xref: /openbmc/qemu/hw/arm/pxa2xx.c (revision dd9fe29c)
1 /*
2  * Intel XScale PXA255/270 processor support.
3  *
4  * Copyright (c) 2006 Openedhand Ltd.
5  * Written by Andrzej Zaborowski <balrog@zabor.org>
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "hw/sysbus.h"
11 #include "hw/arm/pxa.h"
12 #include "sysemu/sysemu.h"
13 #include "hw/char/serial.h"
14 #include "hw/i2c/i2c.h"
15 #include "hw/ssi.h"
16 #include "sysemu/char.h"
17 #include "sysemu/block-backend.h"
18 #include "sysemu/blockdev.h"
19 
20 static struct {
21     hwaddr io_base;
22     int irqn;
23 } pxa255_serial[] = {
24     { 0x40100000, PXA2XX_PIC_FFUART },
25     { 0x40200000, PXA2XX_PIC_BTUART },
26     { 0x40700000, PXA2XX_PIC_STUART },
27     { 0x41600000, PXA25X_PIC_HWUART },
28     { 0, 0 }
29 }, pxa270_serial[] = {
30     { 0x40100000, PXA2XX_PIC_FFUART },
31     { 0x40200000, PXA2XX_PIC_BTUART },
32     { 0x40700000, PXA2XX_PIC_STUART },
33     { 0, 0 }
34 };
35 
36 typedef struct PXASSPDef {
37     hwaddr io_base;
38     int irqn;
39 } PXASSPDef;
40 
41 #if 0
42 static PXASSPDef pxa250_ssp[] = {
43     { 0x41000000, PXA2XX_PIC_SSP },
44     { 0, 0 }
45 };
46 #endif
47 
48 static PXASSPDef pxa255_ssp[] = {
49     { 0x41000000, PXA2XX_PIC_SSP },
50     { 0x41400000, PXA25X_PIC_NSSP },
51     { 0, 0 }
52 };
53 
54 #if 0
55 static PXASSPDef pxa26x_ssp[] = {
56     { 0x41000000, PXA2XX_PIC_SSP },
57     { 0x41400000, PXA25X_PIC_NSSP },
58     { 0x41500000, PXA26X_PIC_ASSP },
59     { 0, 0 }
60 };
61 #endif
62 
63 static PXASSPDef pxa27x_ssp[] = {
64     { 0x41000000, PXA2XX_PIC_SSP },
65     { 0x41700000, PXA27X_PIC_SSP2 },
66     { 0x41900000, PXA2XX_PIC_SSP3 },
67     { 0, 0 }
68 };
69 
70 #define PMCR	0x00	/* Power Manager Control register */
71 #define PSSR	0x04	/* Power Manager Sleep Status register */
72 #define PSPR	0x08	/* Power Manager Scratch-Pad register */
73 #define PWER	0x0c	/* Power Manager Wake-Up Enable register */
74 #define PRER	0x10	/* Power Manager Rising-Edge Detect Enable register */
75 #define PFER	0x14	/* Power Manager Falling-Edge Detect Enable register */
76 #define PEDR	0x18	/* Power Manager Edge-Detect Status register */
77 #define PCFR	0x1c	/* Power Manager General Configuration register */
78 #define PGSR0	0x20	/* Power Manager GPIO Sleep-State register 0 */
79 #define PGSR1	0x24	/* Power Manager GPIO Sleep-State register 1 */
80 #define PGSR2	0x28	/* Power Manager GPIO Sleep-State register 2 */
81 #define PGSR3	0x2c	/* Power Manager GPIO Sleep-State register 3 */
82 #define RCSR	0x30	/* Reset Controller Status register */
83 #define PSLR	0x34	/* Power Manager Sleep Configuration register */
84 #define PTSR	0x38	/* Power Manager Standby Configuration register */
85 #define PVCR	0x40	/* Power Manager Voltage Change Control register */
86 #define PUCR	0x4c	/* Power Manager USIM Card Control/Status register */
87 #define PKWR	0x50	/* Power Manager Keyboard Wake-Up Enable register */
88 #define PKSR	0x54	/* Power Manager Keyboard Level-Detect Status */
89 #define PCMD0	0x80	/* Power Manager I2C Command register File 0 */
90 #define PCMD31	0xfc	/* Power Manager I2C Command register File 31 */
91 
92 static uint64_t pxa2xx_pm_read(void *opaque, hwaddr addr,
93                                unsigned size)
94 {
95     PXA2xxState *s = (PXA2xxState *) opaque;
96 
97     switch (addr) {
98     case PMCR ... PCMD31:
99         if (addr & 3)
100             goto fail;
101 
102         return s->pm_regs[addr >> 2];
103     default:
104     fail:
105         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
106         break;
107     }
108     return 0;
109 }
110 
111 static void pxa2xx_pm_write(void *opaque, hwaddr addr,
112                             uint64_t value, unsigned size)
113 {
114     PXA2xxState *s = (PXA2xxState *) opaque;
115 
116     switch (addr) {
117     case PMCR:
118         /* Clear the write-one-to-clear bits... */
119         s->pm_regs[addr >> 2] &= ~(value & 0x2a);
120         /* ...and set the plain r/w bits */
121         s->pm_regs[addr >> 2] &= ~0x15;
122         s->pm_regs[addr >> 2] |= value & 0x15;
123         break;
124 
125     case PSSR:	/* Read-clean registers */
126     case RCSR:
127     case PKSR:
128         s->pm_regs[addr >> 2] &= ~value;
129         break;
130 
131     default:	/* Read-write registers */
132         if (!(addr & 3)) {
133             s->pm_regs[addr >> 2] = value;
134             break;
135         }
136 
137         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
138         break;
139     }
140 }
141 
142 static const MemoryRegionOps pxa2xx_pm_ops = {
143     .read = pxa2xx_pm_read,
144     .write = pxa2xx_pm_write,
145     .endianness = DEVICE_NATIVE_ENDIAN,
146 };
147 
148 static const VMStateDescription vmstate_pxa2xx_pm = {
149     .name = "pxa2xx_pm",
150     .version_id = 0,
151     .minimum_version_id = 0,
152     .fields = (VMStateField[]) {
153         VMSTATE_UINT32_ARRAY(pm_regs, PXA2xxState, 0x40),
154         VMSTATE_END_OF_LIST()
155     }
156 };
157 
158 #define CCCR	0x00	/* Core Clock Configuration register */
159 #define CKEN	0x04	/* Clock Enable register */
160 #define OSCC	0x08	/* Oscillator Configuration register */
161 #define CCSR	0x0c	/* Core Clock Status register */
162 
163 static uint64_t pxa2xx_cm_read(void *opaque, hwaddr addr,
164                                unsigned size)
165 {
166     PXA2xxState *s = (PXA2xxState *) opaque;
167 
168     switch (addr) {
169     case CCCR:
170     case CKEN:
171     case OSCC:
172         return s->cm_regs[addr >> 2];
173 
174     case CCSR:
175         return s->cm_regs[CCCR >> 2] | (3 << 28);
176 
177     default:
178         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
179         break;
180     }
181     return 0;
182 }
183 
184 static void pxa2xx_cm_write(void *opaque, hwaddr addr,
185                             uint64_t value, unsigned size)
186 {
187     PXA2xxState *s = (PXA2xxState *) opaque;
188 
189     switch (addr) {
190     case CCCR:
191     case CKEN:
192         s->cm_regs[addr >> 2] = value;
193         break;
194 
195     case OSCC:
196         s->cm_regs[addr >> 2] &= ~0x6c;
197         s->cm_regs[addr >> 2] |= value & 0x6e;
198         if ((value >> 1) & 1)			/* OON */
199             s->cm_regs[addr >> 2] |= 1 << 0;	/* Oscillator is now stable */
200         break;
201 
202     default:
203         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
204         break;
205     }
206 }
207 
208 static const MemoryRegionOps pxa2xx_cm_ops = {
209     .read = pxa2xx_cm_read,
210     .write = pxa2xx_cm_write,
211     .endianness = DEVICE_NATIVE_ENDIAN,
212 };
213 
214 static const VMStateDescription vmstate_pxa2xx_cm = {
215     .name = "pxa2xx_cm",
216     .version_id = 0,
217     .minimum_version_id = 0,
218     .fields = (VMStateField[]) {
219         VMSTATE_UINT32_ARRAY(cm_regs, PXA2xxState, 4),
220         VMSTATE_UINT32(clkcfg, PXA2xxState),
221         VMSTATE_UINT32(pmnc, PXA2xxState),
222         VMSTATE_END_OF_LIST()
223     }
224 };
225 
226 static uint64_t pxa2xx_clkcfg_read(CPUARMState *env, const ARMCPRegInfo *ri)
227 {
228     PXA2xxState *s = (PXA2xxState *)ri->opaque;
229     return s->clkcfg;
230 }
231 
232 static void pxa2xx_clkcfg_write(CPUARMState *env, const ARMCPRegInfo *ri,
233                                 uint64_t value)
234 {
235     PXA2xxState *s = (PXA2xxState *)ri->opaque;
236     s->clkcfg = value & 0xf;
237     if (value & 2) {
238         printf("%s: CPU frequency change attempt\n", __func__);
239     }
240 }
241 
242 static void pxa2xx_pwrmode_write(CPUARMState *env, const ARMCPRegInfo *ri,
243                                  uint64_t value)
244 {
245     PXA2xxState *s = (PXA2xxState *)ri->opaque;
246     static const char *pwrmode[8] = {
247         "Normal", "Idle", "Deep-idle", "Standby",
248         "Sleep", "reserved (!)", "reserved (!)", "Deep-sleep",
249     };
250 
251     if (value & 8) {
252         printf("%s: CPU voltage change attempt\n", __func__);
253     }
254     switch (value & 7) {
255     case 0:
256         /* Do nothing */
257         break;
258 
259     case 1:
260         /* Idle */
261         if (!(s->cm_regs[CCCR >> 2] & (1U << 31))) { /* CPDIS */
262             cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
263             break;
264         }
265         /* Fall through.  */
266 
267     case 2:
268         /* Deep-Idle */
269         cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
270         s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
271         goto message;
272 
273     case 3:
274         s->cpu->env.uncached_cpsr = ARM_CPU_MODE_SVC;
275         s->cpu->env.daif = PSTATE_A | PSTATE_F | PSTATE_I;
276         s->cpu->env.cp15.sctlr_ns = 0;
277         s->cpu->env.cp15.c1_coproc = 0;
278         s->cpu->env.cp15.ttbr0_el[1] = 0;
279         s->cpu->env.cp15.dacr_ns = 0;
280         s->pm_regs[PSSR >> 2] |= 0x8; /* Set STS */
281         s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
282 
283         /*
284          * The scratch-pad register is almost universally used
285          * for storing the return address on suspend.  For the
286          * lack of a resuming bootloader, perform a jump
287          * directly to that address.
