xref: /openbmc/qemu/hw/arm/pxa2xx.c (revision 9121d02c)
1 /*
2  * Intel XScale PXA255/270 processor support.
3  *
4  * Copyright (c) 2006 Openedhand Ltd.
5  * Written by Andrzej Zaborowski <balrog@zabor.org>
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "hw/sysbus.h"
11 #include "hw/arm/pxa.h"
12 #include "sysemu/sysemu.h"
13 #include "hw/char/serial.h"
14 #include "hw/i2c/i2c.h"
15 #include "hw/ssi.h"
16 #include "sysemu/char.h"
17 #include "sysemu/blockdev.h"
18 
19 static struct {
20     hwaddr io_base;
21     int irqn;
22 } pxa255_serial[] = {
23     { 0x40100000, PXA2XX_PIC_FFUART },
24     { 0x40200000, PXA2XX_PIC_BTUART },
25     { 0x40700000, PXA2XX_PIC_STUART },
26     { 0x41600000, PXA25X_PIC_HWUART },
27     { 0, 0 }
28 }, pxa270_serial[] = {
29     { 0x40100000, PXA2XX_PIC_FFUART },
30     { 0x40200000, PXA2XX_PIC_BTUART },
31     { 0x40700000, PXA2XX_PIC_STUART },
32     { 0, 0 }
33 };
34 
35 typedef struct PXASSPDef {
36     hwaddr io_base;
37     int irqn;
38 } PXASSPDef;
39 
40 #if 0
41 static PXASSPDef pxa250_ssp[] = {
42     { 0x41000000, PXA2XX_PIC_SSP },
43     { 0, 0 }
44 };
45 #endif
46 
47 static PXASSPDef pxa255_ssp[] = {
48     { 0x41000000, PXA2XX_PIC_SSP },
49     { 0x41400000, PXA25X_PIC_NSSP },
50     { 0, 0 }
51 };
52 
53 #if 0
54 static PXASSPDef pxa26x_ssp[] = {
55     { 0x41000000, PXA2XX_PIC_SSP },
56     { 0x41400000, PXA25X_PIC_NSSP },
57     { 0x41500000, PXA26X_PIC_ASSP },
58     { 0, 0 }
59 };
60 #endif
61 
62 static PXASSPDef pxa27x_ssp[] = {
63     { 0x41000000, PXA2XX_PIC_SSP },
64     { 0x41700000, PXA27X_PIC_SSP2 },
65     { 0x41900000, PXA2XX_PIC_SSP3 },
66     { 0, 0 }
67 };
68 
69 #define PMCR	0x00	/* Power Manager Control register */
70 #define PSSR	0x04	/* Power Manager Sleep Status register */
71 #define PSPR	0x08	/* Power Manager Scratch-Pad register */
72 #define PWER	0x0c	/* Power Manager Wake-Up Enable register */
73 #define PRER	0x10	/* Power Manager Rising-Edge Detect Enable register */
74 #define PFER	0x14	/* Power Manager Falling-Edge Detect Enable register */
75 #define PEDR	0x18	/* Power Manager Edge-Detect Status register */
76 #define PCFR	0x1c	/* Power Manager General Configuration register */
77 #define PGSR0	0x20	/* Power Manager GPIO Sleep-State register 0 */
78 #define PGSR1	0x24	/* Power Manager GPIO Sleep-State register 1 */
79 #define PGSR2	0x28	/* Power Manager GPIO Sleep-State register 2 */
80 #define PGSR3	0x2c	/* Power Manager GPIO Sleep-State register 3 */
81 #define RCSR	0x30	/* Reset Controller Status register */
82 #define PSLR	0x34	/* Power Manager Sleep Configuration register */
83 #define PTSR	0x38	/* Power Manager Standby Configuration register */
84 #define PVCR	0x40	/* Power Manager Voltage Change Control register */
85 #define PUCR	0x4c	/* Power Manager USIM Card Control/Status register */
86 #define PKWR	0x50	/* Power Manager Keyboard Wake-Up Enable register */
87 #define PKSR	0x54	/* Power Manager Keyboard Level-Detect Status */
88 #define PCMD0	0x80	/* Power Manager I2C Command register File 0 */
89 #define PCMD31	0xfc	/* Power Manager I2C Command register File 31 */
90 
91 static uint64_t pxa2xx_pm_read(void *opaque, hwaddr addr,
92                                unsigned size)
93 {
94     PXA2xxState *s = (PXA2xxState *) opaque;
95 
96     switch (addr) {
97     case PMCR ... PCMD31:
98         if (addr & 3)
99             goto fail;
100 
101         return s->pm_regs[addr >> 2];
102     default:
103     fail:
104         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
105         break;
106     }
107     return 0;
108 }
109 
110 static void pxa2xx_pm_write(void *opaque, hwaddr addr,
111                             uint64_t value, unsigned size)
112 {
113     PXA2xxState *s = (PXA2xxState *) opaque;
114 
115     switch (addr) {
116     case PMCR:
117         /* Clear the write-one-to-clear bits... */
118         s->pm_regs[addr >> 2] &= ~(value & 0x2a);
119         /* ...and set the plain r/w bits */
120         s->pm_regs[addr >> 2] &= ~0x15;
121         s->pm_regs[addr >> 2] |= value & 0x15;
122         break;
123 
124     case PSSR:	/* Read-clean registers */
125     case RCSR:
126     case PKSR:
127         s->pm_regs[addr >> 2] &= ~value;
128         break;
129 
130     default:	/* Read-write registers */
131         if (!(addr & 3)) {
132             s->pm_regs[addr >> 2] = value;
133             break;
134         }
135 
136         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
137         break;
138     }
139 }
140 
141 static const MemoryRegionOps pxa2xx_pm_ops = {
142     .read = pxa2xx_pm_read,
143     .write = pxa2xx_pm_write,
144     .endianness = DEVICE_NATIVE_ENDIAN,
145 };
146 
147 static const VMStateDescription vmstate_pxa2xx_pm = {
148     .name = "pxa2xx_pm",
149     .version_id = 0,
150     .minimum_version_id = 0,
151     .minimum_version_id_old = 0,
152     .fields      = (VMStateField[]) {
153         VMSTATE_UINT32_ARRAY(pm_regs, PXA2xxState, 0x40),
154         VMSTATE_END_OF_LIST()
155     }
156 };
157 
158 #define CCCR	0x00	/* Core Clock Configuration register */
159 #define CKEN	0x04	/* Clock Enable register */
160 #define OSCC	0x08	/* Oscillator Configuration register */
161 #define CCSR	0x0c	/* Core Clock Status register */
162 
163 static uint64_t pxa2xx_cm_read(void *opaque, hwaddr addr,
164                                unsigned size)
165 {
166     PXA2xxState *s = (PXA2xxState *) opaque;
167 
168     switch (addr) {
169     case CCCR:
170     case CKEN:
171     case OSCC:
172         return s->cm_regs[addr >> 2];
173 
174     case CCSR:
175         return s->cm_regs[CCCR >> 2] | (3 << 28);
176 
177     default:
178         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
179         break;
180     }
181     return 0;
182 }
183 
184 static void pxa2xx_cm_write(void *opaque, hwaddr addr,
185                             uint64_t value, unsigned size)
186 {
187     PXA2xxState *s = (PXA2xxState *) opaque;
188 
189     switch (addr) {
190     case CCCR:
191     case CKEN:
192         s->cm_regs[addr >> 2] = value;
193         break;
194 
195     case OSCC:
196         s->cm_regs[addr >> 2] &= ~0x6c;
197         s->cm_regs[addr >> 2] |= value & 0x6e;
198         if ((value >> 1) & 1)			/* OON */
199             s->cm_regs[addr >> 2] |= 1 << 0;	/* Oscillator is now stable */
200         break;
201 
202     default:
203         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
204         break;
205     }
206 }
207 
208 static const MemoryRegionOps pxa2xx_cm_ops = {
209     .read = pxa2xx_cm_read,
210     .write = pxa2xx_cm_write,
211     .endianness = DEVICE_NATIVE_ENDIAN,
212 };
213 
214 static const VMStateDescription vmstate_pxa2xx_cm = {
215     .name = "pxa2xx_cm",
216     .version_id = 0,
217     .minimum_version_id = 0,
218     .minimum_version_id_old = 0,
219     .fields      = (VMStateField[]) {
220         VMSTATE_UINT32_ARRAY(cm_regs, PXA2xxState, 4),
221         VMSTATE_UINT32(clkcfg, PXA2xxState),
222         VMSTATE_UINT32(pmnc, PXA2xxState),
223         VMSTATE_END_OF_LIST()
224     }
225 };
226 
227 static int pxa2xx_clkcfg_read(CPUARMState *env, const ARMCPRegInfo *ri,
228                               uint64_t *value)
229 {
230     PXA2xxState *s = (PXA2xxState *)ri->opaque;
231     *value = s->clkcfg;
232     return 0;
233 }
234 
235 static int pxa2xx_clkcfg_write(CPUARMState *env, const ARMCPRegInfo *ri,
236                                uint64_t value)
237 {
238     PXA2xxState *s = (PXA2xxState *)ri->opaque;
239     s->clkcfg = value & 0xf;
240     if (value & 2) {
241         printf("%s: CPU frequency change attempt\n", __func__);
242     }
243     return 0;
244 }
245 
246 static int pxa2xx_pwrmode_write(CPUARMState *env, const ARMCPRegInfo *ri,
247                                 uint64_t value)
248 {
249     PXA2xxState *s = (PXA2xxState *)ri->opaque;
250     static const char *pwrmode[8] = {
251         "Normal", "Idle", "Deep-idle", "Standby",
252         "Sleep", "reserved (!)", "reserved (!)", "Deep-sleep",
253     };
254 
255     if (value & 8) {
256         printf("%s: CPU voltage change attempt\n", __func__);
257     }
258     switch (value & 7) {
259     case 0:
260         /* Do nothing */
261         break;
262 
263     case 1:
264         /* Idle */
265         if (!(s->cm_regs[CCCR >> 2] & (1 << 31))) { /* CPDIS */
266             cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
267             break;
268         }
269         /* Fall through.  */
270 
271     case 2:
272         /* Deep-Idle */
273         cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
274         s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
275         goto message;
276 
277     case 3:
278         s->cpu->env.uncached_cpsr =
279             ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
280         s->cpu->env.cp15.c1_sys = 0;
281         s->cpu->env.cp15.c1_coproc = 0;
282         s->cpu->env.cp15.c2_base0 = 0;
283         s->cpu->env.cp15.c3 = 0;
284         s->pm_regs[PSSR >> 2] |= 0x8; /* Set STS */
285         s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
286 
287         /*
288          * The scratch-pad register is almost universally used
289          * for storing the return address on suspend.  For the
290          * lack of a resuming bootloader, perform a jump
291          * directly to that address.
