xref: /openbmc/qemu/hw/arm/raspi.c (revision 1d76437b45ab9982307b95d325d627f7b6f06088)
1 /*
2  * Raspberry Pi emulation (c) 2012 Gregory Estrade
3  * Upstreaming code cleanup [including bcm2835_*] (c) 2013 Jan Petrous
4  *
5  * Rasperry Pi 2 emulation Copyright (c) 2015, Microsoft
6  * Written by Andrew Baumann
7  *
8  * Raspberry Pi 3 emulation Copyright (c) 2018 Zoltán Baldaszti
9  * Upstream code cleanup (c) 2018 Pekka Enberg
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qemu/units.h"
17 #include "qemu/cutils.h"
18 #include "qapi/error.h"
19 #include "hw/arm/bcm2836.h"
20 #include "hw/registerfields.h"
21 #include "qemu/error-report.h"
22 #include "hw/boards.h"
23 #include "hw/loader.h"
24 #include "hw/arm/boot.h"
25 #include "qom/object.h"
26 
27 #define SMPBOOT_ADDR    0x300 /* this should leave enough space for ATAGS */
28 #define MVBAR_ADDR      0x400 /* secure vectors */
29 #define BOARDSETUP_ADDR (MVBAR_ADDR + 0x20) /* board setup code */
30 #define FIRMWARE_ADDR_2 0x8000 /* Pi 2 loads kernel.img here by default */
31 #define FIRMWARE_ADDR_3 0x80000 /* Pi 3 loads kernel.img here by default */
32 #define SPINTABLE_ADDR  0xd8 /* Pi 3 bootloader spintable */
33 
34 /* Registered machine type (matches RPi Foundation bootloader and U-Boot) */
35 #define MACH_TYPE_BCM2708   3138
36 
37 struct RaspiMachineState {
38     /*< private >*/
39     MachineState parent_obj;
40     /*< public >*/
41     BCM283XState soc;
42     struct arm_boot_info binfo;
43 };
44 typedef struct RaspiMachineState RaspiMachineState;
45 
46 struct RaspiMachineClass {
47     /*< private >*/
48     MachineClass parent_obj;
49     /*< public >*/
50     uint32_t board_rev;
51 };
52 typedef struct RaspiMachineClass RaspiMachineClass;
53 
54 #define TYPE_RASPI_MACHINE       MACHINE_TYPE_NAME("raspi-common")
55 DECLARE_OBJ_CHECKERS(RaspiMachineState, RaspiMachineClass,
56                      RASPI_MACHINE, TYPE_RASPI_MACHINE)
57 
58 
59 /*
60  * Board revision codes:
61  * www.raspberrypi.org/documentation/hardware/raspberrypi/revision-codes/
62  */
63 FIELD(REV_CODE, REVISION,           0, 4);
64 FIELD(REV_CODE, TYPE,               4, 8);
65 FIELD(REV_CODE, PROCESSOR,         12, 4);
66 FIELD(REV_CODE, MANUFACTURER,      16, 4);
67 FIELD(REV_CODE, MEMORY_SIZE,       20, 3);
68 FIELD(REV_CODE, STYLE,             23, 1);
69 
70 typedef enum RaspiProcessorId {
71     PROCESSOR_ID_BCM2835 = 0,
72     PROCESSOR_ID_BCM2836 = 1,
73     PROCESSOR_ID_BCM2837 = 2,
74 } RaspiProcessorId;
75 
76 static const struct {
77     const char *type;
78     int cores_count;
79 } soc_property[] = {
80     [PROCESSOR_ID_BCM2835] = {TYPE_BCM2835, 1},
81     [PROCESSOR_ID_BCM2836] = {TYPE_BCM2836, BCM283X_NCPUS},
82     [PROCESSOR_ID_BCM2837] = {TYPE_BCM2837, BCM283X_NCPUS},
83 };
84 
85 static uint64_t board_ram_size(uint32_t board_rev)
86 {
87     assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
88     return 256 * MiB << FIELD_EX32(board_rev, REV_CODE, MEMORY_SIZE);
89 }
90 
91 static RaspiProcessorId board_processor_id(uint32_t board_rev)
92 {
93     int proc_id = FIELD_EX32(board_rev, REV_CODE, PROCESSOR);
94 
95     assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
96     assert(proc_id < ARRAY_SIZE(soc_property) && soc_property[proc_id].type);
97 
98     return proc_id;
99 }
100 
101 static const char *board_soc_type(uint32_t board_rev)
102 {
103     return soc_property[board_processor_id(board_rev)].type;
104 }
105 
106 static int cores_count(uint32_t board_rev)
107 {
108     return soc_property[board_processor_id(board_rev)].cores_count;
109 }
110 
111 static const char *board_type(uint32_t board_rev)
112 {
113     static const char *types[] = {
114         "A", "B", "A+", "B+", "2B", "Alpha", "CM1", NULL, "3B", "Zero",
115         "CM3", NULL, "Zero W", "3B+", "3A+", NULL, "CM3+", "4B",
116     };
117     assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
118     int bt = FIELD_EX32(board_rev, REV_CODE, TYPE);
119     if (bt >= ARRAY_SIZE(types) || !types[bt]) {
120         return "Unknown";
121     }
122     return types[bt];
123 }
124 
125 static void write_smpboot(ARMCPU *cpu, const struct arm_boot_info *info)