288          */
289         memset(s->cpu->env.regs, 0, 4 * 15);
290         s->cpu->env.regs[15] = s->pm_regs[PSPR >> 2];
291 
292 #if 0
293         buffer = 0xe59ff000; /* ldr     pc, [pc, #0] */
294         cpu_physical_memory_write(0, &buffer, 4);
295         buffer = s->pm_regs[PSPR >> 2];
296         cpu_physical_memory_write(8, &buffer, 4);
297 #endif
298 
299         /* Suspend */
300         cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT);
301 
302         goto message;
303 
304     default:
305     message:
306         printf("%s: machine entered %s mode\n", __func__,
307                pwrmode[value & 7]);
308     }
309 }
310 
311 static uint64_t pxa2xx_cppmnc_read(CPUARMState *env, const ARMCPRegInfo *ri)
312 {
313     PXA2xxState *s = (PXA2xxState *)ri->opaque;
314     return s->pmnc;
315 }
316 
317 static void pxa2xx_cppmnc_write(CPUARMState *env, const ARMCPRegInfo *ri,
318                                 uint64_t value)
319 {
320     PXA2xxState *s = (PXA2xxState *)ri->opaque;
321     s->pmnc = value;
322 }
323 
324 static uint64_t pxa2xx_cpccnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
325 {
326     PXA2xxState *s = (PXA2xxState *)ri->opaque;
327     if (s->pmnc & 1) {
328         return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
329     } else {
330         return 0;
331     }
332 }
333 
334 static const ARMCPRegInfo pxa_cp_reginfo[] = {
335     /* cp14 crm==1: perf registers */
336     { .name = "CPPMNC", .cp = 14, .crn = 0, .crm = 1, .opc1 = 0, .opc2 = 0,
337       .access = PL1_RW,
338       .readfn = pxa2xx_cppmnc_read, .writefn = pxa2xx_cppmnc_write },
339     { .name = "CPCCNT", .cp = 14, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
340       .access = PL1_RW,
341       .readfn = pxa2xx_cpccnt_read, .writefn = arm_cp_write_ignore },
342     { .name = "CPINTEN", .cp = 14, .crn = 4, .crm = 1, .opc1 = 0, .opc2 = 0,
343       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
344     { .name = "CPFLAG", .cp = 14, .crn = 5, .crm = 1, .opc1 = 0, .opc2 = 0,
345       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
346     { .name = "CPEVTSEL", .cp = 14, .crn = 8, .crm = 1, .opc1 = 0, .opc2 = 0,
347       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
348     /* cp14 crm==2: performance count registers */
349     { .name = "CPPMN0", .cp = 14, .crn = 0, .crm = 2, .opc1 = 0, .opc2 = 0,
350       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
351     { .name = "CPPMN1", .cp = 14, .crn = 1, .crm = 2, .opc1 = 0, .opc2 = 0,
352       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
353     { .name = "CPPMN2", .cp = 14, .crn = 2, .crm = 2, .opc1 = 0, .opc2 = 0,
354       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
355     { .name = "CPPMN3", .cp = 14, .crn = 2, .crm = 3, .opc1 = 0, .opc2 = 0,
356       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
357     /* cp14 crn==6: CLKCFG */
358     { .name = "CLKCFG", .cp = 14, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
359       .access = PL1_RW,
360       .readfn = pxa2xx_clkcfg_read, .writefn = pxa2xx_clkcfg_write },
361     /* cp14 crn==7: PWRMODE */
362     { .name = "PWRMODE", .cp = 14, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 0,
363       .access = PL1_RW,
364       .readfn = arm_cp_read_zero, .writefn = pxa2xx_pwrmode_write },
365     REGINFO_SENTINEL
366 };
367 
368 static void pxa2xx_setup_cp14(PXA2xxState *s)
369 {
370     define_arm_cp_regs_with_opaque(s->cpu, pxa_cp_reginfo, s);
371 }
372 
373 #define MDCNFG		0x00	/* SDRAM Configuration register */
374 #define MDREFR		0x04	/* SDRAM Refresh Control register */
375 #define MSC0		0x08	/* Static Memory Control register 0 */
376 #define MSC1		0x0c	/* Static Memory Control register 1 */
377 #define MSC2		0x10	/* Static Memory Control register 2 */
378 #define MECR		0x14	/* Expansion Memory Bus Config register */
379 #define SXCNFG		0x1c	/* Synchronous Static Memory Config register */
380 #define MCMEM0		0x28	/* PC Card Memory Socket 0 Timing register */
381 #define MCMEM1		0x2c	/* PC Card Memory Socket 1 Timing register */
382 #define MCATT0		0x30	/* PC Card Attribute Socket 0 register */
383 #define MCATT1		0x34	/* PC Card Attribute Socket 1 register */
384 #define MCIO0		0x38	/* PC Card I/O Socket 0 Timing register */
385 #define MCIO1		0x3c	/* PC Card I/O Socket 1 Timing register */
386 #define MDMRS		0x40	/* SDRAM Mode Register Set Config register */
387 #define BOOT_DEF	0x44	/* Boot-time Default Configuration register */
388 #define ARB_CNTL	0x48	/* Arbiter Control register */
389 #define BSCNTR0		0x4c	/* Memory Buffer Strength Control register 0 */
390 #define BSCNTR1		0x50	/* Memory Buffer Strength Control register 1 */
391 #define LCDBSCNTR	0x54	/* LCD Buffer Strength Control register */
392 #define MDMRSLP		0x58	/* Low Power SDRAM Mode Set Config register */
393 #define BSCNTR2		0x5c	/* Memory Buffer Strength Control register 2 */
394 #define BSCNTR3		0x60	/* Memory Buffer Strength Control register 3 */
395 #define SA1110		0x64	/* SA-1110 Memory Compatibility register */
396 
397 static uint64_t pxa2xx_mm_read(void *opaque, hwaddr addr,
398                                unsigned size)
399 {
400     PXA2xxState *s = (PXA2xxState *) opaque;
401 
402     switch (addr) {
403     case MDCNFG ... SA1110:
404         if ((addr & 3) == 0)
405             return s->mm_regs[addr >> 2];
406 
407     default:
408         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
409         break;
410     }
411     return 0;
412 }
413 
414 static void pxa2xx_mm_write(void *opaque, hwaddr addr,
415                             uint64_t value, unsigned size)
416 {
417     PXA2xxState *s = (PXA2xxState *) opaque;
418 
419     switch (addr) {
420     case MDCNFG ... SA1110:
421         if ((addr & 3) == 0) {
422             s->mm_regs[addr >> 2] = value;
423             break;
424         }
425 
426     default:
427         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
428         break;
429     }
430 }
431 
432 static const MemoryRegionOps pxa2xx_mm_ops = {
433     .read = pxa2xx_mm_read,
434     .write = pxa2xx_mm_write,
435     .endianness = DEVICE_NATIVE_ENDIAN,
436 };
437 
438 static const VMStateDescription vmstate_pxa2xx_mm = {
439     .name = "pxa2xx_mm",
440     .version_id = 0,
441     .minimum_version_id = 0,
442     .fields = (VMStateField[]) {
443         VMSTATE_UINT32_ARRAY(mm_regs, PXA2xxState, 0x1a),
444         VMSTATE_END_OF_LIST()
445     }
446 };
447 
448 #define TYPE_PXA2XX_SSP "pxa2xx-ssp"
449 #define PXA2XX_SSP(obj) \
450     OBJECT_CHECK(PXA2xxSSPState, (obj), TYPE_PXA2XX_SSP)
451 
452 /* Synchronous Serial Ports */
453 typedef struct {
454     /*< private >*/
455     SysBusDevice parent_obj;
456     /*< public >*/
457 
458     MemoryRegion iomem;
459     qemu_irq irq;
460     int enable;
461     SSIBus *bus;
462 
463     uint32_t sscr[2];
464     uint32_t sspsp;
465     uint32_t ssto;
466     uint32_t ssitr;
467     uint32_t sssr;
468     uint8_t sstsa;
469     uint8_t ssrsa;
470     uint8_t ssacd;
471 
472     uint32_t rx_fifo[16];
473     int rx_level;
474     int rx_start;
475 } PXA2xxSSPState;
476 
477 #define SSCR0	0x00	/* SSP Control register 0 */
478 #define SSCR1	0x04	/* SSP Control register 1 */
479 #define SSSR	0x08	/* SSP Status register */
480 #define SSITR	0x0c	/* SSP Interrupt Test register */
481 #define SSDR	0x10	/* SSP Data register */
482 #define SSTO	0x28	/* SSP Time-Out register */
483 #define SSPSP	0x2c	/* SSP Programmable Serial Protocol register */
484 #define SSTSA	0x30	/* SSP TX Time Slot Active register */
485 #define SSRSA	0x34	/* SSP RX Time Slot Active register */
486 #define SSTSS	0x38	/* SSP Time Slot Status register */
487 #define SSACD	0x3c	/* SSP Audio Clock Divider register */
488 
489 /* Bitfields for above registers */
490 #define SSCR0_SPI(x)	(((x) & 0x30) == 0x00)
491 #define SSCR0_SSP(x)	(((x) & 0x30) == 0x10)
492 #define SSCR0_UWIRE(x)	(((x) & 0x30) == 0x20)
493 #define SSCR0_PSP(x)	(((x) & 0x30) == 0x30)
494 #define SSCR0_SSE	(1 << 7)
495 #define SSCR0_RIM	(1 << 22)
496 #define SSCR0_TIM	(1 << 23)
497 #define SSCR0_MOD       (1U << 31)
498 #define SSCR0_DSS(x)	(((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1)
499 #define SSCR1_RIE	(1 << 0)
500 #define SSCR1_TIE	(1 << 1)
501 #define SSCR1_LBM	(1 << 2)
502 #define SSCR1_MWDS	(1 << 5)
503 #define SSCR1_TFT(x)	((((x) >> 6) & 0xf) + 1)
504 #define SSCR1_RFT(x)	((((x) >> 10) & 0xf) + 1)
505 #define SSCR1_EFWR	(1 << 14)
506 #define SSCR1_PINTE	(1 << 18)
507 #define SSCR1_TINTE	(1 << 19)
508 #define SSCR1_RSRE	(1 << 20)
509 #define SSCR1_TSRE	(1 << 21)
510 #define SSCR1_EBCEI	(1 << 29)
511 #define SSITR_INT	(7 << 5)
512 #define SSSR_TNF	(1 << 2)
513 #define SSSR_RNE	(1 << 3)
514 #define SSSR_TFS	(1 << 5)
515 #define SSSR_RFS	(1 << 6)
516 #define SSSR_ROR	(1 << 7)
517 #define SSSR_PINT	(1 << 18)
518 #define SSSR_TINT	(1 << 19)
519 #define SSSR_EOC	(1 << 20)
520 #define SSSR_TUR	(1 << 21)
521 #define SSSR_BCE	(1 << 23)
522 #define SSSR_RW		0x00bc0080
523 
524 static void pxa2xx_ssp_int_update(PXA2xxSSPState *s)
525 {
526     int level = 0;
527 
528     level |= s->ssitr & SSITR_INT;
529     level |= (s->sssr & SSSR_BCE)  &&  (s->sscr[1] & SSCR1_EBCEI);
530     level |= (s->sssr & SSSR_TUR)  && !(s->sscr[0] & SSCR0_TIM);
531     level |= (s->sssr & SSSR_EOC)  &&  (s->sssr & (SSSR_TINT | SSSR_PINT));
532     level |= (s->sssr & SSSR_TINT) &&  (s->sscr[1] & SSCR1_TINTE);
533     level |= (s->sssr & SSSR_PINT) &&  (s->sscr[1] & SSCR1_PINTE);
534     level |= (s->sssr & SSSR_ROR)  && !(s->sscr[0] & SSCR0_RIM);
535     level |= (s->sssr & SSSR_RFS)  &&  (s->sscr[1] & SSCR1_RIE);
536     level |= (s->sssr & SSSR_TFS)  &&  (s->sscr[1] & SSCR1_TIE);
537     qemu_set_irq(s->irq, !!level);
538 }
539 
540 static void pxa2xx_ssp_fifo_update(PXA2xxSSPState *s)
541 {
542     s->sssr &= ~(0xf << 12);	/* Clear RFL */
543     s->sssr &= ~(0xf << 8);	/* Clear TFL */
544     s->sssr &= ~SSSR_TFS;
545     s->sssr &= ~SSSR_TNF;
546     if (s->enable) {
547         s->sssr |= ((s->rx_level - 1) & 0xf) << 12;
548         if (s->rx_level >= SSCR1_RFT(s->sscr[1]))
549             s->sssr |= SSSR_RFS;
550         else
551             s->sssr &= ~SSSR_RFS;
552         if (s->rx_level)
553             s->sssr |= SSSR_RNE;
554         else
555             s->sssr &= ~SSSR_RNE;
