1 /* 2 * Intel XScale PXA255/270 processor support. 3 * 4 * Copyright (c) 2006 Openedhand Ltd. 5 * Written by Andrzej Zaborowski <balrog@zabor.org> 6 * 7 * This code is licensed under the GPL. 8 */ 9 10 #include "hw/sysbus.h" 11 #include "hw/arm/pxa.h" 12 #include "sysemu/sysemu.h" 13 #include "hw/char/serial.h" 14 #include "hw/i2c/i2c.h" 15 #include "hw/ssi.h" 16 #include "sysemu/char.h" 17 #include "sysemu/blockdev.h" 18 19 static struct { 20 hwaddr io_base; 21 int irqn; 22 } pxa255_serial[] = { 23 { 0x40100000, PXA2XX_PIC_FFUART }, 24 { 0x40200000, PXA2XX_PIC_BTUART }, 25 { 0x40700000, PXA2XX_PIC_STUART }, 26 { 0x41600000, PXA25X_PIC_HWUART }, 27 { 0, 0 } 28 }, pxa270_serial[] = { 29 { 0x40100000, PXA2XX_PIC_FFUART }, 30 { 0x40200000, PXA2XX_PIC_BTUART }, 31 { 0x40700000, PXA2XX_PIC_STUART }, 32 { 0, 0 } 33 }; 34 35 typedef struct PXASSPDef { 36 hwaddr io_base; 37 int irqn; 38 } PXASSPDef; 39 40 #if 0 41 static PXASSPDef pxa250_ssp[] = { 42 { 0x41000000, PXA2XX_PIC_SSP }, 43 { 0, 0 } 44 }; 45 #endif 46 47 static PXASSPDef pxa255_ssp[] = { 48 { 0x41000000, PXA2XX_PIC_SSP }, 49 { 0x41400000, PXA25X_PIC_NSSP }, 50 { 0, 0 } 51 }; 52 53 #if 0 54 static PXASSPDef pxa26x_ssp[] = { 55 { 0x41000000, PXA2XX_PIC_SSP }, 56 { 0x41400000, PXA25X_PIC_NSSP }, 57 { 0x41500000, PXA26X_PIC_ASSP }, 58 { 0, 0 } 59 }; 60 #endif 61 62 static PXASSPDef pxa27x_ssp[] = { 63 { 0x41000000, PXA2XX_PIC_SSP }, 64 { 0x41700000, PXA27X_PIC_SSP2 }, 65 { 0x41900000, PXA2XX_PIC_SSP3 }, 66 { 0, 0 } 67 }; 68 69 #define PMCR 0x00 /* Power Manager Control register */ 70 #define PSSR 0x04 /* Power Manager Sleep Status register */ 71 #define PSPR 0x08 /* Power Manager Scratch-Pad register */ 72 #define PWER 0x0c /* Power Manager Wake-Up Enable register */ 73 #define PRER 0x10 /* Power Manager Rising-Edge Detect Enable register */ 74 #define PFER 0x14 /* Power Manager Falling-Edge Detect Enable register */ 75 #define PEDR 0x18 /* Power Manager Edge-Detect Status register */ 76 #define PCFR 0x1c /* Power Manager General Configuration register */ 77 #define PGSR0 0x20 /* Power Manager GPIO Sleep-State register 0 */ 78 #define PGSR1 0x24 /* Power Manager GPIO Sleep-State register 1 */ 79 #define PGSR2 0x28 /* Power Manager GPIO Sleep-State register 2 */ 80 #define PGSR3 0x2c /* Power Manager GPIO Sleep-State register 3 */ 81 #define RCSR 0x30 /* Reset Controller Status register */ 82 #define PSLR 0x34 /* Power Manager Sleep Configuration register */ 83 #define PTSR 0x38 /* Power Manager Standby Configuration register */ 84 #define PVCR 0x40 /* Power Manager Voltage Change Control register */ 85 #define PUCR 0x4c /* Power Manager USIM Card Control/Status register */ 86 #define PKWR 0x50 /* Power Manager Keyboard Wake-Up Enable register */ 87 #define PKSR 0x54 /* Power Manager Keyboard Level-Detect Status */ 88 #define PCMD0 0x80 /* Power Manager I2C Command register File 0 */ 89 #define PCMD31 0xfc /* Power Manager I2C Command register File 31 */ 90 91 static uint64_t pxa2xx_pm_read(void *opaque, hwaddr addr, 92 unsigned size) 93 { 94 PXA2xxState *s = (PXA2xxState *) opaque; 95 96 switch (addr) { 97 case PMCR ... PCMD31: 98 if (addr & 3) 99 goto fail; 100 101 return s->pm_regs[addr >> 2]; 102 default: 103 fail: 104 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); 105 break; 106 } 107 return 0; 108 } 109 110 static void pxa2xx_pm_write(void *opaque, hwaddr addr, 111 uint64_t value, unsigned size) 112 { 113 PXA2xxState *s = (PXA2xxState *) opaque; 114 115 switch (addr) { 116 case PMCR: 117 /* Clear the write-one-to-clear bits... */ 118 s->pm_regs[addr >> 2] &= ~(value & 0x2a); 119 /* ...and set the plain r/w bits */ 120 s->pm_regs[addr >> 2] &= ~0x15; 121 s->pm_regs[addr >> 2] |= value & 0x15; 122 break; 123 124 case PSSR: /* Read-clean registers */ 125 case RCSR: 126 case PKSR: 127 s->pm_regs[addr >> 2] &= ~value; 128 break; 129 130 default: /* Read-write registers */ 131 if (!(addr & 3)) { 132 s->pm_regs[addr >> 2] = value; 133 break; 134 } 135 136 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); 137 break; 138 } 139 } 140 141 static const MemoryRegionOps pxa2xx_pm_ops = { 142 .read = pxa2xx_pm_read, 143 .write = pxa2xx_pm_write, 144 .endianness = DEVICE_NATIVE_ENDIAN, 145 }; 146 147 static const VMStateDescription vmstate_pxa2xx_pm = { 148 .name = "pxa2xx_pm", 149 .version_id = 0, 150 .minimum_version_id = 0, 151 .minimum_version_id_old = 0, 152 .fields = (VMStateField[]) { 153 VMSTATE_UINT32_ARRAY(pm_regs, PXA2xxState, 0x40), 154 VMSTATE_END_OF_LIST() 155 } 156 }; 157 158 #define CCCR 0x00 /* Core Clock Configuration register */ 159 #define CKEN 0x04 /* Clock Enable register */ 160 #define OSCC 0x08 /* Oscillator Configuration register */ 161 #define CCSR 0x0c /* Core Clock Status register */ 162 163 static uint64_t pxa2xx_cm_read(void *opaque, hwaddr addr, 164 unsigned size) 165 { 166 PXA2xxState *s = (PXA2xxState *) opaque; 167 168 switch (addr) { 169 case CCCR: 170 case CKEN: 171 case OSCC: 172 return s->cm_regs[addr >> 2]; 173 174 case CCSR: 175 return s->cm_regs[CCCR >> 2] | (3 << 28); 176 177 default: 178 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); 179 break; 180 } 181 return 0; 182 } 183 184 static void pxa2xx_cm_write(void *opaque, hwaddr addr, 185 uint64_t value, unsigned size) 186 { 187 PXA2xxState *s = (PXA2xxState *) opaque; 188 189 switch (addr) { 190 case CCCR: 191 case CKEN: 192 s->cm_regs[addr >> 2] = value; 193 break; 194 195 case OSCC: 196 s->cm_regs[addr >> 2] &= ~0x6c; 197 s->cm_regs[addr >> 2] |= value & 0x6e; 198 if ((value >> 1) & 1) /* OON */ 199 s->cm_regs[addr >> 2] |= 1 << 0; /* Oscillator is now stable */ 200 break; 201 202 default: 203 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); 204 break; 205 } 206 } 207 208 static const MemoryRegionOps pxa2xx_cm_ops = { 209 .read = pxa2xx_cm_read, 210 .write = pxa2xx_cm_write, 211 .endianness = DEVICE_NATIVE_ENDIAN, 212 }; 213 214 static const VMStateDescription vmstate_pxa2xx_cm = { 215 .name = "pxa2xx_cm", 216 .version_id = 0, 217 .minimum_version_id = 0, 218 .minimum_version_id_old = 0, 219 .fields = (VMStateField[]) { 220 VMSTATE_UINT32_ARRAY(cm_regs, PXA2xxState, 4), 221 VMSTATE_UINT32(clkcfg, PXA2xxState), 222 VMSTATE_UINT32(pmnc, PXA2xxState), 223 VMSTATE_END_OF_LIST() 224 } 225 }; 226 227 static uint64_t pxa2xx_clkcfg_read(CPUARMState *env, const ARMCPRegInfo *ri) 228 { 229 PXA2xxState *s = (PXA2xxState *)ri->opaque; 230 return s->clkcfg; 231 } 232 233 static void pxa2xx_clkcfg_write(CPUARMState *env, const ARMCPRegInfo *ri, 234 uint64_t value) 235 { 236 PXA2xxState *s = (PXA2xxState *)ri->opaque; 237 s->clkcfg = value & 0xf; 238 if (value & 2) { 239 printf("%s: CPU frequency change attempt\n", __func__); 240 } 241 } 242 243 static void pxa2xx_pwrmode_write(CPUARMState *env, const ARMCPRegInfo *ri, 244 uint64_t value) 245 { 246 PXA2xxState *s = (PXA2xxState *)ri->opaque; 247 static const char *pwrmode[8] = { 248 "Normal", "Idle", "Deep-idle", "Standby", 249 "Sleep", "reserved (!)", "reserved (!)", "Deep-sleep", 250 }; 251 252 if (value & 8) { 253 printf("%s: CPU voltage change attempt\n", __func__); 254 } 255 switch (value & 7) { 256 case 0: 257 /* Do nothing */ 258 break; 259 260 case 1: 261 /* Idle */ 262 if (!(s->cm_regs[CCCR >> 2] & (1 << 31))) { /* CPDIS */ 263 cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT); 264 break; 265 } 266 /* Fall through. */ 267 268 case 2: 269 /* Deep-Idle */ 270 cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT); 271 s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */ 272 goto message; 273 274 case 3: 275 s->cpu->env.uncached_cpsr = ARM_CPU_MODE_SVC; 276 s->cpu->env.daif = PSTATE_A | PSTATE_F | PSTATE_I; 277 s->cpu->env.cp15.c1_sys = 0; 278 s->cpu->env.cp15.c1_coproc = 0; 279 s->cpu->env.cp15.ttbr0_el1 = 0; 280 s->cpu->env.cp15.c3 = 0; 281 s->pm_regs[PSSR >> 2] |= 0x8; /* Set STS */ 282 s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */ 283 284 /* 285 * The scratch-pad register is almost universally used 286 * for storing the return address on suspend. For the 287 * lack of a resuming bootloader, perform a jump 288 * directly to that address. 