xref: /openbmc/qemu/hw/arm/raspi.c (revision 2df1eb27)
1 /*
2  * Raspberry Pi emulation (c) 2012 Gregory Estrade
3  * Upstreaming code cleanup [including bcm2835_*] (c) 2013 Jan Petrous
4  *
5  * Rasperry Pi 2 emulation Copyright (c) 2015, Microsoft
6  * Written by Andrew Baumann
7  *
8  * Raspberry Pi 3 emulation Copyright (c) 2018 Zoltán Baldaszti
9  * Upstream code cleanup (c) 2018 Pekka Enberg
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qemu/units.h"
17 #include "qemu/cutils.h"
18 #include "qapi/error.h"
19 #include "hw/arm/boot.h"
20 #include "hw/arm/bcm2836.h"
21 #include "hw/registerfields.h"
22 #include "qemu/error-report.h"
23 #include "hw/boards.h"
24 #include "hw/loader.h"
25 #include "hw/arm/boot.h"
26 #include "qom/object.h"
27 
28 #define SMPBOOT_ADDR    0x300 /* this should leave enough space for ATAGS */
29 #define MVBAR_ADDR      0x400 /* secure vectors */
30 #define BOARDSETUP_ADDR (MVBAR_ADDR + 0x20) /* board setup code */
31 #define FIRMWARE_ADDR_2 0x8000 /* Pi 2 loads kernel.img here by default */
32 #define FIRMWARE_ADDR_3 0x80000 /* Pi 3 loads kernel.img here by default */
33 #define SPINTABLE_ADDR  0xd8 /* Pi 3 bootloader spintable */
34 
35 /* Registered machine type (matches RPi Foundation bootloader and U-Boot) */
36 #define MACH_TYPE_BCM2708   3138
37 
38 struct RaspiMachineState {
39     /*< private >*/
40     MachineState parent_obj;
41     /*< public >*/
42     BCM283XState soc;
43     struct arm_boot_info binfo;
44 };
45 typedef struct RaspiMachineState RaspiMachineState;
46 
47 struct RaspiMachineClass {
48     /*< private >*/
49     MachineClass parent_obj;
50     /*< public >*/
51     uint32_t board_rev;
52 };
53 typedef struct RaspiMachineClass RaspiMachineClass;
54 
55 #define TYPE_RASPI_MACHINE       MACHINE_TYPE_NAME("raspi-common")
56 DECLARE_OBJ_CHECKERS(RaspiMachineState, RaspiMachineClass,
57                      RASPI_MACHINE, TYPE_RASPI_MACHINE)
58 
59 
60 /*
61  * Board revision codes:
62  * www.raspberrypi.org/documentation/hardware/raspberrypi/revision-codes/
63  */
64 FIELD(REV_CODE, REVISION,           0, 4);
65 FIELD(REV_CODE, TYPE,               4, 8);
66 FIELD(REV_CODE, PROCESSOR,         12, 4);
67 FIELD(REV_CODE, MANUFACTURER,      16, 4);
68 FIELD(REV_CODE, MEMORY_SIZE,       20, 3);
69 FIELD(REV_CODE, STYLE,             23, 1);
70 
71 typedef enum RaspiProcessorId {
72     PROCESSOR_ID_BCM2835 = 0,
73     PROCESSOR_ID_BCM2836 = 1,
74     PROCESSOR_ID_BCM2837 = 2,
75 } RaspiProcessorId;
76 
77 static const struct {
78     const char *type;
79     int cores_count;
80 } soc_property[] = {
81     [PROCESSOR_ID_BCM2835] = {TYPE_BCM2835, 1},
82     [PROCESSOR_ID_BCM2836] = {TYPE_BCM2836, BCM283X_NCPUS},
83     [PROCESSOR_ID_BCM2837] = {TYPE_BCM2837, BCM283X_NCPUS},
84 };
85 
86 static uint64_t board_ram_size(uint32_t board_rev)
87 {
88     assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
89     return 256 * MiB << FIELD_EX32(board_rev, REV_CODE, MEMORY_SIZE);
90 }
91 
92 static RaspiProcessorId board_processor_id(uint32_t board_rev)
93 {
94     int proc_id = FIELD_EX32(board_rev, REV_CODE, PROCESSOR);
95 
96     assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
97     assert(proc_id < ARRAY_SIZE(soc_property) && soc_property[proc_id].type);
98 
99     return proc_id;
100 }
101 
102 static const char *board_soc_type(uint32_t board_rev)
103 {
104     return soc_property[board_processor_id(board_rev)].type;
105 }
106 
107 static int cores_count(uint32_t board_rev)
108 {
109     return soc_property[board_processor_id(board_rev)].cores_count;
110 }
111 
112 static const char *board_type(uint32_t board_rev)
113 {
114     static const char *types[] = {
115         "A", "B", "A+", "B+", "2B", "Alpha", "CM1", NULL, "3B", "Zero",
116         "CM3", NULL, "Zero W", "3B+", "3A+", NULL, "CM3+", "4B",
117     };
118     assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
119     int bt = FIELD_EX32(board_rev, REV_CODE, TYPE);
120     if (bt >= ARRAY_SIZE(types) || !types[bt]) {
121         return "Unknown";
122     }
123     return types[bt];
124 }
125 
126 static void write_smpboot(ARMCPU *cpu, const struct arm_boot_info *info)
127 {
128     static const ARMInsnFixup smpboot[] = {
129         { 0xe1a0e00f }, /*    mov     lr, pc */
