xref: /openbmc/qemu/hw/arm/raspi.c (revision d2623129)
1 /*
2  * Raspberry Pi emulation (c) 2012 Gregory Estrade
3  * Upstreaming code cleanup [including bcm2835_*] (c) 2013 Jan Petrous
4  *
5  * Rasperry Pi 2 emulation Copyright (c) 2015, Microsoft
6  * Written by Andrew Baumann
7  *
8  * Raspberry Pi 3 emulation Copyright (c) 2018 Zoltán Baldaszti
9  * Upstream code cleanup (c) 2018 Pekka Enberg
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qemu/units.h"
17 #include "qemu/cutils.h"
18 #include "qapi/error.h"
19 #include "cpu.h"
20 #include "hw/arm/bcm2836.h"
21 #include "hw/registerfields.h"
22 #include "qemu/error-report.h"
23 #include "hw/boards.h"
24 #include "hw/loader.h"
25 #include "hw/arm/boot.h"
26 #include "sysemu/sysemu.h"
27 
28 #define SMPBOOT_ADDR    0x300 /* this should leave enough space for ATAGS */
29 #define MVBAR_ADDR      0x400 /* secure vectors */
30 #define BOARDSETUP_ADDR (MVBAR_ADDR + 0x20) /* board setup code */
31 #define FIRMWARE_ADDR_2 0x8000 /* Pi 2 loads kernel.img here by default */
32 #define FIRMWARE_ADDR_3 0x80000 /* Pi 3 loads kernel.img here by default */
33 #define SPINTABLE_ADDR  0xd8 /* Pi 3 bootloader spintable */
34 
35 /* Registered machine type (matches RPi Foundation bootloader and U-Boot) */
36 #define MACH_TYPE_BCM2708   3138
37 
38 typedef struct RaspiMachineState {
39     /*< private >*/
40     MachineState parent_obj;
41     /*< public >*/
42     BCM283XState soc;
43 } RaspiMachineState;
44 
45 typedef struct RaspiMachineClass {
46     /*< private >*/
47     MachineClass parent_obj;
48     /*< public >*/
49     uint32_t board_rev;
50 } RaspiMachineClass;
51 
52 #define TYPE_RASPI_MACHINE       MACHINE_TYPE_NAME("raspi-common")
53 #define RASPI_MACHINE(obj) \
54     OBJECT_CHECK(RaspiMachineState, (obj), TYPE_RASPI_MACHINE)
55 
56 #define RASPI_MACHINE_CLASS(klass) \
57      OBJECT_CLASS_CHECK(RaspiMachineClass, (klass), TYPE_RASPI_MACHINE)
58 #define RASPI_MACHINE_GET_CLASS(obj) \
59      OBJECT_GET_CLASS(RaspiMachineClass, (obj), TYPE_RASPI_MACHINE)
60 
61 /*
62  * Board revision codes:
63  * www.raspberrypi.org/documentation/hardware/raspberrypi/revision-codes/
64  */
65 FIELD(REV_CODE, REVISION,           0, 4);
66 FIELD(REV_CODE, TYPE,               4, 8);
67 FIELD(REV_CODE, PROCESSOR,         12, 4);
68 FIELD(REV_CODE, MANUFACTURER,      16, 4);
69 FIELD(REV_CODE, MEMORY_SIZE,       20, 3);
70 FIELD(REV_CODE, STYLE,             23, 1);
71 
72 static uint64_t board_ram_size(uint32_t board_rev)
73 {
74     assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
75     return 256 * MiB << FIELD_EX32(board_rev, REV_CODE, MEMORY_SIZE);
76 }
77 
78 static int board_processor_id(uint32_t board_rev)
79 {
80     assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
81     return FIELD_EX32(board_rev, REV_CODE, PROCESSOR);
82 }
83 
84 static int board_version(uint32_t board_rev)
85 {
86     return board_processor_id(board_rev) + 1;
87 }
88 
89 static const char *board_soc_type(uint32_t board_rev)
90 {
91     static const char *soc_types[] = {
92         NULL, TYPE_BCM2836, TYPE_BCM2837,
93     };
94     int proc_id = board_processor_id(board_rev);
95 
96     if (proc_id >= ARRAY_SIZE(soc_types) || !soc_types[proc_id]) {
97         error_report("Unsupported processor id '%d' (board revision: 0x%x)",
