xref: /openbmc/qemu/hw/arm/raspi.c (revision 01ef1c0d)
1 /*
2  * Raspberry Pi emulation (c) 2012 Gregory Estrade
3  * Upstreaming code cleanup [including bcm2835_*] (c) 2013 Jan Petrous
4  *
5  * Rasperry Pi 2 emulation Copyright (c) 2015, Microsoft
6  * Written by Andrew Baumann
7  *
8  * Raspberry Pi 3 emulation Copyright (c) 2018 Zoltán Baldaszti
9  * Upstream code cleanup (c) 2018 Pekka Enberg
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qemu/units.h"
17 #include "qemu/cutils.h"
18 #include "qapi/error.h"
19 #include "hw/arm/boot.h"
20 #include "hw/arm/bcm2836.h"
21 #include "hw/arm/bcm2838.h"
22 #include "hw/arm/raspi_platform.h"
23 #include "hw/registerfields.h"
24 #include "qemu/error-report.h"
25 #include "hw/boards.h"
26 #include "hw/loader.h"
27 #include "hw/arm/boot.h"
28 #include "qom/object.h"
29 
30 #define TYPE_RASPI_MACHINE  MACHINE_TYPE_NAME("raspi-common")
31 OBJECT_DECLARE_SIMPLE_TYPE(RaspiMachineState, RASPI_MACHINE)
32 
33 #define SMPBOOT_ADDR    0x300 /* this should leave enough space for ATAGS */
34 #define MVBAR_ADDR      0x400 /* secure vectors */
35 #define BOARDSETUP_ADDR (MVBAR_ADDR + 0x20) /* board setup code */
36 #define FIRMWARE_ADDR_2 0x8000 /* Pi 2 loads kernel.img here by default */
37 #define FIRMWARE_ADDR_3 0x80000 /* Pi 3 loads kernel.img here by default */
38 #define SPINTABLE_ADDR  0xd8 /* Pi 3 bootloader spintable */
39 
40 struct RaspiMachineState {
41     /*< private >*/
42     RaspiBaseMachineState parent_obj;
43     /*< public >*/
44     BCM283XState soc;
45 };
46 
47 /*
48  * Board revision codes:
49  * www.raspberrypi.org/documentation/hardware/raspberrypi/revision-codes/
50  */
51 FIELD(REV_CODE, REVISION,           0, 4);
52 FIELD(REV_CODE, TYPE,               4, 8);
53 FIELD(REV_CODE, PROCESSOR,         12, 4);
54 FIELD(REV_CODE, MANUFACTURER,      16, 4);
55 FIELD(REV_CODE, MEMORY_SIZE,       20, 3);
56 FIELD(REV_CODE, STYLE,             23, 1);
57 
58 typedef enum RaspiProcessorId {
59     PROCESSOR_ID_BCM2835 = 0,
60     PROCESSOR_ID_BCM2836 = 1,
61     PROCESSOR_ID_BCM2837 = 2,
62     PROCESSOR_ID_BCM2838 = 3,
63 } RaspiProcessorId;
64 
65 static const struct {
66     const char *type;
67     int cores_count;
68 } soc_property[] = {
69     [PROCESSOR_ID_BCM2835] = {TYPE_BCM2835, 1},
70     [PROCESSOR_ID_BCM2836] = {TYPE_BCM2836, BCM283X_NCPUS},
71     [PROCESSOR_ID_BCM2837] = {TYPE_BCM2837, BCM283X_NCPUS},
72     [PROCESSOR_ID_BCM2838] = {TYPE_BCM2838, BCM283X_NCPUS},
73 };
74 
75 uint64_t board_ram_size(uint32_t board_rev)
76 {
77     assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
78     return 256 * MiB << FIELD_EX32(board_rev, REV_CODE, MEMORY_SIZE);
79 }
80 
81 static RaspiProcessorId board_processor_id(uint32_t board_rev)
82 {
83     int proc_id = FIELD_EX32(board_rev, REV_CODE, PROCESSOR);
84 
85     assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
86     assert(proc_id < ARRAY_SIZE(soc_property) && soc_property[proc_id].type);
87 
88     return proc_id;
89 }
90 
91 const char *board_soc_type(uint32_t board_rev)