130         { 0xe3a0fe00 + (BOARDSETUP_ADDR >> 4) }, /* mov pc, BOARDSETUP_ADDR */
131         { 0xee100fb0 }, /*    mrc     p15, 0, r0, c0, c0, 5;get core ID */
132         { 0xe7e10050 }, /*    ubfx    r0, r0, #0, #2       ;extract LSB */
133         { 0xe59f5014 }, /*    ldr     r5, =0x400000CC      ;load mbox base */
134         { 0xe320f001 }, /* 1: yield */
135         { 0xe7953200 }, /*    ldr     r3, [r5, r0, lsl #4] ;read mbox for our core */
136         { 0xe3530000 }, /*    cmp     r3, #0               ;spin while zero */
137         { 0x0afffffb }, /*    beq     1b */
138         { 0xe7853200 }, /*    str     r3, [r5, r0, lsl #4] ;clear mbox */
139         { 0xe12fff13 }, /*    bx      r3                   ;jump to target */
140         { 0x400000cc }, /* (constant: mailbox 3 read/clear base) */
141         { 0, FIXUP_TERMINATOR }
142     };
143     static const uint32_t fixupcontext[FIXUP_MAX] = { 0 };
144 
145     /* check that we don't overrun board setup vectors */
146     QEMU_BUILD_BUG_ON(SMPBOOT_ADDR + sizeof(smpboot) > MVBAR_ADDR);
147     /* check that board setup address is correctly relocated */
148     QEMU_BUILD_BUG_ON((BOARDSETUP_ADDR & 0xf) != 0
149                       || (BOARDSETUP_ADDR >> 4) >= 0x100);
150 
151     arm_write_bootloader("raspi_smpboot", arm_boot_address_space(cpu, info),
152                          info->smp_loader_start, smpboot, fixupcontext);
153 }
154 
155 static void write_smpboot64(ARMCPU *cpu, const struct arm_boot_info *info)
156 {
157     AddressSpace *as = arm_boot_address_space(cpu, info);
158     /* Unlike the AArch32 version we don't need to call the board setup hook.
159      * The mechanism for doing the spin-table is also entirely different.
160      * We must have four 64-bit fields at absolute addresses
161      * 0xd8, 0xe0, 0xe8, 0xf0 in RAM, which are the flag variables for
162      * our CPUs, and which we must ensure are zero initialized before
163      * the primary CPU goes into the kernel. We put these variables inside
164      * a rom blob, so that the reset for ROM contents zeroes them for us.
165      */
166     static const ARMInsnFixup smpboot[] = {
167         { 0xd2801b05 }, /*        mov     x5, 0xd8 */
168         { 0xd53800a6 }, /*        mrs     x6, mpidr_el1 */
169         { 0x924004c6 }, /*        and     x6, x6, #0x3 */
170         { 0xd503205f }, /* spin:  wfe */
171         { 0xf86678a4 }, /*        ldr     x4, [x5,x6,lsl #3] */
172         { 0xb4ffffc4 }, /*        cbz     x4, spin */
173         { 0xd2800000 }, /*        mov     x0, #0x0 */
174         { 0xd2800001 }, /*        mov     x1, #0x0 */
175         { 0xd2800002 }, /*        mov     x2, #0x0 */
176         { 0xd2800003 }, /*        mov     x3, #0x0 */
177         { 0xd61f0080 }, /*        br      x4 */
178         { 0, FIXUP_TERMINATOR }
179     };
180     static const uint32_t fixupcontext[FIXUP_MAX] = { 0 };
181 
182     static const uint64_t spintables[] = {
183         0, 0, 0, 0
184     };
185 
186     arm_write_bootloader("raspi_smpboot", as, info->smp_loader_start,
187                          smpboot, fixupcontext);
188     rom_add_blob_fixed_as("raspi_spintables", spintables, sizeof(spintables),
189                           SPINTABLE_ADDR, as);
190 }
191 
192 static void write_board_setup(ARMCPU *cpu, const struct arm_boot_info *info)
193 {
194     arm_write_secure_board_setup_dummy_smc(cpu, info, MVBAR_ADDR);
195 }
196 
197 static void reset_secondary(ARMCPU *cpu, const struct arm_boot_info *info)
198 {
199     CPUState *cs = CPU(cpu);
200     cpu_set_pc(cs, info->smp_loader_start);
201 }
202 
203 static void setup_boot(MachineState *machine, RaspiProcessorId processor_id,
204                        size_t ram_size)
205 {
206     RaspiMachineState *s = RASPI_MACHINE(machine);
207     int r;
208 
209     s->binfo.board_id = MACH_TYPE_BCM2708;
210     s->binfo.ram_size = ram_size;
211 
212     if (processor_id <= PROCESSOR_ID_BCM2836) {
213         /*
214          * The BCM2835 and BCM2836 require some custom setup code to run
215          * in Secure mode before booting a kernel (to set up the SMC vectors
216          * so that we get a no-op SMC; this is used by Linux to call the
217          * firmware for some cache maintenance operations.