292          */
293         memset(s->cpu->env.regs, 0, 4 * 15);
294         s->cpu->env.regs[15] = s->pm_regs[PSPR >> 2];
295 
296 #if 0
297         buffer = 0xe59ff000; /* ldr     pc, [pc, #0] */
298         cpu_physical_memory_write(0, &buffer, 4);
299         buffer = s->pm_regs[PSPR >> 2];
300         cpu_physical_memory_write(8, &buffer, 4);
301 #endif
302 
303         /* Suspend */
304         cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT);
305 
306         goto message;
307 
308     default:
309     message:
310         printf("%s: machine entered %s mode\n", __func__,
311                pwrmode[value & 7]);
312     }
313 
314     return 0;
315 }
316 
317 static int pxa2xx_cppmnc_read(CPUARMState *env, const ARMCPRegInfo *ri,
318                               uint64_t *value)
319 {
320     PXA2xxState *s = (PXA2xxState *)ri->opaque;
321     *value = s->pmnc;
322     return 0;
323 }
324 
325 static int pxa2xx_cppmnc_write(CPUARMState *env, const ARMCPRegInfo *ri,
326                                uint64_t value)
327 {
328     PXA2xxState *s = (PXA2xxState *)ri->opaque;
329     s->pmnc = value;
330     return 0;
331 }
332 
333 static int pxa2xx_cpccnt_read(CPUARMState *env, const ARMCPRegInfo *ri,
334                               uint64_t *value)
335 {
336     PXA2xxState *s = (PXA2xxState *)ri->opaque;
337     if (s->pmnc & 1) {
338         *value = qemu_get_clock_ns(vm_clock);
339     } else {
340         *value = 0;
341     }
342     return 0;
343 }
344 
345 static const ARMCPRegInfo pxa_cp_reginfo[] = {
346     /* cp14 crm==1: perf registers */
347     { .name = "CPPMNC", .cp = 14, .crn = 0, .crm = 1, .opc1 = 0, .opc2 = 0,
348       .access = PL1_RW,
349       .readfn = pxa2xx_cppmnc_read, .writefn = pxa2xx_cppmnc_write },
350     { .name = "CPCCNT", .cp = 14, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
351       .access = PL1_RW,
352       .readfn = pxa2xx_cpccnt_read, .writefn = arm_cp_write_ignore },
353     { .name = "CPINTEN", .cp = 14, .crn = 4, .crm = 1, .opc1 = 0, .opc2 = 0,
354       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
355     { .name = "CPFLAG", .cp = 14, .crn = 5, .crm = 1, .opc1 = 0, .opc2 = 0,
356       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
357     { .name = "CPEVTSEL", .cp = 14, .crn = 8, .crm = 1, .opc1 = 0, .opc2 = 0,
358       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
359     /* cp14 crm==2: performance count registers */
360     { .name = "CPPMN0", .cp = 14, .crn = 0, .crm = 2, .opc1 = 0, .opc2 = 0,
361       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
362     { .name = "CPPMN1", .cp = 14, .crn = 1, .crm = 2, .opc1 = 0, .opc2 = 0,
363       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
364     { .name = "CPPMN2", .cp = 14, .crn = 2, .crm = 2, .opc1 = 0, .opc2 = 0,
365       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
366     { .name = "CPPMN3", .cp = 14, .crn = 2, .crm = 3, .opc1 = 0, .opc2 = 0,
367       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
368     /* cp14 crn==6: CLKCFG */
369     { .name = "CLKCFG", .cp = 14, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
370       .access = PL1_RW,
371       .readfn = pxa2xx_clkcfg_read, .writefn = pxa2xx_clkcfg_write },
372     /* cp14 crn==7: PWRMODE */
373     { .name = "PWRMODE", .cp = 14, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 0,
374       .access = PL1_RW,
375       .readfn = arm_cp_read_zero, .writefn = pxa2xx_pwrmode_write },
376     REGINFO_SENTINEL
377 };
378 
379 static void pxa2xx_setup_cp14(PXA2xxState *s)
380 {
381     define_arm_cp_regs_with_opaque(s->cpu, pxa_cp_reginfo, s);
382 }
383 
384 #define MDCNFG		0x00	/* SDRAM Configuration register */
385 #define MDREFR		0x04	/* SDRAM Refresh Control register */
386 #define MSC0		0x08	/* Static Memory Control register 0 */
387 #define MSC1		0x0c	/* Static Memory Control register 1 */
388 #define MSC2		0x10	/* Static Memory Control register 2 */
389 #define MECR		0x14	/* Expansion Memory Bus Config register */
390 #define SXCNFG		0x1c	/* Synchronous Static Memory Config register */
391 #define MCMEM0		0x28	/* PC Card Memory Socket 0 Timing register */
392 #define MCMEM1		0x2c	/* PC Card Memory Socket 1 Timing register */
393 #define MCATT0		0x30	/* PC Card Attribute Socket 0 register */
394 #define MCATT1		0x34	/* PC Card Attribute Socket 1 register */
395 #define MCIO0		0x38	/* PC Card I/O Socket 0 Timing register */
396 #define MCIO1		0x3c	/* PC Card I/O Socket 1 Timing register */
397 #define MDMRS		0x40	/* SDRAM Mode Register Set Config register */
398 #define BOOT_DEF	0x44	/* Boot-time Default Configuration register */
399 #define ARB_CNTL	0x48	/* Arbiter Control register */
400 #define BSCNTR0		0x4c	/* Memory Buffer Strength Control register 0 */
401 #define BSCNTR1		0x50	/* Memory Buffer Strength Control register 1 */
402 #define LCDBSCNTR	0x54	/* LCD Buffer Strength Control register */
403 #define MDMRSLP		0x58	/* Low Power SDRAM Mode Set Config register */
404 #define BSCNTR2		0x5c	/* Memory Buffer Strength Control register 2 */
405 #define BSCNTR3		0x60	/* Memory Buffer Strength Control register 3 */
406 #define SA1110		0x64	/* SA-1110 Memory Compatibility register */
407 
408 static uint64_t pxa2xx_mm_read(void *opaque, hwaddr addr,
409                                unsigned size)
410 {
411     PXA2xxState *s = (PXA2xxState *) opaque;
412 
413     switch (addr) {
414     case MDCNFG ... SA1110:
415         if ((addr & 3) == 0)
416             return s->mm_regs[addr >> 2];
417 
418     default:
419         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
420         break;
421     }
422     return 0;
423 }
424 
425 static void pxa2xx_mm_write(void *opaque, hwaddr addr,
426                             uint64_t value, unsigned size)
427 {
428     PXA2xxState *s = (PXA2xxState *) opaque;
429 
430     switch (addr) {
431     case MDCNFG ... SA1110:
432         if ((addr & 3) == 0) {
433             s->mm_regs[addr >> 2] = value;
434             break;
435         }
436 
437     default:
438         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
439         break;
440     }
441 }
442 
443 static const MemoryRegionOps pxa2xx_mm_ops = {
444     .read = pxa2xx_mm_read,
445     .write = pxa2xx_mm_write,
446     .endianness = DEVICE_NATIVE_ENDIAN,
447 };
448 
449 static const VMStateDescription vmstate_pxa2xx_mm = {
450     .name = "pxa2xx_mm",
451     .version_id = 0,
452     .minimum_version_id = 0,
453     .minimum_version_id_old = 0,
454     .fields      = (VMStateField[]) {
455         VMSTATE_UINT32_ARRAY(mm_regs, PXA2xxState, 0x1a),
456         VMSTATE_END_OF_LIST()
457     }
458 };
459 
460 /* Synchronous Serial Ports */
461 typedef struct {
462     SysBusDevice busdev;
463     MemoryRegion iomem;
464     qemu_irq irq;
465     int enable;
466     SSIBus *bus;
467 
468     uint32_t sscr[2];
469     uint32_t sspsp;
470     uint32_t ssto;
471     uint32_t ssitr;
472     uint32_t sssr;
473     uint8_t sstsa;
474     uint8_t ssrsa;
475     uint8_t ssacd;
476 
477     uint32_t rx_fifo[16];
478     int rx_level;
479     int rx_start;
480 } PXA2xxSSPState;
481 
482 #define SSCR0	0x00	/* SSP Control register 0 */
483 #define SSCR1	0x04	/* SSP Control register 1 */
484 #define SSSR	0x08	/* SSP Status register */
485 #define SSITR	0x0c	/* SSP Interrupt Test register */
486 #define SSDR	0x10	/* SSP Data register */
487 #define SSTO	0x28	/* SSP Time-Out register */
488 #define SSPSP	0x2c	/* SSP Programmable Serial Protocol register */
489 #define SSTSA	0x30	/* SSP TX Time Slot Active register */
490 #define SSRSA	0x34	/* SSP RX Time Slot Active register */
491 #define SSTSS	0x38	/* SSP Time Slot Status register */
492 #define SSACD	0x3c	/* SSP Audio Clock Divider register */
493 
494 /* Bitfields for above registers */
495 #define SSCR0_SPI(x)	(((x) & 0x30) == 0x00)
496 #define SSCR0_SSP(x)	(((x) & 0x30) == 0x10)
497 #define SSCR0_UWIRE(x)	(((x) & 0x30) == 0x20)
498 #define SSCR0_PSP(x)	(((x) & 0x30) == 0x30)
499 #define SSCR0_SSE	(1 << 7)
500 #define SSCR0_RIM	(1 << 22)
501 #define SSCR0_TIM	(1 << 23)
502 #define SSCR0_MOD	(1 << 31)
503 #define SSCR0_DSS(x)	(((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1)
504 #define SSCR1_RIE	(1 << 0)
505 #define SSCR1_TIE	(1 << 1)
506 #define SSCR1_LBM	(1 << 2)
507 #define SSCR1_MWDS	(1 << 5)
508 #define SSCR1_TFT(x)	((((x) >> 6) & 0xf) + 1)
509 #define SSCR1_RFT(x)	((((x) >> 10) & 0xf) + 1)
510 #define SSCR1_EFWR	(1 << 14)
511 #define SSCR1_PINTE	(1 << 18)
512 #define SSCR1_TINTE	(1 << 19)
513 #define SSCR1_RSRE	(1 << 20)
514 #define SSCR1_TSRE	(1 << 21)
515 #define SSCR1_EBCEI	(1 << 29)
516 #define SSITR_INT	(7 << 5)
517 #define SSSR_TNF	(1 << 2)
518 #define SSSR_RNE	(1 << 3)
519 #define SSSR_TFS	(1 << 5)
520 #define SSSR_RFS	(1 << 6)
521 #define SSSR_ROR	(1 << 7)
522 #define SSSR_PINT	(1 << 18)
523 #define SSSR_TINT	(1 << 19)
524 #define SSSR_EOC	(1 << 20)
525 #define SSSR_TUR	(1 << 21)
526 #define SSSR_BCE	(1 << 23)
527 #define SSSR_RW		0x00bc0080
528 
529 static void pxa2xx_ssp_int_update(PXA2xxSSPState *s)
530 {
531     int level = 0;
532 
533     level |= s->ssitr & SSITR_INT;
534     level |= (s->sssr & SSSR_BCE)  &&  (s->sscr[1] & SSCR1_EBCEI);
535     level |= (s->sssr & SSSR_TUR)  && !(s->sscr[0] & SSCR0_TIM);
536     level |= (s->sssr & SSSR_EOC)  &&  (s->sssr & (SSSR_TINT | SSSR_PINT));
537     level |= (s->sssr & SSSR_TINT) &&  (s->sscr[1] & SSCR1_TINTE);
538     level |= (s->sssr & SSSR_PINT) &&  (s->sscr[1] & SSCR1_PINTE);
539     level |= (s->sssr & SSSR_ROR)  && !(s->sscr[0] & SSCR0_RIM);
540     level |= (s->sssr & SSSR_RFS)  &&  (s->sscr[1] & SSCR1_RIE);
541     level |= (s->sssr & SSSR_TFS)  &&  (s->sscr[1] & SSCR1_TIE);
542     qemu_set_irq(s->irq, !!level);
543 }
544 
545 static void pxa2xx_ssp_fifo_update(PXA2xxSSPState *s)
546 {
547     s->sssr &= ~(0xf << 12);	/* Clear RFL */
548     s->sssr &= ~(0xf << 8);	/* Clear TFL */
549     s->sssr &= ~SSSR_TFS;
550     s->sssr &= ~SSSR_TNF;
551     if (s->enable) {
552         s->sssr |= ((s->rx_level - 1) & 0xf) << 12;
553         if (s->rx_level >= SSCR1_RFT(s->sscr[1]))
554             s->sssr |= SSSR_RFS;
555         else
556             s->sssr &= ~SSSR_RFS;
557         if (s->rx_level)