289 */ 290 memset(s->cpu->env.regs, 0, 4 * 15); 291 s->cpu->env.regs[15] = s->pm_regs[PSPR >> 2]; 292 293 #if 0 294 buffer = 0xe59ff000; /* ldr pc, [pc, #0] */ 295 cpu_physical_memory_write(0, &buffer, 4); 296 buffer = s->pm_regs[PSPR >> 2]; 297 cpu_physical_memory_write(8, &buffer, 4); 298 #endif 299 300 /* Suspend */ 301 cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT); 302 303 goto message; 304 305 default: 306 message: 307 printf("%s: machine entered %s mode\n", __func__, 308 pwrmode[value & 7]); 309 } 310 } 311 312 static uint64_t pxa2xx_cppmnc_read(CPUARMState *env, const ARMCPRegInfo *ri) 313 { 314 PXA2xxState *s = (PXA2xxState *)ri->opaque; 315 return s->pmnc; 316 } 317 318 static void pxa2xx_cppmnc_write(CPUARMState *env, const ARMCPRegInfo *ri, 319 uint64_t value) 320 { 321 PXA2xxState *s = (PXA2xxState *)ri->opaque; 322 s->pmnc = value; 323 } 324 325 static uint64_t pxa2xx_cpccnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 326 { 327 PXA2xxState *s = (PXA2xxState *)ri->opaque; 328 if (s->pmnc & 1) { 329 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 330 } else { 331 return 0; 332 } 333 } 334 335 static const ARMCPRegInfo pxa_cp_reginfo[] = { 336 /* cp14 crm==1: perf registers */ 337 { .name = "CPPMNC", .cp = 14, .crn = 0, .crm = 1, .opc1 = 0, .opc2 = 0, 338 .access = PL1_RW, 339 .readfn = pxa2xx_cppmnc_read, .writefn = pxa2xx_cppmnc_write }, 340 { .name = "CPCCNT", .cp = 14, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0, 341 .access = PL1_RW, 342 .readfn = pxa2xx_cpccnt_read, .writefn = arm_cp_write_ignore }, 343 { .name = "CPINTEN", .cp = 14, .crn = 4, .crm = 1, .opc1 = 0, .opc2 = 0, 344 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 345 { .name = "CPFLAG", .cp = 14, .crn = 5, .crm = 1, .opc1 = 0, .opc2 = 0, 346 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 347 { .name = "CPEVTSEL", .cp = 14, .crn = 8, .crm = 1, .opc1 = 0, .opc2 = 0, 348 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 349 /* cp14 crm==2: performance count registers */ 350 { .name = "CPPMN0", .cp = 14, .crn = 0, .crm = 2, .opc1 = 0, .opc2 = 0, 351 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 352 { .name = "CPPMN1", .cp = 14, .crn = 1, .crm = 2, .opc1 = 0, .opc2 = 0, 353 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 354 { .name = "CPPMN2", .cp = 14, .crn = 2, .crm = 2, .opc1 = 0, .opc2 = 0, 355 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 356 { .name = "CPPMN3", .cp = 14, .crn = 2, .crm = 3, .opc1 = 0, .opc2 = 0, 357 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 358 /* cp14 crn==6: CLKCFG */ 359 { .name = "CLKCFG", .cp = 14, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 360 .access = PL1_RW, 361 .readfn = pxa2xx_clkcfg_read, .writefn = pxa2xx_clkcfg_write }, 362 /* cp14 crn==7: PWRMODE */ 363 { .name = "PWRMODE", .cp = 14, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 0, 364 .access = PL1_RW, 365 .readfn = arm_cp_read_zero, .writefn = pxa2xx_pwrmode_write }, 366 REGINFO_SENTINEL 367 }; 368 369 static void pxa2xx_setup_cp14(PXA2xxState *s) 370 { 371 define_arm_cp_regs_with_opaque(s->cpu, pxa_cp_reginfo, s); 372 } 373 374 #define MDCNFG 0x00 /* SDRAM Configuration register */ 375 #define MDREFR 0x04 /* SDRAM Refresh Control register */ 376 #define MSC0 0x08 /* Static Memory Control register 0 */ 377 #define MSC1 0x0c /* Static Memory Control register 1 */ 378 #define MSC2 0x10 /* Static Memory Control register 2 */ 379 #define MECR 0x14 /* Expansion Memory Bus Config register */ 380 #define SXCNFG 0x1c /* Synchronous Static Memory Config register */ 381 #define MCMEM0 0x28 /* PC Card Memory Socket 0 Timing register */ 382 #define MCMEM1 0x2c /* PC Card Memory Socket 1 Timing register */ 383 #define MCATT0 0x30 /* PC Card Attribute Socket 0 register */ 384 #define MCATT1 0x34 /* PC Card Attribute Socket 1 register */ 385 #define MCIO0 0x38 /* PC Card I/O Socket 0 Timing register */ 386 #define MCIO1 0x3c /* PC Card I/O Socket 1 Timing register */ 387 #define MDMRS 0x40 /* SDRAM Mode Register Set Config register */ 388 #define BOOT_DEF 0x44 /* Boot-time Default Configuration register */ 389 #define ARB_CNTL 0x48 /* Arbiter Control register */ 390 #define BSCNTR0 0x4c /* Memory Buffer Strength Control register 0 */ 391 #define BSCNTR1 0x50 /* Memory Buffer Strength Control register 1 */ 392 #define LCDBSCNTR 0x54 /* LCD Buffer Strength Control register */ 393 #define MDMRSLP 0x58 /* Low Power SDRAM Mode Set Config register */ 394 #define BSCNTR2 0x5c /* Memory Buffer Strength Control register 2 */ 395 #define BSCNTR3 0x60 /* Memory Buffer Strength Control register 3 */ 396 #define SA1110 0x64 /* SA-1110 Memory Compatibility register */ 397 398 static uint64_t pxa2xx_mm_read(void *opaque, hwaddr addr, 399 unsigned size) 400 { 401 PXA2xxState *s = (PXA2xxState *) opaque; 402 403 switch (addr) { 404 case MDCNFG ... SA1110: 405 if ((addr & 3) == 0) 406 return s->mm_regs[addr >> 2]; 407 408 default: 409 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); 410 break; 411 } 412 return 0; 413 } 414 415 static void pxa2xx_mm_write(void *opaque, hwaddr addr, 416 uint64_t value, unsigned size) 417 { 418 PXA2xxState *s = (PXA2xxState *) opaque; 419 420 switch (addr) { 421 case MDCNFG ... SA1110: 422 if ((addr & 3) == 0) { 423 s->mm_regs[addr >> 2] = value; 424 break; 425 } 426 427 default: 428 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); 429 break; 430 } 431 } 432 433 static const MemoryRegionOps pxa2xx_mm_ops = { 434 .read = pxa2xx_mm_read, 435 .write = pxa2xx_mm_write, 436 .endianness = DEVICE_NATIVE_ENDIAN, 437 }; 438 439 static const VMStateDescription vmstate_pxa2xx_mm = { 440 .name = "pxa2xx_mm", 441 .version_id = 0, 442 .minimum_version_id = 0, 443 .minimum_version_id_old = 0, 444 .fields = (VMStateField[]) { 445 VMSTATE_UINT32_ARRAY(mm_regs, PXA2xxState, 0x1a), 446 VMSTATE_END_OF_LIST() 447 } 448 }; 449 450 #define TYPE_PXA2XX_SSP "pxa2xx-ssp" 451 #define PXA2XX_SSP(obj) \ 452 OBJECT_CHECK(PXA2xxSSPState, (obj), TYPE_PXA2XX_SSP) 453 454 /* Synchronous Serial Ports */ 455 typedef struct { 456 /*< private >*/ 457 SysBusDevice parent_obj; 458 /*< public >*/ 459 460 MemoryRegion iomem; 461 qemu_irq irq; 462 int enable; 463 SSIBus *bus; 464 465 uint32_t sscr[2]; 466 uint32_t sspsp; 467 uint32_t ssto; 468 uint32_t ssitr; 469 uint32_t sssr; 470 uint8_t sstsa; 471 uint8_t ssrsa; 472 uint8_t ssacd; 473 474 uint32_t rx_fifo[16]; 475 int rx_level; 476 int rx_start; 477 } PXA2xxSSPState; 478 479 #define SSCR0 0x00 /* SSP Control register 0 */ 480 #define SSCR1 0x04 /* SSP Control register 1 */ 481 #define SSSR 0x08 /* SSP Status register */ 482 #define SSITR 0x0c /* SSP Interrupt Test register */ 483 #define SSDR 0x10 /* SSP Data register */ 484 #define SSTO 0x28 /* SSP Time-Out register */ 485 #define SSPSP 0x2c /* SSP Programmable Serial Protocol register */ 486 #define SSTSA 0x30 /* SSP TX Time Slot Active register */ 487 #define SSRSA 0x34 /* SSP RX Time Slot Active register */ 488 #define SSTSS 0x38 /* SSP Time Slot Status register */ 489 #define SSACD 0x3c /* SSP Audio Clock Divider register */ 490 491 /* Bitfields for above registers */ 492 #define SSCR0_SPI(x) (((x) & 0x30) == 0x00) 493 #define SSCR0_SSP(x) (((x) & 0x30) == 0x10) 494 #define SSCR0_UWIRE(x) (((x) & 0x30) == 0x20) 495 #define SSCR0_PSP(x) (((x) & 0x30) == 0x30) 496 #define SSCR0_SSE (1 << 7) 497 #define SSCR0_RIM (1 << 22) 498 #define SSCR0_TIM (1 << 23) 499 #define SSCR0_MOD (1 << 31) 500 #define SSCR0_DSS(x) (((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1) 501 #define SSCR1_RIE (1 << 0) 502 #define SSCR1_TIE (1 << 1) 503 #define SSCR1_LBM (1 << 2) 504 #define SSCR1_MWDS (1 << 5) 505 #define SSCR1_TFT(x) ((((x) >> 6) & 0xf) + 1) 506 #define SSCR1_RFT(x) ((((x) >> 10) & 0xf) + 1) 507 #define SSCR1_EFWR (1 << 14) 508 #define SSCR1_PINTE (1 << 18) 509 #define SSCR1_TINTE (1 << 19) 510 #define SSCR1_RSRE (1 << 20) 511 #define SSCR1_TSRE (1 << 21) 512 #define SSCR1_EBCEI (1 << 29) 513 #define SSITR_INT (7 << 5) 514 #define SSSR_TNF (1 << 2) 515 #define SSSR_RNE (1 << 3) 516 #define SSSR_TFS (1 << 5) 517 #define SSSR_RFS (1 << 6) 518 #define SSSR_ROR (1 << 7) 519 #define SSSR_PINT (1 << 18) 520 #define SSSR_TINT (1 << 19) 521 #define SSSR_EOC (1 << 20) 522 #define SSSR_TUR (1 << 21) 523 #define SSSR_BCE (1 << 23) 524 #define SSSR_RW 0x00bc0080 525 526 static void pxa2xx_ssp_int_update(PXA2xxSSPState *s) 527 { 528 int level = 0; 529 530 level |= s->ssitr & SSITR_INT; 531 level |= (s->sssr & SSSR_BCE) && (s->sscr[1] & SSCR1_EBCEI); 532 level |= (s->sssr & SSSR_TUR) && !(s->sscr[0] & SSCR0_TIM); 533 level |= (s->sssr & SSSR_EOC) && (s->sssr & (SSSR_TINT | SSSR_PINT)); 534 level |= (s->sssr & SSSR_TINT) && (s->sscr[1] & SSCR1_TINTE); 535 level |= (s->sssr & SSSR_PINT) && (s->sscr[1] & SSCR1_PINTE); 536 level |= (s->sssr & SSSR_ROR) && !