556         /* TX FIFO is never filled, so it is always in underrun
557            condition if SSP is enabled */
558         s->sssr |= SSSR_TFS;
559         s->sssr |= SSSR_TNF;
560     }
561 
562     pxa2xx_ssp_int_update(s);
563 }
564 
565 static uint64_t pxa2xx_ssp_read(void *opaque, hwaddr addr,
566                                 unsigned size)
567 {
568     PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
569     uint32_t retval;
570 
571     switch (addr) {
572     case SSCR0:
573         return s->sscr[0];
574     case SSCR1:
575         return s->sscr[1];
576     case SSPSP:
577         return s->sspsp;
578     case SSTO:
579         return s->ssto;
580     case SSITR:
581         return s->ssitr;
582     case SSSR:
583         return s->sssr | s->ssitr;
584     case SSDR:
585         if (!s->enable)
586             return 0xffffffff;
587         if (s->rx_level < 1) {
588             printf("%s: SSP Rx Underrun\n", __FUNCTION__);
589             return 0xffffffff;
590         }
591         s->rx_level --;
592         retval = s->rx_fifo[s->rx_start ++];
593         s->rx_start &= 0xf;
594         pxa2xx_ssp_fifo_update(s);
595         return retval;
596     case SSTSA:
597         return s->sstsa;
598     case SSRSA:
599         return s->ssrsa;
600     case SSTSS:
601         return 0;
602     case SSACD:
603         return s->ssacd;
604     default:
605         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
606         break;
607     }
608     return 0;
609 }
610 
611 static void pxa2xx_ssp_write(void *opaque, hwaddr addr,
612                              uint64_t value64, unsigned size)
613 {
614     PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
615     uint32_t value = value64;
616 
617     switch (addr) {
618     case SSCR0:
619         s->sscr[0] = value & 0xc7ffffff;
620         s->enable = value & SSCR0_SSE;
621         if (value & SSCR0_MOD)
622             printf("%s: Attempt to use network mode\n", __FUNCTION__);
623         if (s->enable && SSCR0_DSS(value) < 4)
624             printf("%s: Wrong data size: %i bits\n", __FUNCTION__,
625                             SSCR0_DSS(value));
626         if (!(value & SSCR0_SSE)) {
627             s->sssr = 0;
628             s->ssitr = 0;
629             s->rx_level = 0;
630         }
631         pxa2xx_ssp_fifo_update(s);
632         break;
633 
634     case SSCR1:
635         s->sscr[1] = value;
636         if (value & (SSCR1_LBM | SSCR1_EFWR))
637             printf("%s: Attempt to use SSP test mode\n", __FUNCTION__);
638         pxa2xx_ssp_fifo_update(s);
639         break;
640 
641     case SSPSP:
642         s->sspsp = value;
643         break;
644 
645     case SSTO:
646         s->ssto = value;
647         break;
648 
649     case SSITR:
650         s->ssitr = value & SSITR_INT;
651         pxa2xx_ssp_int_update(s);
652         break;
653 
654     case SSSR:
655         s->sssr &= ~(value & SSSR_RW);
656         pxa2xx_ssp_int_update(s);
657         break;
658 
659     case SSDR:
660         if (SSCR0_UWIRE(s->sscr[0])) {
661             if (s->sscr[1] & SSCR1_MWDS)
662                 value &= 0xffff;
663             else
664                 value &= 0xff;
665         } else
666             /* Note how 32bits overflow does no harm here */
667             value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
668 
669         /* Data goes from here to the Tx FIFO and is shifted out from
670          * there directly to the slave, no need to buffer it.
671          */
672         if (s->enable) {
673             uint32_t readval;
674             readval = ssi_transfer(s->bus, value);
675             if (s->rx_level < 0x10) {
676                 s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = readval;
677             } else {
678                 s->sssr |= SSSR_ROR;
679             }
680         }
681         pxa2xx_ssp_fifo_update(s);
682         break;
683 
684     case SSTSA:
685         s->sstsa = value;
686         break;
687 
688     case SSRSA:
689         s->ssrsa = value;
690         break;
691 
692     case SSACD:
693         s->ssacd = value;
694         break;
695 
696     default:
697         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
698         break;
699     }
700 }
701 
702 static const MemoryRegionOps pxa2xx_ssp_ops = {
703     .read = pxa2xx_ssp_read,
704     .write = pxa2xx_ssp_write,
705     .endianness = DEVICE_NATIVE_ENDIAN,
706 };
707 
708 static void pxa2xx_ssp_save(QEMUFile *f, void *opaque)
709 {
710     PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
711     int i;
712 
713     qemu_put_be32(f, s->enable);
714 
715     qemu_put_be32s(f, &s->sscr[0]);
716     qemu_put_be32s(f, &s->sscr[1]);
717     qemu_put_be32s(f, &s->sspsp);
718     qemu_put_be32s(f, &s->ssto);
719     qemu_put_be32s(f, &s->ssitr);
720     qemu_put_be32s(f, &s->sssr);
721     qemu_put_8s(f, &s->sstsa);
722     qemu_put_8s(f, &s->ssrsa);
723     qemu_put_8s(f, &s->ssacd);
724 
725     qemu_put_byte(f, s->rx_level);
726     for (i = 0; i < s->rx_level; i ++)
727         qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 0xf]);
728 }
729 
730 static int pxa2xx_ssp_load(QEMUFile *f, void *opaque, int version_id)
731 {
732     PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
733     int i, v;
734 
735     s->enable = qemu_get_be32(f);
736 
737     qemu_get_be32s(f, &s->sscr[0]);
738     qemu_get_be32s(f, &s->sscr[1]);
739     qemu_get_be32s(f, &s->sspsp);
740     qemu_get_be32s(f, &s->ssto);
741     qemu_get_be32s(f, &s->ssitr);
742     qemu_get_be32s(f, &s->sssr);
743     qemu_get_8s(f, &s->sstsa);
744     qemu_get_8s(f, &s->ssrsa);
745     qemu_get_8s(f, &s->ssacd);
746 
747     v = qemu_get_byte(f);
748     if (v < 0 || v > ARRAY_SIZE(s->rx_fifo)) {
749         return -EINVAL;
750     }
751     s->rx_level = v;
752     s->rx_start = 0;
753     for (i = 0; i < s->rx_level; i ++)
754         s->rx_fifo[i] = qemu_get_byte(f);
755 
756     return 0;
757 }
758 
759 static int pxa2xx_ssp_init(SysBusDevice *sbd)
760 {
761     DeviceState *dev = DEVICE(sbd);
762     PXA2xxSSPState *s = PXA2XX_SSP(dev);
763 
764     sysbus_init_irq(sbd, &s->irq);
765 
766     memory_region_init_io(&s->iomem, OBJECT(s), &pxa2xx_ssp_ops, s,
767                           "pxa2xx-ssp", 0x1000);
768     sysbus_init_mmio(sbd, &s->iomem);
769     register_savevm(dev, "pxa2xx_ssp", -1, 0,
770                     pxa2xx_ssp_save, pxa2xx_ssp_load, s);
771 
772     s->bus = ssi_create_bus(dev, "ssi");
773     return 0;
774 }
775 
776 /* Real-Time Clock */
777 #define RCNR		0x00	/* RTC Counter register */
778 #define RTAR		0x04	/* RTC Alarm register */
779 #define RTSR		0x08	/* RTC Status register */
780 #define RTTR		0x0c	/* RTC Timer Trim register */
781 #define RDCR		0x10	/* RTC Day Counter register */
782 #define RYCR		0x14	/* RTC Year Counter register */
783 #define RDAR1		0x18	/* RTC Wristwatch Day Alarm register 1 */
784 #define RYAR1		0x1c	/* RTC Wristwatch Year Alarm register 1 */
785 #define RDAR2		0x20	/* RTC Wristwatch Day Alarm register 2 */
786 #define RYAR2		0x24	/* RTC Wristwatch Year Alarm register 2 */
787 #define SWCR		0x28	/* RTC Stopwatch Counter register */
788 #define SWAR1		0x2c	/* RTC Stopwatch Alarm register 1 */
789 #define SWAR2		0x30	/* RTC Stopwatch Alarm register 2 */
790 #define RTCPICR		0x34	/* RTC Periodic Interrupt Counter register */
791 #define PIAR		0x38	/* RTC Periodic Interrupt Alarm register */
792 
793 #define TYPE_PXA2XX_RTC "pxa2xx_rtc"
794 #define PXA2XX_RTC(obj) \
795     OBJECT_CHECK(PXA2xxRTCState, (obj), TYPE_PXA2XX_RTC)
796 
797 typedef struct {
798     /*< private >*/
799     SysBusDevice parent_obj;
800     /*< public >*/
801 
802     MemoryRegion iomem;
803     uint32_t rttr;
804     uint32_t rtsr;
805     uint32_t rtar;
806     uint32_t rdar1;
807     uint32_t rdar2;
808     uint32_t ryar1;
809     uint32_t ryar2;
810     uint32_t swar1;
811     uint32_t swar2;
812     uint32_t piar;
813     uint32_t last_rcnr;
814     uint32_t last_rdcr;
815     uint32_t last_rycr;
816     uint32_t last_swcr;
817     uint32_t last_rtcpicr;
818     int64_t last_hz;
819     int64_t last_sw;
820     int64_t last_pi;
821     QEMUTimer *rtc_hz;
822     QEMUTimer *rtc_rdal1;
823     QEMUTimer *rtc_rdal2;
824     QEMUTimer *rtc_swal1;
825     QEMUTimer *rtc_swal2;
826     QEMUTimer *rtc_pi;
827     qemu_irq rtc_irq;
828 } PXA2xxRTCState;
829 
830 static inline void pxa2xx_rtc_int_update(PXA2xxRTCState *s)
831 {
832     qemu_set_irq(s->rtc_irq, !!(s->rtsr & 0x2553));
833 }
834 
835 static void pxa2xx_rtc_hzupdate(PXA2xxRTCState *s)
836 {
837     int64_t rt = qemu_clock_get_ms(rtc_clock);
838     s->last_rcnr += ((rt - s->last_hz) << 15) /
839             (1000 * ((s->rttr & 0xffff) + 1));
840     s->last_rdcr += ((rt - s->last_hz) << 15) /
841             (1000 * ((s->rttr & 0xffff) + 1));
842     s->last_hz = rt;
843 }
844 
845 static void pxa2xx_rtc_swupdate(PXA2xxRTCState *s)
846 {
847     int64_t rt = qemu_clock_get_ms(rtc_clock);
848     if (s->rtsr & (1 << 12))
849         s->last_swcr += (rt - s->last_sw) / 10;
850     s->last_sw = rt;
851 }
852 
853 static void pxa2xx_rtc_piupdate(PXA2xxRTCState *s)
854 {
855     int64_t rt = qemu_clock_get_ms(rtc_clock);
856     if (s->rtsr & (1 << 15))
857         s->last_swcr += rt - s->last_pi;
858     s->last_pi = rt;
859 }
860 
861 static inline void pxa2xx_rtc_alarm_update(PXA2xxRTCState *s,
862                 uint32_t rtsr)
863 {
864     if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0)))
865         timer_mod(s->rtc_hz, s->last_hz +
866                 (((s->rtar - s->last_rcnr) * 1000 *
867                   ((s->rttr & 0xffff) + 1)) >> 15));
868     else
869         timer_del(s->rtc_hz);
870 
871     if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4)))
872         timer_mod(s->rtc_rdal1, s->last_hz +
873                 (((s->rdar1 - s->last_rdcr) * 1000 *
874                   ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
875     else
876         timer_del(s->rtc_rdal1);
877 
878     if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6)))
879         timer_mod(s->rtc_rdal2, s->last_hz +
880                 (((s->rdar2 - s->last_rdcr) * 1000 *
881                   ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
882     else
883         timer_del(s->rtc_rdal2);
884 