218          * The BCM2837 doesn't need this.
219          */
220         s->binfo.board_setup_addr = BOARDSETUP_ADDR;
221         s->binfo.write_board_setup = write_board_setup;
222         s->binfo.secure_board_setup = true;
223         s->binfo.secure_boot = true;
224     }
225 
226     /* BCM2836 and BCM2837 requires SMP setup */
227     if (processor_id >= PROCESSOR_ID_BCM2836) {
228         s->binfo.smp_loader_start = SMPBOOT_ADDR;
229         if (processor_id == PROCESSOR_ID_BCM2836) {
230             s->binfo.write_secondary_boot = write_smpboot;
231         } else {
232             s->binfo.write_secondary_boot = write_smpboot64;
233         }
234         s->binfo.secondary_cpu_reset_hook = reset_secondary;
235     }
236 
237     /* If the user specified a "firmware" image (e.g. UEFI), we bypass
238      * the normal Linux boot process
239      */
240     if (machine->firmware) {
241         hwaddr firmware_addr = processor_id <= PROCESSOR_ID_BCM2836
242                              ? FIRMWARE_ADDR_2 : FIRMWARE_ADDR_3;
243         /* load the firmware image (typically kernel.img) */
244         r = load_image_targphys(machine->firmware, firmware_addr,
245                                 ram_size - firmware_addr);
246         if (r < 0) {
247             error_report("Failed to load firmware from %s", machine->firmware);
248             exit(1);
249         }
250 
251         s->binfo.entry = firmware_addr;
252         s->binfo.firmware_loaded = true;
253     }
254 
255     arm_load_kernel(&s->soc.cpu[0].core, machine, &s->binfo);
256 }
257 
258 static void raspi_machine_init(MachineState *machine)
259 {
260     RaspiMachineClass *mc = RASPI_MACHINE_GET_CLASS(machine);
261     RaspiMachineState *s = RASPI_MACHINE(machine);
262     uint32_t board_rev = mc->board_rev;
263     uint64_t ram_size = board_ram_size(board_rev);
264     uint32_t vcram_size;
265     DriveInfo *di;
266     BlockBackend *blk;
267     BusState *bus;
268     DeviceState *carddev;
269 
270     if (machine->ram_size != ram_size) {
271         char *size_str = size_to_str(ram_size);
272         error_report("Invalid RAM size, should be %s", size_str);
273         g_free(size_str);
274         exit(1);
275     }
276 
277     /* FIXME: Remove when we have custom CPU address space support */
278     memory_region_add_subregion_overlap(get_system_memory(), 0,
279                                         machine->ram, 0);
280 
281     /* Setup the SOC */
282     object_initialize_child(OBJECT(machine), "soc", &s->soc,
283                             board_soc_type(board_rev));
284     object_property_add_const_link(OBJECT(&s->soc), "ram", OBJECT(machine->ram));
285     object_property_set_int(OBJECT(&s->soc), "board-rev", board_rev,
286                             &error_abort);
287     object_property_set_str(OBJECT(&s->soc), "command-line",
288                             machine->kernel_cmdline, &error_abort);
289     qdev_realize(DEVICE(&s->soc), NULL, &error_fatal);
290 
291     /* Create and plug in the SD cards */
292     di = drive_get(IF_SD, 0, 0);
293     blk = di ? blk_by_legacy_dinfo(di) : NULL;
294     bus = qdev_get_child_bus(DEVICE(&s->soc), "sd-bus");
295     if (bus == NULL) {
296         error_report("No SD bus found in SOC object");
297         exit(1);
298     }
299     carddev = qdev_new(TYPE_SD_CARD);
300     qdev_prop_set_drive_err(carddev, "drive", blk, &error_fatal);
301     qdev_realize_and_unref(carddev, bus, &error_fatal);
302 
303     vcram_size = object_property_get_uint(OBJECT(&s->soc), "vcram-size",
304                                           &error_abort);
305     setup_boot(machine, board_processor_id(mc->board_rev),