(s->sscr[0] & SSCR0_RIM); 537 level |= (s->sssr & SSSR_RFS) && (s->sscr[1] & SSCR1_RIE); 538 level |= (s->sssr & SSSR_TFS) && (s->sscr[1] & SSCR1_TIE); 539 qemu_set_irq(s->irq, !!level); 540 } 541 542 static void pxa2xx_ssp_fifo_update(PXA2xxSSPState *s) 543 { 544 s->sssr &= ~(0xf << 12); /* Clear RFL */ 545 s->sssr &= ~(0xf << 8); /* Clear TFL */ 546 s->sssr &= ~SSSR_TFS; 547 s->sssr &= ~SSSR_TNF; 548 if (s->enable) { 549 s->sssr |= ((s->rx_level - 1) & 0xf) << 12; 550 if (s->rx_level >= SSCR1_RFT(s->sscr[1])) 551 s->sssr |= SSSR_RFS; 552 else 553 s->sssr &= ~SSSR_RFS; 554 if (s->rx_level) 555 s->sssr |= SSSR_RNE; 556 else 557 s->sssr &= ~SSSR_RNE; 558 /* TX FIFO is never filled, so it is always in underrun 559 condition if SSP is enabled */ 560 s->sssr |= SSSR_TFS; 561 s->sssr |= SSSR_TNF; 562 } 563 564 pxa2xx_ssp_int_update(s); 565 } 566 567 static uint64_t pxa2xx_ssp_read(void *opaque, hwaddr addr, 568 unsigned size) 569 { 570 PXA2xxSSPState *s = (PXA2xxSSPState *) opaque; 571 uint32_t retval; 572 573 switch (addr) { 574 case SSCR0: 575 return s->sscr[0]; 576 case SSCR1: 577 return s->sscr[1]; 578 case SSPSP: 579 return s->sspsp; 580 case SSTO: 581 return s->ssto; 582 case SSITR: 583 return s->ssitr; 584 case SSSR: 585 return s->sssr | s->ssitr; 586 case SSDR: 587 if (!s->enable) 588 return 0xffffffff; 589 if (s->rx_level < 1) { 590 printf("%s: SSP Rx Underrun\n", __FUNCTION__); 591 return 0xffffffff; 592 } 593 s->rx_level --; 594 retval = s->rx_fifo[s->rx_start ++]; 595 s->rx_start &= 0xf; 596 pxa2xx_ssp_fifo_update(s); 597 return retval; 598 case SSTSA: 599 return s->sstsa; 600 case SSRSA: 601 return s->ssrsa; 602 case SSTSS: 603 return 0; 604 case SSACD: 605 return s->ssacd; 606 default: 607 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); 608 break; 609 } 610 return 0; 611 } 612 613 static void pxa2xx_ssp_write(void *opaque, hwaddr addr, 614 uint64_t value64, unsigned size) 615 { 616 PXA2xxSSPState *s = (PXA2xxSSPState *) opaque; 617 uint32_t value = value64; 618 619 switch (addr) { 620 case SSCR0: 621 s->sscr[0] = value & 0xc7ffffff; 622 s->enable = value & SSCR0_SSE; 623 if (value & SSCR0_MOD) 624 printf("%s: Attempt to use network mode\n", __FUNCTION__); 625 if (s->enable && SSCR0_DSS(value) < 4) 626 printf("%s: Wrong data size: %i bits\n", __FUNCTION__, 627 SSCR0_DSS(value)); 628 if (!(value & SSCR0_SSE)) { 629 s->sssr = 0; 630 s->ssitr = 0; 631 s->rx_level = 0; 632 } 633 pxa2xx_ssp_fifo_update(s); 634 break; 635 636 case SSCR1: 637 s->sscr[1] = value; 638 if (value & (SSCR1_LBM | SSCR1_EFWR)) 639 printf("%s: Attempt to use SSP test mode\n", __FUNCTION__); 640 pxa2xx_ssp_fifo_update(s); 641 break; 642 643 case SSPSP: 644 s->sspsp = value; 645 break; 646 647 case SSTO: 648 s->ssto = value; 649 break; 650 651 case SSITR: 652 s->ssitr = value & SSITR_INT; 653 pxa2xx_ssp_int_update(s); 654 break; 655 656 case SSSR: 657 s->sssr &= ~(value & SSSR_RW); 658 pxa2xx_ssp_int_update(s); 659 break; 660 661 case SSDR: 662 if (SSCR0_UWIRE(s->sscr[0])) { 663 if (s->sscr[1] & SSCR1_MWDS) 664 value &= 0xffff; 665 else 666 value &= 0xff; 667 } else 668 /* Note how 32bits overflow does no harm here */ 669 value &= (1 << SSCR0_DSS(s->sscr[0])) - 1; 670 671 /* Data goes from here to the Tx FIFO and is shifted out from 672 * there directly to the slave, no need to buffer it. 673 */ 674 if (s->enable) { 675 uint32_t readval; 676 readval = ssi_transfer(s->bus, value); 677 if (s->rx_level < 0x10) { 678 s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = readval; 679 } else { 680 s->sssr |= SSSR_ROR; 681 } 682 } 683 pxa2xx_ssp_fifo_update(s); 684 break; 685 686 case SSTSA: 687 s->sstsa = value; 688 break; 689 690 case SSRSA: 691 s->ssrsa = value; 692 break; 693 694 case SSACD: 695 s->ssacd = value; 696 break; 697 698 default: 699 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); 700 break; 701 } 702 } 703 704 static const MemoryRegionOps pxa2xx_ssp_ops = { 705 .read = pxa2xx_ssp_read, 706 .write = pxa2xx_ssp_write, 707 .endianness = DEVICE_NATIVE_ENDIAN, 708 }; 709 710 static void pxa2xx_ssp_save(QEMUFile *f, void *opaque) 711 { 712 PXA2xxSSPState *s = (PXA2xxSSPState *) opaque; 713 int i; 714 715 qemu_put_be32(f, s->enable); 716 717 qemu_put_be32s(f, &s->sscr[0]); 718 qemu_put_be32s(f, &s->sscr[1]); 719 qemu_put_be32s(f, &s->sspsp); 720 qemu_put_be32s(f, &s->ssto); 721 qemu_put_be32s(f, &s->ssitr); 722 qemu_put_be32s(f, &s->sssr); 723 qemu_put_8s(f, &s->sstsa); 724 qemu_put_8s(f, &s->ssrsa); 725 qemu_put_8s(f, &s->ssacd); 726 727 qemu_put_byte(f, s->rx_level); 728 for (i = 0; i < s->rx_level; i ++) 729 qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 0xf]); 730 } 731 732 static int pxa2xx_ssp_load(QEMUFile *f, void *opaque, int version_id) 733 { 734 PXA2xxSSPState *s = (PXA2xxSSPState *) opaque; 735 int i; 736 737 s->enable = qemu_get_be32(f); 738 739 qemu_get_be32s(f, &s->sscr[0]); 740 qemu_get_be32s(f, &s->sscr[1]); 741 qemu_get_be32s(f, &s->sspsp); 742 qemu_get_be32s(f, &s->ssto); 743 qemu_get_be32s(f, &s->ssitr); 744 qemu_get_be32s(f, &s->sssr); 745 qemu_get_8s(f, &s->sstsa); 746 qemu_get_8s(f, &s->ssrsa); 747 qemu_get_8s(f, &s->ssacd); 748 749 s->rx_level = qemu_get_byte(f); 750 s->rx_start = 0; 751 for (i = 0; i < s->rx_level; i ++) 752 s->rx_fifo[i] = qemu_get_byte(f); 753 754 return 0; 755 } 756 757 static int pxa2xx_ssp_init(SysBusDevice *sbd) 758 { 759 DeviceState *dev = DEVICE(sbd); 760 PXA2xxSSPState *s = PXA2XX_SSP(dev); 761 762 sysbus_init_irq(sbd, &s->irq); 763 764 memory_region_init_io(&s->iomem, OBJECT(s), &pxa2xx_ssp_ops, s, 765 "pxa2xx-ssp", 0x1000); 766 sysbus_init_mmio(sbd, &s->iomem); 767 register_savevm(dev, "pxa2xx_ssp", -1, 0, 768 pxa2xx_ssp_save, pxa2xx_ssp_load, s); 769 770 s->bus = ssi_create_bus(dev, "ssi"); 771 return 0; 772 } 773 774 /* Real-Time Clock */ 775 #define RCNR 0x00 /* RTC Counter register */ 776 #define RTAR 0x04 /* RTC Alarm register */ 777 #define RTSR 0x08 /* RTC Status register */ 778 #define RTTR 0x0c /* RTC Timer Trim register */ 779 #define RDCR 0x10 /* RTC Day Counter register */ 780 #define RYCR 0x14 /* RTC Year Counter register */ 781 #define RDAR1 0x18 /* RTC Wristwatch Day Alarm register 1 */ 782 #define RYAR1 0x1c /* RTC Wristwatch Year Alarm register 1 */ 783 #define RDAR2 0x20 /* RTC Wristwatch Day Alarm register 2 */ 784 #define RYAR2 0x24 /* RTC Wristwatch Year Alarm register 2 */ 785 #define SWCR 0x28 /* RTC Stopwatch Counter register */ 786 #define SWAR1 0x2c /* RTC Stopwatch Alarm register 1 */ 787 #define SWAR2 0x30 /* RTC Stopwatch Alarm register 2 */ 788 #define RTCPICR 0x34 /* RTC Periodic Interrupt Counter register */ 789 #define PIAR 0x38 /* RTC Periodic Interrupt Alarm register */ 790 791 #define TYPE_PXA2XX_RTC "pxa2xx_rtc" 792 #define PXA2XX_RTC(obj) \ 793 OBJECT_CHECK(PXA2xxRTCState, (obj), TYPE_PXA2XX_RTC) 794 795 typedef struct { 796 /*< private >*/ 797 SysBusDevice parent_obj; 798 /*< public >*/ 799 800 MemoryRegion iomem; 801 uint32_t rttr; 802 uint32_t rtsr; 803 uint32_t rtar; 804 uint32_t rdar1; 805 uint32_t rdar2; 806 uint32_t ryar1; 807 uint32_t ryar2; 808 uint32_t swar1; 809 uint32_t swar2; 810 uint32_t piar; 811 uint32_t last_rcnr; 812 uint32_t last_rdcr; 813 uint32_t last_rycr; 814 uint32_t last_swcr; 815 uint32_t last_rtcpicr; 816 int64_t last_hz; 817 int64_t last_sw; 818 int64_t last_pi; 819 QEMUTimer *rtc_hz; 820 QEMUTimer *rtc_rdal1; 821 QEMUTimer *rtc_rdal2; 822 QEMUTimer *rtc_swal1; 823 QEMUTimer *rtc_swal2; 824 QEMUTimer *rtc_pi; 825 qemu_irq rtc_irq; 826 } PXA2xxRTCState; 827 828 static inline void pxa2xx_rtc_int_update(PXA2xxRTCState *s) 829 { 830 qemu_set_irq(s->rtc_irq, !!(s->rtsr & 0x2553)); 831 } 832 833 static void pxa2xx_rtc_hzupdate(PXA2xxRTCState *s) 834 { 835 int64_t rt = qemu_clock_get_ms(rtc_clock); 836 s->last_rcnr += ((rt - s->last_hz) << 15) / 837 (1000 * ((s->rttr & 0xffff) + 1)); 838 s->last_rdcr += ((rt - s->last_hz) << 15) / 839 (1000 * ((s->rttr & 0xffff) + 1)); 840 s->last_hz = rt; 841 } 842 843 static void pxa2xx_rtc_swupdate(PXA2xxRTCState *s) 844 { 845 int64_t rt = qemu_clock_get_ms(rtc_clock); 846 if (s->rtsr & (1 << 12)) 847 s->last_swcr += (rt - s->last_sw) / 10; 848 s->last_sw = rt; 849 } 850 851 static void pxa2xx_rtc_piupdate(PXA2xxRTCState *s) 852 { 853 int64_t rt = qemu_clock_get_ms(rtc_clock); 854 if (s->rtsr & (1 << 15)) 855 s->last_swcr += rt - s->last_pi; 856 s->last_pi = rt; 857 } 858 859 static inline void pxa2xx_rtc_alarm_update(PXA2xxRTCState *s, 860 uint32_t rtsr) 861 { 862 if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0))) 863 timer_mod(s->rtc_hz, s->last_hz + 864 (((s->rtar - s->last_rcnr) * 1000 * 865 ((s->rttr & 0xffff) + 1)) >> 15)); 866 else 867 timer_del(s->rtc_hz); 868 869 if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4))) 870 timer_mod(s->rtc_rdal1, s->last_hz + 871 (((s->rdar1 - s->last_rdcr) * 1000 * 872 ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */ 873 else 874 timer_del(s->rtc_rdal1); 875 876 if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6))) 877 timer_mod(s->rtc_rdal2, s->last_hz + 878 (((s->rdar2 - s->last_rdcr) * 1000 * 879 ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */ 880 else 881 timer_del(s->rtc_rdal2); 882 883 if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8))) 884 