558             s->sssr |= SSSR_RNE;
559         else
560             s->sssr &= ~SSSR_RNE;
561         /* TX FIFO is never filled, so it is always in underrun
562            condition if SSP is enabled */
563         s->sssr |= SSSR_TFS;
564         s->sssr |= SSSR_TNF;
565     }
566 
567     pxa2xx_ssp_int_update(s);
568 }
569 
570 static uint64_t pxa2xx_ssp_read(void *opaque, hwaddr addr,
571                                 unsigned size)
572 {
573     PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
574     uint32_t retval;
575 
576     switch (addr) {
577     case SSCR0:
578         return s->sscr[0];
579     case SSCR1:
580         return s->sscr[1];
581     case SSPSP:
582         return s->sspsp;
583     case SSTO:
584         return s->ssto;
585     case SSITR:
586         return s->ssitr;
587     case SSSR:
588         return s->sssr | s->ssitr;
589     case SSDR:
590         if (!s->enable)
591             return 0xffffffff;
592         if (s->rx_level < 1) {
593             printf("%s: SSP Rx Underrun\n", __FUNCTION__);
594             return 0xffffffff;
595         }
596         s->rx_level --;
597         retval = s->rx_fifo[s->rx_start ++];
598         s->rx_start &= 0xf;
599         pxa2xx_ssp_fifo_update(s);
600         return retval;
601     case SSTSA:
602         return s->sstsa;
603     case SSRSA:
604         return s->ssrsa;
605     case SSTSS:
606         return 0;
607     case SSACD:
608         return s->ssacd;
609     default:
610         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
611         break;
612     }
613     return 0;
614 }
615 
616 static void pxa2xx_ssp_write(void *opaque, hwaddr addr,
617                              uint64_t value64, unsigned size)
618 {
619     PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
620     uint32_t value = value64;
621 
622     switch (addr) {
623     case SSCR0:
624         s->sscr[0] = value & 0xc7ffffff;
625         s->enable = value & SSCR0_SSE;
626         if (value & SSCR0_MOD)
627             printf("%s: Attempt to use network mode\n", __FUNCTION__);
628         if (s->enable && SSCR0_DSS(value) < 4)
629             printf("%s: Wrong data size: %i bits\n", __FUNCTION__,
630                             SSCR0_DSS(value));
631         if (!(value & SSCR0_SSE)) {
632             s->sssr = 0;
633             s->ssitr = 0;
634             s->rx_level = 0;
635         }
636         pxa2xx_ssp_fifo_update(s);
637         break;
638 
639     case SSCR1:
640         s->sscr[1] = value;
641         if (value & (SSCR1_LBM | SSCR1_EFWR))
642             printf("%s: Attempt to use SSP test mode\n", __FUNCTION__);
643         pxa2xx_ssp_fifo_update(s);
644         break;
645 
646     case SSPSP:
647         s->sspsp = value;
648         break;
649 
650     case SSTO:
651         s->ssto = value;
652         break;
653 
654     case SSITR:
655         s->ssitr = value & SSITR_INT;
656         pxa2xx_ssp_int_update(s);
657         break;
658 
659     case SSSR:
660         s->sssr &= ~(value & SSSR_RW);
661         pxa2xx_ssp_int_update(s);
662         break;
663 
664     case SSDR:
665         if (SSCR0_UWIRE(s->sscr[0])) {
666             if (s->sscr[1] & SSCR1_MWDS)
667                 value &= 0xffff;
668             else
669                 value &= 0xff;
670         } else
671             /* Note how 32bits overflow does no harm here */
672             value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
673 
674         /* Data goes from here to the Tx FIFO and is shifted out from
675          * there directly to the slave, no need to buffer it.
676          */
677         if (s->enable) {
678             uint32_t readval;
679             readval = ssi_transfer(s->bus, value);
680             if (s->rx_level < 0x10) {
681                 s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = readval;
682             } else {
683                 s->sssr |= SSSR_ROR;
684             }
685         }
686         pxa2xx_ssp_fifo_update(s);
687         break;
688 
689     case SSTSA:
690         s->sstsa = value;
691         break;
692 
693     case SSRSA:
694         s->ssrsa = value;
695         break;
696 
697     case SSACD:
698         s->ssacd = value;
699         break;
700 
701     default:
702         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
703         break;
704     }
705 }
706 
707 static const MemoryRegionOps pxa2xx_ssp_ops = {
708     .read = pxa2xx_ssp_read,
709     .write = pxa2xx_ssp_write,
710     .endianness = DEVICE_NATIVE_ENDIAN,
711 };
712 
713 static void pxa2xx_ssp_save(QEMUFile *f, void *opaque)
714 {
715     PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
716     int i;
717 
718     qemu_put_be32(f, s->enable);
719 
720     qemu_put_be32s(f, &s->sscr[0]);
721     qemu_put_be32s(f, &s->sscr[1]);
722     qemu_put_be32s(f, &s->sspsp);
723     qemu_put_be32s(f, &s->ssto);
724     qemu_put_be32s(f, &s->ssitr);
725     qemu_put_be32s(f, &s->sssr);
726     qemu_put_8s(f, &s->sstsa);
727     qemu_put_8s(f, &s->ssrsa);
728     qemu_put_8s(f, &s->ssacd);
729 
730     qemu_put_byte(f, s->rx_level);
731     for (i = 0; i < s->rx_level; i ++)
732         qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 0xf]);
733 }
734 
735 static int pxa2xx_ssp_load(QEMUFile *f, void *opaque, int version_id)
736 {
737     PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
738     int i;
739 
740     s->enable = qemu_get_be32(f);
741 
742     qemu_get_be32s(f, &s->sscr[0]);
743     qemu_get_be32s(f, &s->sscr[1]);
744     qemu_get_be32s(f, &s->sspsp);
745     qemu_get_be32s(f, &s->ssto);
746     qemu_get_be32s(f, &s->ssitr);
747     qemu_get_be32s(f, &s->sssr);
748     qemu_get_8s(f, &s->sstsa);
749     qemu_get_8s(f, &s->ssrsa);
750     qemu_get_8s(f, &s->ssacd);
751 
752     s->rx_level = qemu_get_byte(f);
753     s->rx_start = 0;
754     for (i = 0; i < s->rx_level; i ++)
755         s->rx_fifo[i] = qemu_get_byte(f);
756 
757     return 0;
758 }
759 
760 static int pxa2xx_ssp_init(SysBusDevice *dev)
761 {
762     PXA2xxSSPState *s = FROM_SYSBUS(PXA2xxSSPState, dev);
763 
764     sysbus_init_irq(dev, &s->irq);
765 
766     memory_region_init_io(&s->iomem, OBJECT(s), &pxa2xx_ssp_ops, s,
767                           "pxa2xx-ssp", 0x1000);
768     sysbus_init_mmio(dev, &s->iomem);
769     register_savevm(&dev->qdev, "pxa2xx_ssp", -1, 0,
770                     pxa2xx_ssp_save, pxa2xx_ssp_load, s);
771 
772     s->bus = ssi_create_bus(&dev->qdev, "ssi");
773     return 0;
774 }
775 
776 /* Real-Time Clock */
777 #define RCNR		0x00	/* RTC Counter register */
778 #define RTAR		0x04	/* RTC Alarm register */
779 #define RTSR		0x08	/* RTC Status register */
780 #define RTTR		0x0c	/* RTC Timer Trim register */
781 #define RDCR		0x10	/* RTC Day Counter register */
782 #define RYCR		0x14	/* RTC Year Counter register */
783 #define RDAR1		0x18	/* RTC Wristwatch Day Alarm register 1 */
784 #define RYAR1		0x1c	/* RTC Wristwatch Year Alarm register 1 */
785 #define RDAR2		0x20	/* RTC Wristwatch Day Alarm register 2 */
786 #define RYAR2		0x24	/* RTC Wristwatch Year Alarm register 2 */
787 #define SWCR		0x28	/* RTC Stopwatch Counter register */
788 #define SWAR1		0x2c	/* RTC Stopwatch Alarm register 1 */
789 #define SWAR2		0x30	/* RTC Stopwatch Alarm register 2 */
790 #define RTCPICR		0x34	/* RTC Periodic Interrupt Counter register */
791 #define PIAR		0x38	/* RTC Periodic Interrupt Alarm register */
792 
793 typedef struct {
794     SysBusDevice busdev;
795     MemoryRegion iomem;
796     uint32_t rttr;
797     uint32_t rtsr;
798     uint32_t rtar;
799     uint32_t rdar1;
800     uint32_t rdar2;
801     uint32_t ryar1;
802     uint32_t ryar2;
803     uint32_t swar1;
804     uint32_t swar2;
805     uint32_t piar;
806     uint32_t last_rcnr;
807     uint32_t last_rdcr;
808     uint32_t last_rycr;
809     uint32_t last_swcr;
810     uint32_t last_rtcpicr;
811     int64_t last_hz;
812     int64_t last_sw;
813     int64_t last_pi;
814     QEMUTimer *rtc_hz;
815     QEMUTimer *rtc_rdal1;
816     QEMUTimer *rtc_rdal2;
817     QEMUTimer *rtc_swal1;
818     QEMUTimer *rtc_swal2;
819     QEMUTimer *rtc_pi;
820     qemu_irq rtc_irq;
821 } PXA2xxRTCState;
822 
823 static inline void pxa2xx_rtc_int_update(PXA2xxRTCState *s)
824 {
825     qemu_set_irq(s->rtc_irq, !!(s->rtsr & 0x2553));
826 }
827 
828 static void pxa2xx_rtc_hzupdate(PXA2xxRTCState *s)
829 {
830     int64_t rt = qemu_get_clock_ms(rtc_clock);
831     s->last_rcnr += ((rt - s->last_hz) << 15) /
832             (1000 * ((s->rttr & 0xffff) + 1));
833     s->last_rdcr += ((rt - s->last_hz) << 15) /
834             (1000 * ((s->rttr & 0xffff) + 1));
835     s->last_hz = rt;
836 }
837 
838 static void pxa2xx_rtc_swupdate(PXA2xxRTCState *s)
839 {
840     int64_t rt = qemu_get_clock_ms(rtc_clock);
841     if (s->rtsr & (1 << 12))
842         s->last_swcr += (rt - s->last_sw) / 10;
843     s->last_sw = rt;
844 }
845 
846 static void pxa2xx_rtc_piupdate(PXA2xxRTCState *s)
847 {
848     int64_t rt = qemu_get_clock_ms(rtc_clock);
849     if (s->rtsr & (1 << 15))
850         s->last_swcr += rt - s->last_pi;
851     s->last_pi = rt;
852 }
853 
854 static inline void pxa2xx_rtc_alarm_update(PXA2xxRTCState *s,
855                 uint32_t rtsr)
856 {
857     if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0)))
858         qemu_mod_timer(s->rtc_hz, s->last_hz +
859                 (((s->rtar - s->last_rcnr) * 1000 *
860                   ((s->rttr & 0xffff) + 1)) >> 15));
861     else
862         qemu_del_timer(s->rtc_hz);
863 
864     if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4)))
865         qemu_mod_timer(s->rtc_rdal1, s->last_hz +
866                 (((s->rdar1 - s->last_rdcr) * 1000 *
867                   ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
868     else
869         qemu_del_timer(s->rtc_rdal1);
870 
871     if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6)))
872         qemu_mod_timer(s->rtc_rdal2, s->last_hz +
873                 (((s->rdar2 - s->last_rdcr) * 1000 *
874                   ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
875     else
876         qemu_del_timer(s->rtc_rdal2);
877 
878     if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8)))