126 {
127     static const uint32_t smpboot[] = {
128         0xe1a0e00f, /*    mov     lr, pc */
129         0xe3a0fe00 + (BOARDSETUP_ADDR >> 4), /* mov pc, BOARDSETUP_ADDR */
130         0xee100fb0, /*    mrc     p15, 0, r0, c0, c0, 5;get core ID */
131         0xe7e10050, /*    ubfx    r0, r0, #0, #2       ;extract LSB */
132         0xe59f5014, /*    ldr     r5, =0x400000CC      ;load mbox base */
133         0xe320f001, /* 1: yield */
134         0xe7953200, /*    ldr     r3, [r5, r0, lsl #4] ;read mbox for our core*/
135         0xe3530000, /*    cmp     r3, #0               ;spin while zero */
136         0x0afffffb, /*    beq     1b */
137         0xe7853200, /*    str     r3, [r5, r0, lsl #4] ;clear mbox */
138         0xe12fff13, /*    bx      r3                   ;jump to target */
139         0x400000cc, /* (constant: mailbox 3 read/clear base) */
140     };
141 
142     /* check that we don't overrun board setup vectors */
143     QEMU_BUILD_BUG_ON(SMPBOOT_ADDR + sizeof(smpboot) > MVBAR_ADDR);
144     /* check that board setup address is correctly relocated */
145     QEMU_BUILD_BUG_ON((BOARDSETUP_ADDR & 0xf) != 0
146                       || (BOARDSETUP_ADDR >> 4) >= 0x100);
147 
148     rom_add_blob_fixed_as("raspi_smpboot", smpboot, sizeof(smpboot),
149                           info->smp_loader_start,
150                           arm_boot_address_space(cpu, info));
151 }
152 
153 static void write_smpboot64(ARMCPU *cpu, const struct arm_boot_info *info)
154 {
155     AddressSpace *as = arm_boot_address_space(cpu, info);
156     /* Unlike the AArch32 version we don't need to call the board setup hook.
157      * The mechanism for doing the spin-table is also entirely different.
158      * We must have four 64-bit fields at absolute addresses
159      * 0xd8, 0xe0, 0xe8, 0xf0 in RAM, which are the flag variables for
160      * our CPUs, and which we must ensure are zero initialized before
161      * the primary CPU goes into the kernel. We put these variables inside
162      * a rom blob, so that the reset for ROM contents zeroes them for us.
163      */
164     static const uint32_t smpboot[] = {
165         0xd2801b05, /*        mov     x5, 0xd8 */
166         0xd53800a6, /*        mrs     x6, mpidr_el1 */
167         0x924004c6, /*        and     x6, x6, #0x3 */
168         0xd503205f, /* spin:  wfe */
169         0xf86678a4, /*        ldr     x4, [x5,x6,lsl #3] */
170         0xb4ffffc4, /*        cbz     x4, spin */
171         0xd2800000, /*        mov     x0, #0x0 */
172         0xd2800001, /*        mov     x1, #0x0 */
173         0xd2800002, /*        mov     x2, #0x0 */
174         0xd2800003, /*        mov     x3, #0x0 */
175         0xd61f0080, /*        br      x4 */
176     };
177 
178     static const uint64_t spintables[] = {
179         0, 0, 0, 0
180     };
181 
182     rom_add_blob_fixed_as("raspi_smpboot", smpboot, sizeof(smpboot),
183                           info->smp_loader_start, as);
184     rom_add_blob_fixed_as("raspi_spintables", spintables, sizeof(spintables),
185                           SPINTABLE_ADDR, as);
186 }
187 
188 static void write_board_setup(ARMCPU *cpu, const struct arm_boot_info *info)
189 {
190     arm_write_secure_board_setup_dummy_smc(cpu, info, MVBAR_ADDR);
191 }
192 
193 static void reset_secondary(ARMCPU *cpu, const struct arm_boot_info *info)
194 {
195     CPUState *cs = CPU(cpu);
196     cpu_set_pc(cs, info->smp_loader_start);
197 }
198 
199 static void setup_boot(MachineState *machine, RaspiProcessorId processor_id,
200                        size_t ram_size)
201 {
202     RaspiMachineState *s = RASPI_MACHINE(machine);
203     int r;
204 
205     s->binfo.board_id = MACH_TYPE_BCM2708;
206     s->binfo.ram_size = ram_size;
207     s->binfo.nb_cpus = machine->smp.cpus;
208 
209     if (processor_id <= PROCESSOR_ID_BCM2836) {
210         /*
211          * The BCM2835 and BCM2836 require some custom setup code to run
212          * in Secure mode before booting a kernel (to set up the SMC vectors
213          * so that we get a no-op SMC; this is used by Linux to call the
214          * firmware for some cache maintenance operations.