timer_mod(s->rtc_swal1, s->last_sw + 885 (s->swar1 - s->last_swcr) * 10); /* TODO: fixup */ 886 else 887 timer_del(s->rtc_swal1); 888 889 if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10))) 890 timer_mod(s->rtc_swal2, s->last_sw + 891 (s->swar2 - s->last_swcr) * 10); /* TODO: fixup */ 892 else 893 timer_del(s->rtc_swal2); 894 895 if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13))) 896 timer_mod(s->rtc_pi, s->last_pi + 897 (s->piar & 0xffff) - s->last_rtcpicr); 898 else 899 timer_del(s->rtc_pi); 900 } 901 902 static inline void pxa2xx_rtc_hz_tick(void *opaque) 903 { 904 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque; 905 s->rtsr |= (1 << 0); 906 pxa2xx_rtc_alarm_update(s, s->rtsr); 907 pxa2xx_rtc_int_update(s); 908 } 909 910 static inline void pxa2xx_rtc_rdal1_tick(void *opaque) 911 { 912 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque; 913 s->rtsr |= (1 << 4); 914 pxa2xx_rtc_alarm_update(s, s->rtsr); 915 pxa2xx_rtc_int_update(s); 916 } 917 918 static inline void pxa2xx_rtc_rdal2_tick(void *opaque) 919 { 920 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque; 921 s->rtsr |= (1 << 6); 922 pxa2xx_rtc_alarm_update(s, s->rtsr); 923 pxa2xx_rtc_int_update(s); 924 } 925 926 static inline void pxa2xx_rtc_swal1_tick(void *opaque) 927 { 928 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque; 929 s->rtsr |= (1 << 8); 930 pxa2xx_rtc_alarm_update(s, s->rtsr); 931 pxa2xx_rtc_int_update(s); 932 } 933 934 static inline void pxa2xx_rtc_swal2_tick(void *opaque) 935 { 936 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque; 937 s->rtsr |= (1 << 10); 938 pxa2xx_rtc_alarm_update(s, s->rtsr); 939 pxa2xx_rtc_int_update(s); 940 } 941 942 static inline void pxa2xx_rtc_pi_tick(void *opaque) 943 { 944 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque; 945 s->rtsr |= (1 << 13); 946 pxa2xx_rtc_piupdate(s); 947 s->last_rtcpicr = 0; 948 pxa2xx_rtc_alarm_update(s, s->rtsr); 949 pxa2xx_rtc_int_update(s); 950 } 951 952 static uint64_t pxa2xx_rtc_read(void *opaque, hwaddr addr, 953 unsigned size) 954 { 955 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque; 956 957 switch (addr) { 958 case RTTR: 959 return s->rttr; 960 case RTSR: 961 return s->rtsr; 962 case RTAR: 963 return s->rtar; 964 case RDAR1: 965 return s->rdar1; 966 case RDAR2: 967 return s->rdar2; 968 case RYAR1: 969 return s->ryar1; 970 case RYAR2: 971 return s->ryar2; 972 case SWAR1: 973 return s->swar1; 974 case SWAR2: 975 return s->swar2; 976 case PIAR: 977 return s->piar; 978 case RCNR: 979 return s->last_rcnr + 980 ((qemu_clock_get_ms(rtc_clock) - s->last_hz) << 15) / 981 (1000 * ((s->rttr & 0xffff) + 1)); 982 case RDCR: 983 return s->last_rdcr + 984 ((qemu_clock_get_ms(rtc_clock) - s->last_hz) << 15) / 985 (1000 * ((s->rttr & 0xffff) + 1)); 986 case RYCR: 987 return s->last_rycr; 988 case SWCR: 989 if (s->rtsr & (1 << 12)) 990 return s->last_swcr + 991 (qemu_clock_get_ms(rtc_clock) - s->last_sw) / 10; 992 else 993 return s->last_swcr; 994 default: 995 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); 996 break; 997 } 998 return 0; 999 } 1000 1001 static void pxa2xx_rtc_write(void *opaque, hwaddr addr, 1002 uint64_t value64, unsigned size) 1003 { 1004 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque; 1005 uint32_t value = value64; 1006 1007 switch (addr) { 1008 case RTTR: 1009 if (!(s->rttr & (1 << 31))) { 1010 pxa2xx_rtc_hzupdate(s); 1011 s->rttr = value; 1012 pxa2xx_rtc_alarm_update(s, s->rtsr); 1013 } 1014 break; 1015 1016 case RTSR: 1017 if ((s->rtsr ^ value) & (1 << 15)) 1018 pxa2xx_rtc_piupdate(s); 1019 1020 if ((s->rtsr ^ value) & (1 << 12)) 1021 pxa2xx_rtc_swupdate(s); 1022 1023 if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac)) 1024 pxa2xx_rtc_alarm_update(s, value); 1025 1026 s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac)); 1027 pxa2xx_rtc_int_update(s); 1028 break; 1029 1030 case RTAR: 1031 s->rtar = value; 1032 pxa2xx_rtc_alarm_update(s, s->rtsr); 1033 break; 1034 1035 case RDAR1: 1036 s->rdar1 = value; 1037 pxa2xx_rtc_alarm_update(s, s->rtsr); 1038 break; 1039 1040 case RDAR2: 1041 s->rdar2 = value; 1042 pxa2xx_rtc_alarm_update(s, s->rtsr); 1043 break; 1044 1045 case RYAR1: 1046 s->ryar1 = value; 1047 pxa2xx_rtc_alarm_update(s, s->rtsr); 1048 break; 1049 1050 case RYAR2: 1051 s->ryar2 = value; 1052 pxa2xx_rtc_alarm_update(s, s->rtsr); 1053 break; 1054 1055 case SWAR1: 1056 pxa2xx_rtc_swupdate(s); 1057 s->swar1 = value; 1058 s->last_swcr = 0; 1059 pxa2xx_rtc_alarm_update(s, s->rtsr); 1060 break; 1061 1062 case SWAR2: 1063 s->swar2 = value; 1064 pxa2xx_rtc_alarm_update(s, s->rtsr); 1065 break; 1066 1067 case PIAR: 1068 s->piar = value; 1069 pxa2xx_rtc_alarm_update(s, s->rtsr); 1070 break; 1071 1072 case RCNR: 1073 pxa2xx_rtc_hzupdate(s); 1074 s->last_rcnr = value; 1075 pxa2xx_rtc_alarm_update(s, s->rtsr); 1076 break; 1077 1078 case RDCR: 1079 pxa2xx_rtc_hzupdate(s); 1080 s->last_rdcr = value; 1081 pxa2xx_rtc_alarm_update(s, s->rtsr); 1082 break; 1083 1084 case RYCR: 1085 s->last_rycr = value; 1086 break; 1087 1088 case SWCR: 1089 pxa2xx_rtc_swupdate(s); 1090 s->last_swcr = value; 1091 pxa2xx_rtc_alarm_update(s, s->rtsr); 1092 break; 1093 1094 case RTCPICR: 1095 pxa2xx_rtc_piupdate(s); 1096 s->last_rtcpicr = value & 0xffff; 1097 pxa2xx_rtc_alarm_update(s, s->rtsr); 1098 break; 1099 1100 default: 1101 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); 1102 } 1103 } 1104 1105 static const MemoryRegionOps pxa2xx_rtc_ops = { 1106 .read = pxa2xx_rtc_read, 1107 .write = pxa2xx_rtc_write, 1108 .endianness = DEVICE_NATIVE_ENDIAN, 1109 }; 1110 1111 static int pxa2xx_rtc_init(SysBusDevice *dev) 1112 { 1113 PXA2xxRTCState *s = PXA2XX_RTC(dev); 1114 struct tm tm; 1115 int wom; 1116 1117 s->rttr = 0x7fff; 1118 s->rtsr = 0; 1119 1120 qemu_get_timedate(&tm, 0); 1121 wom = ((tm.tm_mday - 1) / 7) + 1; 1122 1123 s->last_rcnr = (uint32_t) mktimegm(&tm); 1124 s->last_rdcr = (wom << 20) | ((tm.tm_wday + 1) << 17) | 1125 (tm.tm_hour << 12) | (tm.tm_min << 6) | tm.tm_sec; 1126 s->last_rycr = ((tm.tm_year + 1900) << 9) | 1127 ((tm.tm_mon + 1) << 5) | tm.tm_mday; 1128 s->last_swcr = (tm.tm_hour << 19) | 1129 (tm.tm_min << 13) | (tm.tm_sec << 7); 1130 s->last_rtcpicr = 0; 1131 s->last_hz = s->last_sw = s->last_pi = qemu_clock_get_ms(rtc_clock); 1132 1133 s->rtc_hz = timer_new_ms(rtc_clock, pxa2xx_rtc_hz_tick, s); 1134 s->rtc_rdal1 = timer_new_ms(rtc_clock, pxa2xx_rtc_rdal1_tick, s); 1135 s->rtc_rdal2 = timer_new_ms(rtc_clock, pxa2xx_rtc_rdal2_tick, s); 1136 s->rtc_swal1 = timer_new_ms(rtc_clock, pxa2xx_rtc_swal1_tick, s); 1137 s->rtc_swal2 = timer_new_ms(rtc_clock, pxa2xx_rtc_swal2_tick, s); 1138 s->rtc_pi = timer_new_ms(rtc_clock, pxa2xx_rtc_pi_tick, s); 1139 1140 sysbus_init_irq(dev, &s->rtc_irq); 1141 1142 memory_region_init_io(&s->iomem, OBJECT(s), &pxa2xx_rtc_ops, s, 1143 "pxa2xx-rtc", 0x10000); 1144 sysbus_init_mmio(dev, &s->iomem); 1145 1146 return 0; 1147 } 1148 1149 static void pxa2xx_rtc_pre_save(void *opaque) 1150 { 1151 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque; 1152 1153 pxa2xx_rtc_hzupdate(s); 1154 pxa2xx_rtc_piupdate(s); 1155 pxa2xx_rtc_swupdate(s); 1156 } 1157 1158 static int pxa2xx_rtc_post_load(void *opaque, int version_id) 1159 { 1160 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque; 1161 1162 pxa2xx_rtc_alarm_update(s, s->rtsr); 1163 1164 return 0; 1165 } 1166 1167 static const VMStateDescription vmstate_pxa2xx_rtc_regs = { 1168 .name = "pxa2xx_rtc", 1169 .version_id = 0, 1170 .minimum_version_id = 0, 1171 .minimum_version_id_old = 0, 1172 .pre_save = pxa2xx_rtc_pre_save, 1173 .post_load = pxa2xx_rtc_post_load, 1174 .fields = (VMStateField[]) { 1175 VMSTATE_UINT32(rttr, PXA2xxRTCState), 1176 VMSTATE_UINT32(rtsr, PXA2xxRTCState), 1177 VMSTATE_UINT32(rtar, PXA2xxRTCState), 1178 VMSTATE_UINT32(rdar1, PXA2xxRTCState), 1179 VMSTATE_UINT32(rdar2, PXA2xxRTCState), 1180 VMSTATE_UINT32(ryar1, PXA2xxRTCState), 1181 VMSTATE_UINT32(ryar2, PXA2xxRTCState), 1182 VMSTATE_UINT32(swar1, PXA2xxRTCState), 1183 VMSTATE_UINT32(swar2, PXA2xxRTCState), 1184 VMSTATE_UINT32(piar, PXA2xxRTCState), 1185 VMSTATE_UINT32(last_rcnr, PXA2xxRTCState), 1186 VMSTATE_UINT32(last_rdcr, PXA2xxRTCState), 1187 VMSTATE_UINT32(last_rycr, PXA2xxRTCState), 1188 VMSTATE_UINT32(last_swcr, PXA2xxRTCState), 1189 VMSTATE_UINT32(last_rtcpicr, PXA2xxRTCState), 1190 VMSTATE_INT64(last_hz, PXA2xxRTCState), 1191 VMSTATE_INT64(last_sw, PXA2xxRTCState), 1192 VMSTATE_INT64(last_pi, PXA2xxRTCState), 1193 VMSTATE_END_OF_LIST(), 1194 }, 1195 }; 1196 1197 static void pxa2xx_rtc_sysbus_class_init(ObjectClass *klass, void *data) 1198 { 1199 DeviceClass *dc = DEVICE_CLASS(klass); 1200 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); 1201 1202 k->init = pxa2xx_rtc_init; 