879         qemu_mod_timer(s->rtc_swal1, s->last_sw +
880                         (s->swar1 - s->last_swcr) * 10); /* TODO: fixup */
881     else
882         qemu_del_timer(s->rtc_swal1);
883 
884     if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10)))
885         qemu_mod_timer(s->rtc_swal2, s->last_sw +
886                         (s->swar2 - s->last_swcr) * 10); /* TODO: fixup */
887     else
888         qemu_del_timer(s->rtc_swal2);
889 
890     if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13)))
891         qemu_mod_timer(s->rtc_pi, s->last_pi +
892                         (s->piar & 0xffff) - s->last_rtcpicr);
893     else
894         qemu_del_timer(s->rtc_pi);
895 }
896 
897 static inline void pxa2xx_rtc_hz_tick(void *opaque)
898 {
899     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
900     s->rtsr |= (1 << 0);
901     pxa2xx_rtc_alarm_update(s, s->rtsr);
902     pxa2xx_rtc_int_update(s);
903 }
904 
905 static inline void pxa2xx_rtc_rdal1_tick(void *opaque)
906 {
907     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
908     s->rtsr |= (1 << 4);
909     pxa2xx_rtc_alarm_update(s, s->rtsr);
910     pxa2xx_rtc_int_update(s);
911 }
912 
913 static inline void pxa2xx_rtc_rdal2_tick(void *opaque)
914 {
915     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
916     s->rtsr |= (1 << 6);
917     pxa2xx_rtc_alarm_update(s, s->rtsr);
918     pxa2xx_rtc_int_update(s);
919 }
920 
921 static inline void pxa2xx_rtc_swal1_tick(void *opaque)
922 {
923     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
924     s->rtsr |= (1 << 8);
925     pxa2xx_rtc_alarm_update(s, s->rtsr);
926     pxa2xx_rtc_int_update(s);
927 }
928 
929 static inline void pxa2xx_rtc_swal2_tick(void *opaque)
930 {
931     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
932     s->rtsr |= (1 << 10);
933     pxa2xx_rtc_alarm_update(s, s->rtsr);
934     pxa2xx_rtc_int_update(s);
935 }
936 
937 static inline void pxa2xx_rtc_pi_tick(void *opaque)
938 {
939     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
940     s->rtsr |= (1 << 13);
941     pxa2xx_rtc_piupdate(s);
942     s->last_rtcpicr = 0;
943     pxa2xx_rtc_alarm_update(s, s->rtsr);
944     pxa2xx_rtc_int_update(s);
945 }
946 
947 static uint64_t pxa2xx_rtc_read(void *opaque, hwaddr addr,
948                                 unsigned size)
949 {
950     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
951 
952     switch (addr) {
953     case RTTR:
954         return s->rttr;
955     case RTSR:
956         return s->rtsr;
957     case RTAR:
958         return s->rtar;
959     case RDAR1:
960         return s->rdar1;
961     case RDAR2:
962         return s->rdar2;
963     case RYAR1:
964         return s->ryar1;
965     case RYAR2:
966         return s->ryar2;
967     case SWAR1:
968         return s->swar1;
969     case SWAR2:
970         return s->swar2;
971     case PIAR:
972         return s->piar;
973     case RCNR:
974         return s->last_rcnr + ((qemu_get_clock_ms(rtc_clock) - s->last_hz) << 15) /
975                 (1000 * ((s->rttr & 0xffff) + 1));
976     case RDCR:
977         return s->last_rdcr + ((qemu_get_clock_ms(rtc_clock) - s->last_hz) << 15) /
978                 (1000 * ((s->rttr & 0xffff) + 1));
979     case RYCR:
980         return s->last_rycr;
981     case SWCR:
982         if (s->rtsr & (1 << 12))
983             return s->last_swcr + (qemu_get_clock_ms(rtc_clock) - s->last_sw) / 10;
984         else
985             return s->last_swcr;
986     default:
987         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
988         break;
989     }
990     return 0;
991 }
992 
993 static void pxa2xx_rtc_write(void *opaque, hwaddr addr,
994                              uint64_t value64, unsigned size)
995 {
996     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
997     uint32_t value = value64;
998 
999     switch (addr) {
1000     case RTTR:
1001         if (!(s->rttr & (1 << 31))) {
1002             pxa2xx_rtc_hzupdate(s);
1003             s->rttr = value;
1004             pxa2xx_rtc_alarm_update(s, s->rtsr);
1005         }
1006         break;
1007 
1008     case RTSR:
1009         if ((s->rtsr ^ value) & (1 << 15))
1010             pxa2xx_rtc_piupdate(s);
1011 
1012         if ((s->rtsr ^ value) & (1 << 12))
1013             pxa2xx_rtc_swupdate(s);
1014 
1015         if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac))
1016             pxa2xx_rtc_alarm_update(s, value);
1017 
1018         s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac));
1019         pxa2xx_rtc_int_update(s);
1020         break;
1021 
1022     case RTAR:
1023         s->rtar = value;
1024         pxa2xx_rtc_alarm_update(s, s->rtsr);
1025         break;
1026 
1027     case RDAR1:
1028         s->rdar1 = value;
1029         pxa2xx_rtc_alarm_update(s, s->rtsr);
1030         break;
1031 
1032     case RDAR2:
1033         s->rdar2 = value;
1034         pxa2xx_rtc_alarm_update(s, s->rtsr);
1035         break;
1036 
1037     case RYAR1:
1038         s->ryar1 = value;
1039         pxa2xx_rtc_alarm_update(s, s->rtsr);
1040         break;
1041 
1042     case RYAR2:
1043         s->ryar2 = value;
1044         pxa2xx_rtc_alarm_update(s, s->rtsr);
1045         break;
1046 
1047     case SWAR1:
1048         pxa2xx_rtc_swupdate(s);
1049         s->swar1 = value;
1050         s->last_swcr = 0;
1051         pxa2xx_rtc_alarm_update(s, s->rtsr);
1052         break;
1053 
1054     case SWAR2:
1055         s->swar2 = value;
1056         pxa2xx_rtc_alarm_update(s, s->rtsr);
1057         break;
1058 
1059     case PIAR:
1060         s->piar = value;
1061         pxa2xx_rtc_alarm_update(s, s->rtsr);
1062         break;
1063 
1064     case RCNR:
1065         pxa2xx_rtc_hzupdate(s);
1066         s->last_rcnr = value;
1067         pxa2xx_rtc_alarm_update(s, s->rtsr);
1068         break;
1069 
1070     case RDCR:
1071         pxa2xx_rtc_hzupdate(s);
1072         s->last_rdcr = value;
1073         pxa2xx_rtc_alarm_update(s, s->rtsr);
1074         break;
1075 
1076     case RYCR:
1077         s->last_rycr = value;
1078         break;
1079 
1080     case SWCR:
1081         pxa2xx_rtc_swupdate(s);
1082         s->last_swcr = value;
1083         pxa2xx_rtc_alarm_update(s, s->rtsr);
1084         break;
1085 
1086     case RTCPICR:
1087         pxa2xx_rtc_piupdate(s);
1088         s->last_rtcpicr = value & 0xffff;
1089         pxa2xx_rtc_alarm_update(s, s->rtsr);
1090         break;
1091 
1092     default:
1093         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1094     }
1095 }
1096 
1097 static const MemoryRegionOps pxa2xx_rtc_ops = {
1098     .read = pxa2xx_rtc_read,
1099     .write = pxa2xx_rtc_write,
1100     .endianness = DEVICE_NATIVE_ENDIAN,
1101 };
1102 
1103 static int pxa2xx_rtc_init(SysBusDevice *dev)
1104 {
1105     PXA2xxRTCState *s = FROM_SYSBUS(PXA2xxRTCState, dev);
1106     struct tm tm;
1107     int wom;
1108 
1109     s->rttr = 0x7fff;
1110     s->rtsr = 0;
1111 
1112     qemu_get_timedate(&tm, 0);
1113     wom = ((tm.tm_mday - 1) / 7) + 1;
1114 
1115     s->last_rcnr = (uint32_t) mktimegm(&tm);
1116     s->last_rdcr = (wom << 20) | ((tm.tm_wday + 1) << 17) |
1117             (tm.tm_hour << 12) | (tm.tm_min << 6) | tm.tm_sec;
1118     s->last_rycr = ((tm.tm_year + 1900) << 9) |
1119             ((tm.tm_mon + 1) << 5) | tm.tm_mday;
1120     s->last_swcr = (tm.tm_hour << 19) |
1121             (tm.tm_min << 13) | (tm.tm_sec << 7);
1122     s->last_rtcpicr = 0;
1123     s->last_hz = s->last_sw = s->last_pi = qemu_get_clock_ms(rtc_clock);
1124 
1125     s->rtc_hz    = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_hz_tick,    s);
1126     s->rtc_rdal1 = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_rdal1_tick, s);
1127     s->rtc_rdal2 = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_rdal2_tick, s);
1128     s->rtc_swal1 = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_swal1_tick, s);
1129     s->rtc_swal2 = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_swal2_tick, s);
1130     s->rtc_pi    = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_pi_tick,    s);
1131 
1132     sysbus_init_irq(dev, &s->rtc_irq);
1133 
1134     memory_region_init_io(&s->iomem, OBJECT(s), &pxa2xx_rtc_ops, s,
1135                           "pxa2xx-rtc", 0x10000);
1136     sysbus_init_mmio(dev, &s->iomem);
1137 
1138     return 0;
1139 }
1140 
1141 static void pxa2xx_rtc_pre_save(void *opaque)
1142 {
1143     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1144 
1145     pxa2xx_rtc_hzupdate(s);
1146     pxa2xx_rtc_piupdate(s);
1147     pxa2xx_rtc_swupdate(s);
1148 }
1149 
1150 static int pxa2xx_rtc_post_load(void *opaque, int version_id)
1151 {
1152     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1153 
1154     pxa2xx_rtc_alarm_update(s, s->rtsr);
1155 
1156     return 0;
1157 }
1158 
1159 static const VMStateDescription vmstate_pxa2xx_rtc_regs = {
1160     .name = "pxa2xx_rtc",
1161     .version_id = 0,
1162     .minimum_version_id = 0,
1163     .minimum_version_id_old = 0,
1164     .pre_save = pxa2xx_rtc_pre_save,
1165     .post_load = pxa2xx_rtc_post_load,
1166     .fields = (VMStateField[]) {
1167         VMSTATE_UINT32(rttr, PXA2xxRTCState),
1168         VMSTATE_UINT32(rtsr, PXA2xxRTCState),
1169         VMSTATE_UINT32(rtar, PXA2xxRTCState),
1170         VMSTATE_UINT32(rdar1, PXA2xxRTCState),
1171         VMSTATE_UINT32(rdar2, PXA2xxRTCState),
1172         VMSTATE_UINT32(ryar1, PXA2xxRTCState),
1173         VMSTATE_UINT32(ryar2, PXA2xxRTCState),
1174         VMSTATE_UINT32(swar1, PXA2xxRTCState),
1175         VMSTATE_UINT32(swar2, PXA2xxRTCState),
1176         VMSTATE_UINT32(piar, PXA2xxRTCState),
1177         VMSTATE_UINT32(last_rcnr, PXA2xxRTCState),
1178         VMSTATE_UINT32(last_rdcr, PXA2xxRTCState),
1179         VMSTATE_UINT32(last_rycr, PXA2xxRTCState),
1180         VMSTATE_UINT32(last_swcr, PXA2xxRTCState),
1181         VMSTATE_UINT32(last_rtcpicr, PXA2xxRTCState),
1182         VMSTATE_INT64(last_hz, PXA2xxRTCState),
1183         VMSTATE_INT64(last_sw, PXA2xxRTCState),
1184         VMSTATE_INT64(last_pi, PXA2xxRTCState),
1185         VMSTATE_END_OF_LIST(),
1186     },
1187 };
1188 
1189 static void pxa2xx_rtc_sysbus_class_init(ObjectClass *klass, void *data)