92 {
93     return soc_property[board_processor_id(board_rev)].type;
94 }
95 
96 static int cores_count(uint32_t board_rev)
97 {
98     return soc_property[board_processor_id(board_rev)].cores_count;
99 }
100 
101 static const char *board_type(uint32_t board_rev)
102 {
103     static const char *types[] = {
104         "A", "B", "A+", "B+", "2B", "Alpha", "CM1", NULL, "3B", "Zero",
105         "CM3", NULL, "Zero W", "3B+", "3A+", NULL, "CM3+", "4B",
106     };
107     assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
108     int bt = FIELD_EX32(board_rev, REV_CODE, TYPE);
109     if (bt >= ARRAY_SIZE(types) || !types[bt]) {
110         return "Unknown";
111     }
112     return types[bt];
113 }
114 
115 static void write_smpboot(ARMCPU *cpu, const struct arm_boot_info *info)
116 {
117     static const ARMInsnFixup smpboot[] = {
118         { 0xe1a0e00f }, /*    mov     lr, pc */
119         { 0xe3a0fe00 + (BOARDSETUP_ADDR >> 4) }, /* mov pc, BOARDSETUP_ADDR */
120         { 0xee100fb0 }, /*    mrc     p15, 0, r0, c0, c0, 5;get core ID */
121         { 0xe7e10050 }, /*    ubfx    r0, r0, #0, #2       ;extract LSB */
122         { 0xe59f5014 }, /*    ldr     r5, =0x400000CC      ;load mbox base */
123         { 0xe320f001 }, /* 1: yield */
124         { 0xe7953200 }, /*    ldr     r3, [r5, r0, lsl #4] ;read mbox for our core */
125         { 0xe3530000 }, /*    cmp     r3, #0               ;spin while zero */
126         { 0x0afffffb }, /*    beq     1b */
127         { 0xe7853200 }, /*    str     r3, [r5, r0, lsl #4] ;clear mbox */
128         { 0xe12fff13 }, /*    bx      r3                   ;jump to target */
129         { 0x400000cc }, /* (constant: mailbox 3 read/clear base) */
130         { 0, FIXUP_TERMINATOR }
131     };
132     static const uint32_t fixupcontext[FIXUP_MAX] = { 0 };
133 
134     /* check that we don't overrun board setup vectors */
135     QEMU_BUILD_BUG_ON(SMPBOOT_ADDR + sizeof(smpboot) > MVBAR_ADDR);
136     /* check that board setup address is correctly relocated */
137     QEMU_BUILD_BUG_ON((BOARDSETUP_ADDR & 0xf) != 0
138                       || (BOARDSETUP_ADDR >> 4) >= 0x100);
139 
140     arm_write_bootloader("raspi_smpboot", arm_boot_address_space(cpu, info),
141                          info->smp_loader_start, smpboot, fixupcontext);
142 }
143 
144 static void write_smpboot64(ARMCPU *cpu, const struct arm_boot_info *info)
145 {
146     AddressSpace *as = arm_boot_address_space(cpu, info);
147     /* Unlike the AArch32 version we don't need to call the board setup hook.
148      * The mechanism for doing the spin-table is also entirely different.
149      * We must have four 64-bit fields at absolute addresses
150      * 0xd8, 0xe0, 0xe8, 0xf0 in RAM, which are the flag variables for
151      * our CPUs, and which we must ensure are zero initialized before
152      * the primary CPU goes into the kernel. We put these variables inside
153      * a rom blob, so that the reset for ROM contents zeroes them for us.
