xref: /openbmc/qemu/hw/arm/pxa2xx.c (revision 5c570902)
1 /*
2  * Intel XScale PXA255/270 processor support.
3  *
4  * Copyright (c) 2006 Openedhand Ltd.
5  * Written by Andrzej Zaborowski <balrog@zabor.org>
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "hw/sysbus.h"
11 #include "hw/arm/pxa.h"
12 #include "sysemu/sysemu.h"
13 #include "hw/char/serial.h"
14 #include "hw/i2c/i2c.h"
15 #include "hw/ssi.h"
16 #include "sysemu/char.h"
17 #include "sysemu/blockdev.h"
18 
19 static struct {
20     hwaddr io_base;
21     int irqn;
22 } pxa255_serial[] = {
23     { 0x40100000, PXA2XX_PIC_FFUART },
24     { 0x40200000, PXA2XX_PIC_BTUART },
25     { 0x40700000, PXA2XX_PIC_STUART },
26     { 0x41600000, PXA25X_PIC_HWUART },
27     { 0, 0 }
28 }, pxa270_serial[] = {
29     { 0x40100000, PXA2XX_PIC_FFUART },
30     { 0x40200000, PXA2XX_PIC_BTUART },
31     { 0x40700000, PXA2XX_PIC_STUART },
32     { 0, 0 }
33 };
34 
35 typedef struct PXASSPDef {
36     hwaddr io_base;
37     int irqn;
38 } PXASSPDef;
39 
40 #if 0
41 static PXASSPDef pxa250_ssp[] = {
42     { 0x41000000, PXA2XX_PIC_SSP },
43     { 0, 0 }
44 };
45 #endif
46 
47 static PXASSPDef pxa255_ssp[] = {
48     { 0x41000000, PXA2XX_PIC_SSP },
49     { 0x41400000, PXA25X_PIC_NSSP },
50     { 0, 0 }
51 };
52 
53 #if 0
54 static PXASSPDef pxa26x_ssp[] = {
55     { 0x41000000, PXA2XX_PIC_SSP },
56     { 0x41400000, PXA25X_PIC_NSSP },
57     { 0x41500000, PXA26X_PIC_ASSP },
58     { 0, 0 }
59 };
60 #endif
61 
62 static PXASSPDef pxa27x_ssp[] = {
63     { 0x41000000, PXA2XX_PIC_SSP },
64     { 0x41700000, PXA27X_PIC_SSP2 },
65     { 0x41900000, PXA2XX_PIC_SSP3 },
66     { 0, 0 }
67 };
68 
69 #define PMCR	0x00	/* Power Manager Control register */
70 #define PSSR	0x04	/* Power Manager Sleep Status register */
71 #define PSPR	0x08	/* Power Manager Scratch-Pad register */
72 #define PWER	0x0c	/* Power Manager Wake-Up Enable register */
73 #define PRER	0x10	/* Power Manager Rising-Edge Detect Enable register */
74 #define PFER	0x14	/* Power Manager Falling-Edge Detect Enable register */
75 #define PEDR	0x18	/* Power Manager Edge-Detect Status register */
76 #define PCFR	0x1c	/* Power Manager General Configuration register */
77 #define PGSR0	0x20	/* Power Manager GPIO Sleep-State register 0 */
78 #define PGSR1	0x24	/* Power Manager GPIO Sleep-State register 1 */
79 #define PGSR2	0x28	/* Power Manager GPIO Sleep-State register 2 */
80 #define PGSR3	0x2c	/* Power Manager GPIO Sleep-State register 3 */
81 #define RCSR	0x30	/* Reset Controller Status register */
82 #define PSLR	0x34	/* Power Manager Sleep Configuration register */
83 #define PTSR	0x38	/* Power Manager Standby Configuration register */
84 #define PVCR	0x40	/* Power Manager Voltage Change Control register */
85 #define PUCR	0x4c	/* Power Manager USIM Card Control/Status register */
86 #define PKWR	0x50	/* Power Manager Keyboard Wake-Up Enable register */
87 #define PKSR	0x54	/* Power Manager Keyboard Level-Detect Status */
88 #define PCMD0	0x80	/* Power Manager I2C Command register File 0 */
89 #define PCMD31	0xfc	/* Power Manager I2C Command register File 31 */
90 
91 static uint64_t pxa2xx_pm_read(void *opaque, hwaddr addr,
92                                unsigned size)
93 {
94     PXA2xxState *s = (PXA2xxState *) opaque;
95 
96     switch (addr) {
97     case PMCR ... PCMD31:
98         if (addr & 3)
99             goto fail;
100 
101         return s->pm_regs[addr >> 2];
102     default:
103     fail:
104         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
105         break;
106     }
107     return 0;
108 }
109 
110 static void pxa2xx_pm_write(void *opaque, hwaddr addr,
111                             uint64_t value, unsigned size)
112 {
113     PXA2xxState *s = (PXA2xxState *) opaque;
114 
115     switch (addr) {
116     case PMCR:
117         /* Clear the write-one-to-clear bits... */
118         s->pm_regs[addr >> 2] &= ~(value & 0x2a);
119         /* ...and set the plain r/w bits */
120         s->pm_regs[addr >> 2] &= ~0x15;
121         s->pm_regs[addr >> 2] |= value & 0x15;
122         break;
123 
124     case PSSR:	/* Read-clean registers */
125     case RCSR:
126     case PKSR:
127         s->pm_regs[addr >> 2] &= ~value;
128         break;
129 
130     default:	/* Read-write registers */
131         if (!(addr & 3)) {
132             s->pm_regs[addr >> 2] = value;
133             break;
134         }
135 
136         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
137         break;
138     }
139 }
140 
141 static const MemoryRegionOps pxa2xx_pm_ops = {
142     .read = pxa2xx_pm_read,
143     .write = pxa2xx_pm_write,
144     .endianness = DEVICE_NATIVE_ENDIAN,
145 };
146 