98                      proc_id, board_rev);
99         exit(1);
100     }
101     return soc_types[proc_id];
102 }
103 
104 static int cores_count(uint32_t board_rev)
105 {
106     static const int soc_cores_count[] = {
107         0, BCM283X_NCPUS, BCM283X_NCPUS,
108     };
109     int proc_id = board_processor_id(board_rev);
110 
111     if (proc_id >= ARRAY_SIZE(soc_cores_count) || !soc_cores_count[proc_id]) {
112         error_report("Unsupported processor id '%d' (board revision: 0x%x)",
113                      proc_id, board_rev);
114         exit(1);
115     }
116     return soc_cores_count[proc_id];
117 }
118 
119 static const char *board_type(uint32_t board_rev)
120 {
121     static const char *types[] = {
122         "A", "B", "A+", "B+", "2B", "Alpha", "CM1", NULL, "3B", "Zero",
123         "CM3", NULL, "Zero W", "3B+", "3A+", NULL, "CM3+", "4B",
124     };
125     assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
126     int bt = FIELD_EX32(board_rev, REV_CODE, TYPE);
127     if (bt >= ARRAY_SIZE(types) || !types[bt]) {
128         return "Unknown";
129     }
130     return types[bt];
131 }
132 
133 static void write_smpboot(ARMCPU *cpu, const struct arm_boot_info *info)
134 {
135     static const uint32_t smpboot[] = {
136         0xe1a0e00f, /*    mov     lr, pc */
137         0xe3a0fe00 + (BOARDSETUP_ADDR >> 4), /* mov pc, BOARDSETUP_ADDR */
138         0xee100fb0, /*    mrc     p15, 0, r0, c0, c0, 5;get core ID */
139         0xe7e10050, /*    ubfx    r0, r0, #0, #2       ;extract LSB */
140         0xe59f5014, /*    ldr     r5, =0x400000CC      ;load mbox base */
141         0xe320f001, /* 1: yield */
142         0xe7953200, /*    ldr     r3, [r5, r0, lsl #4] ;read mbox for our core*/
143         0xe3530000, /*    cmp     r3, #0               ;spin while zero */
144         0x0afffffb, /*    beq     1b */
145         0xe7853200, /*    str     r3, [r5, r0, lsl #4] ;clear mbox */
146         0xe12fff13, /*    bx      r3                   ;jump to target */
147         0x400000cc, /* (constant: mailbox 3 read/clear base) */
148     };
149 
150     /* check that we don't overrun board setup vectors */
151     QEMU_BUILD_BUG_ON(SMPBOOT_ADDR + sizeof(smpboot) > MVBAR_ADDR);
152     /* check that board setup address is correctly relocated */
153     QEMU_BUILD_BUG_ON((BOARDSETUP_ADDR & 0xf) != 0
154                       || (BOARDSETUP_ADDR >> 4) >= 0x100);
155 
156     rom_add_blob_fixed_as("raspi_smpboot", smpboot, sizeof(smpboot),
157                           info->smp_loader_start,
158                           arm_boot_address_space(cpu, info));
159 }
160 
161 static void write_smpboot64(ARMCPU *cpu, const struct arm_boot_info *info)
162 {
163     AddressSpace *as = arm_boot_address_space(cpu, info);
164     /* Unlike the AArch32 version we don't need to call the board setup hook.
165      * The mechanism for doing the spin-table is also entirely different.
166      * We must have four 64-bit fields at absolute addresses
167      * 0xd8, 0xe0, 0xe8, 0xf0 in RAM, which are the flag variables for
168      * our CPUs, and which we must ensure are zero initialized before
169      * the primary CPU goes into the kernel. We put these variables inside
170      * a rom blob, so that the reset for ROM contents zeroes them for us.