154      */
155     static const ARMInsnFixup smpboot[] = {
156         { 0xd2801b05 }, /*        mov     x5, 0xd8 */
157         { 0xd53800a6 }, /*        mrs     x6, mpidr_el1 */
158         { 0x924004c6 }, /*        and     x6, x6, #0x3 */
159         { 0xd503205f }, /* spin:  wfe */
160         { 0xf86678a4 }, /*        ldr     x4, [x5,x6,lsl #3] */
161         { 0xb4ffffc4 }, /*        cbz     x4, spin */
162         { 0xd2800000 }, /*        mov     x0, #0x0 */
163         { 0xd2800001 }, /*        mov     x1, #0x0 */
164         { 0xd2800002 }, /*        mov     x2, #0x0 */
165         { 0xd2800003 }, /*        mov     x3, #0x0 */
166         { 0xd61f0080 }, /*        br      x4 */
167         { 0, FIXUP_TERMINATOR }
168     };
169     static const uint32_t fixupcontext[FIXUP_MAX] = { 0 };
170 
171     static const uint64_t spintables[] = {
172         0, 0, 0, 0
173     };
174 
175     arm_write_bootloader("raspi_smpboot", as, info->smp_loader_start,
176                          smpboot, fixupcontext);
177     rom_add_blob_fixed_as("raspi_spintables", spintables, sizeof(spintables),
178                           SPINTABLE_ADDR, as);
179 }
180 
181 static void write_board_setup(ARMCPU *cpu, const struct arm_boot_info *info)
182 {
183     arm_write_secure_board_setup_dummy_smc(cpu, info, MVBAR_ADDR);
184 }
185 
186 static void reset_secondary(ARMCPU *cpu, const struct arm_boot_info *info)
187 {
188     CPUState *cs = CPU(cpu);
189     cpu_set_pc(cs, info->smp_loader_start);
190 }
191 
192 static void setup_boot(MachineState *machine, ARMCPU *cpu,
193                        RaspiProcessorId processor_id, size_t ram_size)
194 {
195     RaspiBaseMachineState *s = RASPI_BASE_MACHINE(machine);
196     int r;
197 
198     s->binfo.ram_size = ram_size;
199 
200     if (processor_id <= PROCESSOR_ID_BCM2836) {
201         /*
202          * The BCM2835 and BCM2836 require some custom setup code to run
203          * in Secure mode before booting a kernel (to set up the SMC vectors
204          * so that we get a no-op SMC; this is used by Linux to call the
205          * firmware for some cache maintenance operations.
206          * The BCM2837 doesn't need this.
207          */
208         s->binfo.board_setup_addr = BOARDSETUP_ADDR;
209         s->binfo.write_board_setup = write_board_setup;
210         s->binfo.secure_board_setup = true;
211         s->binfo.secure_boot = true;
212     }
213 
214     /* BCM2836 and BCM2837 requires SMP setup */
215     if (processor_id >= PROCESSOR_ID_BCM2836) {
216         s->binfo.smp_loader_start = SMPBOOT_ADDR;
217         if (processor_id == PROCESSOR_ID_BCM2836) {
218             s->binfo.write_secondary_boot = write_smpboot;
219         } else {
220             s->binfo.write_secondary_boot = write_smpboot64;
221         }
222         s->binfo.secondary_cpu_reset_hook = reset_secondary;
223     }
224 
225     /* If the user specified a "firmware" image (e.g. UEFI), we bypass
226      * the normal Linux boot process
227      */
228     if (machine->firmware) {
229         hwaddr firmware_addr = processor_id <= PROCESSOR_ID_BCM2836
230                              ? FIRMWARE_ADDR_2 : FIRMWARE_ADDR_3;
231         /* load the firmware image (typically kernel.img) */
232         r = load_image_targphys(machine->firmware, firmware_addr,
233                                 ram_size - firmware_addr);
234         if (r < 0) {
235             error_report("Failed to load firmware from %s", machine->firmware);
236             exit(1);
237         }
238 