1190 {
1191     DeviceClass *dc = DEVICE_CLASS(klass);
1192     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1193 
1194     k->init = pxa2xx_rtc_init;
1195     dc->desc = "PXA2xx RTC Controller";
1196     dc->vmsd = &vmstate_pxa2xx_rtc_regs;
1197 }
1198 
1199 static const TypeInfo pxa2xx_rtc_sysbus_info = {
1200     .name          = "pxa2xx_rtc",
1201     .parent        = TYPE_SYS_BUS_DEVICE,
1202     .instance_size = sizeof(PXA2xxRTCState),
1203     .class_init    = pxa2xx_rtc_sysbus_class_init,
1204 };
1205 
1206 /* I2C Interface */
1207 typedef struct {
1208     I2CSlave i2c;
1209     PXA2xxI2CState *host;
1210 } PXA2xxI2CSlaveState;
1211 
1212 struct PXA2xxI2CState {
1213     SysBusDevice busdev;
1214     MemoryRegion iomem;
1215     PXA2xxI2CSlaveState *slave;
1216     i2c_bus *bus;
1217     qemu_irq irq;
1218     uint32_t offset;
1219     uint32_t region_size;
1220 
1221     uint16_t control;
1222     uint16_t status;
1223     uint8_t ibmr;
1224     uint8_t data;
1225 };
1226 
1227 #define IBMR	0x80	/* I2C Bus Monitor register */
1228 #define IDBR	0x88	/* I2C Data Buffer register */
1229 #define ICR	0x90	/* I2C Control register */
1230 #define ISR	0x98	/* I2C Status register */
1231 #define ISAR	0xa0	/* I2C Slave Address register */
1232 
1233 static void pxa2xx_i2c_update(PXA2xxI2CState *s)
1234 {
1235     uint16_t level = 0;
1236     level |= s->status & s->control & (1 << 10);		/* BED */
1237     level |= (s->status & (1 << 7)) && (s->control & (1 << 9));	/* IRF */
1238     level |= (s->status & (1 << 6)) && (s->control & (1 << 8));	/* ITE */
1239     level |= s->status & (1 << 9);				/* SAD */
1240     qemu_set_irq(s->irq, !!level);
1241 }
1242 
1243 /* These are only stubs now.  */
1244 static void pxa2xx_i2c_event(I2CSlave *i2c, enum i2c_event event)
1245 {
1246     PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1247     PXA2xxI2CState *s = slave->host;
1248 
1249     switch (event) {
1250     case I2C_START_SEND:
1251         s->status |= (1 << 9);				/* set SAD */
1252         s->status &= ~(1 << 0);				/* clear RWM */
1253         break;
1254     case I2C_START_RECV:
1255         s->status |= (1 << 9);				/* set SAD */
1256         s->status |= 1 << 0;				/* set RWM */
1257         break;
1258     case I2C_FINISH:
1259         s->status |= (1 << 4);				/* set SSD */
1260         break;
1261     case I2C_NACK:
1262         s->status |= 1 << 1;				/* set ACKNAK */
1263         break;
1264     }
1265     pxa2xx_i2c_update(s);
1266 }
1267 
1268 static int pxa2xx_i2c_rx(I2CSlave *i2c)
1269 {
1270     PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1271     PXA2xxI2CState *s = slave->host;
1272     if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1273         return 0;
1274 
1275     if (s->status & (1 << 0)) {			/* RWM */
1276         s->status |= 1 << 6;			/* set ITE */
1277     }
1278     pxa2xx_i2c_update(s);
1279 
1280     return s->data;
1281 }
1282 
1283 static int pxa2xx_i2c_tx(I2CSlave *i2c, uint8_t data)
1284 {
1285     PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1286     PXA2xxI2CState *s = slave->host;
1287     if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1288         return 1;
1289 
1290     if (!(s->status & (1 << 0))) {		/* RWM */
1291         s->status |= 1 << 7;			/* set IRF */
1292         s->data = data;
1293     }
1294     pxa2xx_i2c_update(s);
1295 
1296     return 1;
1297 }
1298 
1299 static uint64_t pxa2xx_i2c_read(void *opaque, hwaddr addr,
1300                                 unsigned size)
1301 {
1302     PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1303 
1304     addr -= s->offset;
1305     switch (addr) {
1306     case ICR:
1307         return s->control;
1308     case ISR:
1309         return s->status | (i2c_bus_busy(s->bus) << 2);
1310     case ISAR:
1311         return s->slave->i2c.address;
1312     case IDBR:
1313         return s->data;
1314     case IBMR:
1315         if (s->status & (1 << 2))
1316             s->ibmr ^= 3;	/* Fake SCL and SDA pin changes */
1317         else
1318             s->ibmr = 0;
1319         return s->ibmr;
1320     default:
1321         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1322         break;
1323     }
1324     return 0;
1325 }
1326 
1327 static void pxa2xx_i2c_write(void *opaque, hwaddr addr,
1328                              uint64_t value64, unsigned size)
1329 {
1330     PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1331     uint32_t value = value64;
1332     int ack;
1333 
1334     addr -= s->offset;
1335     switch (addr) {
1336     case ICR:
1337         s->control = value & 0xfff7;
1338         if ((value & (1 << 3)) && (value & (1 << 6))) {	/* TB and IUE */
1339             /* TODO: slave mode */
1340             if (value & (1 << 0)) {			/* START condition */
1341                 if (s->data & 1)
1342                     s->status |= 1 << 0;		/* set RWM */
1343                 else
1344                     s->status &= ~(1 << 0);		/* clear RWM */
1345                 ack = !i2c_start_transfer(s->bus, s->data >> 1, s->data & 1);
1346             } else {
1347                 if (s->status & (1 << 0)) {		/* RWM */
1348                     s->data = i2c_recv(s->bus);
1349                     if (value & (1 << 2))		/* ACKNAK */
1350                         i2c_nack(s->bus);
1351                     ack = 1;
1352                 } else
1353                     ack = !i2c_send(s->bus, s->data);
1354             }
1355 
1356             if (value & (1 << 1))			/* STOP condition */
1357                 i2c_end_transfer(s->bus);
1358 
1359             if (ack) {
1360                 if (value & (1 << 0))			/* START condition */
1361                     s->status |= 1 << 6;		/* set ITE */
1362                 else
1363                     if (s->status & (1 << 0))		/* RWM */
1364                         s->status |= 1 << 7;		/* set IRF */
1365                     else
1366                         s->status |= 1 << 6;		/* set ITE */
1367                 s->status &= ~(1 << 1);			/* clear ACKNAK */
1368             } else {
1369                 s->status |= 1 << 6;			/* set ITE */
1370                 s->status |= 1 << 10;			/* set BED */
1371                 s->status |= 1 << 1;			/* set ACKNAK */
1372             }
1373         }
1374         if (!(value & (1 << 3)) && (value & (1 << 6)))	/* !TB and IUE */
1375             if (value & (1 << 4))			/* MA */
1376                 i2c_end_transfer(s->bus);
1377         pxa2xx_i2c_update(s);
1378         break;
1379 
1380     case ISR:
1381         s->status &= ~(value & 0x07f0);
1382         pxa2xx_i2c_update(s);
1383         break;
1384 
1385     case ISAR:
1386         i2c_set_slave_address(&s->slave->i2c, value & 0x7f);
1387         break;
1388 
1389     case IDBR:
1390         s->data = value & 0xff;
1391         break;
1392 
1393     default:
1394         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1395     }
1396 }
1397 
1398 static const MemoryRegionOps pxa2xx_i2c_ops = {
1399     .read = pxa2xx_i2c_read,
1400     .write = pxa2xx_i2c_write,
1401     .endianness = DEVICE_NATIVE_ENDIAN,
1402 };
1403 
1404 static const VMStateDescription vmstate_pxa2xx_i2c_slave = {
1405     .name = "pxa2xx_i2c_slave",
1406     .version_id = 1,
1407     .minimum_version_id = 1,
1408     .minimum_version_id_old = 1,
1409     .fields      = (VMStateField []) {
1410         VMSTATE_I2C_SLAVE(i2c, PXA2xxI2CSlaveState),
1411         VMSTATE_END_OF_LIST()
1412     }
1413 };
1414 
1415 static const VMStateDescription vmstate_pxa2xx_i2c = {
1416     .name = "pxa2xx_i2c",
1417     .version_id = 1,
1418     .minimum_version_id = 1,
1419     .minimum_version_id_old = 1,
1420     .fields      = (VMStateField []) {
1421         VMSTATE_UINT16(control, PXA2xxI2CState),
1422         VMSTATE_UINT16(status, PXA2xxI2CState),
1423         VMSTATE_UINT8(ibmr, PXA2xxI2CState),
1424         VMSTATE_UINT8(data, PXA2xxI2CState),
1425         VMSTATE_STRUCT_POINTER(slave, PXA2xxI2CState,
1426                                vmstate_pxa2xx_i2c_slave, PXA2xxI2CSlaveState *),
1427         VMSTATE_END_OF_LIST()
1428     }
1429 };
1430 
1431 static int pxa2xx_i2c_slave_init(I2CSlave *i2c)
1432 {
1433     /* Nothing to do.  */
1434     return 0;
1435 }
1436 
1437 static void pxa2xx_i2c_slave_class_init(ObjectClass *klass, void *data)
1438 {
1439     I2CSlaveClass *k = I2C_SLAVE_CLASS(klass);
1440 
1441     k->init = pxa2xx_i2c_slave_init;
1442     k->event = pxa2xx_i2c_event;
1443     k->recv = pxa2xx_i2c_rx;
1444     k->send = pxa2xx_i2c_tx;
1445 }
1446 
1447 static const TypeInfo pxa2xx_i2c_slave_info = {
1448     .name          = "pxa2xx-i2c-slave",
1449     .parent        = TYPE_I2C_SLAVE,
1450     .instance_size = sizeof(PXA2xxI2CSlaveState),
1451     .class_init    = pxa2xx_i2c_slave_class_init,
1452 };
1453 
1454 PXA2xxI2CState *pxa2xx_i2c_init(hwaddr base,
1455                 qemu_irq irq, uint32_t region_size)
1456 {
1457     DeviceState *dev;
1458     SysBusDevice *i2c_dev;
1459     PXA2xxI2CState *s;
1460 
1461     i2c_dev = SYS_BUS_DEVICE(qdev_create(NULL, "pxa2xx_i2c"));
1462     qdev_prop_set_uint32(&i2c_dev->qdev, "size", region_size + 1);
1463     qdev_prop_set_uint32(&i2c_dev->qdev, "offset", base & region_size);
1464 
1465     qdev_init_nofail(&i2c_dev->qdev);
1466 
1467     sysbus_mmio_map(i2c_dev, 0, base & ~region_size);
1468     sysbus_connect_irq(i2c_dev, 0, irq);
1469 
1470     s = FROM_SYSBUS(PXA2xxI2CState, i2c_dev);
1471     /* FIXME: Should the slave device really be on a separate bus?  */
1472     dev = i2c_create_slave(i2c_init_bus(NULL, "dummy"), "pxa2xx-i2c-slave", 0);
1473     s->slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, I2C_SLAVE(dev));
1474     s->slave->host = s;
1475 
1476     return s;
1477 }
1478 
1479 static int pxa2xx_i2c_initfn(SysBusDevice *dev)
1480 {
1481     PXA2xxI2CState *s = FROM_SYSBUS(PXA2xxI2CState, dev);
1482 
1483     s->bus = i2c_init_bus(&dev->qdev, "i2c");
1484 
1485     memory_region_init_io(&s->iomem, OBJECT(s), &pxa2xx_i2c_ops, s,
1486                           "pxa2xx-i2c", s->region_size);
1487     sysbus_init_mmio(dev, &s->iomem);
1488     sysbus_init_irq(dev, &s->irq);
1489 
1490     return 0;
1491 }
1492 