885     if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8)))
886         timer_mod(s->rtc_swal1, s->last_sw +
887                         (s->swar1 - s->last_swcr) * 10); /* TODO: fixup */
888     else
889         timer_del(s->rtc_swal1);
890 
891     if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10)))
892         timer_mod(s->rtc_swal2, s->last_sw +
893                         (s->swar2 - s->last_swcr) * 10); /* TODO: fixup */
894     else
895         timer_del(s->rtc_swal2);
896 
897     if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13)))
898         timer_mod(s->rtc_pi, s->last_pi +
899                         (s->piar & 0xffff) - s->last_rtcpicr);
900     else
901         timer_del(s->rtc_pi);
902 }
903 
904 static inline void pxa2xx_rtc_hz_tick(void *opaque)
905 {
906     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
907     s->rtsr |= (1 << 0);
908     pxa2xx_rtc_alarm_update(s, s->rtsr);
909     pxa2xx_rtc_int_update(s);
910 }
911 
912 static inline void pxa2xx_rtc_rdal1_tick(void *opaque)
913 {
914     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
915     s->rtsr |= (1 << 4);
916     pxa2xx_rtc_alarm_update(s, s->rtsr);
917     pxa2xx_rtc_int_update(s);
918 }
919 
920 static inline void pxa2xx_rtc_rdal2_tick(void *opaque)
921 {
922     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
923     s->rtsr |= (1 << 6);
924     pxa2xx_rtc_alarm_update(s, s->rtsr);
925     pxa2xx_rtc_int_update(s);
926 }
927 
928 static inline void pxa2xx_rtc_swal1_tick(void *opaque)
929 {
930     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
931     s->rtsr |= (1 << 8);
932     pxa2xx_rtc_alarm_update(s, s->rtsr);
933     pxa2xx_rtc_int_update(s);
934 }
935 
936 static inline void pxa2xx_rtc_swal2_tick(void *opaque)
937 {
938     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
939     s->rtsr |= (1 << 10);
940     pxa2xx_rtc_alarm_update(s, s->rtsr);
941     pxa2xx_rtc_int_update(s);
942 }
943 
944 static inline void pxa2xx_rtc_pi_tick(void *opaque)
945 {
946     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
947     s->rtsr |= (1 << 13);
948     pxa2xx_rtc_piupdate(s);
949     s->last_rtcpicr = 0;
950     pxa2xx_rtc_alarm_update(s, s->rtsr);
951     pxa2xx_rtc_int_update(s);
952 }
953 
954 static uint64_t pxa2xx_rtc_read(void *opaque, hwaddr addr,
955                                 unsigned size)
956 {
957     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
958 
959     switch (addr) {
960     case RTTR:
961         return s->rttr;
962     case RTSR:
963         return s->rtsr;
964     case RTAR:
965         return s->rtar;
966     case RDAR1:
967         return s->rdar1;
968     case RDAR2:
969         return s->rdar2;
970     case RYAR1:
971         return s->ryar1;
972     case RYAR2:
973         return s->ryar2;
974     case SWAR1:
975         return s->swar1;
976     case SWAR2:
977         return s->swar2;
978     case PIAR:
979         return s->piar;
980     case RCNR:
981         return s->last_rcnr +
982             ((qemu_clock_get_ms(rtc_clock) - s->last_hz) << 15) /
983             (1000 * ((s->rttr & 0xffff) + 1));
984     case RDCR:
985         return s->last_rdcr +
986             ((qemu_clock_get_ms(rtc_clock) - s->last_hz) << 15) /
987             (1000 * ((s->rttr & 0xffff) + 1));
988     case RYCR:
989         return s->last_rycr;
990     case SWCR:
991         if (s->rtsr & (1 << 12))
992             return s->last_swcr +
993                 (qemu_clock_get_ms(rtc_clock) - s->last_sw) / 10;
994         else
995             return s->last_swcr;
996     default:
997         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
998         break;
999     }
1000     return 0;
1001 }
1002 
1003 static void pxa2xx_rtc_write(void *opaque, hwaddr addr,
1004                              uint64_t value64, unsigned size)
1005 {
1006     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1007     uint32_t value = value64;
1008 
1009     switch (addr) {
1010     case RTTR:
1011         if (!(s->rttr & (1U << 31))) {
1012             pxa2xx_rtc_hzupdate(s);
1013             s->rttr = value;
1014             pxa2xx_rtc_alarm_update(s, s->rtsr);
1015         }
1016         break;
1017 
1018     case RTSR:
1019         if ((s->rtsr ^ value) & (1 << 15))
1020             pxa2xx_rtc_piupdate(s);
1021 
1022         if ((s->rtsr ^ value) & (1 << 12))
1023             pxa2xx_rtc_swupdate(s);
1024 
1025         if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac))
1026             pxa2xx_rtc_alarm_update(s, value);
1027 
1028         s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac));
1029         pxa2xx_rtc_int_update(s);
1030         break;
1031 
1032     case RTAR:
1033         s->rtar = value;
1034         pxa2xx_rtc_alarm_update(s, s->rtsr);
1035         break;
1036 
1037     case RDAR1:
1038         s->rdar1 = value;
1039         pxa2xx_rtc_alarm_update(s, s->rtsr);
1040         break;
1041 
1042     case RDAR2:
1043         s->rdar2 = value;
1044         pxa2xx_rtc_alarm_update(s, s->rtsr);
1045         break;
1046 
1047     case RYAR1:
1048         s->ryar1 = value;
1049         pxa2xx_rtc_alarm_update(s, s->rtsr);
1050         break;
1051 
1052     case RYAR2:
1053         s->ryar2 = value;
1054         pxa2xx_rtc_alarm_update(s, s->rtsr);
1055         break;
1056 
1057     case SWAR1:
1058         pxa2xx_rtc_swupdate(s);
1059         s->swar1 = value;
1060         s->last_swcr = 0;
1061         pxa2xx_rtc_alarm_update(s, s->rtsr);
1062         break;
1063 
1064     case SWAR2:
1065         s->swar2 = value;
1066         pxa2xx_rtc_alarm_update(s, s->rtsr);
1067         break;
1068 
1069     case PIAR:
1070         s->piar = value;
1071         pxa2xx_rtc_alarm_update(s, s->rtsr);
1072         break;
1073 
1074     case RCNR:
1075         pxa2xx_rtc_hzupdate(s);
1076         s->last_rcnr = value;
1077         pxa2xx_rtc_alarm_update(s, s->rtsr);
1078         break;
1079 
1080     case RDCR:
1081         pxa2xx_rtc_hzupdate(s);
1082         s->last_rdcr = value;
1083         pxa2xx_rtc_alarm_update(s, s->rtsr);
1084         break;
1085 
1086     case RYCR:
1087         s->last_rycr = value;
1088         break;
1089 
1090     case SWCR:
1091         pxa2xx_rtc_swupdate(s);
1092         s->last_swcr = value;
1093         pxa2xx_rtc_alarm_update(s, s->rtsr);
1094         break;
1095 
1096     case RTCPICR:
1097         pxa2xx_rtc_piupdate(s);
1098         s->last_rtcpicr = value & 0xffff;
1099         pxa2xx_rtc_alarm_update(s, s->rtsr);
1100         break;
1101 
1102     default:
1103         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1104     }
1105 }
1106 
1107 static const MemoryRegionOps pxa2xx_rtc_ops = {
1108     .read = pxa2xx_rtc_read,
1109     .write = pxa2xx_rtc_write,
1110     .endianness = DEVICE_NATIVE_ENDIAN,
1111 };
1112 
1113 static int pxa2xx_rtc_init(SysBusDevice *dev)
1114 {
1115     PXA2xxRTCState *s = PXA2XX_RTC(dev);
1116     struct tm tm;
1117     int wom;
1118 
1119     s->rttr = 0x7fff;
1120     s->rtsr = 0;
1121 
1122     qemu_get_timedate(&tm, 0);
1123     wom = ((tm.tm_mday - 1) / 7) + 1;
1124 
1125     s->last_rcnr = (uint32_t) mktimegm(&tm);
1126     s->last_rdcr = (wom << 20) | ((tm.tm_wday + 1) << 17) |
1127             (tm.tm_hour << 12) | (tm.tm_min << 6) | tm.tm_sec;
1128     s->last_rycr = ((tm.tm_year + 1900) << 9) |
1129             ((tm.tm_mon + 1) << 5) | tm.tm_mday;
1130     s->last_swcr = (tm.tm_hour << 19) |
1131             (tm.tm_min << 13) | (tm.tm_sec << 7);
1132     s->last_rtcpicr = 0;
1133     s->last_hz = s->last_sw = s->last_pi = qemu_clock_get_ms(rtc_clock);
1134 
1135     s->rtc_hz    = timer_new_ms(rtc_clock, pxa2xx_rtc_hz_tick,    s);
1136     s->rtc_rdal1 = timer_new_ms(rtc_clock, pxa2xx_rtc_rdal1_tick, s);
1137     s->rtc_rdal2 = timer_new_ms(rtc_clock, pxa2xx_rtc_rdal2_tick, s);
1138     s->rtc_swal1 = timer_new_ms(rtc_clock, pxa2xx_rtc_swal1_tick, s);
1139     s->rtc_swal2 = timer_new_ms(rtc_clock, pxa2xx_rtc_swal2_tick, s);
1140     s->rtc_pi    = timer_new_ms(rtc_clock, pxa2xx_rtc_pi_tick,    s);
1141 
1142     sysbus_init_irq(dev, &s->rtc_irq);
1143 
1144     memory_region_init_io(&s->iomem, OBJECT(s), &pxa2xx_rtc_ops, s,
1145                           "pxa2xx-rtc", 0x10000);
1146     sysbus_init_mmio(dev, &s->iomem);
1147 
1148     return 0;
1149 }
1150 
1151 static void pxa2xx_rtc_pre_save(void *opaque)
1152 {
1153     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1154 
1155     pxa2xx_rtc_hzupdate(s);
1156     pxa2xx_rtc_piupdate(s);
1157     pxa2xx_rtc_swupdate(s);
1158 }
1159 
1160 static int pxa2xx_rtc_post_load(void *opaque, int version_id)
1161 {
1162     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1163 
1164     pxa2xx_rtc_alarm_update(s, s->rtsr);
1165 
1166     return 0;
1167 }
1168 
1169 static const VMStateDescription vmstate_pxa2xx_rtc_regs = {
1170     .name = "pxa2xx_rtc",
1171     .version_id = 0,
1172     .minimum_version_id = 0,
1173     .pre_save = pxa2xx_rtc_pre_save,
1174     .post_load = pxa2xx_rtc_post_load,
1175     .fields = (VMStateField[]) {
1176         VMSTATE_UINT32(rttr, PXA2xxRTCState),
1177         VMSTATE_UINT32(rtsr, PXA2xxRTCState),
1178         VMSTATE_UINT32(rtar, PXA2xxRTCState),
1179         VMSTATE_UINT32(rdar1, PXA2xxRTCState),
1180         VMSTATE_UINT32(rdar2, PXA2xxRTCState),
1181         VMSTATE_UINT32(ryar1, PXA2xxRTCState),
1182         VMSTATE_UINT32(ryar2, PXA2xxRTCState),
1183         VMSTATE_UINT32(swar1, PXA2xxRTCState),
1184         VMSTATE_UINT32(swar2, PXA2xxRTCState),
1185         VMSTATE_UINT32(piar, PXA2xxRTCState),
1186         VMSTATE_UINT32(last_rcnr, PXA2xxRTCState),
1187         VMSTATE_UINT32(last_rdcr, PXA2xxRTCState),
1188         VMSTATE_UINT32(last_rycr, PXA2xxRTCState),
1189         VMSTATE_UINT32(last_swcr, PXA2xxRTCState),
1190         VMSTATE_UINT32(last_rtcpicr, PXA2xxRTCState),
1191         VMSTATE_INT64(last_hz, PXA2xxRTCState),
1192         VMSTATE_INT64(last_sw, PXA2xxRTCState),
1193         VMSTATE_INT64(last_pi, PXA2xxRTCState),
1194         VMSTATE_END_OF_LIST(),
1195     },
1196 };
1197 
1198 static void pxa2xx_rtc_sysbus_class_init(ObjectClass *klass, void *data)
1199 {
1200     DeviceClass *dc = DEVICE_CLASS(klass);
1201     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1202 
1203     k->init = pxa2xx_rtc_init;