239         s->binfo.entry = firmware_addr;
240         s->binfo.firmware_loaded = true;
241     }
242 
243     arm_load_kernel(cpu, machine, &s->binfo);
244 }
245 
246 void raspi_base_machine_init(MachineState *machine,
247                              BCM283XBaseState *soc)
248 {
249     RaspiBaseMachineClass *mc = RASPI_BASE_MACHINE_GET_CLASS(machine);
250     uint32_t board_rev = mc->board_rev;
251     uint64_t ram_size = board_ram_size(board_rev);
252     uint32_t vcram_base, vcram_size;
253     size_t boot_ram_size;
254     DriveInfo *di;
255     BlockBackend *blk;
256     BusState *bus;
257     DeviceState *carddev;
258 
259     if (machine->ram_size != ram_size) {
260         char *size_str = size_to_str(ram_size);
261         error_report("Invalid RAM size, should be %s", size_str);
262         g_free(size_str);
263         exit(1);
264     }
265 
266     /* FIXME: Remove when we have custom CPU address space support */
267     memory_region_add_subregion_overlap(get_system_memory(), 0,
268                                         machine->ram, 0);
269 
270     /* Setup the SOC */
271     object_property_add_const_link(OBJECT(soc), "ram", OBJECT(machine->ram));
272     object_property_set_int(OBJECT(soc), "board-rev", board_rev,
273                             &error_abort);
274     object_property_set_str(OBJECT(soc), "command-line",
275                             machine->kernel_cmdline, &error_abort);
276     qdev_realize(DEVICE(soc), NULL, &error_fatal);
277 
278     /* Create and plug in the SD cards */
279     di = drive_get(IF_SD, 0, 0);
280     blk = di ? blk_by_legacy_dinfo(di) : NULL;
281     bus = qdev_get_child_bus(DEVICE(soc), "sd-bus");
282     if (bus == NULL) {
283         error_report("No SD bus found in SOC object");
284         exit(1);
285     }
286     carddev = qdev_new(TYPE_SD_CARD);
287     qdev_prop_set_drive_err(carddev, "drive", blk, &error_fatal);
288     qdev_realize_and_unref(carddev, bus, &error_fatal);
289 
290     vcram_size = object_property_get_uint(OBJECT(soc), "vcram-size",
291                                           &error_abort);
292     vcram_base = object_property_get_uint(OBJECT(soc), "vcram-base",
293                                           &error_abort);
294 
295     if (vcram_base == 0) {
296         vcram_base = ram_size - vcram_size;
297     }
298     boot_ram_size = MIN(vcram_base, UPPER_RAM_BASE - vcram_size);
299 
300     setup_boot(machine, &soc->cpu[0].core, board_processor_id(board_rev),
301                boot_ram_size);
302 }
303 
304 void raspi_machine_init(MachineState *machine)
305 {
306     RaspiMachineState *s = RASPI_MACHINE(machine);
307     RaspiBaseMachineState *s_base = RASPI_BASE_MACHINE(machine);
308     RaspiBaseMachineClass *mc = RASPI_BASE_MACHINE_GET_CLASS(machine);
309     BCM283XState *soc = &s->soc;
310 
311     s_base->binfo.board_id = MACH_TYPE_BCM2708;
312 
313     object_initialize_child(OBJECT(machine), "soc", soc,
314                             board_soc_type(mc->board_rev));
315     raspi_base_machine_init(machine, &soc->parent_obj);
316 }
317 
318 void raspi_machine_class_common_init(MachineClass *mc,
319                                      uint32_t board_rev)
320 {
321     mc->desc = g_strdup_printf("Raspberry Pi %s (revision 1.%u)",
322                                board_type(board_rev),
323                                FIELD_EX32(board_rev, REV_CODE, REVISION));
324     mc->block_default_type = IF_SD;
325     mc->no_parallel = 1;
326     mc->no_floppy = 1;
327     mc->no_cdrom = 1;