171      */
172     static const uint32_t smpboot[] = {
173         0xd2801b05, /*        mov     x5, 0xd8 */
174         0xd53800a6, /*        mrs     x6, mpidr_el1 */
175         0x924004c6, /*        and     x6, x6, #0x3 */
176         0xd503205f, /* spin:  wfe */
177         0xf86678a4, /*        ldr     x4, [x5,x6,lsl #3] */
178         0xb4ffffc4, /*        cbz     x4, spin */
179         0xd2800000, /*        mov     x0, #0x0 */
180         0xd2800001, /*        mov     x1, #0x0 */
181         0xd2800002, /*        mov     x2, #0x0 */
182         0xd2800003, /*        mov     x3, #0x0 */
183         0xd61f0080, /*        br      x4 */
184     };
185 
186     static const uint64_t spintables[] = {
187         0, 0, 0, 0
188     };
189 
190     rom_add_blob_fixed_as("raspi_smpboot", smpboot, sizeof(smpboot),
191                           info->smp_loader_start, as);
192     rom_add_blob_fixed_as("raspi_spintables", spintables, sizeof(spintables),
193                           SPINTABLE_ADDR, as);
194 }
195 
196 static void write_board_setup(ARMCPU *cpu, const struct arm_boot_info *info)
197 {
198     arm_write_secure_board_setup_dummy_smc(cpu, info, MVBAR_ADDR);
199 }
200 
201 static void reset_secondary(ARMCPU *cpu, const struct arm_boot_info *info)
202 {
203     CPUState *cs = CPU(cpu);
204     cpu_set_pc(cs, info->smp_loader_start);
205 }
206 
207 static void setup_boot(MachineState *machine, int version, size_t ram_size)
208 {
209     static struct arm_boot_info binfo;
210     int r;
211 
212     binfo.board_id = MACH_TYPE_BCM2708;
213     binfo.ram_size = ram_size;
214     binfo.nb_cpus = machine->smp.cpus;
215 
216     if (version <= 2) {
217         /* The rpi1 and 2 require some custom setup code to run in Secure
218          * mode before booting a kernel (to set up the SMC vectors so
219          * that we get a no-op SMC; this is used by Linux to call the
220          * firmware for some cache maintenance operations.
221          * The rpi3 doesn't need this.
222          */
223         binfo.board_setup_addr = BOARDSETUP_ADDR;
224         binfo.write_board_setup = write_board_setup;
225         binfo.secure_board_setup = true;
226         binfo.secure_boot = true;
227     }
228 
229     /* Pi2 and Pi3 requires SMP setup */
230     if (version >= 2) {
231         binfo.smp_loader_start = SMPBOOT_ADDR;
232         if (version == 2) {
233             binfo.write_secondary_boot = write_smpboot;
234         } else {
235             binfo.write_secondary_boot = write_smpboot64;
236         }
237         binfo.secondary_cpu_reset_hook = reset_secondary;
238     }
239 
240     /* If the user specified a "firmware" image (e.g. UEFI), we bypass
241      * the normal Linux boot process
242      */
243     if (machine->firmware) {
244         hwaddr firmware_addr = version == 3 ? FIRMWARE_ADDR_3 : FIRMWARE_ADDR_2;
245         /* load the firmware image (typically kernel.img) */
246         r = load_image_targphys(machine->firmware, firmware_addr,
247                                 ram_size - firmware_addr);
248         if (r < 0) {
249             error_report("Failed to load firmware from %s", machine->firmware);
250             exit(1);
251         }
252 
253         binfo.entry = firmware_addr;
254         binfo.firmware_loaded = true;
255     }
256 
257     arm_load_kernel(ARM_CPU(first_cpu), machine, &binfo);
258 }
259 
260 static void raspi_machine_init(MachineState *machine)
261 {
262     RaspiMachineClass *mc = RASPI_MACHINE_GET_CLASS(machine);
263     RaspiMachineState *s = RASPI_MACHINE(machine);
264     uint32_t board_rev = mc->board_rev;