1203 dc->desc = "PXA2xx RTC Controller"; 1204 dc->vmsd = &vmstate_pxa2xx_rtc_regs; 1205 } 1206 1207 static const TypeInfo pxa2xx_rtc_sysbus_info = { 1208 .name = TYPE_PXA2XX_RTC, 1209 .parent = TYPE_SYS_BUS_DEVICE, 1210 .instance_size = sizeof(PXA2xxRTCState), 1211 .class_init = pxa2xx_rtc_sysbus_class_init, 1212 }; 1213 1214 /* I2C Interface */ 1215 1216 #define TYPE_PXA2XX_I2C_SLAVE "pxa2xx-i2c-slave" 1217 #define PXA2XX_I2C_SLAVE(obj) \ 1218 OBJECT_CHECK(PXA2xxI2CSlaveState, (obj), TYPE_PXA2XX_I2C_SLAVE) 1219 1220 typedef struct PXA2xxI2CSlaveState { 1221 I2CSlave parent_obj; 1222 1223 PXA2xxI2CState *host; 1224 } PXA2xxI2CSlaveState; 1225 1226 #define TYPE_PXA2XX_I2C "pxa2xx_i2c" 1227 #define PXA2XX_I2C(obj) \ 1228 OBJECT_CHECK(PXA2xxI2CState, (obj), TYPE_PXA2XX_I2C) 1229 1230 struct PXA2xxI2CState { 1231 /*< private >*/ 1232 SysBusDevice parent_obj; 1233 /*< public >*/ 1234 1235 MemoryRegion iomem; 1236 PXA2xxI2CSlaveState *slave; 1237 I2CBus *bus; 1238 qemu_irq irq; 1239 uint32_t offset; 1240 uint32_t region_size; 1241 1242 uint16_t control; 1243 uint16_t status; 1244 uint8_t ibmr; 1245 uint8_t data; 1246 }; 1247 1248 #define IBMR 0x80 /* I2C Bus Monitor register */ 1249 #define IDBR 0x88 /* I2C Data Buffer register */ 1250 #define ICR 0x90 /* I2C Control register */ 1251 #define ISR 0x98 /* I2C Status register */ 1252 #define ISAR 0xa0 /* I2C Slave Address register */ 1253 1254 static void pxa2xx_i2c_update(PXA2xxI2CState *s) 1255 { 1256 uint16_t level = 0; 1257 level |= s->status & s->control & (1 << 10); /* BED */ 1258 level |= (s->status & (1 << 7)) && (s->control & (1 << 9)); /* IRF */ 1259 level |= (s->status & (1 << 6)) && (s->control & (1 << 8)); /* ITE */ 1260 level |= s->status & (1 << 9); /* SAD */ 1261 qemu_set_irq(s->irq, !!level); 1262 } 1263 1264 /* These are only stubs now. */ 1265 static void pxa2xx_i2c_event(I2CSlave *i2c, enum i2c_event event) 1266 { 1267 PXA2xxI2CSlaveState *slave = PXA2XX_I2C_SLAVE(i2c); 1268 PXA2xxI2CState *s = slave->host; 1269 1270 switch (event) { 1271 case I2C_START_SEND: 1272 s->status |= (1 << 9); /* set SAD */ 1273 s->status &= ~(1 << 0); /* clear RWM */ 1274 break; 1275 case I2C_START_RECV: 1276 s->status |= (1 << 9); /* set SAD */ 1277 s->status |= 1 << 0; /* set RWM */ 1278 break; 1279 case I2C_FINISH: 1280 s->status |= (1 << 4); /* set SSD */ 1281 break; 1282 case I2C_NACK: 1283 s->status |= 1 << 1; /* set ACKNAK */ 1284 break; 1285 } 1286 pxa2xx_i2c_update(s); 1287 } 1288 1289 static int pxa2xx_i2c_rx(I2CSlave *i2c) 1290 { 1291 PXA2xxI2CSlaveState *slave = PXA2XX_I2C_SLAVE(i2c); 1292 PXA2xxI2CState *s = slave->host; 1293 1294 if ((s->control & (1 << 14)) || !(s->control & (1 << 6))) { 1295 return 0; 1296 } 1297 1298 if (s->status & (1 << 0)) { /* RWM */ 1299 s->status |= 1 << 6; /* set ITE */ 1300 } 1301 pxa2xx_i2c_update(s); 1302 1303 return s->data; 1304 } 1305 1306 static int pxa2xx_i2c_tx(I2CSlave *i2c, uint8_t data) 1307 { 1308 PXA2xxI2CSlaveState *slave = PXA2XX_I2C_SLAVE(i2c); 1309 PXA2xxI2CState *s = slave->host; 1310 1311 if ((s->control & (1 << 14)) || !(s->control & (1 << 6))) { 1312 return 1; 1313 } 1314 1315 if (!(s->status & (1 << 0))) { /* RWM */ 1316 s->status |= 1 << 7; /* set IRF */ 1317 s->data = data; 1318 } 1319 pxa2xx_i2c_update(s); 1320 1321 return 1; 1322 } 1323 1324 static uint64_t pxa2xx_i2c_read(void *opaque, hwaddr addr, 1325 unsigned size) 1326 { 1327 PXA2xxI2CState *s = (PXA2xxI2CState *) opaque; 1328 I2CSlave *slave; 1329 1330 addr -= s->offset; 1331 switch (addr) { 1332 case ICR: 1333 return s->control; 1334 case ISR: 1335 return s->status | (i2c_bus_busy(s->bus) << 2); 1336 case ISAR: 1337 slave = I2C_SLAVE(s->slave); 1338 return slave->address; 1339 case IDBR: 1340 return s->data; 1341 case IBMR: 1342 if (s->status & (1 << 2)) 1343 s->ibmr ^= 3; /* Fake SCL and SDA pin changes */ 1344 else 1345 s->ibmr = 0; 1346 return s->ibmr; 1347 default: 1348 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); 1349 break; 1350 } 1351 return 0; 1352 } 1353 1354 static void pxa2xx_i2c_write(void *opaque, hwaddr addr, 1355 uint64_t value64, unsigned size) 1356 { 1357 PXA2xxI2CState *s = (PXA2xxI2CState *) opaque; 1358 uint32_t value = value64; 1359 int ack; 1360 1361 addr -= s->offset; 1362 switch (addr) { 1363 case ICR: 1364 s->control = value & 0xfff7; 1365 if ((value & (1 << 3)) && (value & (1 << 6))) { /* TB and IUE */ 1366 /* TODO: slave mode */ 1367 if (value & (1 << 0)) { /* START condition */ 1368 if (s->data & 1) 1369 s->status |= 1 << 0; /* set RWM */ 1370 else 1371 s->status &= ~(1 << 0); /* clear RWM */ 1372 ack = !i2c_start_transfer(s->bus, s->data >> 1, s->data & 1); 1373 } else { 1374 if (s->status & (1 << 0)) { /* RWM */ 1375 s->data = i2c_recv(s->bus); 1376 if (value & (1 << 2)) /* ACKNAK */ 1377 i2c_nack(s->bus); 1378 ack = 1; 1379 } else 1380 ack = !i2c_send(s->bus, s->data); 1381 } 1382 1383 if (value & (1 << 1)) /* STOP condition */ 1384 i2c_end_transfer(s->bus); 1385 1386 if (ack) { 1387 if (value & (1 << 0)) /* START condition */ 1388 s->status |= 1 << 6; /* set ITE */ 1389 else 1390 if (s->status & (1 << 0)) /* RWM */ 1391 s->status |= 1 << 7; /* set IRF */ 1392 else 1393 s->status |= 1 << 6; /* set ITE */ 1394 s->status &= ~(1 << 1); /* clear ACKNAK */ 1395 } else { 1396 s->status |= 1 << 6; /* set ITE */ 1397 s->status |= 1 << 10; /* set BED */ 1398 s->status |= 1 << 1; /* set ACKNAK */ 1399 } 1400 } 1401 if (!(value & (1 << 3)) && (value & (1 << 6))) /* !TB and IUE */ 1402 if (value & (1 << 4)) /* MA */ 1403 i2c_end_transfer(s->bus); 1404 pxa2xx_i2c_update(s); 1405 break; 1406 1407 case ISR: 1408 s->status &= ~(value & 0x07f0); 1409 pxa2xx_i2c_update(s); 1410 break; 1411 1412 case ISAR: 1413 i2c_set_slave_address(I2C_SLAVE(s->slave), value & 0x7f); 1414 break; 1415 1416 case IDBR: 1417 s->data = value & 0xff; 1418 break; 1419 1420 default: 1421 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); 1422 } 1423 } 1424 1425 static const MemoryRegionOps pxa2xx_i2c_ops = { 1426 .read = pxa2xx_i2c_read, 1427 .write = pxa2xx_i2c_write, 1428 .endianness = DEVICE_NATIVE_ENDIAN, 1429 }; 1430 1431 static const VMStateDescription vmstate_pxa2xx_i2c_slave = { 1432 .name = "pxa2xx_i2c_slave", 1433 .version_id = 1, 1434 .minimum_version_id = 1, 1435 .minimum_version_id_old = 1, 1436 .fields = (VMStateField []) { 1437 VMSTATE_I2C_SLAVE(parent_obj, PXA2xxI2CSlaveState), 1438 VMSTATE_END_OF_LIST() 1439 } 1440 }; 1441 1442 static const VMStateDescription vmstate_pxa2xx_i2c = { 1443 .name = "pxa2xx_i2c", 1444 .version_id = 1, 1445 .minimum_version_id = 1, 1446 .minimum_version_id_old = 1, 1447 .fields = (VMStateField []) { 1448 VMSTATE_UINT16(control, PXA2xxI2CState), 1449 VMSTATE_UINT16(status, PXA2xxI2CState), 1450 VMSTATE_UINT8(ibmr, PXA2xxI2CState), 1451 VMSTATE_UINT8(data, PXA2xxI2CState), 1452 VMSTATE_STRUCT_POINTER(slave, PXA2xxI2CState, 1453 vmstate_pxa2xx_i2c_slave, PXA2xxI2CSlaveState), 1454 VMSTATE_END_OF_LIST() 1455 } 1456 }; 1457 1458 static int pxa2xx_i2c_slave_init(I2CSlave *i2c) 1459 { 1460 /* Nothing to do. */ 1461 return 0; 1462 } 1463 1464 static void pxa2xx_i2c_slave_class_init(ObjectClass *klass, void *data) 1465 { 1466 I2CSlaveClass *k = I2C_SLAVE_CLASS(klass); 1467 1468 k->init = pxa2xx_i2c_slave_init; 1469 k->event = pxa2xx_i2c_event; 1470 k->recv = pxa2xx_i2c_rx; 1471 k->send = pxa2xx_i2c_tx; 1472 } 1473 1474 static const TypeInfo pxa2xx_i2c_slave_info = { 1475 .name = TYPE_PXA2XX_I2C_SLAVE, 1476 .parent = TYPE_I2C_SLAVE, 1477 .instance_size = sizeof(PXA2xxI2CSlaveState), 1478 .class_init = pxa2xx_i2c_slave_class_init, 1479 }; 1480 1481 PXA2xxI2CState *pxa2xx_i2c_init(hwaddr base, 1482 qemu_irq irq, uint32_t region_size) 1483 { 1484 DeviceState *dev; 1485 SysBusDevice *i2c_dev; 1486 PXA2xxI2CState *s; 1487 I2CBus *i2cbus; 1488 1489 dev = qdev_create(NULL, TYPE_PXA2XX_I2C); 1490 qdev_prop_set_uint32(dev, "size", region_size + 1); 1491 qdev_prop_set_uint32(dev, "offset", base & region_size); 1492 qdev_init_nofail(dev); 1493 1494 i2c_dev = SYS_BUS_DEVICE(dev); 1495 sysbus_mmio_map(i2c_dev, 0, base & ~region_size); 1496 sysbus_connect_irq(i2c_dev, 0, irq); 1497 1498 s = PXA2XX_I2C(i2c_dev); 1499 /* FIXME: Should the slave device really be on a separate bus? */ 1500 i2cbus = i2c_init_bus(dev, "dummy"); 1501 dev = i2c_create_slave(i2cbus, TYPE_PXA2XX_I2C_SLAVE, 0); 1502 s->slave = PXA2XX_I2C_SLAVE(dev); 1503 s->slave->host = s; 1504 1505 return s; 1506 } 1507 1508 static int pxa2xx_i2c_initfn(SysBusDevice *sbd) 1509 { 1510 DeviceState *dev = DEVICE(sbd); 1511 PXA2xxI2CState *s = PXA2XX_I2C(dev); 1512 1513 s->bus = i2c_init_bus(dev, "i2c"); 1514 1515 memory_region_init_io(&s->iomem, OBJECT(s), &pxa2xx_i2c_ops, s, 1516 "pxa2xx-i2c", s->region_size); 1517 sysbus_init_mmio(sbd, &s->iomem); 