1 /* 2 * Raspberry Pi emulation (c) 2012 Gregory Estrade 3 * Upstreaming code cleanup [including bcm2835_*] (c) 2013 Jan Petrous 4 * 5 * Rasperry Pi 2 emulation Copyright (c) 2015, Microsoft 6 * Written by Andrew Baumann 7 * 8 * Raspberry Pi 3 emulation Copyright (c) 2018 Zoltán Baldaszti 9 * Upstream code cleanup (c) 2018 Pekka Enberg 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qemu/units.h" 17 #include "qemu/cutils.h" 18 #include "qapi/error.h" 19 #include "cpu.h" 20 #include "hw/arm/bcm2836.h" 21 #include "hw/registerfields.h" 22 #include "qemu/error-report.h" 23 #include "hw/boards.h" 24 #include "hw/loader.h" 25 #include "hw/arm/boot.h" 26 #include "sysemu/sysemu.h" 27 28 #define SMPBOOT_ADDR 0x300 /* this should leave enough space for ATAGS */ 29 #define MVBAR_ADDR 0x400 /* secure vectors */ 30 #define BOARDSETUP_ADDR (MVBAR_ADDR + 0x20) /* board setup code */ 31 #define FIRMWARE_ADDR_2 0x8000 /* Pi 2 loads kernel.img here by default */ 32 #define FIRMWARE_ADDR_3 0x80000 /* Pi 3 loads kernel.img here by default */ 33 #define SPINTABLE_ADDR 0xd8 /* Pi 3 bootloader spintable */ 34 35 /* Registered machine type (matches RPi Foundation bootloader and U-Boot) */ 36 #define MACH_TYPE_BCM2708 3138 37 38 typedef struct RaspiMachineState { 39 /*< private >*/ 40 MachineState parent_obj; 41 /*< public >*/ 42 BCM283XState soc; 43 } RaspiMachineState; 44 45 typedef struct RaspiMachineClass { 46 /*< private >*/ 47 MachineClass parent_obj; 48 /*< public >*/ 49 uint32_t board_rev; 50 } RaspiMachineClass; 51 52 #define TYPE_RASPI_MACHINE MACHINE_TYPE_NAME("raspi-common") 53 #define RASPI_MACHINE(obj) \ 54 OBJECT_CHECK(RaspiMachineState, (obj), TYPE_RASPI_MACHINE) 55 56 #define RASPI_MACHINE_CLASS(klass) \ 57 OBJECT_CLASS_CHECK(RaspiMachineClass, (klass), TYPE_RASPI_MACHINE) 58 #define RASPI_MACHINE_GET_CLASS(obj) \ 59 OBJECT_GET_CLASS(RaspiMachineClass, (obj), TYPE_RASPI_MACHINE) 60 61 /* 62 * Board revision codes: 63 * www.raspberrypi.org/documentation/hardware/raspberrypi/revision-codes/ 64 */ 65 FIELD(REV_CODE, REVISION, 0, 4); 66 FIELD(REV_CODE, TYPE, 4, 8); 67 FIELD(REV_CODE, PROCESSOR, 12, 4); 68 FIELD(REV_CODE, MANUFACTURER, 16, 4); 69 FIELD(REV_CODE, MEMORY_SIZE, 20, 3); 70 FIELD(REV_CODE, STYLE, 23, 1); 71 72 static uint64_t board_ram_size(uint32_t board_rev) 73 { 74 assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */ 75 return 256 * MiB << FIELD_EX32(board_rev, REV_CODE, MEMORY_SIZE); 76 } 77 78 static int board_processor_id(uint32_t board_rev) 79 { 80 assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */ 81 return FIELD_EX32(board_rev, REV_CODE, PROCESSOR); 82 } 83 84 static int board_version(uint32_t board_rev) 85 { 86 return board_processor_id(board_rev) + 1; 87 } 88 89 static const char *board_soc_type(uint32_t board_rev) 90 { 91 static const char *soc_types[] = { 92 NULL, TYPE_BCM2836, TYPE_BCM2837, 93 }; 94 int proc_id = board_processor_id(board_rev); 95 96 if (proc_id >= ARRAY_SIZE(soc_types) || !soc_types[proc_id]) { 97 error_report("Unsupported processor id '%d' (board revision: 0x%x)", 98 proc_id, board_rev); 99 exit(1); 100 } 101 return soc_types[proc_id]; 102 } 103 104 static int cores_count(uint32_t board_rev) 105 { 106 static const int soc_cores_count[] = { 107 0, BCM283X_NCPUS, BCM283X_NCPUS, 108 }; 109 int proc_id = board_processor_id(board_rev); 110 111 if (proc_id >= ARRAY_SIZE(soc_cores_count) || !soc_cores_count[proc_id]) { 112 error_report("Unsupported processor id '%d' (board revision: 0x%x)", 113 proc_id, board_rev); 114 exit(1); 115 } 116 return soc_cores_count[proc_id]; 117 } 118 119 static const char *board_type(uint32_t board_rev) 120 { 121 static const char *types[] = { 122 "A", "B", "A+", "B+", "2B", "Alpha", "CM1", NULL, "3B", "Zero", 123 "CM3", NULL, "Zero W", "3B+", "3A+", NULL, "CM3+", "4B", 124 }; 125 assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */ 126 int bt = FIELD_EX32(board_rev, REV_CODE, TYPE); 127 if (bt >= ARRAY_SIZE(types) || !types[bt]) { 128 return "Unknown"; 129 } 130 return types[bt]; 131 } 132 133 static void write_smpboot(ARMCPU *cpu, const struct arm_boot_info *info) 134 { 135 static const uint32_t smpboot[] = { 136 0xe1a0e00f, /* mov lr, pc */ 137 0xe3a0fe00 + (BOARDSETUP_ADDR >> 4), /* mov pc, BOARDSETUP_ADDR */ 138 0xee100fb0, /* mrc p15, 0, r0, c0, c0, 5;get core ID */ 139 0xe7e10050, /* ubfx r0, r0, #0, #2 ;extract LSB */ 140 0xe59f5014, /* ldr r5, =0x400000CC ;load mbox base */ 141 0xe320f001, /* 1: yield */ 142 0xe7953200, /* ldr r3, [r5, r0, lsl #4] ;read mbox for our core*/ 143 0xe3530000, /* cmp r3, #0 ;spin while zero */ 144 0x0afffffb, /* beq 1b */ 145 0xe7853200, /* str r3, [r5, r0, lsl #4] ;clear mbox */ 146 0xe12fff13, /* bx r3 ;jump to target */ 147 0x400000cc, /* (constant: mailbox 3 read/clear base) */ 148 }; 149 150 /* check that we don't overrun board setup vectors */ 151 QEMU_BUILD_BUG_ON(SMPBOOT_ADDR + sizeof(smpboot) > MVBAR_ADDR); 152 /* check that board setup address is correctly relocated */ 153 QEMU_BUILD_BUG_ON((BOARDSETUP_ADDR & 0xf) != 0 154 || (BOARDSETUP_ADDR >> 4) >= 0x100); 155 156 rom_add_blob_fixed_as("raspi_smpboot", smpboot, sizeof(smpboot), 157 info->smp_loader_start, 158 arm_boot_address_space(cpu, info)); 159 } 160 161 static void write_smpboot64(ARMCPU *cpu, const struct arm_boot_info *info) 162 { 163 AddressSpace *as = arm_boot_address_space(cpu, info); 164 /* Unlike the AArch32 version we don't need to call the board setup hook. 165 * The mechanism for doing the spin-table is also entirely different. 