328     mc->default_cpus = mc->min_cpus = mc->max_cpus = cores_count(board_rev);
329     mc->default_ram_size = board_ram_size(board_rev);
330     mc->default_ram_id = "ram";
331 };
332 
333 static void raspi_machine_class_init(MachineClass *mc,
334                                      uint32_t board_rev)
335 {
336     raspi_machine_class_common_init(mc, board_rev);
337     mc->init = raspi_machine_init;
338 };
339 
340 static void raspi0_machine_class_init(ObjectClass *oc, void *data)
341 {
342     MachineClass *mc = MACHINE_CLASS(oc);
343     RaspiBaseMachineClass *rmc = RASPI_BASE_MACHINE_CLASS(oc);
344 
345     rmc->board_rev = 0x920092; /* Revision 1.2 */
346     raspi_machine_class_init(mc, rmc->board_rev);
347 };
348 
349 static void raspi1ap_machine_class_init(ObjectClass *oc, void *data)
350 {
351     MachineClass *mc = MACHINE_CLASS(oc);
352     RaspiBaseMachineClass *rmc = RASPI_BASE_MACHINE_CLASS(oc);
353 
354     rmc->board_rev = 0x900021; /* Revision 1.1 */
355     raspi_machine_class_init(mc, rmc->board_rev);
356 };
357 
358 static void raspi2b_machine_class_init(ObjectClass *oc, void *data)
359 {
360     MachineClass *mc = MACHINE_CLASS(oc);
361     RaspiBaseMachineClass *rmc = RASPI_BASE_MACHINE_CLASS(oc);
362 
363     rmc->board_rev = 0xa21041;
364     raspi_machine_class_init(mc, rmc->board_rev);
365 };
366 
367 #ifdef TARGET_AARCH64
368 static void raspi3ap_machine_class_init(ObjectClass *oc, void *data)
369 {
370     MachineClass *mc = MACHINE_CLASS(oc);
371     RaspiBaseMachineClass *rmc = RASPI_BASE_MACHINE_CLASS(oc);
372 
373     rmc->board_rev = 0x9020e0; /* Revision 1.0 */
374     raspi_machine_class_init(mc, rmc->board_rev);
375 };
376 
377 static void raspi3b_machine_class_init(ObjectClass *oc, void *data)
378 {
379     MachineClass *mc = MACHINE_CLASS(oc);
380     RaspiBaseMachineClass *rmc = RASPI_BASE_MACHINE_CLASS(oc);
381 
382     rmc->board_rev = 0xa02082;
383     raspi_machine_class_init(mc, rmc->board_rev);
384 };
385 #endif /* TARGET_AARCH64 */
386 
387 static const TypeInfo raspi_machine_types[] = {
388     {
389         .name           = MACHINE_TYPE_NAME("raspi0"),
390         .parent         = TYPE_RASPI_MACHINE,
391         .class_init     = raspi0_machine_class_init,
392     }, {
393         .name           = MACHINE_TYPE_NAME("raspi1ap"),
394         .parent         = TYPE_RASPI_MACHINE,
395         .class_init     = raspi1ap_machine_class_init,
396     }, {
397         .name           = MACHINE_TYPE_NAME("raspi2b"),
398         .parent         = TYPE_RASPI_MACHINE,
399         .class_init     = raspi2b_machine_class_init,
400 #ifdef TARGET_AARCH64
401     }, {
402         .name           = MACHINE_TYPE_NAME("raspi3ap"),
403         .parent         = TYPE_RASPI_MACHINE,
404         .class_init     = raspi3ap_machine_class_init,
405     }, {
406         .name           = MACHINE_TYPE_NAME("raspi3b"),
407         .parent         = TYPE_RASPI_MACHINE,
408         .class_init     = raspi3b_machine_class_init,
409 #endif
410     }, {
411         .name           = TYPE_RASPI_MACHINE,
412         .parent         = TYPE_RASPI_BASE_MACHINE,
413         .instance_size  = sizeof(RaspiMachineState),
414         .abstract       = true,
415     }, {
416         .name           = TYPE_RASPI_BASE_MACHINE,
417         .parent         = TYPE_MACHINE,
418         .instance_size  = sizeof(RaspiBaseMachineState),
419         .class_size     = sizeof(RaspiBaseMachineClass),
420         .abstract       = true,
421     }
422 };
423 
424 DEFINE_TYPES(raspi_machine_types)
425