1493 i2c_bus *pxa2xx_i2c_bus(PXA2xxI2CState *s)
1494 {
1495     return s->bus;
1496 }
1497 
1498 static Property pxa2xx_i2c_properties[] = {
1499     DEFINE_PROP_UINT32("size", PXA2xxI2CState, region_size, 0x10000),
1500     DEFINE_PROP_UINT32("offset", PXA2xxI2CState, offset, 0),
1501     DEFINE_PROP_END_OF_LIST(),
1502 };
1503 
1504 static void pxa2xx_i2c_class_init(ObjectClass *klass, void *data)
1505 {
1506     DeviceClass *dc = DEVICE_CLASS(klass);
1507     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1508 
1509     k->init = pxa2xx_i2c_initfn;
1510     dc->desc = "PXA2xx I2C Bus Controller";
1511     dc->vmsd = &vmstate_pxa2xx_i2c;
1512     dc->props = pxa2xx_i2c_properties;
1513 }
1514 
1515 static const TypeInfo pxa2xx_i2c_info = {
1516     .name          = "pxa2xx_i2c",
1517     .parent        = TYPE_SYS_BUS_DEVICE,
1518     .instance_size = sizeof(PXA2xxI2CState),
1519     .class_init    = pxa2xx_i2c_class_init,
1520 };
1521 
1522 /* PXA Inter-IC Sound Controller */
1523 static void pxa2xx_i2s_reset(PXA2xxI2SState *i2s)
1524 {
1525     i2s->rx_len = 0;
1526     i2s->tx_len = 0;
1527     i2s->fifo_len = 0;
1528     i2s->clk = 0x1a;
1529     i2s->control[0] = 0x00;
1530     i2s->control[1] = 0x00;
1531     i2s->status = 0x00;
1532     i2s->mask = 0x00;
1533 }
1534 
1535 #define SACR_TFTH(val)	((val >> 8) & 0xf)
1536 #define SACR_RFTH(val)	((val >> 12) & 0xf)
1537 #define SACR_DREC(val)	(val & (1 << 3))
1538 #define SACR_DPRL(val)	(val & (1 << 4))
1539 
1540 static inline void pxa2xx_i2s_update(PXA2xxI2SState *i2s)
1541 {
1542     int rfs, tfs;
1543     rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len &&
1544             !SACR_DREC(i2s->control[1]);
1545     tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) &&
1546             i2s->enable && !SACR_DPRL(i2s->control[1]);
1547 
1548     qemu_set_irq(i2s->rx_dma, rfs);
1549     qemu_set_irq(i2s->tx_dma, tfs);
1550 
1551     i2s->status &= 0xe0;
1552     if (i2s->fifo_len < 16 || !i2s->enable)
1553         i2s->status |= 1 << 0;			/* TNF */
1554     if (i2s->rx_len)
1555         i2s->status |= 1 << 1;			/* RNE */
1556     if (i2s->enable)
1557         i2s->status |= 1 << 2;			/* BSY */
1558     if (tfs)
1559         i2s->status |= 1 << 3;			/* TFS */
1560     if (rfs)
1561         i2s->status |= 1 << 4;			/* RFS */
1562     if (!(i2s->tx_len && i2s->enable))
1563         i2s->status |= i2s->fifo_len << 8;	/* TFL */
1564     i2s->status |= MAX(i2s->rx_len, 0xf) << 12;	/* RFL */
1565 
1566     qemu_set_irq(i2s->irq, i2s->status & i2s->mask);
1567 }
1568 
1569 #define SACR0	0x00	/* Serial Audio Global Control register */
1570 #define SACR1	0x04	/* Serial Audio I2S/MSB-Justified Control register */
1571 #define SASR0	0x0c	/* Serial Audio Interface and FIFO Status register */
1572 #define SAIMR	0x14	/* Serial Audio Interrupt Mask register */
1573 #define SAICR	0x18	/* Serial Audio Interrupt Clear register */
1574 #define SADIV	0x60	/* Serial Audio Clock Divider register */
1575 #define SADR	0x80	/* Serial Audio Data register */
1576 
1577 static uint64_t pxa2xx_i2s_read(void *opaque, hwaddr addr,
1578                                 unsigned size)
1579 {
1580     PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1581 
1582     switch (addr) {
1583     case SACR0:
1584         return s->control[0];
1585     case SACR1:
1586         return s->control[1];
1587     case SASR0:
1588         return s->status;
1589     case SAIMR:
1590         return s->mask;
1591     case SAICR:
1592         return 0;
1593     case SADIV:
1594         return s->clk;
1595     case SADR:
1596         if (s->rx_len > 0) {
1597             s->rx_len --;
1598             pxa2xx_i2s_update(s);
1599             return s->codec_in(s->opaque);
1600         }
1601         return 0;
1602     default:
1603         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1604         break;
1605     }
1606     return 0;
1607 }
1608 
1609 static void pxa2xx_i2s_write(void *opaque, hwaddr addr,
1610                              uint64_t value, unsigned size)
1611 {
1612     PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1613     uint32_t *sample;
1614 
1615     switch (addr) {
1616     case SACR0:
1617         if (value & (1 << 3))				/* RST */
1618             pxa2xx_i2s_reset(s);
1619         s->control[0] = value & 0xff3d;
1620         if (!s->enable && (value & 1) && s->tx_len) {	/* ENB */
1621             for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++)
1622                 s->codec_out(s->opaque, *sample);
1623             s->status &= ~(1 << 7);			/* I2SOFF */
1624         }
1625         if (value & (1 << 4))				/* EFWR */
1626             printf("%s: Attempt to use special function\n", __FUNCTION__);
1627         s->enable = (value & 9) == 1;			/* ENB && !RST*/
1628         pxa2xx_i2s_update(s);
1629         break;
1630     case SACR1:
1631         s->control[1] = value & 0x0039;
1632         if (value & (1 << 5))				/* ENLBF */
1633             printf("%s: Attempt to use loopback function\n", __FUNCTION__);
1634         if (value & (1 << 4))				/* DPRL */
1635             s->fifo_len = 0;
1636         pxa2xx_i2s_update(s);
1637         break;
1638     case SAIMR:
1639         s->mask = value & 0x0078;
1640         pxa2xx_i2s_update(s);
1641         break;
1642     case SAICR:
1643         s->status &= ~(value & (3 << 5));
1644         pxa2xx_i2s_update(s);
1645         break;
1646     case SADIV:
1647         s->clk = value & 0x007f;
1648         break;
1649     case SADR:
1650         if (s->tx_len && s->enable) {
1651             s->tx_len --;
1652             pxa2xx_i2s_update(s);
1653             s->codec_out(s->opaque, value);
1654         } else if (s->fifo_len < 16) {
1655             s->fifo[s->fifo_len ++] = value;
1656             pxa2xx_i2s_update(s);
1657         }
1658         break;
1659     default:
1660         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1661     }
1662 }
1663 
1664 static const MemoryRegionOps pxa2xx_i2s_ops = {
1665     .read = pxa2xx_i2s_read,
1666     .write = pxa2xx_i2s_write,
1667     .endianness = DEVICE_NATIVE_ENDIAN,
1668 };
1669 
1670 static const VMStateDescription vmstate_pxa2xx_i2s = {
1671     .name = "pxa2xx_i2s",
1672     .version_id = 0,
1673     .minimum_version_id = 0,
1674     .minimum_version_id_old = 0,
1675     .fields      = (VMStateField[]) {
1676         VMSTATE_UINT32_ARRAY(control, PXA2xxI2SState, 2),
1677         VMSTATE_UINT32(status, PXA2xxI2SState),
1678         VMSTATE_UINT32(mask, PXA2xxI2SState),
1679         VMSTATE_UINT32(clk, PXA2xxI2SState),
1680         VMSTATE_INT32(enable, PXA2xxI2SState),
1681         VMSTATE_INT32(rx_len, PXA2xxI2SState),
1682         VMSTATE_INT32(tx_len, PXA2xxI2SState),
1683         VMSTATE_INT32(fifo_len, PXA2xxI2SState),
1684         VMSTATE_END_OF_LIST()
1685     }
1686 };
1687 
1688 static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx)
1689 {
1690     PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1691     uint32_t *sample;
1692 
1693     /* Signal FIFO errors */
1694     if (s->enable && s->tx_len)
1695         s->status |= 1 << 5;		/* TUR */
1696     if (s->enable && s->rx_len)
1697         s->status |= 1 << 6;		/* ROR */
1698 
1699     /* Should be tx - MIN(tx, s->fifo_len) but we don't really need to
1700      * handle the cases where it makes a difference.  */
1701     s->tx_len = tx - s->fifo_len;
1702     s->rx_len = rx;
1703     /* Note that is s->codec_out wasn't set, we wouldn't get called.  */
1704     if (s->enable)
1705         for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++)
1706             s->codec_out(s->opaque, *sample);
1707     pxa2xx_i2s_update(s);
1708 }
1709 
1710 static PXA2xxI2SState *pxa2xx_i2s_init(MemoryRegion *sysmem,
1711                 hwaddr base,
1712                 qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma)
1713 {
1714     PXA2xxI2SState *s = (PXA2xxI2SState *)
1715             g_malloc0(sizeof(PXA2xxI2SState));
1716 
1717     s->irq = irq;
1718     s->rx_dma = rx_dma;
1719     s->tx_dma = tx_dma;
1720     s->data_req = pxa2xx_i2s_data_req;
1721 
1722     pxa2xx_i2s_reset(s);
1723 
1724     memory_region_init_io(&s->iomem, NULL, &pxa2xx_i2s_ops, s,
1725                           "pxa2xx-i2s", 0x100000);
1726     memory_region_add_subregion(sysmem, base, &s->iomem);
1727 
1728     vmstate_register(NULL, base, &vmstate_pxa2xx_i2s, s);
1729 
1730     return s;
1731 }
1732 
1733 /* PXA Fast Infra-red Communications Port */
1734 struct PXA2xxFIrState {
1735     MemoryRegion iomem;
1736     qemu_irq irq;
1737     qemu_irq rx_dma;
1738     qemu_irq tx_dma;
1739     int enable;
1740     CharDriverState *chr;
1741 
1742     uint8_t control[3];
1743     uint8_t status[2];
1744 
1745     int rx_len;
1746     int rx_start;
1747     uint8_t rx_fifo[64];
1748 };
1749 
1750 static void pxa2xx_fir_reset(PXA2xxFIrState *s)
1751 {
1752     s->control[0] = 0x00;
1753     s->control[1] = 0x00;
1754     s->control[2] = 0x00;
1755     s->status[0] = 0x00;
1756     s->status[1] = 0x00;
1757     s->enable = 0;
1758 }
1759 
1760 static inline void pxa2xx_fir_update(PXA2xxFIrState *s)
1761 {
1762     static const int tresh[4] = { 8, 16, 32, 0 };
1763     int intr = 0;
1764     if ((s->control[0] & (1 << 4)) &&			/* RXE */
1765                     s->rx_len >= tresh[s->control[2] & 3])	/* TRIG */
1766         s->status[0] |= 1 << 4;				/* RFS */
1767     else
1768         s->status[0] &= ~(1 << 4);			/* RFS */
1769     if (s->control[0] & (1 << 3))			/* TXE */
1770         s->status[0] |= 1 << 3;				/* TFS */
1771     else
1772         s->status[0] &= ~(1 << 3);			/* TFS */
1773     if (s->rx_len)
1774         s->status[1] |= 1 << 2;				/* RNE */
1775     else
1776         s->status[1] &= ~(1 << 2);			/* RNE */
1777     if (s->control[0] & (1 << 4))			/* RXE */
1778         s->status[1] |= 1 << 0;				/* RSY */
1779     else
1780         s->status[1] &= ~(1 << 0);			/* RSY */
1781 
1782     intr |= (s->control[0] & (1 << 5)) &&		/* RIE */
1783             (s->status[0] & (1 << 4));			/* RFS */
1784     intr |= (s->control[0] & (1 << 6)) &&		/* TIE */
1785             (s->status[0] & (1 << 3));			/* TFS */
1786     intr |= (s->control[2] & (1 << 4)) &&		/* TRAIL */