147 static const VMStateDescription vmstate_pxa2xx_pm = {
148     .name = "pxa2xx_pm",
149     .version_id = 0,
150     .minimum_version_id = 0,
151     .minimum_version_id_old = 0,
152     .fields      = (VMStateField[]) {
153         VMSTATE_UINT32_ARRAY(pm_regs, PXA2xxState, 0x40),
154         VMSTATE_END_OF_LIST()
155     }
156 };
157 
158 #define CCCR	0x00	/* Core Clock Configuration register */
159 #define CKEN	0x04	/* Clock Enable register */
160 #define OSCC	0x08	/* Oscillator Configuration register */
161 #define CCSR	0x0c	/* Core Clock Status register */
162 
163 static uint64_t pxa2xx_cm_read(void *opaque, hwaddr addr,
164                                unsigned size)
165 {
166     PXA2xxState *s = (PXA2xxState *) opaque;
167 
168     switch (addr) {
169     case CCCR:
170     case CKEN:
171     case OSCC:
172         return s->cm_regs[addr >> 2];
173 
174     case CCSR:
175         return s->cm_regs[CCCR >> 2] | (3 << 28);
176 
177     default:
178         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
179         break;
180     }
181     return 0;
182 }
183 
184 static void pxa2xx_cm_write(void *opaque, hwaddr addr,
185                             uint64_t value, unsigned size)
186 {
187     PXA2xxState *s = (PXA2xxState *) opaque;
188 
189     switch (addr) {
190     case CCCR:
191     case CKEN:
192         s->cm_regs[addr >> 2] = value;
193         break;
194 
195     case OSCC:
196         s->cm_regs[addr >> 2] &= ~0x6c;
197         s->cm_regs[addr >> 2] |= value & 0x6e;
198         if ((value >> 1) & 1)			/* OON */
199             s->cm_regs[addr >> 2] |= 1 << 0;	/* Oscillator is now stable */
200         break;
201 
202     default:
203         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
204         break;
205     }
206 }
207 
208 static const MemoryRegionOps pxa2xx_cm_ops = {
209     .read = pxa2xx_cm_read,
210     .write = pxa2xx_cm_write,
211     .endianness = DEVICE_NATIVE_ENDIAN,
212 };
213 
214 static const VMStateDescription vmstate_pxa2xx_cm = {
215     .name = "pxa2xx_cm",
216     .version_id = 0,
217     .minimum_version_id = 0,
218     .minimum_version_id_old = 0,
219     .fields      = (VMStateField[]) {
220         VMSTATE_UINT32_ARRAY(cm_regs, PXA2xxState, 4),
221         VMSTATE_UINT32(clkcfg, PXA2xxState),
222         VMSTATE_UINT32(pmnc, PXA2xxState),
223         VMSTATE_END_OF_LIST()
224     }
225 };
226 
227 static int pxa2xx_clkcfg_read(CPUARMState *env, const ARMCPRegInfo *ri,
228                               uint64_t *value)
229 {
230     PXA2xxState *s = (PXA2xxState *)ri->opaque;
231     *value = s->clkcfg;
232     return 0;
233 }
234 
235 static int pxa2xx_clkcfg_write(CPUARMState *env, const ARMCPRegInfo *ri,
236                                uint64_t value)
237 {
238     PXA2xxState *s = (PXA2xxState *)ri->opaque;
239     s->clkcfg = value & 0xf;
240     if (value & 2) {
241         printf("%s: CPU frequency change attempt\n", __func__);
242     }
243     return 0;
244 }
245 
246 static int pxa2xx_pwrmode_write(CPUARMState *env, const ARMCPRegInfo *ri,
247                                 uint64_t value)
248 {
249     PXA2xxState *s = (PXA2xxState *)ri->opaque;
250     static const char *pwrmode[8] = {
251         "Normal", "Idle", "Deep-idle", "Standby",
252         "Sleep", "reserved (!)", "reserved (!)", "Deep-sleep",
253     };
254 
255     if (value & 8) {
256         printf("%s: CPU voltage change attempt\n", __func__);
257     }
258     switch (value & 7) {
259     case 0:
260         /* Do nothing */
261         break;
262 
263     case 1:
264         /* Idle */
265         if (!(s->cm_regs[CCCR >> 2] & (1 << 31))) { /* CPDIS */
266             cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
267             break;
268         }
269         /* Fall through.  */
270 
271     case 2:
272         /* Deep-Idle */
273         cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
274         s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
275         goto message;
276 
277     case 3:
278         s->cpu->env.uncached_cpsr =
279             ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
280         s->cpu->env.cp15.c1_sys = 0;
281         s->cpu->env.cp15.c1_coproc = 0;
282         s->cpu->env.cp15.c2_base0 = 0;
283         s->cpu->env.cp15.c3 = 0;
284         s->pm_regs[PSSR >> 2] |= 0x8; /* Set STS */
285         s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
286 
287         /*
288          * The scratch-pad register is almost universally used
289          * for storing the return address on suspend.  For the
290          * lack of a resuming bootloader, perform a jump
291          * directly to that address.