1518 sysbus_init_irq(sbd, &s->irq); 1519 1520 return 0; 1521 } 1522 1523 I2CBus *pxa2xx_i2c_bus(PXA2xxI2CState *s) 1524 { 1525 return s->bus; 1526 } 1527 1528 static Property pxa2xx_i2c_properties[] = { 1529 DEFINE_PROP_UINT32("size", PXA2xxI2CState, region_size, 0x10000), 1530 DEFINE_PROP_UINT32("offset", PXA2xxI2CState, offset, 0), 1531 DEFINE_PROP_END_OF_LIST(), 1532 }; 1533 1534 static void pxa2xx_i2c_class_init(ObjectClass *klass, void *data) 1535 { 1536 DeviceClass *dc = DEVICE_CLASS(klass); 1537 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); 1538 1539 k->init = pxa2xx_i2c_initfn; 1540 dc->desc = "PXA2xx I2C Bus Controller"; 1541 dc->vmsd = &vmstate_pxa2xx_i2c; 1542 dc->props = pxa2xx_i2c_properties; 1543 } 1544 1545 static const TypeInfo pxa2xx_i2c_info = { 1546 .name = TYPE_PXA2XX_I2C, 1547 .parent = TYPE_SYS_BUS_DEVICE, 1548 .instance_size = sizeof(PXA2xxI2CState), 1549 .class_init = pxa2xx_i2c_class_init, 1550 }; 1551 1552 /* PXA Inter-IC Sound Controller */ 1553 static void pxa2xx_i2s_reset(PXA2xxI2SState *i2s) 1554 { 1555 i2s->rx_len = 0; 1556 i2s->tx_len = 0; 1557 i2s->fifo_len = 0; 1558 i2s->clk = 0x1a; 1559 i2s->control[0] = 0x00; 1560 i2s->control[1] = 0x00; 1561 i2s->status = 0x00; 1562 i2s->mask = 0x00; 1563 } 1564 1565 #define SACR_TFTH(val) ((val >> 8) & 0xf) 1566 #define SACR_RFTH(val) ((val >> 12) & 0xf) 1567 #define SACR_DREC(val) (val & (1 << 3)) 1568 #define SACR_DPRL(val) (val & (1 << 4)) 1569 1570 static inline void pxa2xx_i2s_update(PXA2xxI2SState *i2s) 1571 { 1572 int rfs, tfs; 1573 rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len && 1574 !SACR_DREC(i2s->control[1]); 1575 tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) && 1576 i2s->enable && !SACR_DPRL(i2s->control[1]); 1577 1578 qemu_set_irq(i2s->rx_dma, rfs); 1579 qemu_set_irq(i2s->tx_dma, tfs); 1580 1581 i2s->status &= 0xe0; 1582 if (i2s->fifo_len < 16 || !i2s->enable) 1583 i2s->status |= 1 << 0; /* TNF */ 1584 if (i2s->rx_len) 1585 i2s->status |= 1 << 1; /* RNE */ 1586 if (i2s->enable) 1587 i2s->status |= 1 << 2; /* BSY */ 1588 if (tfs) 1589 i2s->status |= 1 << 3; /* TFS */ 1590 if (rfs) 1591 i2s->status |= 1 << 4; /* RFS */ 1592 if (!(i2s->tx_len && i2s->enable)) 1593 i2s->status |= i2s->fifo_len << 8; /* TFL */ 1594 i2s->status |= MAX(i2s->rx_len, 0xf) << 12; /* RFL */ 1595 1596 qemu_set_irq(i2s->irq, i2s->status & i2s->mask); 1597 } 1598 1599 #define SACR0 0x00 /* Serial Audio Global Control register */ 1600 #define SACR1 0x04 /* Serial Audio I2S/MSB-Justified Control register */ 1601 #define SASR0 0x0c /* Serial Audio Interface and FIFO Status register */ 1602 #define SAIMR 0x14 /* Serial Audio Interrupt Mask register */ 1603 #define SAICR 0x18 /* Serial Audio Interrupt Clear register */ 1604 #define SADIV 0x60 /* Serial Audio Clock Divider register */ 1605 #define SADR 0x80 /* Serial Audio Data register */ 1606 1607 static uint64_t pxa2xx_i2s_read(void *opaque, hwaddr addr, 1608 unsigned size) 1609 { 1610 PXA2xxI2SState *s = (PXA2xxI2SState *) opaque; 1611 1612 switch (addr) { 1613 case SACR0: 1614 return s->control[0]; 1615 case SACR1: 1616 return s->control[1]; 1617 case SASR0: 1618 return s->status; 1619 case SAIMR: 1620 return s->mask; 1621 case SAICR: 1622 return 0; 1623 case SADIV: 1624 return s->clk; 1625 case SADR: 1626 if (s->rx_len > 0) { 1627 s->rx_len --; 1628 pxa2xx_i2s_update(s); 1629 return s->codec_in(s->opaque); 1630 } 1631 return 0; 1632 default: 1633 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); 1634 break; 1635 } 1636 return 0; 1637 } 1638 1639 static void pxa2xx_i2s_write(void *opaque, hwaddr addr, 1640 uint64_t value, unsigned size) 1641 { 1642 PXA2xxI2SState *s = (PXA2xxI2SState *) opaque; 1643 uint32_t *sample; 1644 1645 switch (addr) { 1646 case SACR0: 1647 if (value & (1 << 3)) /* RST */ 1648 pxa2xx_i2s_reset(s); 1649 s->control[0] = value & 0xff3d; 1650 if (!s->enable && (value & 1) && s->tx_len) { /* ENB */ 1651 for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++) 1652 s->codec_out(s->opaque, *sample); 1653 s->status &= ~(1 << 7); /* I2SOFF */ 1654 } 1655 if (value & (1 << 4)) /* EFWR */ 1656 printf("%s: Attempt to use special function\n", __FUNCTION__); 1657 s->enable = (value & 9) == 1; /* ENB && !RST*/ 1658 pxa2xx_i2s_update(s); 1659 break; 1660 case SACR1: 1661 s->control[1] = value & 0x0039; 1662 if (value & (1 << 5)) /* ENLBF */ 1663 printf("%s: Attempt to use loopback function\n", __FUNCTION__); 1664 if (value & (1 << 4)) /* DPRL */ 1665 s->fifo_len = 0; 1666 pxa2xx_i2s_update(s); 1667 break; 1668 case SAIMR: 1669 s->mask = value & 0x0078; 1670 pxa2xx_i2s_update(s); 1671 break; 1672 case SAICR: 1673 s->status &= ~(value & (3 << 5)); 1674 pxa2xx_i2s_update(s); 1675 break; 1676 case SADIV: 1677 s->clk = value & 0x007f; 1678 break; 1679 case SADR: 1680 if (s->tx_len && s->enable) { 1681 s->tx_len --; 1682 pxa2xx_i2s_update(s); 1683 s->codec_out(s->opaque, value); 1684 } else if (s->fifo_len < 16) { 1685 s->fifo[s->fifo_len ++] = value; 1686 pxa2xx_i2s_update(s); 1687 } 1688 break; 1689 default: 1690 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); 1691 } 1692 } 1693 1694 static const MemoryRegionOps pxa2xx_i2s_ops = { 1695 .read = pxa2xx_i2s_read, 1696 .write = pxa2xx_i2s_write, 1697 .endianness = DEVICE_NATIVE_ENDIAN, 1698 }; 1699 1700 static const VMStateDescription vmstate_pxa2xx_i2s = { 1701 .name = "pxa2xx_i2s", 1702 .version_id = 0, 1703 .minimum_version_id = 0, 1704 .minimum_version_id_old = 0, 1705 .fields = (VMStateField[]) { 1706 VMSTATE_UINT32_ARRAY(control, PXA2xxI2SState, 2), 1707 VMSTATE_UINT32(status, PXA2xxI2SState), 1708 VMSTATE_UINT32(mask, PXA2xxI2SState), 1709 VMSTATE_UINT32(clk, PXA2xxI2SState), 1710 VMSTATE_INT32(enable, PXA2xxI2SState), 1711 VMSTATE_INT32(rx_len, PXA2xxI2SState), 1712 VMSTATE_INT32(tx_len, PXA2xxI2SState), 1713 VMSTATE_INT32(fifo_len, PXA2xxI2SState), 1714 VMSTATE_END_OF_LIST() 1715 } 1716 }; 1717 1718 static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx) 1719 { 1720 PXA2xxI2SState *s = (PXA2xxI2SState *) opaque; 1721 uint32_t *sample; 1722 1723 /* Signal FIFO errors */ 1724 if (s->enable && s->tx_len) 1725 s->status |= 1 << 5; /* TUR */ 1726 if (s->enable && s->rx_len) 1727 s->status |= 1 << 6; /* ROR */ 1728 1729 /* Should be tx - MIN(tx, s->fifo_len) but we don't really need to 1730 * handle the cases where it makes a difference. */ 1731 s->tx_len = tx - s->fifo_len; 1732 s->rx_len = rx; 1733 /* Note that is s->codec_out wasn't set, we wouldn't get called. */ 1734 if (s->enable) 1735 for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++) 1736 s->codec_out(s->opaque, *sample); 1737 pxa2xx_i2s_update(s); 1738 } 1739 1740 static PXA2xxI2SState *pxa2xx_i2s_init(MemoryRegion *sysmem, 1741 hwaddr base, 1742 qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma) 1743 { 1744 PXA2xxI2SState *s = (PXA2xxI2SState *) 1745 g_malloc0(sizeof(PXA2xxI2SState)); 1746 1747 s->irq = irq; 1748 s->rx_dma = rx_dma; 1749 s->tx_dma = tx_dma; 1750 s->data_req = pxa2xx_i2s_data_req; 1751 1752 pxa2xx_i2s_reset(s); 1753 1754 memory_region_init_io(&s->iomem, NULL, &pxa2xx_i2s_ops, s, 1755 "pxa2xx-i2s", 0x100000); 1756 memory_region_add_subregion(sysmem, base, &s->iomem); 1757 1758 vmstate_register(NULL, base, &vmstate_pxa2xx_i2s, s); 1759 1760 return s; 1761 } 1762 1763 /* PXA Fast Infra-red Communications Port */ 1764 struct PXA2xxFIrState { 1765 MemoryRegion iomem; 1766 qemu_irq irq; 1767 qemu_irq rx_dma; 1768 qemu_irq tx_dma; 1769 int enable; 1770 CharDriverState *chr; 1771 1772 uint8_t control[3]; 1773 uint8_t status[2]; 1774 1775 int rx_len; 1776 int rx_start; 1777 uint8_t rx_fifo[64]; 1778 }; 1779 1780 static void pxa2xx_fir_reset(PXA2xxFIrState *s) 1781 { 1782 s->control[0] = 0x00; 1783 s->control[1] = 0x00; 1784 s->control[2] = 0x00; 1785 s->status[0] = 0x00; 1786 s->status[1] = 0x00; 1787 s->enable = 0; 1788 } 1789 1790 static inline void pxa2xx_fir_update(PXA2xxFIrState *s) 1791 { 1792 static const int tresh[4] = { 8, 16, 32, 0 }; 1793 int intr = 0; 1794 if ((s->control[0] & (1 << 4)) && /* RXE */ 1795 s->rx_len >= tresh[s->control[2] & 3]) /* TRIG */ 1796 s->status[0] |= 1 << 4; /* RFS */ 1797 else 1798 s->status[0] &= ~(1 << 4); /* RFS */ 1799 if (s->control[0] & (1 << 3)) /* TXE */ 1800 s->status[0] |= 1 << 3; /* TFS */ 1801 else 1802 s->status[0] &= ~(1 << 3); /* TFS */ 1803 if (s->rx_len) 1804 s->status[1] |= 1 << 2; /* RNE */ 1805 else 1806 s->status[1] &= ~(1 << 2); /* RNE */ 1807 if (s->control[0] & (1 << 4)) /* RXE */ 1808 s->status[1] |= 1 << 0; /* RSY */ 1809 else 1810 s->status[1] &= ~(1 << 0); /* RSY */ 1811 1812 intr |= (s->control[0] & (1 << 5)) && /* RIE */ 1813 (s->status[0] & (1 << 4)); /* RFS */ 1814 intr |= (s->control[0] & (1 << 