265     int version = board_version(board_rev);
266     uint64_t ram_size = board_ram_size(board_rev);
267     uint32_t vcram_size;
268     DriveInfo *di;
269     BlockBackend *blk;
270     BusState *bus;
271     DeviceState *carddev;
272 
273     if (machine->ram_size != ram_size) {
274         char *size_str = size_to_str(ram_size);
275         error_report("Invalid RAM size, should be %s", size_str);
276         g_free(size_str);
277         exit(1);
278     }
279 
280     /* FIXME: Remove when we have custom CPU address space support */
281     memory_region_add_subregion_overlap(get_system_memory(), 0,
282                                         machine->ram, 0);
283 
284     /* Setup the SOC */
285     object_initialize_child(OBJECT(machine), "soc", &s->soc, sizeof(s->soc),
286                             board_soc_type(board_rev), &error_abort, NULL);
287     object_property_add_const_link(OBJECT(&s->soc), "ram", OBJECT(machine->ram));
288     object_property_set_int(OBJECT(&s->soc), board_rev, "board-rev",
289                             &error_abort);
290     object_property_set_bool(OBJECT(&s->soc), true, "realized", &error_abort);
291 
292     /* Create and plug in the SD cards */
293     di = drive_get_next(IF_SD);
294     blk = di ? blk_by_legacy_dinfo(di) : NULL;
295     bus = qdev_get_child_bus(DEVICE(&s->soc), "sd-bus");
296     if (bus == NULL) {
297         error_report("No SD bus found in SOC object");
298         exit(1);
299     }
300     carddev = qdev_create(bus, TYPE_SD_CARD);
301     qdev_prop_set_drive(carddev, "drive", blk, &error_fatal);
302     object_property_set_bool(OBJECT(carddev), true, "realized", &error_fatal);
303 
304     vcram_size = object_property_get_uint(OBJECT(&s->soc), "vcram-size",
305                                           &error_abort);
306     setup_boot(machine, version, machine->ram_size - vcram_size);
307 }
308 
309 static void raspi_machine_class_init(ObjectClass *oc, void *data)
310 {
311     MachineClass *mc = MACHINE_CLASS(oc);
312     RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
313     uint32_t board_rev = (uint32_t)(uintptr_t)data;
314 
315     rmc->board_rev = board_rev;
316     mc->desc = g_strdup_printf("Raspberry Pi %s", board_type(board_rev));
317     mc->init = raspi_machine_init;
318     mc->block_default_type = IF_SD;
319     mc->no_parallel = 1;
320     mc->no_floppy = 1;
321     mc->no_cdrom = 1;
322     mc->default_cpus = mc->min_cpus = mc->max_cpus = cores_count(board_rev);
323     mc->default_ram_size = board_ram_size(board_rev);
324     mc->default_ram_id = "ram";
325     if (board_version(board_rev) == 2) {
326         mc->ignore_memory_transaction_failures = true;
327     }
328 };
329 
330 static const TypeInfo raspi_machine_types[] = {
331     {
332         .name           = MACHINE_TYPE_NAME("raspi2"),
333         .parent         = TYPE_RASPI_MACHINE,
334         .class_init     = raspi_machine_class_init,
335         .class_data     = (void *)0xa21041,
336 #ifdef TARGET_AARCH64
337     }, {
338         .name           = MACHINE_TYPE_NAME("raspi3"),
339         .parent         = TYPE_RASPI_MACHINE,
340         .class_init     = raspi_machine_class_init,
341         .class_data     = (void *)0xa02082,
342 #endif
343     }, {
344         .name           = TYPE_RASPI_MACHINE,
345         .parent         = TYPE_MACHINE,
346         .instance_size  = sizeof(RaspiMachineState),
347         .class_size     = sizeof(RaspiMachineClass),
348         .abstract       = true,
349     }
350 };
351 
352 DEFINE_TYPES(raspi_machine_types)
353