1204     dc->desc = "PXA2xx RTC Controller";
1205     dc->vmsd = &vmstate_pxa2xx_rtc_regs;
1206 }
1207 
1208 static const TypeInfo pxa2xx_rtc_sysbus_info = {
1209     .name          = TYPE_PXA2XX_RTC,
1210     .parent        = TYPE_SYS_BUS_DEVICE,
1211     .instance_size = sizeof(PXA2xxRTCState),
1212     .class_init    = pxa2xx_rtc_sysbus_class_init,
1213 };
1214 
1215 /* I2C Interface */
1216 
1217 #define TYPE_PXA2XX_I2C_SLAVE "pxa2xx-i2c-slave"
1218 #define PXA2XX_I2C_SLAVE(obj) \
1219     OBJECT_CHECK(PXA2xxI2CSlaveState, (obj), TYPE_PXA2XX_I2C_SLAVE)
1220 
1221 typedef struct PXA2xxI2CSlaveState {
1222     I2CSlave parent_obj;
1223 
1224     PXA2xxI2CState *host;
1225 } PXA2xxI2CSlaveState;
1226 
1227 #define TYPE_PXA2XX_I2C "pxa2xx_i2c"
1228 #define PXA2XX_I2C(obj) \
1229     OBJECT_CHECK(PXA2xxI2CState, (obj), TYPE_PXA2XX_I2C)
1230 
1231 struct PXA2xxI2CState {
1232     /*< private >*/
1233     SysBusDevice parent_obj;
1234     /*< public >*/
1235 
1236     MemoryRegion iomem;
1237     PXA2xxI2CSlaveState *slave;
1238     I2CBus *bus;
1239     qemu_irq irq;
1240     uint32_t offset;
1241     uint32_t region_size;
1242 
1243     uint16_t control;
1244     uint16_t status;
1245     uint8_t ibmr;
1246     uint8_t data;
1247 };
1248 
1249 #define IBMR	0x80	/* I2C Bus Monitor register */
1250 #define IDBR	0x88	/* I2C Data Buffer register */
1251 #define ICR	0x90	/* I2C Control register */
1252 #define ISR	0x98	/* I2C Status register */
1253 #define ISAR	0xa0	/* I2C Slave Address register */
1254 
1255 static void pxa2xx_i2c_update(PXA2xxI2CState *s)
1256 {
1257     uint16_t level = 0;
1258     level |= s->status & s->control & (1 << 10);		/* BED */
1259     level |= (s->status & (1 << 7)) && (s->control & (1 << 9));	/* IRF */
1260     level |= (s->status & (1 << 6)) && (s->control & (1 << 8));	/* ITE */
1261     level |= s->status & (1 << 9);				/* SAD */
1262     qemu_set_irq(s->irq, !!level);
1263 }
1264 
1265 /* These are only stubs now.  */
1266 static void pxa2xx_i2c_event(I2CSlave *i2c, enum i2c_event event)
1267 {
1268     PXA2xxI2CSlaveState *slave = PXA2XX_I2C_SLAVE(i2c);
1269     PXA2xxI2CState *s = slave->host;
1270 
1271     switch (event) {
1272     case I2C_START_SEND:
1273         s->status |= (1 << 9);				/* set SAD */
1274         s->status &= ~(1 << 0);				/* clear RWM */
1275         break;
1276     case I2C_START_RECV:
1277         s->status |= (1 << 9);				/* set SAD */
1278         s->status |= 1 << 0;				/* set RWM */
1279         break;
1280     case I2C_FINISH:
1281         s->status |= (1 << 4);				/* set SSD */
1282         break;
1283     case I2C_NACK:
1284         s->status |= 1 << 1;				/* set ACKNAK */
1285         break;
1286     }
1287     pxa2xx_i2c_update(s);
1288 }
1289 
1290 static int pxa2xx_i2c_rx(I2CSlave *i2c)
1291 {
1292     PXA2xxI2CSlaveState *slave = PXA2XX_I2C_SLAVE(i2c);
1293     PXA2xxI2CState *s = slave->host;
1294 
1295     if ((s->control & (1 << 14)) || !(s->control & (1 << 6))) {
1296         return 0;
1297     }
1298 
1299     if (s->status & (1 << 0)) {			/* RWM */
1300         s->status |= 1 << 6;			/* set ITE */
1301     }
1302     pxa2xx_i2c_update(s);
1303 
1304     return s->data;
1305 }
1306 
1307 static int pxa2xx_i2c_tx(I2CSlave *i2c, uint8_t data)
1308 {
1309     PXA2xxI2CSlaveState *slave = PXA2XX_I2C_SLAVE(i2c);
1310     PXA2xxI2CState *s = slave->host;
1311 
1312     if ((s->control & (1 << 14)) || !(s->control & (1 << 6))) {
1313         return 1;
1314     }
1315 
1316     if (!(s->status & (1 << 0))) {		/* RWM */
1317         s->status |= 1 << 7;			/* set IRF */
1318         s->data = data;
1319     }
1320     pxa2xx_i2c_update(s);
1321 
1322     return 1;
1323 }
1324 
1325 static uint64_t pxa2xx_i2c_read(void *opaque, hwaddr addr,
1326                                 unsigned size)
1327 {
1328     PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1329     I2CSlave *slave;
1330 
1331     addr -= s->offset;
1332     switch (addr) {
1333     case ICR:
1334         return s->control;
1335     case ISR:
1336         return s->status | (i2c_bus_busy(s->bus) << 2);
1337     case ISAR:
1338         slave = I2C_SLAVE(s->slave);
1339         return slave->address;
1340     case IDBR:
1341         return s->data;
1342     case IBMR:
1343         if (s->status & (1 << 2))
1344             s->ibmr ^= 3;	/* Fake SCL and SDA pin changes */
1345         else
1346             s->ibmr = 0;
1347         return s->ibmr;
1348     default:
1349         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1350         break;
1351     }
1352     return 0;
1353 }
1354 
1355 static void pxa2xx_i2c_write(void *opaque, hwaddr addr,
1356                              uint64_t value64, unsigned size)
1357 {
1358     PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1359     uint32_t value = value64;
1360     int ack;
1361 
1362     addr -= s->offset;
1363     switch (addr) {
1364     case ICR:
1365         s->control = value & 0xfff7;
1366         if ((value & (1 << 3)) && (value & (1 << 6))) {	/* TB and IUE */
1367             /* TODO: slave mode */
1368             if (value & (1 << 0)) {			/* START condition */
1369                 if (s->data & 1)
1370                     s->status |= 1 << 0;		/* set RWM */
1371                 else
1372                     s->status &= ~(1 << 0);		/* clear RWM */
1373                 ack = !i2c_start_transfer(s->bus, s->data >> 1, s->data & 1);
1374             } else {
1375                 if (s->status & (1 << 0)) {		/* RWM */
1376                     s->data = i2c_recv(s->bus);
1377                     if (value & (1 << 2))		/* ACKNAK */
1378                         i2c_nack(s->bus);
1379                     ack = 1;
1380                 } else
1381                     ack = !i2c_send(s->bus, s->data);
1382             }
1383 
1384             if (value & (1 << 1))			/* STOP condition */
1385                 i2c_end_transfer(s->bus);
1386 
1387             if (ack) {
1388                 if (value & (1 << 0))			/* START condition */
1389                     s->status |= 1 << 6;		/* set ITE */
1390                 else
1391                     if (s->status & (1 << 0))		/* RWM */
1392                         s->status |= 1 << 7;		/* set IRF */
1393                     else
1394                         s->status |= 1 << 6;		/* set ITE */
1395                 s->status &= ~(1 << 1);			/* clear ACKNAK */
1396             } else {
1397                 s->status |= 1 << 6;			/* set ITE */
1398                 s->status |= 1 << 10;			/* set BED */
1399                 s->status |= 1 << 1;			/* set ACKNAK */
1400             }
1401         }
1402         if (!(value & (1 << 3)) && (value & (1 << 6)))	/* !TB and IUE */
1403             if (value & (1 << 4))			/* MA */
1404                 i2c_end_transfer(s->bus);
1405         pxa2xx_i2c_update(s);
1406         break;
1407 
1408     case ISR:
1409         s->status &= ~(value & 0x07f0);
1410         pxa2xx_i2c_update(s);
1411         break;
1412 
1413     case ISAR:
1414         i2c_set_slave_address(I2C_SLAVE(s->slave), value & 0x7f);
1415         break;
1416 
1417     case IDBR:
1418         s->data = value & 0xff;
1419         break;
1420 
1421     default:
1422         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1423     }
1424 }
1425 
1426 static const MemoryRegionOps pxa2xx_i2c_ops = {
1427     .read = pxa2xx_i2c_read,
1428     .write = pxa2xx_i2c_write,
1429     .endianness = DEVICE_NATIVE_ENDIAN,
1430 };
1431 
1432 static const VMStateDescription vmstate_pxa2xx_i2c_slave = {
1433     .name = "pxa2xx_i2c_slave",
1434     .version_id = 1,
1435     .minimum_version_id = 1,
1436     .fields = (VMStateField[]) {
1437         VMSTATE_I2C_SLAVE(parent_obj, PXA2xxI2CSlaveState),
1438         VMSTATE_END_OF_LIST()
1439     }
1440 };
1441 
1442 static const VMStateDescription vmstate_pxa2xx_i2c = {
1443     .name = "pxa2xx_i2c",
1444     .version_id = 1,
1445     .minimum_version_id = 1,
1446     .fields = (VMStateField[]) {
1447         VMSTATE_UINT16(control, PXA2xxI2CState),
1448         VMSTATE_UINT16(status, PXA2xxI2CState),
1449         VMSTATE_UINT8(ibmr, PXA2xxI2CState),
1450         VMSTATE_UINT8(data, PXA2xxI2CState),
1451         VMSTATE_STRUCT_POINTER(slave, PXA2xxI2CState,
1452                                vmstate_pxa2xx_i2c_slave, PXA2xxI2CSlaveState),
1453         VMSTATE_END_OF_LIST()
1454     }
1455 };
1456 
1457 static int pxa2xx_i2c_slave_init(I2CSlave *i2c)
1458 {
1459     /* Nothing to do.  */
1460     return 0;
1461 }
1462 
1463 static void pxa2xx_i2c_slave_class_init(ObjectClass *klass, void *data)
1464 {
1465     I2CSlaveClass *k = I2C_SLAVE_CLASS(klass);
1466 
1467     k->init = pxa2xx_i2c_slave_init;
1468     k->event = pxa2xx_i2c_event;
1469     k->recv = pxa2xx_i2c_rx;
1470     k->send = pxa2xx_i2c_tx;
1471 }
1472 
1473 static const TypeInfo pxa2xx_i2c_slave_info = {
1474     .name          = TYPE_PXA2XX_I2C_SLAVE,
1475     .parent        = TYPE_I2C_SLAVE,
1476     .instance_size = sizeof(PXA2xxI2CSlaveState),
1477     .class_init    = pxa2xx_i2c_slave_class_init,
1478 };
1479 
1480 PXA2xxI2CState *pxa2xx_i2c_init(hwaddr base,
1481                 qemu_irq irq, uint32_t region_size)
1482 {
1483     DeviceState *dev;
1484     SysBusDevice *i2c_dev;
1485     PXA2xxI2CState *s;
1486     I2CBus *i2cbus;
1487 
1488     dev = qdev_create(NULL, TYPE_PXA2XX_I2C);
1489     qdev_prop_set_uint32(dev, "size", region_size + 1);
1490     qdev_prop_set_uint32(dev, "offset", base & region_size);
1491     qdev_init_nofail(dev);
1492 
1493     i2c_dev = SYS_BUS_DEVICE(dev);
1494     sysbus_mmio_map(i2c_dev, 0, base & ~region_size);
1495     sysbus_connect_irq(i2c_dev, 0, irq);
1496 
1497     s = PXA2XX_I2C(i2c_dev);
1498     /* FIXME: Should the slave device really be on a separate bus?  */
1499     i2cbus = i2c_init_bus(dev, "dummy");
1500     dev = i2c_create_slave(i2cbus, TYPE_PXA2XX_I2C_SLAVE, 0);
1501     s->slave = PXA2XX_I2C_SLAVE(dev);
1502     s->slave->host = s;
1503 
1504     return s;
1505 }
1506 
1507 static int pxa2xx_i2c_initfn(SysBusDevice *sbd)
1508 {
1509     DeviceState *dev = DEVICE(sbd);
1510     PXA2xxI2CState *s = PXA2XX_I2C(dev);
1511 
1512     s->bus = i2c_init_bus(dev, "i2c");
1513 
1514     memory_region_init_io(&s->iomem, OBJECT(s), &pxa2xx_i2c_ops, s,
1515                           "pxa2xx-i2c", s->region_size);