166 * We must have four 64-bit fields at absolute addresses 167 * 0xd8, 0xe0, 0xe8, 0xf0 in RAM, which are the flag variables for 168 * our CPUs, and which we must ensure are zero initialized before 169 * the primary CPU goes into the kernel. We put these variables inside 170 * a rom blob, so that the reset for ROM contents zeroes them for us. 171 */ 172 static const uint32_t smpboot[] = { 173 0xd2801b05, /* mov x5, 0xd8 */ 174 0xd53800a6, /* mrs x6, mpidr_el1 */ 175 0x924004c6, /* and x6, x6, #0x3 */ 176 0xd503205f, /* spin: wfe */ 177 0xf86678a4, /* ldr x4, [x5,x6,lsl #3] */ 178 0xb4ffffc4, /* cbz x4, spin */ 179 0xd2800000, /* mov x0, #0x0 */ 180 0xd2800001, /* mov x1, #0x0 */ 181 0xd2800002, /* mov x2, #0x0 */ 182 0xd2800003, /* mov x3, #0x0 */ 183 0xd61f0080, /* br x4 */ 184 }; 185 186 static const uint64_t spintables[] = { 187 0, 0, 0, 0 188 }; 189 190 rom_add_blob_fixed_as("raspi_smpboot", smpboot, sizeof(smpboot), 191 info->smp_loader_start, as); 192 rom_add_blob_fixed_as("raspi_spintables", spintables, sizeof(spintables), 193 SPINTABLE_ADDR, as); 194 } 195 196 static void write_board_setup(ARMCPU *cpu, const struct arm_boot_info *info) 197 { 198 arm_write_secure_board_setup_dummy_smc(cpu, info, MVBAR_ADDR); 199 } 200 201 static void reset_secondary(ARMCPU *cpu, const struct arm_boot_info *info) 202 { 203 CPUState *cs = CPU(cpu); 204 cpu_set_pc(cs, info->smp_loader_start); 205 } 206 207 static void setup_boot(MachineState *machine, int version, size_t ram_size) 208 { 209 static struct arm_boot_info binfo; 210 int r; 211 212 binfo.board_id = MACH_TYPE_BCM2708; 213 binfo.ram_size = ram_size; 214 binfo.nb_cpus = machine->smp.cpus; 215 216 if (version <= 2) { 217 /* The rpi1 and 2 require some custom setup code to run in Secure 218 * mode before booting a kernel (to set up the SMC vectors so 219 * that we get a no-op SMC; this is used by Linux to call the 220 * firmware for some cache maintenance operations. 221 * The rpi3 doesn't need this. 222 */ 223 binfo.board_setup_addr = BOARDSETUP_ADDR; 224 binfo.write_board_setup = write_board_setup; 225 binfo.secure_board_setup = true; 226 binfo.secure_boot = true; 227 } 228 229 /* Pi2 and Pi3 requires SMP setup */ 230 if (version >= 2) { 231 binfo.smp_loader_start = SMPBOOT_ADDR; 232 if (version == 2) { 233 binfo.write_secondary_boot = write_smpboot; 234 } else { 235 binfo.write_secondary_boot = write_smpboot64; 236 } 237 binfo.secondary_cpu_reset_hook = reset_secondary; 238 } 239 240 /* If the user specified a "firmware" image (e.g. UEFI), we bypass 241 * the normal Linux boot process 242 */ 243 if (machine->firmware) { 244 hwaddr firmware_addr = version == 3 ? FIRMWARE_ADDR_3 : FIRMWARE_ADDR_2; 245 /* load the firmware image (typically kernel.img) */ 246 r = load_image_targphys(machine->firmware, firmware_addr, 247 ram_size - firmware_addr); 248 if (r < 0) { 249 error_report("Failed to load firmware from %s", machine->firmware); 250 exit(1); 251 } 252 253 binfo.entry = firmware_addr; 254 binfo.firmware_loaded = true; 255 } 256 257 arm_load_kernel(ARM_CPU(first_cpu), machine, &binfo); 258 } 259 260 static void raspi_machine_init(MachineState *machine) 261 { 262 RaspiMachineClass *mc = RASPI_MACHINE_GET_CLASS(machine); 263 RaspiMachineState *s = RASPI_MACHINE(machine); 264 uint32_t board_rev = mc->board_rev; 265 int version = board_version(board_rev); 266 uint64_t