215          * The BCM2837 doesn't need this.
216          */
217         s->binfo.board_setup_addr = BOARDSETUP_ADDR;
218         s->binfo.write_board_setup = write_board_setup;
219         s->binfo.secure_board_setup = true;
220         s->binfo.secure_boot = true;
221     }
222 
223     /* BCM2836 and BCM2837 requires SMP setup */
224     if (processor_id >= PROCESSOR_ID_BCM2836) {
225         s->binfo.smp_loader_start = SMPBOOT_ADDR;
226         if (processor_id == PROCESSOR_ID_BCM2836) {
227             s->binfo.write_secondary_boot = write_smpboot;
228         } else {
229             s->binfo.write_secondary_boot = write_smpboot64;
230         }
231         s->binfo.secondary_cpu_reset_hook = reset_secondary;
232     }
233 
234     /* If the user specified a "firmware" image (e.g. UEFI), we bypass
235      * the normal Linux boot process
236      */
237     if (machine->firmware) {
238         hwaddr firmware_addr = processor_id <= PROCESSOR_ID_BCM2836
239                              ? FIRMWARE_ADDR_2 : FIRMWARE_ADDR_3;
240         /* load the firmware image (typically kernel.img) */
241         r = load_image_targphys(machine->firmware, firmware_addr,
242                                 ram_size - firmware_addr);
243         if (r < 0) {
244             error_report("Failed to load firmware from %s", machine->firmware);
245             exit(1);
246         }
247 
248         s->binfo.entry = firmware_addr;
249         s->binfo.firmware_loaded = true;
250     }
251 
252     arm_load_kernel(&s->soc.cpu[0].core, machine, &s->binfo);
253 }
254 
255 static void raspi_machine_init(MachineState *machine)
256 {
257     RaspiMachineClass *mc = RASPI_MACHINE_GET_CLASS(machine);
258     RaspiMachineState *s = RASPI_MACHINE(machine);
259     uint32_t board_rev = mc->board_rev;
260     uint64_t ram_size = board_ram_size(board_rev);
261     uint32_t vcram_size;
262     DriveInfo *di;
263     BlockBackend *blk;
264     BusState *bus;
265     DeviceState *carddev;
266 
267     if (machine->ram_size != ram_size) {
268         char *size_str = size_to_str(ram_size);
269         error_report("Invalid RAM size, should be %s", size_str);
270         g_free(size_str);
271         exit(1);
272     }
273 
274     /* FIXME: Remove when we have custom CPU address space support */
275     memory_region_add_subregion_overlap(get_system_memory(), 0,
276                                         machine->ram, 0);
277 
278     /* Setup the SOC */
279     object_initialize_child(OBJECT(machine), "soc", &s->soc,
280                             board_soc_type(board_rev));
281     object_property_add_const_link(OBJECT(&s->soc), "ram", OBJECT(machine->ram));
282     object_property_set_int(OBJECT(&s->soc), "board-rev", board_rev,
283                             &error_abort);
284     qdev_realize(DEVICE(&s->soc), NULL, &error_fatal);
285 
286     /* Create and plug in the SD cards */
287     di = drive_get_next(IF_SD);
288     blk = di ? blk_by_legacy_dinfo(di) : NULL;
289     bus = qdev_get_child_bus(DEVICE(&s->soc), "sd-bus");
290     if (bus == NULL) {
291         error_report("No SD bus found in SOC object");
292         exit(1);
293     }
294     carddev = qdev_new(TYPE_SD_CARD);
295     qdev_prop_set_drive_err(carddev, "drive", blk, &error_fatal);
296     qdev_realize_and_unref(carddev, bus, &error_fatal);
297 
298     vcram_size = object_property_get_uint(OBJECT(&s->soc), "vcram-size",
299                                           &error_abort);
300     setup_boot(machine, board_processor_id(mc->board_rev),
301                machine->ram_size - vcram_size);
302 }
303 
304 static void raspi_machine_class_common_init(MachineClass *mc,