1516     sysbus_init_mmio(sbd, &s->iomem);
1517     sysbus_init_irq(sbd, &s->irq);
1518 
1519     return 0;
1520 }
1521 
1522 I2CBus *pxa2xx_i2c_bus(PXA2xxI2CState *s)
1523 {
1524     return s->bus;
1525 }
1526 
1527 static Property pxa2xx_i2c_properties[] = {
1528     DEFINE_PROP_UINT32("size", PXA2xxI2CState, region_size, 0x10000),
1529     DEFINE_PROP_UINT32("offset", PXA2xxI2CState, offset, 0),
1530     DEFINE_PROP_END_OF_LIST(),
1531 };
1532 
1533 static void pxa2xx_i2c_class_init(ObjectClass *klass, void *data)
1534 {
1535     DeviceClass *dc = DEVICE_CLASS(klass);
1536     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1537 
1538     k->init = pxa2xx_i2c_initfn;
1539     dc->desc = "PXA2xx I2C Bus Controller";
1540     dc->vmsd = &vmstate_pxa2xx_i2c;
1541     dc->props = pxa2xx_i2c_properties;
1542 }
1543 
1544 static const TypeInfo pxa2xx_i2c_info = {
1545     .name          = TYPE_PXA2XX_I2C,
1546     .parent        = TYPE_SYS_BUS_DEVICE,
1547     .instance_size = sizeof(PXA2xxI2CState),
1548     .class_init    = pxa2xx_i2c_class_init,
1549 };
1550 
1551 /* PXA Inter-IC Sound Controller */
1552 static void pxa2xx_i2s_reset(PXA2xxI2SState *i2s)
1553 {
1554     i2s->rx_len = 0;
1555     i2s->tx_len = 0;
1556     i2s->fifo_len = 0;
1557     i2s->clk = 0x1a;
1558     i2s->control[0] = 0x00;
1559     i2s->control[1] = 0x00;
1560     i2s->status = 0x00;
1561     i2s->mask = 0x00;
1562 }
1563 
1564 #define SACR_TFTH(val)	((val >> 8) & 0xf)
1565 #define SACR_RFTH(val)	((val >> 12) & 0xf)
1566 #define SACR_DREC(val)	(val & (1 << 3))
1567 #define SACR_DPRL(val)	(val & (1 << 4))
1568 
1569 static inline void pxa2xx_i2s_update(PXA2xxI2SState *i2s)
1570 {
1571     int rfs, tfs;
1572     rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len &&
1573             !SACR_DREC(i2s->control[1]);
1574     tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) &&
1575             i2s->enable && !SACR_DPRL(i2s->control[1]);
1576 
1577     qemu_set_irq(i2s->rx_dma, rfs);
1578     qemu_set_irq(i2s->tx_dma, tfs);
1579 
1580     i2s->status &= 0xe0;
1581     if (i2s->fifo_len < 16 || !i2s->enable)
1582         i2s->status |= 1 << 0;			/* TNF */
1583     if (i2s->rx_len)
1584         i2s->status |= 1 << 1;			/* RNE */
1585     if (i2s->enable)
1586         i2s->status |= 1 << 2;			/* BSY */
1587     if (tfs)
1588         i2s->status |= 1 << 3;			/* TFS */
1589     if (rfs)
1590         i2s->status |= 1 << 4;			/* RFS */
1591     if (!(i2s->tx_len && i2s->enable))
1592         i2s->status |= i2s->fifo_len << 8;	/* TFL */
1593     i2s->status |= MAX(i2s->rx_len, 0xf) << 12;	/* RFL */
1594 
1595     qemu_set_irq(i2s->irq, i2s->status & i2s->mask);
1596 }
1597 
1598 #define SACR0	0x00	/* Serial Audio Global Control register */
1599 #define SACR1	0x04	/* Serial Audio I2S/MSB-Justified Control register */
1600 #define SASR0	0x0c	/* Serial Audio Interface and FIFO Status register */
1601 #define SAIMR	0x14	/* Serial Audio Interrupt Mask register */
1602 #define SAICR	0x18	/* Serial Audio Interrupt Clear register */
1603 #define SADIV	0x60	/* Serial Audio Clock Divider register */
1604 #define SADR	0x80	/* Serial Audio Data register */
1605 
1606 static uint64_t pxa2xx_i2s_read(void *opaque, hwaddr addr,
1607                                 unsigned size)
1608 {
1609     PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1610 
1611     switch (addr) {
1612     case SACR0:
1613         return s->control[0];
1614     case SACR1:
1615         return s->control[1];
1616     case SASR0:
1617         return s->status;
1618     case SAIMR:
1619         return s->mask;
1620     case SAICR:
1621         return 0;
1622     case SADIV:
1623         return s->clk;
1624     case SADR:
1625         if (s->rx_len > 0) {
1626             s->rx_len --;
1627             pxa2xx_i2s_update(s);
1628             return s->codec_in(s->opaque);
1629         }
1630         return 0;
1631     default:
1632         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1633         break;
1634     }
1635     return 0;
1636 }
1637 
1638 static void pxa2xx_i2s_write(void *opaque, hwaddr addr,
1639                              uint64_t value, unsigned size)
1640 {
1641     PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1642     uint32_t *sample;
1643 
1644     switch (addr) {
1645     case SACR0:
1646         if (value & (1 << 3))				/* RST */
1647             pxa2xx_i2s_reset(s);
1648         s->control[0] = value & 0xff3d;
1649         if (!s->enable && (value & 1) && s->tx_len) {	/* ENB */
1650             for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++)
1651                 s->codec_out(s->opaque, *sample);
1652             s->status &= ~(1 << 7);			/* I2SOFF */
1653         }
1654         if (value & (1 << 4))				/* EFWR */
1655             printf("%s: Attempt to use special function\n", __FUNCTION__);
1656         s->enable = (value & 9) == 1;			/* ENB && !RST*/
1657         pxa2xx_i2s_update(s);
1658         break;
1659     case SACR1:
1660         s->control[1] = value & 0x0039;
1661         if (value & (1 << 5))				/* ENLBF */
1662             printf("%s: Attempt to use loopback function\n", __FUNCTION__);
1663         if (value & (1 << 4))				/* DPRL */
1664             s->fifo_len = 0;
1665         pxa2xx_i2s_update(s);
1666         break;
1667     case SAIMR:
1668         s->mask = value & 0x0078;
1669         pxa2xx_i2s_update(s);
1670         break;
1671     case SAICR:
1672         s->status &= ~(value & (3 << 5));
1673         pxa2xx_i2s_update(s);
1674         break;
1675     case SADIV:
1676         s->clk = value & 0x007f;
1677         break;
1678     case SADR:
1679         if (s->tx_len && s->enable) {
1680             s->tx_len --;
1681             pxa2xx_i2s_update(s);
1682             s->codec_out(s->opaque, value);
1683         } else if (s->fifo_len < 16) {
1684             s->fifo[s->fifo_len ++] = value;
1685             pxa2xx_i2s_update(s);
1686         }
1687         break;
1688     default:
1689         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1690     }
1691 }
1692 
1693 static const MemoryRegionOps pxa2xx_i2s_ops = {
1694     .read = pxa2xx_i2s_read,
1695     .write = pxa2xx_i2s_write,
1696     .endianness = DEVICE_NATIVE_ENDIAN,
1697 };
1698 
1699 static const VMStateDescription vmstate_pxa2xx_i2s = {
1700     .name = "pxa2xx_i2s",
1701     .version_id = 0,
1702     .minimum_version_id = 0,
1703     .fields = (VMStateField[]) {
1704         VMSTATE_UINT32_ARRAY(control, PXA2xxI2SState, 2),
1705         VMSTATE_UINT32(status, PXA2xxI2SState),
1706         VMSTATE_UINT32(mask, PXA2xxI2SState),
1707         VMSTATE_UINT32(clk, PXA2xxI2SState),
1708         VMSTATE_INT32(enable, PXA2xxI2SState),
1709         VMSTATE_INT32(rx_len, PXA2xxI2SState),
1710         VMSTATE_INT32(tx_len, PXA2xxI2SState),
1711         VMSTATE_INT32(fifo_len, PXA2xxI2SState),
1712         VMSTATE_END_OF_LIST()
1713     }
1714 };
1715 
1716 static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx)
1717 {
1718     PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1719     uint32_t *sample;
1720 
1721     /* Signal FIFO errors */
1722     if (s->enable && s->tx_len)
1723         s->status |= 1 << 5;		/* TUR */
1724     if (s->enable && s->rx_len)
1725         s->status |= 1 << 6;		/* ROR */
1726 
1727     /* Should be tx - MIN(tx, s->fifo_len) but we don't really need to
1728      * handle the cases where it makes a difference.  */
1729     s->tx_len = tx - s->fifo_len;
1730     s->rx_len = rx;
1731     /* Note that is s->codec_out wasn't set, we wouldn't get called.  */
1732     if (s->enable)
1733         for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++)
1734             s->codec_out(s->opaque, *sample);
1735     pxa2xx_i2s_update(s);
1736 }
1737 
1738 static PXA2xxI2SState *pxa2xx_i2s_init(MemoryRegion *sysmem,
1739                 hwaddr base,
1740                 qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma)
1741 {
1742     PXA2xxI2SState *s = (PXA2xxI2SState *)
1743             g_malloc0(sizeof(PXA2xxI2SState));
1744 
1745     s->irq = irq;
1746     s->rx_dma = rx_dma;
1747     s->tx_dma = tx_dma;
1748     s->data_req = pxa2xx_i2s_data_req;
1749 
1750     pxa2xx_i2s_reset(s);
1751 
1752     memory_region_init_io(&s->iomem, NULL, &pxa2xx_i2s_ops, s,
1753                           "pxa2xx-i2s", 0x100000);
1754     memory_region_add_subregion(sysmem, base, &s->iomem);
1755 
1756     vmstate_register(NULL, base, &vmstate_pxa2xx_i2s, s);
1757 
1758     return s;
1759 }
1760 
1761 /* PXA Fast Infra-red Communications Port */
1762 struct PXA2xxFIrState {
1763     MemoryRegion iomem;
1764     qemu_irq irq;
1765     qemu_irq rx_dma;
1766     qemu_irq tx_dma;
1767     int enable;
1768     CharDriverState *chr;
1769 
1770     uint8_t control[3];
1771     uint8_t status[2];
1772 
1773     int rx_len;
1774     int rx_start;
1775     uint8_t rx_fifo[64];
1776 };
1777 
1778 static void pxa2xx_fir_reset(PXA2xxFIrState *s)
1779 {
1780     s->control[0] = 0x00;
1781     s->control[1] = 0x00;
1782     s->control[2] = 0x00;
1783     s->status[0] = 0x00;
1784     s->status[1] = 0x00;
1785     s->enable = 0;
1786 }
1787 
1788 static inline void pxa2xx_fir_update(PXA2xxFIrState *s)
1789 {
1790     static const int tresh[4] = { 8, 16, 32, 0 };
1791     int intr = 0;
1792     if ((s->control[0] & (1 << 4)) &&			/* RXE */
1793                     s->rx_len >= tresh[s->control[2] & 3])	/* TRIG */
1794         s->status[0] |= 1 << 4;				/* RFS */
1795     else
1796         s->status[0] &= ~(1 << 4);			/* RFS */
1797     if (s->control[0] & (1 << 3))			/* TXE */
1798         s->status[0] |= 1 << 3;				/* TFS */
1799     else
1800         s->status[0] &= ~(1 << 3);			/* TFS */
1801     if (s->rx_len)
1802         s->status[1] |= 1 << 2;				/* RNE */
1803     else
1804         s->status[1] &= ~(1 << 2);			/* RNE */
1805     if (s->control[0] & (1 << 4))			/* RXE */
1806         s->status[1] |= 1 << 0;				/* RSY */
1807     else
1808         s->status[1] &= ~(1 << 0);			/* RSY */
1809 
1810     intr |= (s->control[0] & (1 << 5)) &&		/* RIE */
1811             (s->status[0] & (1 << 4));			/* RFS */
1812     intr |= (s->control[0] & (1 << 6)) &&		/* TIE */
1813             (s->status[0] & (1 << 3));			/* TFS */
1814     intr |= (s->control[2] & (1 << 4)) &&		/* TRAIL */