1787             (s->status[0] & (1 << 6));			/* EOC */
1788     intr |= (s->control[0] & (1 << 2)) &&		/* TUS */
1789             (s->status[0] & (1 << 1));			/* TUR */
1790     intr |= s->status[0] & 0x25;			/* FRE, RAB, EIF */
1791 
1792     qemu_set_irq(s->rx_dma, (s->status[0] >> 4) & 1);
1793     qemu_set_irq(s->tx_dma, (s->status[0] >> 3) & 1);
1794 
1795     qemu_set_irq(s->irq, intr && s->enable);
1796 }
1797 
1798 #define ICCR0	0x00	/* FICP Control register 0 */
1799 #define ICCR1	0x04	/* FICP Control register 1 */
1800 #define ICCR2	0x08	/* FICP Control register 2 */
1801 #define ICDR	0x0c	/* FICP Data register */
1802 #define ICSR0	0x14	/* FICP Status register 0 */
1803 #define ICSR1	0x18	/* FICP Status register 1 */
1804 #define ICFOR	0x1c	/* FICP FIFO Occupancy Status register */
1805 
1806 static uint64_t pxa2xx_fir_read(void *opaque, hwaddr addr,
1807                                 unsigned size)
1808 {
1809     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1810     uint8_t ret;
1811 
1812     switch (addr) {
1813     case ICCR0:
1814         return s->control[0];
1815     case ICCR1:
1816         return s->control[1];
1817     case ICCR2:
1818         return s->control[2];
1819     case ICDR:
1820         s->status[0] &= ~0x01;
1821         s->status[1] &= ~0x72;
1822         if (s->rx_len) {
1823             s->rx_len --;
1824             ret = s->rx_fifo[s->rx_start ++];
1825             s->rx_start &= 63;
1826             pxa2xx_fir_update(s);
1827             return ret;
1828         }
1829         printf("%s: Rx FIFO underrun.\n", __FUNCTION__);
1830         break;
1831     case ICSR0:
1832         return s->status[0];
1833     case ICSR1:
1834         return s->status[1] | (1 << 3);			/* TNF */
1835     case ICFOR:
1836         return s->rx_len;
1837     default:
1838         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1839         break;
1840     }
1841     return 0;
1842 }
1843 
1844 static void pxa2xx_fir_write(void *opaque, hwaddr addr,
1845                              uint64_t value64, unsigned size)
1846 {
1847     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1848     uint32_t value = value64;
1849     uint8_t ch;
1850 
1851     switch (addr) {
1852     case ICCR0:
1853         s->control[0] = value;
1854         if (!(value & (1 << 4)))			/* RXE */
1855             s->rx_len = s->rx_start = 0;
1856         if (!(value & (1 << 3))) {                      /* TXE */
1857             /* Nop */
1858         }
1859         s->enable = value & 1;				/* ITR */
1860         if (!s->enable)
1861             s->status[0] = 0;
1862         pxa2xx_fir_update(s);
1863         break;
1864     case ICCR1:
1865         s->control[1] = value;
1866         break;
1867     case ICCR2:
1868         s->control[2] = value & 0x3f;
1869         pxa2xx_fir_update(s);
1870         break;
1871     case ICDR:
1872         if (s->control[2] & (1 << 2))			/* TXP */
1873             ch = value;
1874         else
1875             ch = ~value;
1876         if (s->chr && s->enable && (s->control[0] & (1 << 3)))	/* TXE */
1877             qemu_chr_fe_write(s->chr, &ch, 1);
1878         break;
1879     case ICSR0:
1880         s->status[0] &= ~(value & 0x66);
1881         pxa2xx_fir_update(s);
1882         break;
1883     case ICFOR:
1884         break;
1885     default:
1886         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1887     }
1888 }
1889 
1890 static const MemoryRegionOps pxa2xx_fir_ops = {
1891     .read = pxa2xx_fir_read,
1892     .write = pxa2xx_fir_write,
1893     .endianness = DEVICE_NATIVE_ENDIAN,
1894 };
1895 
1896 static int pxa2xx_fir_is_empty(void *opaque)
1897 {
1898     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1899     return (s->rx_len < 64);
1900 }
1901 
1902 static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size)
1903 {
1904     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1905     if (!(s->control[0] & (1 << 4)))			/* RXE */
1906         return;
1907 
1908     while (size --) {
1909         s->status[1] |= 1 << 4;				/* EOF */
1910         if (s->rx_len >= 64) {
1911             s->status[1] |= 1 << 6;			/* ROR */
1912             break;
1913         }
1914 
1915         if (s->control[2] & (1 << 3))			/* RXP */
1916             s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++);
1917         else
1918             s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++);
1919     }
1920 
1921     pxa2xx_fir_update(s);
1922 }
1923 
1924 static void pxa2xx_fir_event(void *opaque, int event)
1925 {
1926 }
1927 
1928 static void pxa2xx_fir_save(QEMUFile *f, void *opaque)
1929 {
1930     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1931     int i;
1932 
1933     qemu_put_be32(f, s->enable);
1934 
1935     qemu_put_8s(f, &s->control[0]);
1936     qemu_put_8s(f, &s->control[1]);
1937     qemu_put_8s(f, &s->control[2]);
1938     qemu_put_8s(f, &s->status[0]);
1939     qemu_put_8s(f, &s->status[1]);
1940 
1941     qemu_put_byte(f, s->rx_len);
1942     for (i = 0; i < s->rx_len; i ++)
1943         qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 63]);
1944 }
1945 
1946 static int pxa2xx_fir_load(QEMUFile *f, void *opaque, int version_id)
1947 {
1948     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1949     int i;
1950 
1951     s->enable = qemu_get_be32(f);
1952 
1953     qemu_get_8s(f, &s->control[0]);
1954     qemu_get_8s(f, &s->control[1]);
1955     qemu_get_8s(f, &s->control[2]);
1956     qemu_get_8s(f, &s->status[0]);
1957     qemu_get_8s(f, &s->status[1]);
1958 
1959     s->rx_len = qemu_get_byte(f);
1960     s->rx_start = 0;
1961     for (i = 0; i < s->rx_len; i ++)
1962         s->rx_fifo[i] = qemu_get_byte(f);
1963 
1964     return 0;
1965 }
1966 
1967 static PXA2xxFIrState *pxa2xx_fir_init(MemoryRegion *sysmem,
1968                 hwaddr base,
1969                 qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma,
1970                 CharDriverState *chr)
1971 {
1972     PXA2xxFIrState *s = (PXA2xxFIrState *)
1973             g_malloc0(sizeof(PXA2xxFIrState));
1974 
1975     s->irq = irq;
1976     s->rx_dma = rx_dma;
1977     s->tx_dma = tx_dma;
1978     s->chr = chr;
1979 
1980     pxa2xx_fir_reset(s);
1981 
1982     memory_region_init_io(&s->iomem, NULL, &pxa2xx_fir_ops, s, "pxa2xx-fir", 0x1000);
1983     memory_region_add_subregion(sysmem, base, &s->iomem);
1984 
1985     if (chr) {
1986         qemu_chr_fe_claim_no_fail(chr);
1987         qemu_chr_add_handlers(chr, pxa2xx_fir_is_empty,
1988                         pxa2xx_fir_rx, pxa2xx_fir_event, s);
1989     }
1990 
1991     register_savevm(NULL, "pxa2xx_fir", 0, 0, pxa2xx_fir_save,
1992                     pxa2xx_fir_load, s);
1993 
1994     return s;
1995 }
1996 
1997 static void pxa2xx_reset(void *opaque, int line, int level)
1998 {
1999     PXA2xxState *s = (PXA2xxState *) opaque;
2000 
2001     if (level && (s->pm_regs[PCFR >> 2] & 0x10)) {	/* GPR_EN */
2002         cpu_reset(CPU(s->cpu));
2003         /* TODO: reset peripherals */
2004     }
2005 }
2006 
2007 /* Initialise a PXA270 integrated chip (ARM based core).  */
2008 PXA2xxState *pxa270_init(MemoryRegion *address_space,
2009                          unsigned int sdram_size, const char *revision)
2010 {
2011     PXA2xxState *s;
2012     int i;
2013     DriveInfo *dinfo;
2014     s = (PXA2xxState *) g_malloc0(sizeof(PXA2xxState));
2015 
2016     if (revision && strncmp(revision, "pxa27", 5)) {
2017         fprintf(stderr, "Machine requires a PXA27x processor.\n");
2018         exit(1);
2019     }
2020     if (!revision)
2021         revision = "pxa270";
2022 
2023     s->cpu = cpu_arm_init(revision);
2024     if (s->cpu == NULL) {
2025         fprintf(stderr, "Unable to find CPU definition\n");
2026         exit(1);
2027     }
2028     s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2029 
2030     /* SDRAM & Internal Memory Storage */
2031     memory_region_init_ram(&s->sdram, NULL, "pxa270.sdram", sdram_size);
2032     vmstate_register_ram_global(&s->sdram);
2033     memory_region_add_subregion(address_space, PXA2XX_SDRAM_BASE, &s->sdram);
2034     memory_region_init_ram(&s->internal, NULL, "pxa270.internal", 0x40000);
2035     vmstate_register_ram_global(&s->internal);
2036     memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE,
2037                                 &s->internal);
2038 
2039     s->pic = pxa2xx_pic_init(0x40d00000, s->cpu);
2040 
2041     s->dma = pxa27x_dma_init(0x40000000,
2042                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
2043 
2044     sysbus_create_varargs("pxa27x-timer", 0x40a00000,
2045                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0),
2046                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1),
2047                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2),
2048                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3),
2049                     qdev_get_gpio_in(s->pic, PXA27X_PIC_OST_4_11),
2050                     NULL);
2051 
2052     s->gpio = pxa2xx_gpio_init(0x40e00000, s->cpu, s->pic, 121);
2053 
2054     dinfo = drive_get(IF_SD, 0, 0);
2055     if (!dinfo) {
2056         fprintf(stderr, "qemu: missing SecureDigital device\n");
2057         exit(1);
2058     }
2059     s->mmc = pxa2xx_mmci_init(address_space, 0x41100000, dinfo->bdrv,
2060                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC),
2061                     qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI),
2062                     qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI));
2063 
2064     for (i = 0; pxa270_serial[i].io_base; i++) {
2065         if (serial_hds[i]) {
2066             serial_mm_init(address_space, pxa270_serial[i].io_base, 2,
2067                            qdev_get_gpio_in(s->pic, pxa270_serial[i].irqn),
2068                            14857000 / 16, serial_hds[i],
2069                            DEVICE_NATIVE_ENDIAN);
2070         } else {
2071             break;
2072         }
2073     }
2074     if (serial_hds[i])
2075         s->fir = pxa2xx_fir_init(address_space, 0x40800000,
2076                         qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP),
