692 }
693 
694 static void create_secure_ec(MemoryRegion *mem)
695 {
696     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_EC].base;
697     DeviceState *dev = qdev_new("sbsa-ec");
698     SysBusDevice *s = SYS_BUS_DEVICE(dev);
699 
700     memory_region_add_subregion(mem, base,
701                                 sysbus_mmio_get_region(s, 0));
702 }
703 
704 static void sbsa_ref_init(MachineState *machine)
705 {
706     unsigned int smp_cpus = machine->smp.cpus;
707     unsigned int max_cpus = machine->smp.max_cpus;
708     SBSAMachineState *sms = SBSA_MACHINE(machine);
709     MachineClass *mc = MACHINE_GET_CLASS(machine);
710     MemoryRegion *sysmem = get_system_memory();
711     MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1);
712     bool firmware_loaded;
713     const CPUArchIdList *possible_cpus;
714     int n, sbsa_max_cpus;
715 
716     if (kvm_enabled()) {
717         error_report("sbsa-ref: KVM is not supported for this machine");
718         exit(1);
719     }
720 
721     /*
722      * The Secure view of the world is the same as the NonSecure,
723      * but with a few extra devices. Create it as a container region
724      * containing the system memory at low priority; any secure-only
725      * devices go in at higher priority and take precedence.
726      */
727     memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
728                        UINT64_MAX);
729     memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
730 
731     firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem);
732 
733     /*
734      * This machine has EL3 enabled, external firmware should supply PSCI
735      * implementation, so the QEMU's internal PSCI is disabled.
736      */
737     sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
738 
739     sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
740 
741     if (max_cpus > sbsa_max_cpus) {
742         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
743                      "supported by machine 'sbsa-ref' (%d)",
744                      max_cpus, sbsa_max_cpus);
745         exit(1);
746     }
747 
748     sms->smp_cpus = smp_cpus;
749 
750     if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
751         error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
752         exit(1);
753     }
754 
755     possible_cpus = mc->possible_cpu_arch_ids(machine);
756     for (n = 0; n < possible_cpus->len; n++) {
757         Object *cpuobj;
758         CPUState *cs;
759 
760         if (n >= smp_cpus) {
761             break;
762         }
763 
764         cpuobj = object_new(possible_cpus->cpus[n].type);
765         object_property_set_int(cpuobj, "mp-affinity",
766                                 possible_cpus->cpus[n].arch_id, NULL);
767 
768         cs = CPU(cpuobj);
769         cs->cpu_index = n;
770 
771         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
772                           &error_fatal);
773 
774         if (object_property_find(cpuobj, "reset-cbar")) {
775             object_property_set_int(cpuobj, "reset-cbar",
776                                     sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
777                                     &error_abort);
778         }
779 
780         object_property_set_int(cpuobj, "cntfrq", SBSA_GTIMER_HZ, &error_abort);
781 
782         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
783                                  &error_abort);
784 
785         object_property_set_link(cpuobj, "secure-memory",
786                                  OBJECT(secure_sysmem), &error_abort);
787 
788         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
789         object_unref(cpuobj);
790     }
791 
792     memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base,
793                                 machine->ram);
794 
795     create_fdt(sms);
796 
797     create_secure_ram(sms, secure_sysmem);
798 
799     create_gic(sms, sysmem);
800 
801     create_uart(sms, SBSA_UART, sysmem, serial_hd(0));
802     create_uart(sms, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));
803     /* Second secure UART for RAS and MM from EL0 */
804     create_uart(sms, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2));
805 
806     create_rtc(sms);
807 
808     create_wdt(sms);
809 
810     create_gpio(sms);
811 
812     create_ahci(sms);
813 
814     create_xhci(sms);
815 
816     create_pcie(sms);
817 
818     create_secure_ec(secure_sysmem);
819 
820     sms->bootinfo.ram_size = machine->ram_size;
821     sms->bootinfo.board_id = -1;
822     sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
823     sms->bootinfo.get_dtb = sbsa_ref_dtb;
824     sms->bootinfo.firmware_loaded = firmware_loaded;
825     arm_load_kernel(ARM_CPU(first_cpu), machine, &sms->bootinfo);
826 }
827 
828 static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
829 {
830     unsigned int max_cpus = ms->smp.max_cpus;
831     SBSAMachineState *sms = SBSA_MACHINE(ms);
832     int n;
833 
834     if (ms->possible_cpus) {
835         assert(ms->possible_cpus->len == max_cpus);
836         return ms->possible_cpus;
837     }
838 
839     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
840                                   sizeof(CPUArchId) * max_cpus);
841     ms->possible_cpus->len = max_cpus;
842     for (n = 0; n < ms->possible_cpus->len; n++) {
843         ms->possible_cpus->cpus[n].type = ms->cpu_type;
844         ms->possible_cpus->cpus[n].arch_id =
845             sbsa_ref_cpu_mp_affinity(sms, n);
846         ms->possible_cpus->cpus[n].props.has_thread_id = true;
847         ms->possible_cpus->cpus[n].props.thread_id = n;
848     }
849     return ms->possible_cpus;
850 }
851 
852 static CpuInstanceProperties
853 sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
854 {
855     MachineClass *mc = MACHINE_GET_CLASS(ms);
856     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
857 
858     assert(cpu_index < possible_cpus->len);
859     return possible_cpus->cpus[cpu_index].props;
860 }
861 
862 static int64_t
863 sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
864 {
865     return idx % ms->numa_state->num_nodes;
866 }
867 
868 static void sbsa_ref_instance_init(Object *obj)
869 {
870     SBSAMachineState *sms = SBSA_MACHINE(obj);
871 
872     sbsa_flash_create(sms);
873 }
874 
875 static void sbsa_ref_class_init(ObjectClass *oc, void *data)
876 {
877     MachineClass *mc = MACHINE_CLASS(oc);
878     static const char * const valid_cpu_types[] = {
879         ARM_CPU_TYPE_NAME("cortex-a57"),
880         ARM_CPU_TYPE_NAME("cortex-a72"),
881         ARM_CPU_TYPE_NAME("neoverse-n1"),
882         ARM_CPU_TYPE_NAME("neoverse-v1"),
883         ARM_CPU_TYPE_NAME("neoverse-n2"),
884         ARM_CPU_TYPE_NAME("max"),
885         NULL,
886     };
887 
888     mc->init = sbsa_ref_init;
889     mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
890     mc->default_cpu_type = ARM_CPU_TYPE_NAME("neoverse-n2");
891     mc->valid_cpu_types = valid_cpu_types;
892     mc->max_cpus = 512;
893     mc->pci_allow_0_address = true;
894     mc->minimum_page_bits = 12;
895     mc->block_default_type = IF_IDE;
896     mc->no_cdrom = 1;
897     mc->default_nic = "e1000e";
898     mc->default_ram_size = 1 * GiB;
899     mc->default_ram_id = "sbsa-ref.ram";
900     mc->default_cpus = 4;
901     mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
902     mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
903     mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
904     /* platform instead of architectural choice */
905     mc->cpu_cluster_has_numa_boundary = true;
906 }
907 
908 static const TypeInfo sbsa_ref_info = {
909     .name          = TYPE_SBSA_MACHINE,
910     .parent        = TYPE_MACHINE,
911     .instance_init = sbsa_ref_instance_init,
912     .class_init    = sbsa_ref_class_init,
913     .instance_size = sizeof(SBSAMachineState),
914 };
915 
916 static void sbsa_ref_machine_init(void)
917 {
918     type_register_static(&sbsa_ref_info);
919 }
920 
921 type_init(sbsa_ref_machine_init);
922