1815             (s->status[0] & (1 << 6));			/* EOC */
1816     intr |= (s->control[0] & (1 << 2)) &&		/* TUS */
1817             (s->status[0] & (1 << 1));			/* TUR */
1818     intr |= s->status[0] & 0x25;			/* FRE, RAB, EIF */
1819 
1820     qemu_set_irq(s->rx_dma, (s->status[0] >> 4) & 1);
1821     qemu_set_irq(s->tx_dma, (s->status[0] >> 3) & 1);
1822 
1823     qemu_set_irq(s->irq, intr && s->enable);
1824 }
1825 
1826 #define ICCR0	0x00	/* FICP Control register 0 */
1827 #define ICCR1	0x04	/* FICP Control register 1 */
1828 #define ICCR2	0x08	/* FICP Control register 2 */
1829 #define ICDR	0x0c	/* FICP Data register */
1830 #define ICSR0	0x14	/* FICP Status register 0 */
1831 #define ICSR1	0x18	/* FICP Status register 1 */
1832 #define ICFOR	0x1c	/* FICP FIFO Occupancy Status register */
1833 
1834 static uint64_t pxa2xx_fir_read(void *opaque, hwaddr addr,
1835                                 unsigned size)
1836 {
1837     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1838     uint8_t ret;
1839 
1840     switch (addr) {
1841     case ICCR0:
1842         return s->control[0];
1843     case ICCR1:
1844         return s->control[1];
1845     case ICCR2:
1846         return s->control[2];
1847     case ICDR:
1848         s->status[0] &= ~0x01;
1849         s->status[1] &= ~0x72;
1850         if (s->rx_len) {
1851             s->rx_len --;
1852             ret = s->rx_fifo[s->rx_start ++];
1853             s->rx_start &= 63;
1854             pxa2xx_fir_update(s);
1855             return ret;
1856         }
1857         printf("%s: Rx FIFO underrun.\n", __FUNCTION__);
1858         break;
1859     case ICSR0:
1860         return s->status[0];
1861     case ICSR1:
1862         return s->status[1] | (1 << 3);			/* TNF */
1863     case ICFOR:
1864         return s->rx_len;
1865     default:
1866         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1867         break;
1868     }
1869     return 0;
1870 }
1871 
1872 static void pxa2xx_fir_write(void *opaque, hwaddr addr,
1873                              uint64_t value64, unsigned size)
1874 {
1875     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1876     uint32_t value = value64;
1877     uint8_t ch;
1878 
1879     switch (addr) {
1880     case ICCR0:
1881         s->control[0] = value;
1882         if (!(value & (1 << 4)))			/* RXE */
1883             s->rx_len = s->rx_start = 0;
1884         if (!(value & (1 << 3))) {                      /* TXE */
1885             /* Nop */
1886         }
1887         s->enable = value & 1;				/* ITR */
1888         if (!s->enable)
1889             s->status[0] = 0;
1890         pxa2xx_fir_update(s);
1891         break;
1892     case ICCR1:
1893         s->control[1] = value;
1894         break;
1895     case ICCR2:
1896         s->control[2] = value & 0x3f;
1897         pxa2xx_fir_update(s);
1898         break;
1899     case ICDR:
1900         if (s->control[2] & (1 << 2))			/* TXP */
1901             ch = value;
1902         else
1903             ch = ~value;
1904         if (s->chr && s->enable && (s->control[0] & (1 << 3)))	/* TXE */
1905             qemu_chr_fe_write(s->chr, &ch, 1);
1906         break;
1907     case ICSR0:
1908         s->status[0] &= ~(value & 0x66);
1909         pxa2xx_fir_update(s);
1910         break;
1911     case ICFOR:
1912         break;
1913     default:
1914         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1915     }
1916 }
1917 
1918 static const MemoryRegionOps pxa2xx_fir_ops = {
1919     .read = pxa2xx_fir_read,
1920     .write = pxa2xx_fir_write,
1921     .endianness = DEVICE_NATIVE_ENDIAN,
1922 };
1923 
1924 static int pxa2xx_fir_is_empty(void *opaque)
1925 {
1926     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1927     return (s->rx_len < 64);
1928 }
1929 
1930 static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size)
1931 {
1932     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1933     if (!(s->control[0] & (1 << 4)))			/* RXE */
1934         return;
1935 
1936     while (size --) {
1937         s->status[1] |= 1 << 4;				/* EOF */
1938         if (s->rx_len >= 64) {
1939             s->status[1] |= 1 << 6;			/* ROR */
1940             break;
1941         }
1942 
1943         if (s->control[2] & (1 << 3))			/* RXP */
1944             s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++);
1945         else
1946             s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++);
1947     }
1948 
1949     pxa2xx_fir_update(s);
1950 }
1951 
1952 static void pxa2xx_fir_event(void *opaque, int event)
1953 {
1954 }
1955 
1956 static void pxa2xx_fir_save(QEMUFile *f, void *opaque)
1957 {
1958     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1959     int i;
1960 
1961     qemu_put_be32(f, s->enable);
1962 
1963     qemu_put_8s(f, &s->control[0]);
1964     qemu_put_8s(f, &s->control[1]);
1965     qemu_put_8s(f, &s->control[2]);
1966     qemu_put_8s(f, &s->status[0]);
1967     qemu_put_8s(f, &s->status[1]);
1968 
1969     qemu_put_byte(f, s->rx_len);
1970     for (i = 0; i < s->rx_len; i ++)
1971         qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 63]);
1972 }
1973 
1974 static int pxa2xx_fir_load(QEMUFile *f, void *opaque, int version_id)
1975 {
1976     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1977     int i;
1978 
1979     s->enable = qemu_get_be32(f);
1980 
1981     qemu_get_8s(f, &s->control[0]);
1982     qemu_get_8s(f, &s->control[1]);
1983     qemu_get_8s(f, &s->control[2]);
1984     qemu_get_8s(f, &s->status[0]);
1985     qemu_get_8s(f, &s->status[1]);
1986 
1987     s->rx_len = qemu_get_byte(f);
1988     s->rx_start = 0;
1989     for (i = 0; i < s->rx_len; i ++)
1990         s->rx_fifo[i] = qemu_get_byte(f);
1991 
1992     return 0;
1993 }
1994 
1995 static PXA2xxFIrState *pxa2xx_fir_init(MemoryRegion *sysmem,
1996                 hwaddr base,
1997                 qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma,
1998                 CharDriverState *chr)
1999 {
2000     PXA2xxFIrState *s = (PXA2xxFIrState *)
2001             g_malloc0(sizeof(PXA2xxFIrState));
2002 
2003     s->irq = irq;
2004     s->rx_dma = rx_dma;
2005     s->tx_dma = tx_dma;
2006     s->chr = chr;
2007 
2008     pxa2xx_fir_reset(s);
2009 
2010     memory_region_init_io(&s->iomem, NULL, &pxa2xx_fir_ops, s, "pxa2xx-fir", 0x1000);
2011     memory_region_add_subregion(sysmem, base, &s->iomem);
2012 
2013     if (chr) {
2014         qemu_chr_fe_claim_no_fail(chr);
2015         qemu_chr_add_handlers(chr, pxa2xx_fir_is_empty,
2016                         pxa2xx_fir_rx, pxa2xx_fir_event, s);
2017     }
2018 
2019     register_savevm(NULL, "pxa2xx_fir", 0, 0, pxa2xx_fir_save,
2020                     pxa2xx_fir_load, s);
2021 
2022     return s;
2023 }
2024 
2025 static void pxa2xx_reset(void *opaque, int line, int level)
2026 {
2027     PXA2xxState *s = (PXA2xxState *) opaque;
2028 
2029     if (level && (s->pm_regs[PCFR >> 2] & 0x10)) {	/* GPR_EN */
2030         cpu_reset(CPU(s->cpu));
2031         /* TODO: reset peripherals */
2032     }
2033 }
2034 
2035 /* Initialise a PXA270 integrated chip (ARM based core).  */
2036 PXA2xxState *pxa270_init(MemoryRegion *address_space,
2037                          unsigned int sdram_size, const char *revision)
2038 {
2039     PXA2xxState *s;
2040     int i;
2041     DriveInfo *dinfo;
2042     s = (PXA2xxState *) g_malloc0(sizeof(PXA2xxState));
2043 
2044     if (revision && strncmp(revision, "pxa27", 5)) {
2045         fprintf(stderr, "Machine requires a PXA27x processor.\n");
2046         exit(1);
2047     }
2048     if (!revision)
2049         revision = "pxa270";
2050 
2051     s->cpu = cpu_arm_init(revision);
2052     if (s->cpu == NULL) {
2053         fprintf(stderr, "Unable to find CPU definition\n");
2054         exit(1);
2055     }
2056     s->reset = qemu_allocate_irq(pxa2xx_reset, s, 0);
2057 
2058     /* SDRAM & Internal Memory Storage */
2059     memory_region_init_ram(&s->sdram, NULL, "pxa270.sdram", sdram_size,
2060                            &error_abort);
2061     vmstate_register_ram_global(&s->sdram);
2062     memory_region_add_subregion(address_space, PXA2XX_SDRAM_BASE, &s->sdram);
2063     memory_region_init_ram(&s->internal, NULL, "pxa270.internal", 0x40000,
2064                            &error_abort);
2065     vmstate_register_ram_global(&s->internal);
2066     memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE,
2067                                 &s->internal);
2068 
2069     s->pic = pxa2xx_pic_init(0x40d00000, s->cpu);
2070 
2071     s->dma = pxa27x_dma_init(0x40000000,
2072                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
2073 
2074     sysbus_create_varargs("pxa27x-timer", 0x40a00000,
2075                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0),
2076                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1),
2077                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2),
2078                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3),
2079                     qdev_get_gpio_in(s->pic, PXA27X_PIC_OST_4_11),
2080                     NULL);
2081 
2082     s->gpio = pxa2xx_gpio_init(0x40e00000, s->cpu, s->pic, 121);
2083 
2084     dinfo = drive_get(IF_SD, 0, 0);
2085     if (!dinfo) {
2086         fprintf(stderr, "qemu: missing SecureDigital device\n");
2087         exit(1);
2088     }
2089     s->mmc = pxa2xx_mmci_init(address_space, 0x41100000,
2090                     blk_by_legacy_dinfo(dinfo),
2091                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC),
2092                     qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI),
2093                     qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI));
2094 
2095     for (i = 0; pxa270_serial[i].io_base; i++) {
2096         if (serial_hds[i]) {
2097             serial_mm_init(address_space, pxa270_serial[i].io_base, 2,
2098                            qdev_get_gpio_in(s->pic, pxa270_serial[i].irqn),
2099                            14857000 / 16, serial_hds[i],
2100                            DEVICE_NATIVE_ENDIAN);
2101         } else {
2102             break;
2103         }
2104     }
2105     if (serial_hds[i])
2106         s->fir = pxa2xx_fir_init(address_space, 0x40800000,
2107                         qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP),