2077                         qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP),
2078                         qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP),
2079                         serial_hds[i]);
2080 
2081     s->lcd = pxa2xx_lcdc_init(address_space, 0x44000000,
2082                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD));
2083 
2084     s->cm_base = 0x41300000;
2085     s->cm_regs[CCCR >> 2] = 0x02000210;	/* 416.0 MHz */
2086     s->clkcfg = 0x00000009;		/* Turbo mode active */
2087     memory_region_init_io(&s->cm_iomem, NULL, &pxa2xx_cm_ops, s, "pxa2xx-cm", 0x1000);
2088     memory_region_add_subregion(address_space, s->cm_base, &s->cm_iomem);
2089     vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s);
2090 
2091     pxa2xx_setup_cp14(s);
2092 
2093     s->mm_base = 0x48000000;
2094     s->mm_regs[MDMRS >> 2] = 0x00020002;
2095     s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2096     s->mm_regs[MECR >> 2] = 0x00000001;	/* Two PC Card sockets */
2097     memory_region_init_io(&s->mm_iomem, NULL, &pxa2xx_mm_ops, s, "pxa2xx-mm", 0x1000);
2098     memory_region_add_subregion(address_space, s->mm_base, &s->mm_iomem);
2099     vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s);
2100 
2101     s->pm_base = 0x40f00000;
2102     memory_region_init_io(&s->pm_iomem, NULL, &pxa2xx_pm_ops, s, "pxa2xx-pm", 0x100);
2103     memory_region_add_subregion(address_space, s->pm_base, &s->pm_iomem);
2104     vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s);
2105 
2106     for (i = 0; pxa27x_ssp[i].io_base; i ++);
2107     s->ssp = (SSIBus **)g_malloc0(sizeof(SSIBus *) * i);
2108     for (i = 0; pxa27x_ssp[i].io_base; i ++) {
2109         DeviceState *dev;
2110         dev = sysbus_create_simple("pxa2xx-ssp", pxa27x_ssp[i].io_base,
2111                         qdev_get_gpio_in(s->pic, pxa27x_ssp[i].irqn));
2112         s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2113     }
2114 
2115     if (usb_enabled(false)) {
2116         sysbus_create_simple("sysbus-ohci", 0x4c000000,
2117                         qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1));
2118     }
2119 
2120     s->pcmcia[0] = pxa2xx_pcmcia_init(address_space, 0x20000000);
2121     s->pcmcia[1] = pxa2xx_pcmcia_init(address_space, 0x30000000);
2122 
2123     sysbus_create_simple("pxa2xx_rtc", 0x40900000,
2124                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM));
2125 
2126     s->i2c[0] = pxa2xx_i2c_init(0x40301600,
2127                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff);
2128     s->i2c[1] = pxa2xx_i2c_init(0x40f00100,
2129                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff);
2130 
2131     s->i2s = pxa2xx_i2s_init(address_space, 0x40400000,
2132                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S),
2133                     qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S),
2134                     qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S));
2135 
2136     s->kp = pxa27x_keypad_init(address_space, 0x41500000,
2137                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_KEYPAD));
2138 
2139     /* GPIO1 resets the processor */
2140     /* The handler can be overridden by board-specific code */
2141     qdev_connect_gpio_out(s->gpio, 1, s->reset);
2142     return s;
2143 }
2144 
2145 /* Initialise a PXA255 integrated chip (ARM based core).  */
2146 PXA2xxState *pxa255_init(MemoryRegion *address_space, unsigned int sdram_size)
2147 {
2148     PXA2xxState *s;
2149     int i;
2150     DriveInfo *dinfo;
2151 
2152     s = (PXA2xxState *) g_malloc0(sizeof(PXA2xxState));
2153 
2154     s->cpu = cpu_arm_init("pxa255");
2155     if (s->cpu == NULL) {
2156         fprintf(stderr, "Unable to find CPU definition\n");
2157         exit(1);
2158     }
2159     s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2160 
2161     /* SDRAM & Internal Memory Storage */
2162     memory_region_init_ram(&s->sdram, NULL, "pxa255.sdram", sdram_size);
2163     vmstate_register_ram_global(&s->sdram);
2164     memory_region_add_subregion(address_space, PXA2XX_SDRAM_BASE, &s->sdram);
2165     memory_region_init_ram(&s->internal, NULL, "pxa255.internal",
2166                            PXA2XX_INTERNAL_SIZE);
2167     vmstate_register_ram_global(&s->internal);
2168     memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE,
2169                                 &s->internal);
2170 
2171     s->pic = pxa2xx_pic_init(0x40d00000, s->cpu);
2172 
2173     s->dma = pxa255_dma_init(0x40000000,
2174                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
2175 
2176     sysbus_create_varargs("pxa25x-timer", 0x40a00000,
2177                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0),
2178                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1),
2179                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2),
2180                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3),
2181                     NULL);
2182 
2183     s->gpio = pxa2xx_gpio_init(0x40e00000, s->cpu, s->pic, 85);
2184 
2185     dinfo = drive_get(IF_SD, 0, 0);
2186     if (!dinfo) {
2187         fprintf(stderr, "qemu: missing SecureDigital device\n");
2188         exit(1);
2189     }
2190     s->mmc = pxa2xx_mmci_init(address_space, 0x41100000, dinfo->bdrv,
2191                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC),
2192                     qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI),
2193                     qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI));
2194 
2195     for (i = 0; pxa255_serial[i].io_base; i++) {
2196         if (serial_hds[i]) {
2197             serial_mm_init(address_space, pxa255_serial[i].io_base, 2,
2198                            qdev_get_gpio_in(s->pic, pxa255_serial[i].irqn),
2199                            14745600 / 16, serial_hds[i],
2200                            DEVICE_NATIVE_ENDIAN);
2201         } else {
2202             break;
2203         }
2204     }
2205     if (serial_hds[i])
2206         s->fir = pxa2xx_fir_init(address_space, 0x40800000,
2207                         qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP),
2208                         qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP),
2209                         qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP),
2210                         serial_hds[i]);
2211 
2212     s->lcd = pxa2xx_lcdc_init(address_space, 0x44000000,
2213                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD));
2214 
2215     s->cm_base = 0x41300000;
2216     s->cm_regs[CCCR >> 2] = 0x02000210;	/* 416.0 MHz */
2217     s->clkcfg = 0x00000009;		/* Turbo mode active */
2218     memory_region_init_io(&s->cm_iomem, NULL, &pxa2xx_cm_ops, s, "pxa2xx-cm", 0x1000);
2219     memory_region_add_subregion(address_space, s->cm_base, &s->cm_iomem);
2220     vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s);
2221 
2222     pxa2xx_setup_cp14(s);
2223 
2224     s->mm_base = 0x48000000;
2225     s->mm_regs[MDMRS >> 2] = 0x00020002;
2226     s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2227     s->mm_regs[MECR >> 2] = 0x00000001;	/* Two PC Card sockets */
2228     memory_region_init_io(&s->mm_iomem, NULL, &pxa2xx_mm_ops, s, "pxa2xx-mm", 0x1000);
2229     memory_region_add_subregion(address_space, s->mm_base, &s->mm_iomem);
2230     vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s);
2231 
2232     s->pm_base = 0x40f00000;
2233     memory_region_init_io(&s->pm_iomem, NULL, &pxa2xx_pm_ops, s, "pxa2xx-pm", 0x100);
2234     memory_region_add_subregion(address_space, s->pm_base, &s->pm_iomem);
2235     vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s);
2236 
2237     for (i = 0; pxa255_ssp[i].io_base; i ++);
2238     s->ssp = (SSIBus **)g_malloc0(sizeof(SSIBus *) * i);
2239     for (i = 0; pxa255_ssp[i].io_base; i ++) {
2240         DeviceState *dev;
2241         dev = sysbus_create_simple("pxa2xx-ssp", pxa255_ssp[i].io_base,
2242                         qdev_get_gpio_in(s->pic, pxa255_ssp[i].irqn));
2243         s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2244     }
2245 
2246     if (usb_enabled(false)) {
2247         sysbus_create_simple("sysbus-ohci", 0x4c000000,
2248                         qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1));
2249     }
2250 
2251     s->pcmcia[0] = pxa2xx_pcmcia_init(address_space, 0x20000000);
2252     s->pcmcia[1] = pxa2xx_pcmcia_init(address_space, 0x30000000);
2253 
2254     sysbus_create_simple("pxa2xx_rtc", 0x40900000,
2255                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM));
2256 
2257     s->i2c[0] = pxa2xx_i2c_init(0x40301600,
2258                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff);
2259     s->i2c[1] = pxa2xx_i2c_init(0x40f00100,
2260                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff);
2261 
2262     s->i2s = pxa2xx_i2s_init(address_space, 0x40400000,
2263                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S),
2264                     qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S),
2265                     qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S));
2266 
2267     /* GPIO1 resets the processor */
2268     /* The handler can be overridden by board-specific code */
2269     qdev_connect_gpio_out(s->gpio, 1, s->reset);
2270     return s;
2271 }
2272 
2273 static void pxa2xx_ssp_class_init(ObjectClass *klass, void *data)
2274 {
2275     SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
2276 
2277     sdc->init = pxa2xx_ssp_init;
2278 }
2279 
2280 static const TypeInfo pxa2xx_ssp_info = {
2281     .name          = "pxa2xx-ssp",
2282     .parent        = TYPE_SYS_BUS_DEVICE,
2283     .instance_size = sizeof(PXA2xxSSPState),
2284     .class_init    = pxa2xx_ssp_class_init,
2285 };
2286 
2287 static void pxa2xx_register_types(void)
2288 {
2289     type_register_static(&pxa2xx_i2c_slave_info);
2290     type_register_static(&pxa2xx_ssp_info);
2291     type_register_static(&pxa2xx_i2c_info);
2292     type_register_static(&pxa2xx_rtc_sysbus_info);
2293 }
2294 
2295 type_init(pxa2xx_register_types)
2296