6)) && /* TIE */ 1815 (s->status[0] & (1 << 3)); /* TFS */ 1816 intr |= (s->control[2] & (1 << 4)) && /* TRAIL */ 1817 (s->status[0] & (1 << 6)); /* EOC */ 1818 intr |= (s->control[0] & (1 << 2)) && /* TUS */ 1819 (s->status[0] & (1 << 1)); /* TUR */ 1820 intr |= s->status[0] & 0x25; /* FRE, RAB, EIF */ 1821 1822 qemu_set_irq(s->rx_dma, (s->status[0] >> 4) & 1); 1823 qemu_set_irq(s->tx_dma, (s->status[0] >> 3) & 1); 1824 1825 qemu_set_irq(s->irq, intr && s->enable); 1826 } 1827 1828 #define ICCR0 0x00 /* FICP Control register 0 */ 1829 #define ICCR1 0x04 /* FICP Control register 1 */ 1830 #define ICCR2 0x08 /* FICP Control register 2 */ 1831 #define ICDR 0x0c /* FICP Data register */ 1832 #define ICSR0 0x14 /* FICP Status register 0 */ 1833 #define ICSR1 0x18 /* FICP Status register 1 */ 1834 #define ICFOR 0x1c /* FICP FIFO Occupancy Status register */ 1835 1836 static uint64_t pxa2xx_fir_read(void *opaque, hwaddr addr, 1837 unsigned size) 1838 { 1839 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque; 1840 uint8_t ret; 1841 1842 switch (addr) { 1843 case ICCR0: 1844 return s->control[0]; 1845 case ICCR1: 1846 return s->control[1]; 1847 case ICCR2: 1848 return s->control[2]; 1849 case ICDR: 1850 s->status[0] &= ~0x01; 1851 s->status[1] &= ~0x72; 1852 if (s->rx_len) { 1853 s->rx_len --; 1854 ret = s->rx_fifo[s->rx_start ++]; 1855 s->rx_start &= 63; 1856 pxa2xx_fir_update(s); 1857 return ret; 1858 } 1859 printf("%s: Rx FIFO underrun.\n", __FUNCTION__); 1860 break; 1861 case ICSR0: 1862 return s->status[0]; 1863 case ICSR1: 1864 return s->status[1] | (1 << 3); /* TNF */ 1865 case ICFOR: 1866 return s->rx_len; 1867 default: 1868 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); 1869 break; 1870 } 1871 return 0; 1872 } 1873 1874 static void pxa2xx_fir_write(void *opaque, hwaddr addr, 1875 uint64_t value64, unsigned size) 1876 { 1877 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque; 1878 uint32_t value = value64; 1879 uint8_t ch; 1880 1881 switch (addr) { 1882 case ICCR0: 1883 s->control[0] = value; 1884 if (!(value & (1 << 4))) /* RXE */ 1885 s->rx_len = s->rx_start = 0; 1886 if (!(value & (1 << 3))) { /* TXE */ 1887 /* Nop */ 1888 } 1889 s->enable = value & 1; /* ITR */ 1890 if (!s->enable) 1891 s->status[0] = 0; 1892 pxa2xx_fir_update(s); 1893 break; 1894 case ICCR1: 1895 s->control[1] = value; 1896 break; 1897 case ICCR2: 1898 s->control[2] = value & 0x3f; 1899 pxa2xx_fir_update(s); 1900 break; 1901 case ICDR: 1902 if (s->control[2] & (1 << 2)) /* TXP */ 1903 ch = value; 1904 else 1905 ch = ~value; 1906 if (s->chr && s->enable && (s->control[0] & (1 << 3))) /* TXE */ 1907 qemu_chr_fe_write(s->chr, &ch, 1); 1908 break; 1909 case ICSR0: 1910 s->status[0] &= ~(value & 0x66); 1911 pxa2xx_fir_update(s); 1912 break; 1913 case ICFOR: 1914 break; 1915 default: 1916 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); 1917 } 1918 } 1919 1920 static const MemoryRegionOps pxa2xx_fir_ops = { 1921 .read = pxa2xx_fir_read, 1922 .write = pxa2xx_fir_write, 1923 .endianness = DEVICE_NATIVE_ENDIAN, 1924 }; 1925 1926 static int pxa2xx_fir_is_empty(void *opaque) 1927 { 1928 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque; 1929 return (s->rx_len < 64); 1930 } 1931 1932 static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size) 1933 { 1934 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque; 1935 if (!(s->control[0] & (1 << 4))) /* RXE */ 1936 return; 1937 1938 while (size --) { 1939 s->status[1] |= 1 << 4; /* EOF */ 1940 if (s->rx_len >= 64) { 1941 s->status[1] |= 1 << 6; /* ROR */ 1942 break; 1943 } 1944 1945 if (s->control[2] & (1 << 3)) /* RXP */ 1946 s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++); 1947 else 1948 s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++); 1949 } 1950 1951 pxa2xx_fir_update(s); 1952 } 1953 1954 static void pxa2xx_fir_event(void *opaque, int event) 1955 { 1956 } 1957 1958 static void pxa2xx_fir_save(QEMUFile *f, void *opaque) 1959 { 1960 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque; 1961 int i; 1962 1963 qemu_put_be32(f, s->enable); 1964 1965 qemu_put_8s(f, &s->control[0]); 1966 qemu_put_8s(f, &s->control[1]); 1967 qemu_put_8s(f, &s->control[2]); 1968 qemu_put_8s(f, &s->status[0]); 1969 qemu_put_8s(f, &s->status[1]); 1970 1971 qemu_put_byte(f, s->rx_len); 1972 for (i = 0; i < s->rx_len; i ++) 1973 qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 63]); 1974 } 1975 1976 static int pxa2xx_fir_load(QEMUFile *f, void *opaque, int version_id) 1977 { 1978 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque; 1979 int i; 1980 1981 s->enable = qemu_get_be32(f); 1982 1983 qemu_get_8s(f, &s->control[0]); 1984 qemu_get_8s(f, &s->control[1]); 1985 qemu_get_8s(f, &s->control[2]); 1986 qemu_get_8s(f, &s->status[0]); 1987 qemu_get_8s(f, &s->status[1]); 1988 1989 s->rx_len = qemu_get_byte(f); 1990 s->rx_start = 0; 1991 for (i = 0; i < s->rx_len; i ++) 1992 s->rx_fifo[i] = qemu_get_byte(f); 1993 1994 return 0; 1995 } 1996 1997 static PXA2xxFIrState *pxa2xx_fir_init(MemoryRegion *sysmem, 1998 hwaddr base, 1999 qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma, 2000 CharDriverState *chr) 2001 { 2002 PXA2xxFIrState *s = (PXA2xxFIrState *) 2003 g_malloc0(sizeof(PXA2xxFIrState)); 2004 2005 s->irq = irq; 2006 s->rx_dma = rx_dma; 2007 s->tx_dma = tx_dma; 2008 s->chr = chr; 2009 2010 pxa2xx_fir_reset(s); 2011 2012 memory_region_init_io(&s->iomem, NULL, &pxa2xx_fir_ops, s, "pxa2xx-fir", 0x1000); 2013 memory_region_add_subregion(sysmem, base, &s->iomem); 2014 2015 if (chr) { 2016 qemu_chr_fe_claim_no_fail(chr); 2017 qemu_chr_add_handlers(chr, pxa2xx_fir_is_empty, 2018 pxa2xx_fir_rx, pxa2xx_fir_event, s); 2019 } 2020 2021 register_savevm(NULL, "pxa2xx_fir", 0, 0, pxa2xx_fir_save, 2022 pxa2xx_fir_load, s); 2023 2024 return s; 2025 } 2026 2027 static void pxa2xx_reset(void *opaque, int line, int level) 2028 { 2029 PXA2xxState *s = (PXA2xxState *) opaque; 2030 2031 if (level && (s->pm_regs[PCFR >> 2] & 0x10)) { /* GPR_EN */ 2032 cpu_reset(CPU(s->cpu)); 2033 /* TODO: reset peripherals */ 2034 } 2035 } 2036 2037 /* Initialise a PXA270 integrated chip (ARM based core). */ 2038 PXA2xxState *pxa270_init(MemoryRegion *address_space, 2039 unsigned int sdram_size, const char *revision) 2040 { 2041 PXA2xxState *s; 2042 int i; 2043 DriveInfo *dinfo; 2044 s = (PXA2xxState *) g_malloc0(sizeof(PXA2xxState)); 2045 2046 if (revision && strncmp(revision, "pxa27", 5)) { 2047 fprintf(stderr, "Machine requires a PXA27x processor.\n"); 2048 exit(1); 2049 } 2050 if (!revision) 2051 revision = "pxa270"; 2052 2053 s->cpu = cpu_arm_init(revision); 2054 if (s->cpu == NULL) { 2055 fprintf(stderr, "Unable to find CPU definition\n"); 2056 exit(1); 2057 } 2058 s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0]; 2059 2060 /* SDRAM & Internal Memory Storage */ 2061 memory_region_init_ram(&s->sdram, NULL, "pxa270.sdram", sdram_size); 2062 vmstate_register_ram_global(&s->sdram); 2063 memory_region_add_subregion(address_space, PXA2XX_SDRAM_BASE, &s->sdram); 2064 memory_region_init_ram(&s->internal, NULL, "pxa270.internal", 0x40000); 2065 vmstate_register_ram_global(&s->internal); 2066 memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE, 2067 &s->internal); 2068 2069 s->pic = pxa2xx_pic_init(0x40d00000, s->cpu); 2070 2071 s->dma = pxa27x_dma_init(0x40000000, 2072 qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA)); 2073 2074 sysbus_create_varargs("pxa27x-timer", 0x40a00000, 2075 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0), 2076 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1), 2077 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2), 2078 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3), 2079 qdev_get_gpio_in(s->pic, PXA27X_PIC_OST_4_11), 2080 NULL); 2081 2082 s->gpio = pxa2xx_gpio_init(0x40e00000, s->cpu, s->pic, 121); 2083 2084 dinfo = drive_get(IF_SD, 0, 0); 2085 if (!dinfo) { 2086 fprintf(stderr, "qemu: missing SecureDigital device\n"); 2087 exit(1); 2088 } 2089 s->mmc = pxa2xx_mmci_init(address_space, 0x41100000, dinfo->bdrv, 2090 qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC), 2091 qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI), 2092 qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI)); 2093 2094 for (i = 0; pxa270_serial[i].io_base; i++) { 2095 if (serial_hds[i]) { 2096 serial_mm_init(address_space, pxa270_serial[i].io_base, 2, 2097 qdev_get_gpio_in(s->pic, pxa270_serial[i].irqn), 2098 14857000 / 16, serial_hds[i], 2099 DEVICE_NATIVE_ENDIAN); 2100 } else { 2101 break; 2102 } 2103 } 2104 if (serial_hds[i]) 2105 s->fir = pxa2xx_fir_init(address_space, 0x40800000, 2106 qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP), 2107 qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP), 