2108                         qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP),
2109                         qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP),
2110                         serial_hds[i]);
2111 
2112     s->lcd = pxa2xx_lcdc_init(address_space, 0x44000000,
2113                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD));
2114 
2115     s->cm_base = 0x41300000;
2116     s->cm_regs[CCCR >> 2] = 0x02000210;	/* 416.0 MHz */
2117     s->clkcfg = 0x00000009;		/* Turbo mode active */
2118     memory_region_init_io(&s->cm_iomem, NULL, &pxa2xx_cm_ops, s, "pxa2xx-cm", 0x1000);
2119     memory_region_add_subregion(address_space, s->cm_base, &s->cm_iomem);
2120     vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s);
2121 
2122     pxa2xx_setup_cp14(s);
2123 
2124     s->mm_base = 0x48000000;
2125     s->mm_regs[MDMRS >> 2] = 0x00020002;
2126     s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2127     s->mm_regs[MECR >> 2] = 0x00000001;	/* Two PC Card sockets */
2128     memory_region_init_io(&s->mm_iomem, NULL, &pxa2xx_mm_ops, s, "pxa2xx-mm", 0x1000);
2129     memory_region_add_subregion(address_space, s->mm_base, &s->mm_iomem);
2130     vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s);
2131 
2132     s->pm_base = 0x40f00000;
2133     memory_region_init_io(&s->pm_iomem, NULL, &pxa2xx_pm_ops, s, "pxa2xx-pm", 0x100);
2134     memory_region_add_subregion(address_space, s->pm_base, &s->pm_iomem);
2135     vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s);
2136 
2137     for (i = 0; pxa27x_ssp[i].io_base; i ++);
2138     s->ssp = (SSIBus **)g_malloc0(sizeof(SSIBus *) * i);
2139     for (i = 0; pxa27x_ssp[i].io_base; i ++) {
2140         DeviceState *dev;
2141         dev = sysbus_create_simple(TYPE_PXA2XX_SSP, pxa27x_ssp[i].io_base,
2142                         qdev_get_gpio_in(s->pic, pxa27x_ssp[i].irqn));
2143         s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2144     }
2145 
2146     if (usb_enabled()) {
2147         sysbus_create_simple("sysbus-ohci", 0x4c000000,
2148                         qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1));
2149     }
2150 
2151     s->pcmcia[0] = pxa2xx_pcmcia_init(address_space, 0x20000000);
2152     s->pcmcia[1] = pxa2xx_pcmcia_init(address_space, 0x30000000);
2153 
2154     sysbus_create_simple(TYPE_PXA2XX_RTC, 0x40900000,
2155                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM));
2156 
2157     s->i2c[0] = pxa2xx_i2c_init(0x40301600,
2158                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff);
2159     s->i2c[1] = pxa2xx_i2c_init(0x40f00100,
2160                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff);
2161 
2162     s->i2s = pxa2xx_i2s_init(address_space, 0x40400000,
2163                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S),
2164                     qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S),
2165                     qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S));
2166 
2167     s->kp = pxa27x_keypad_init(address_space, 0x41500000,
2168                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_KEYPAD));
2169 
2170     /* GPIO1 resets the processor */
2171     /* The handler can be overridden by board-specific code */
2172     qdev_connect_gpio_out(s->gpio, 1, s->reset);
2173     return s;
2174 }
2175 
2176 /* Initialise a PXA255 integrated chip (ARM based core).  */
2177 PXA2xxState *pxa255_init(MemoryRegion *address_space, unsigned int sdram_size)
2178 {
2179     PXA2xxState *s;
2180     int i;
2181     DriveInfo *dinfo;
2182 
2183     s = (PXA2xxState *) g_malloc0(sizeof(PXA2xxState));
2184 
2185     s->cpu = cpu_arm_init("pxa255");
2186     if (s->cpu == NULL) {
2187         fprintf(stderr, "Unable to find CPU definition\n");
2188         exit(1);
2189     }
2190     s->reset = qemu_allocate_irq(pxa2xx_reset, s, 0);
2191 
2192     /* SDRAM & Internal Memory Storage */
2193     memory_region_init_ram(&s->sdram, NULL, "pxa255.sdram", sdram_size,
2194                            &error_abort);
2195     vmstate_register_ram_global(&s->sdram);
2196     memory_region_add_subregion(address_space, PXA2XX_SDRAM_BASE, &s->sdram);
2197     memory_region_init_ram(&s->internal, NULL, "pxa255.internal",
2198                            PXA2XX_INTERNAL_SIZE, &error_abort);
2199     vmstate_register_ram_global(&s->internal);
2200     memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE,
2201                                 &s->internal);
2202 
2203     s->pic = pxa2xx_pic_init(0x40d00000, s->cpu);
2204 
2205     s->dma = pxa255_dma_init(0x40000000,
2206                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
2207 
2208     sysbus_create_varargs("pxa25x-timer", 0x40a00000,
2209                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0),
2210                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1),
2211                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2),
2212                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3),
2213                     NULL);
2214 
2215     s->gpio = pxa2xx_gpio_init(0x40e00000, s->cpu, s->pic, 85);
2216 
2217     dinfo = drive_get(IF_SD, 0, 0);
2218     if (!dinfo) {
2219         fprintf(stderr, "qemu: missing SecureDigital device\n");
2220         exit(1);
2221     }
2222     s->mmc = pxa2xx_mmci_init(address_space, 0x41100000,
2223                     blk_by_legacy_dinfo(dinfo),
2224                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC),
2225                     qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI),
2226                     qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI));
2227 
2228     for (i = 0; pxa255_serial[i].io_base; i++) {
2229         if (serial_hds[i]) {
2230             serial_mm_init(address_space, pxa255_serial[i].io_base, 2,
2231                            qdev_get_gpio_in(s->pic, pxa255_serial[i].irqn),
2232                            14745600 / 16, serial_hds[i],
2233                            DEVICE_NATIVE_ENDIAN);
2234         } else {
2235             break;
2236         }
2237     }
2238     if (serial_hds[i])
2239         s->fir = pxa2xx_fir_init(address_space, 0x40800000,
2240                         qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP),
2241                         qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP),
2242                         qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP),
2243                         serial_hds[i]);
2244 
2245     s->lcd = pxa2xx_lcdc_init(address_space, 0x44000000,
2246                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD));
2247 
2248     s->cm_base = 0x41300000;
2249     s->cm_regs[CCCR >> 2] = 0x02000210;	/* 416.0 MHz */
2250     s->clkcfg = 0x00000009;		/* Turbo mode active */
2251     memory_region_init_io(&s->cm_iomem, NULL, &pxa2xx_cm_ops, s, "pxa2xx-cm", 0x1000);
2252     memory_region_add_subregion(address_space, s->cm_base, &s->cm_iomem);
2253     vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s);
2254 
2255     pxa2xx_setup_cp14(s);
2256 
2257     s->mm_base = 0x48000000;
2258     s->mm_regs[MDMRS >> 2] = 0x00020002;
2259     s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2260     s->mm_regs[MECR >> 2] = 0x00000001;	/* Two PC Card sockets */
2261     memory_region_init_io(&s->mm_iomem, NULL, &pxa2xx_mm_ops, s, "pxa2xx-mm", 0x1000);
2262     memory_region_add_subregion(address_space, s->mm_base, &s->mm_iomem);
2263     vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s);
2264 
2265     s->pm_base = 0x40f00000;
2266     memory_region_init_io(&s->pm_iomem, NULL, &pxa2xx_pm_ops, s, "pxa2xx-pm", 0x100);
2267     memory_region_add_subregion(address_space, s->pm_base, &s->pm_iomem);
2268     vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s);
2269 
2270     for (i = 0; pxa255_ssp[i].io_base; i ++);
2271     s->ssp = (SSIBus **)g_malloc0(sizeof(SSIBus *) * i);
2272     for (i = 0; pxa255_ssp[i].io_base; i ++) {
2273         DeviceState *dev;
2274         dev = sysbus_create_simple(TYPE_PXA2XX_SSP, pxa255_ssp[i].io_base,
2275                         qdev_get_gpio_in(s->pic, pxa255_ssp[i].irqn));
2276         s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2277     }
2278 
2279     if (usb_enabled()) {
2280         sysbus_create_simple("sysbus-ohci", 0x4c000000,
2281                         qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1));
2282     }
2283 
2284     s->pcmcia[0] = pxa2xx_pcmcia_init(address_space, 0x20000000);
2285     s->pcmcia[1] = pxa2xx_pcmcia_init(address_space, 0x30000000);
2286 
2287     sysbus_create_simple(TYPE_PXA2XX_RTC, 0x40900000,
2288                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM));
2289 
2290     s->i2c[0] = pxa2xx_i2c_init(0x40301600,
2291                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff);
2292     s->i2c[1] = pxa2xx_i2c_init(0x40f00100,
2293                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff);
2294 
2295     s->i2s = pxa2xx_i2s_init(address_space, 0x40400000,
2296                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S),
2297                     qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S),
2298                     qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S));
2299 
2300     /* GPIO1 resets the processor */
2301     /* The handler can be overridden by board-specific code */
2302     qdev_connect_gpio_out(s->gpio, 1, s->reset);
2303     return s;
2304 }
2305 
2306 static void pxa2xx_ssp_class_init(ObjectClass *klass, void *data)
2307 {
2308     SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
2309 
2310     sdc->init = pxa2xx_ssp_init;
2311 }
2312 
2313 static const TypeInfo pxa2xx_ssp_info = {
2314     .name          = TYPE_PXA2XX_SSP,
2315     .parent        = TYPE_SYS_BUS_DEVICE,
2316     .instance_size = sizeof(PXA2xxSSPState),
2317     .class_init    = pxa2xx_ssp_class_init,
2318 };
2319 
2320 static void pxa2xx_register_types(void)
2321 {
2322     type_register_static(&pxa2xx_i2c_slave_info);
2323     type_register_static(&pxa2xx_ssp_info);
2324     type_register_static(&pxa2xx_i2c_info);
2325     type_register_static(&pxa2xx_rtc_sysbus_info);
2326 }
2327 
2328 type_init(pxa2xx_register_types)
2329