306                machine->ram_size - vcram_size);
307 }
308 
309 static void raspi_machine_class_common_init(MachineClass *mc,
310                                             uint32_t board_rev)
311 {
312     mc->desc = g_strdup_printf("Raspberry Pi %s (revision 1.%u)",
313                                board_type(board_rev),
314                                FIELD_EX32(board_rev, REV_CODE, REVISION));
315     mc->init = raspi_machine_init;
316     mc->block_default_type = IF_SD;
317     mc->no_parallel = 1;
318     mc->no_floppy = 1;
319     mc->no_cdrom = 1;
320     mc->default_cpus = mc->min_cpus = mc->max_cpus = cores_count(board_rev);
321     mc->default_ram_size = board_ram_size(board_rev);
322     mc->default_ram_id = "ram";
323 };
324 
325 static void raspi0_machine_class_init(ObjectClass *oc, void *data)
326 {
327     MachineClass *mc = MACHINE_CLASS(oc);
328     RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
329 
330     rmc->board_rev = 0x920092; /* Revision 1.2 */
331     raspi_machine_class_common_init(mc, rmc->board_rev);
332 };
333 
334 static void raspi1ap_machine_class_init(ObjectClass *oc, void *data)
335 {
336     MachineClass *mc = MACHINE_CLASS(oc);
337     RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
338 
339     rmc->board_rev = 0x900021; /* Revision 1.1 */
340     raspi_machine_class_common_init(mc, rmc->board_rev);
341 };
342 
343 static void raspi2b_machine_class_init(ObjectClass *oc, void *data)
344 {
345     MachineClass *mc = MACHINE_CLASS(oc);
346     RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
347 
348     rmc->board_rev = 0xa21041;
349     raspi_machine_class_common_init(mc, rmc->board_rev);
350 };
351 
352 #ifdef TARGET_AARCH64
353 static void raspi3ap_machine_class_init(ObjectClass *oc, void *data)
354 {
355     MachineClass *mc = MACHINE_CLASS(oc);
356     RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
357 
358     rmc->board_rev = 0x9020e0; /* Revision 1.0 */
359     raspi_machine_class_common_init(mc, rmc->board_rev);
360 };
361 
362 static void raspi3b_machine_class_init(ObjectClass *oc, void *data)
363 {
364     MachineClass *mc = MACHINE_CLASS(oc);
365     RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
366 
367     rmc->board_rev = 0xa02082;
368     raspi_machine_class_common_init(mc, rmc->board_rev);
369 };
370 #endif /* TARGET_AARCH64 */
371 
372 static const TypeInfo raspi_machine_types[] = {
373     {
374         .name           = MACHINE_TYPE_NAME("raspi0"),
375         .parent         = TYPE_RASPI_MACHINE,
376         .class_init     = raspi0_machine_class_init,
377     }, {
378         .name           = MACHINE_TYPE_NAME("raspi1ap"),
379         .parent         = TYPE_RASPI_MACHINE,
380         .class_init     = raspi1ap_machine_class_init,
381     }, {
382         .name           = MACHINE_TYPE_NAME("raspi2b"),
383         .parent         = TYPE_RASPI_MACHINE,
384         .class_init     = raspi2b_machine_class_init,
385 #ifdef TARGET_AARCH64
386     }, {
387         .name           = MACHINE_TYPE_NAME("raspi3ap"),
388         .parent         = TYPE_RASPI_MACHINE,
389         .class_init     = raspi3ap_machine_class_init,
390     }, {
391         .name           = MACHINE_TYPE_NAME("raspi3b"),
392         .parent         = TYPE_RASPI_MACHINE,
393         .class_init     = raspi3b_machine_class_init,
394 #endif
395     }, {
396         .name           = TYPE_RASPI_MACHINE,
397         .parent         = TYPE_MACHINE,
398         .instance_size  = sizeof(RaspiMachineState),
399         .class_size     = sizeof(RaspiMachineClass),
400         .abstract       = true,
401     }
402 };
403 
404 DEFINE_TYPES(raspi_machine_types)
405