305                                             uint32_t board_rev)
306 {
307     mc->desc = g_strdup_printf("Raspberry Pi %s (revision 1.%u)",
308                                board_type(board_rev),
309                                FIELD_EX32(board_rev, REV_CODE, REVISION));
310     mc->init = raspi_machine_init;
311     mc->block_default_type = IF_SD;
312     mc->no_parallel = 1;
313     mc->no_floppy = 1;
314     mc->no_cdrom = 1;
315     mc->default_cpus = mc->min_cpus = mc->max_cpus = cores_count(board_rev);
316     mc->default_ram_size = board_ram_size(board_rev);
317     mc->default_ram_id = "ram";
318 };
319 
320 static void raspi0_machine_class_init(ObjectClass *oc, void *data)
321 {
322     MachineClass *mc = MACHINE_CLASS(oc);
323     RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
324 
325     rmc->board_rev = 0x920092; /* Revision 1.2 */
326     raspi_machine_class_common_init(mc, rmc->board_rev);
327 };
328 
329 static void raspi1ap_machine_class_init(ObjectClass *oc, void *data)
330 {
331     MachineClass *mc = MACHINE_CLASS(oc);
332     RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
333 
334     rmc->board_rev = 0x900021; /* Revision 1.1 */
335     raspi_machine_class_common_init(mc, rmc->board_rev);
336 };
337 
338 static void raspi2b_machine_class_init(ObjectClass *oc, void *data)
339 {
340     MachineClass *mc = MACHINE_CLASS(oc);
341     RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
342 
343     mc->alias = "raspi2";
344     rmc->board_rev = 0xa21041;
345     raspi_machine_class_common_init(mc, rmc->board_rev);
346 };
347 
348 #ifdef TARGET_AARCH64
349 static void raspi3ap_machine_class_init(ObjectClass *oc, void *data)
350 {
351     MachineClass *mc = MACHINE_CLASS(oc);
352     RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
353 
354     rmc->board_rev = 0x9020e0; /* Revision 1.0 */
355     raspi_machine_class_common_init(mc, rmc->board_rev);
356 };
357 
358 static void raspi3b_machine_class_init(ObjectClass *oc, void *data)
359 {
360     MachineClass *mc = MACHINE_CLASS(oc);
361     RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
362 
363     mc->alias = "raspi3";
364     rmc->board_rev = 0xa02082;
365     raspi_machine_class_common_init(mc, rmc->board_rev);
366 };
367 #endif /* TARGET_AARCH64 */
368 
369 static const TypeInfo raspi_machine_types[] = {
370     {
371         .name           = MACHINE_TYPE_NAME("raspi0"),
372         .parent         = TYPE_RASPI_MACHINE,
373         .class_init     = raspi0_machine_class_init,
374     }, {
375         .name           = MACHINE_TYPE_NAME("raspi1ap"),
376         .parent         = TYPE_RASPI_MACHINE,
377         .class_init     = raspi1ap_machine_class_init,
378     }, {
379         .name           = MACHINE_TYPE_NAME("raspi2b"),
380         .parent         = TYPE_RASPI_MACHINE,
381         .class_init     = raspi2b_machine_class_init,
382 #ifdef TARGET_AARCH64
383     }, {
384         .name           = MACHINE_TYPE_NAME("raspi3ap"),
385         .parent         = TYPE_RASPI_MACHINE,
386         .class_init     = raspi3ap_machine_class_init,
387     }, {
388         .name           = MACHINE_TYPE_NAME("raspi3b"),
389         .parent         = TYPE_RASPI_MACHINE,
390         .class_init     = raspi3b_machine_class_init,
391 #endif
392     }, {
393         .name           = TYPE_RASPI_MACHINE,
394         .parent         = TYPE_MACHINE,
395         .instance_size  = sizeof(RaspiMachineState),
396         .class_size     = sizeof(RaspiMachineClass),
397         .abstract       = true,
398     }
399 };
400 
401 DEFINE_TYPES(raspi_machine_types)
402