2108 qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP), 2109 serial_hds[i]); 2110 2111 s->lcd = pxa2xx_lcdc_init(address_space, 0x44000000, 2112 qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD)); 2113 2114 s->cm_base = 0x41300000; 2115 s->cm_regs[CCCR >> 2] = 0x02000210; /* 416.0 MHz */ 2116 s->clkcfg = 0x00000009; /* Turbo mode active */ 2117 memory_region_init_io(&s->cm_iomem, NULL, &pxa2xx_cm_ops, s, "pxa2xx-cm", 0x1000); 2118 memory_region_add_subregion(address_space, s->cm_base, &s->cm_iomem); 2119 vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s); 2120 2121 pxa2xx_setup_cp14(s); 2122 2123 s->mm_base = 0x48000000; 2124 s->mm_regs[MDMRS >> 2] = 0x00020002; 2125 s->mm_regs[MDREFR >> 2] = 0x03ca4000; 2126 s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */ 2127 memory_region_init_io(&s->mm_iomem, NULL, &pxa2xx_mm_ops, s, "pxa2xx-mm", 0x1000); 2128 memory_region_add_subregion(address_space, s->mm_base, &s->mm_iomem); 2129 vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s); 2130 2131 s->pm_base = 0x40f00000; 2132 memory_region_init_io(&s->pm_iomem, NULL, &pxa2xx_pm_ops, s, "pxa2xx-pm", 0x100); 2133 memory_region_add_subregion(address_space, s->pm_base, &s->pm_iomem); 2134 vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s); 2135 2136 for (i = 0; pxa27x_ssp[i].io_base; i ++); 2137 s->ssp = (SSIBus **)g_malloc0(sizeof(SSIBus *) * i); 2138 for (i = 0; pxa27x_ssp[i].io_base; i ++) { 2139 DeviceState *dev; 2140 dev = sysbus_create_simple(TYPE_PXA2XX_SSP, pxa27x_ssp[i].io_base, 2141 qdev_get_gpio_in(s->pic, pxa27x_ssp[i].irqn)); 2142 s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi"); 2143 } 2144 2145 if (usb_enabled(false)) { 2146 sysbus_create_simple("sysbus-ohci", 0x4c000000, 2147 qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1)); 2148 } 2149 2150 s->pcmcia[0] = pxa2xx_pcmcia_init(address_space, 0x20000000); 2151 s->pcmcia[1] = pxa2xx_pcmcia_init(address_space, 0x30000000); 2152 2153 sysbus_create_simple(TYPE_PXA2XX_RTC, 0x40900000, 2154 qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM)); 2155 2156 s->i2c[0] = pxa2xx_i2c_init(0x40301600, 2157 qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff); 2158 s->i2c[1] = pxa2xx_i2c_init(0x40f00100, 2159 qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff); 2160 2161 s->i2s = pxa2xx_i2s_init(address_space, 0x40400000, 2162 qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S), 2163 qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S), 2164 qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S)); 2165 2166 s->kp = pxa27x_keypad_init(address_space, 0x41500000, 2167 qdev_get_gpio_in(s->pic, PXA2XX_PIC_KEYPAD)); 2168 2169 /* GPIO1 resets the processor */ 2170 /* The handler can be overridden by board-specific code */ 2171 qdev_connect_gpio_out(s->gpio, 1, s->reset); 2172 return s; 2173 } 2174 2175 /* Initialise a PXA255 integrated chip (ARM based core). */ 2176 PXA2xxState *pxa255_init(MemoryRegion *address_space, unsigned int sdram_size) 2177 { 2178 PXA2xxState *s; 2179 int i; 2180 DriveInfo *dinfo; 2181 2182 s = (PXA2xxState *) g_malloc0(sizeof(PXA2xxState)); 2183 2184 s->cpu = cpu_arm_init("pxa255"); 2185 if (s->cpu == NULL) { 2186 fprintf(stderr, "Unable to find CPU definition\n"); 2187 exit(1); 2188 } 2189 s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0]; 2190 2191 /* SDRAM & Internal Memory Storage */ 2192 memory_region_init_ram(&s->sdram, NULL, "pxa255.sdram", sdram_size); 2193 vmstate_register_ram_global(&s->sdram); 2194 memory_region_add_subregion(address_space, PXA2XX_SDRAM_BASE, &s->sdram); 2195 memory_region_init_ram(&s->internal, NULL, "pxa255.internal", 2196 PXA2XX_INTERNAL_SIZE); 2197 vmstate_register_ram_global(&s->internal); 2198 memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE, 2199 &s->internal); 2200 2201 s->pic = pxa2xx_pic_init(0x40d00000, s->cpu); 2202 2203 s->dma = pxa255_dma_init(0x40000000, 2204 qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA)); 2205 2206 sysbus_create_varargs("pxa25x-timer", 0x40a00000, 2207 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0), 2208 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1), 2209 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2), 2210 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3), 2211 NULL); 2212 2213 s->gpio = pxa2xx_gpio_init(0x40e00000, s->cpu, s->pic, 85); 2214 2215 dinfo = drive_get(IF_SD, 0, 0); 2216 if (!dinfo) { 2217 fprintf(stderr, "qemu: missing SecureDigital device\n"); 2218 exit(1); 2219 } 2220 s->mmc = pxa2xx_mmci_init(address_space, 0x41100000, dinfo->bdrv, 2221 qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC), 2222 qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI), 2223 qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI)); 2224 2225 for (i = 0; pxa255_serial[i].io_base; i++) { 2226 if (serial_hds[i]) { 2227 serial_mm_init(address_space, pxa255_serial[i].io_base, 2, 2228 qdev_get_gpio_in(s->pic, pxa255_serial[i].irqn), 2229 14745600 / 16, serial_hds[i], 2230 DEVICE_NATIVE_ENDIAN); 2231 } else { 2232 break; 2233 } 2234 } 2235 if (serial_hds[i]) 2236 s->fir = pxa2xx_fir_init(address_space, 0x40800000, 2237 qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP), 2238 qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP), 2239 qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP), 2240 serial_hds[i]); 2241 2242 s->lcd = pxa2xx_lcdc_init(address_space, 0x44000000, 2243 qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD)); 2244 2245 s->cm_base = 0x41300000; 2246 s->cm_regs[CCCR >> 2] = 0x02000210; /* 416.0 MHz */ 2247 s->clkcfg = 0x00000009; /* Turbo mode active */ 2248 memory_region_init_io(&s->cm_iomem, NULL, &pxa2xx_cm_ops, s, "pxa2xx-cm", 0x1000); 2249 memory_region_add_subregion(address_space, s->cm_base, &s->cm_iomem); 2250 vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s); 2251 2252 pxa2xx_setup_cp14(s); 2253 2254 s->mm_base = 0x48000000; 2255 s->mm_regs[MDMRS >> 2] = 0x00020002; 2256 s->mm_regs[MDREFR >> 2] = 0x03ca4000; 2257 s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */ 2258 memory_region_init_io(&s->mm_iomem, NULL, &pxa2xx_mm_ops, s, "pxa2xx-mm", 0x1000); 2259 memory_region_add_subregion(address_space, s->mm_base, &s->mm_iomem); 2260 vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s); 2261 2262 s->pm_base = 0x40f00000; 2263 memory_region_init_io(&s->pm_iomem, NULL, &pxa2xx_pm_ops, s, "pxa2xx-pm", 0x100); 2264 memory_region_add_subregion(address_space, s->pm_base, &s->pm_iomem); 2265 vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s); 2266 2267 for (i = 0; pxa255_ssp[i].io_base; i ++); 2268 s->ssp = (SSIBus **)g_malloc0(sizeof(SSIBus *) * i); 2269 for (i = 0; pxa255_ssp[i].io_base; i ++) { 2270 DeviceState *dev; 2271 dev = sysbus_create_simple(TYPE_PXA2XX_SSP, pxa255_ssp[i].io_base, 2272 qdev_get_gpio_in(s->pic, pxa255_ssp[i].irqn)); 2273 s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi"); 2274 } 2275 2276 if (usb_enabled(false)) { 2277 sysbus_create_simple("sysbus-ohci", 0x4c000000, 2278 qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1)); 2279 } 2280 2281 s->pcmcia[0] = pxa2xx_pcmcia_init(address_space, 0x20000000); 2282 s->pcmcia[1] = pxa2xx_pcmcia_init(address_space, 0x30000000); 2283 2284 sysbus_create_simple(TYPE_PXA2XX_RTC, 0x40900000, 2285 qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM)); 2286 2287 s->i2c[0] = pxa2xx_i2c_init(0x40301600, 2288 qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff); 2289 s->i2c[1] = pxa2xx_i2c_init(0x40f00100, 2290 qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff); 2291 2292 s->i2s = pxa2xx_i2s_init(address_space, 0x40400000, 2293 qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S), 2294 qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S), 2295 qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S)); 2296 2297 /* GPIO1 resets the processor */ 2298 /* The handler can be overridden by board-specific code */ 2299 qdev_connect_gpio_out(s->gpio, 1, s->reset); 2300 return s; 2301 } 2302 2303 static void pxa2xx_ssp_class_init(ObjectClass *klass, void *data) 2304 { 2305 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass); 2306 2307 sdc->init = pxa2xx_ssp_init; 2308 } 2309 2310 static const TypeInfo pxa2xx_ssp_info = { 2311 .name = TYPE_PXA2XX_SSP, 2312 .parent = TYPE_SYS_BUS_DEVICE, 2313 .instance_size = sizeof(PXA2xxSSPState), 2314 .class_init = pxa2xx_ssp_class_init, 2315 }; 2316 2317 static void pxa2xx_register_types(void) 2318 { 2319 type_register_static(&pxa2xx_i2c_slave_info); 2320 type_register_static(&pxa2xx_ssp_info); 2321 type_register_static(&pxa2xx_i2c_info); 2322 type_register_static(&pxa2xx_rtc_sysbus_info); 2323 } 2324 2325 type_init(pxa2xx_register_types) 2326