ram_size = board_ram_size(board_rev); 267 uint32_t vcram_size; 268 DriveInfo *di; 269 BlockBackend *blk; 270 BusState *bus; 271 DeviceState *carddev; 272 273 if (machine->ram_size != ram_size) { 274 char *size_str = size_to_str(ram_size); 275 error_report("Invalid RAM size, should be %s", size_str); 276 g_free(size_str); 277 exit(1); 278 } 279 280 /* FIXME: Remove when we have custom CPU address space support */ 281 memory_region_add_subregion_overlap(get_system_memory(), 0, 282 machine->ram, 0); 283 284 /* Setup the SOC */ 285 object_initialize_child(OBJECT(machine), "soc", &s->soc, sizeof(s->soc), 286 board_soc_type(board_rev), &error_abort, NULL); 287 object_property_add_const_link(OBJECT(&s->soc), "ram", OBJECT(machine->ram), 288 &error_abort); 289 object_property_set_int(OBJECT(&s->soc), board_rev, "board-rev", 290 &error_abort); 291 object_property_set_bool(OBJECT(&s->soc), true, "realized", &error_abort); 292 293 /* Create and plug in the SD cards */ 294 di = drive_get_next(IF_SD); 295 blk = di ? blk_by_legacy_dinfo(di) : NULL; 296 bus = qdev_get_child_bus(DEVICE(&s->soc), "sd-bus"); 297 if (bus == NULL) { 298 error_report("No SD bus found in SOC object"); 299 exit(1); 300 } 301 carddev = qdev_create(bus, TYPE_SD_CARD); 302 qdev_prop_set_drive(carddev, "drive", blk, &error_fatal); 303 object_property_set_bool(OBJECT(carddev), true, "realized", &error_fatal); 304 305 vcram_size = object_property_get_uint(OBJECT(&s->soc), "vcram-size", 306 &error_abort); 307 setup_boot(machine, version, machine->ram_size - vcram_size); 308 } 309 310 static void raspi_machine_class_init(ObjectClass *oc, void *data) 311 { 312 MachineClass *mc = MACHINE_CLASS(oc); 313 RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc); 314 uint32_t board_rev = (uint32_t)(uintptr_t)data; 315 316 rmc->board_rev = board_rev; 317 mc->desc = g_strdup_printf("Raspberry Pi %s", board_type(board_rev)); 318 mc->init = raspi_machine_init; 319 mc->block_default_type = IF_SD; 320 mc->no_parallel = 1; 321 mc->no_floppy = 1; 322 mc->no_cdrom = 1; 323 mc->default_cpus = mc->min_cpus = mc->max_cpus = cores_count(board_rev); 324 mc->default_ram_size = board_ram_size(board_rev); 325 mc->default_ram_id = "ram"; 326 if (board_version(board_rev) == 2) { 327 mc->ignore_memory_transaction_failures = true; 328 } 329 }; 330 331 static const TypeInfo raspi_machine_types[] = { 332 { 333 .name = MACHINE_TYPE_NAME("raspi2"), 334 .parent = TYPE_RASPI_MACHINE, 335 .class_init = raspi_machine_class_init, 336 .class_data = (void *)0xa21041, 337 #ifdef TARGET_AARCH64 338 }, { 339 .name = MACHINE_TYPE_NAME("raspi3"), 340 .parent = TYPE_RASPI_MACHINE, 341 .class_init = raspi_machine_class_init, 342 .class_data = (void *)0xa02082, 343 #endif 344 }, { 345 .name = TYPE_RASPI_MACHINE, 346 .parent = TYPE_MACHINE, 347 .instance_size = sizeof(RaspiMachineState), 348 .class_size = sizeof(RaspiMachineClass), 349 .abstract = true, 350 } 351 }; 352 353 DEFINE_TYPES(raspi_machine_types) 354