292          */
293         memset(s->cpu->env.regs, 0, 4 * 15);
294         s->cpu->env.regs[15] = s->pm_regs[PSPR >> 2];
295 
296 #if 0
297         buffer = 0xe59ff000; /* ldr     pc, [pc, #0] */
298         cpu_physical_memory_write(0, &buffer, 4);
299         buffer = s->pm_regs[PSPR >> 2];
300         cpu_physical_memory_write(8, &buffer, 4);
301 #endif
302 
303         /* Suspend */
304         cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT);
305 
306         goto message;
307 
308     default:
309     message:
310         printf("%s: machine entered %s mode\n", __func__,
311                pwrmode[value & 7]);
312     }
313 
314     return 0;
315 }
316 
317 static int pxa2xx_cppmnc_read(CPUARMState *env, const ARMCPRegInfo *ri,
318                               uint64_t *value)
319 {
320     PXA2xxState *s = (PXA2xxState *)ri->opaque;
321     *value = s->pmnc;
322     return 0;
323 }
324 
325 static int pxa2xx_cppmnc_write(CPUARMState *env, const ARMCPRegInfo *ri,
326                                uint64_t value)
327 {
328     PXA2xxState *s = (PXA2xxState *)ri->opaque;
329     s->pmnc = value;
330     return 0;
331 }
332 
333 static int pxa2xx_cpccnt_read(CPUARMState *env, const ARMCPRegInfo *ri,
334                               uint64_t *value)
335 {
336     PXA2xxState *s = (PXA2xxState *)ri->opaque;
337     if (s->pmnc & 1) {
338         *value = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
339     } else {
340         *value = 0;
341     }
342     return 0;
343 }
344 
345 static const ARMCPRegInfo pxa_cp_reginfo[] = {
346     /* cp14 crm==1: perf registers */
347     { .name = "CPPMNC", .cp = 14, .crn = 0, .crm = 1, .opc1 = 0, .opc2 = 0,
348       .access = PL1_RW,
349       .readfn = pxa2xx_cppmnc_read, .writefn = pxa2xx_cppmnc_write },
350     { .name = "CPCCNT", .cp = 14, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
351       .access = PL1_RW,
352       .readfn = pxa2xx_cpccnt_read, .writefn = arm_cp_write_ignore },
353     { .name = "CPINTEN", .cp = 14, .crn = 4, .crm = 1, .opc1 = 0, .opc2 = 0,
354       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
355     { .name = "CPFLAG", .cp = 14, .crn = 5, .crm = 1, .opc1 = 0, .opc2 = 0,
356       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
357     { .name = "CPEVTSEL", .cp = 14, .crn = 8, .crm = 1, .opc1 = 0, .opc2 = 0,
358       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
359     /* cp14 crm==2: performance count registers */
360     { .name = "CPPMN0", .cp = 14, .crn = 0, .crm = 2, .opc1 = 0, .opc2 = 0,
361       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
362     { .name = "CPPMN1", .cp = 14, .crn = 1, .crm = 2, .opc1 = 0, .opc2 = 0,
363       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
364     { .name = "CPPMN2", .cp = 14, .crn = 2, .crm = 2, .opc1 = 0, .opc2 = 0,
365       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
366     { .name = "CPPMN3", .cp = 14, .crn = 2, .crm = 3, .opc1 = 0, .opc2 = 0,
367       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
368     /* cp14 crn==6: CLKCFG */
369     { .name = "CLKCFG", .cp = 14, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
370       .access = PL1_RW,
371       .readfn = pxa2xx_clkcfg_read, .writefn = pxa2xx_clkcfg_write },
372     /* cp14 crn==7: PWRMODE */
373     { .name = "PWRMODE", .cp = 14, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 0,
374       .access = PL1_RW,
375       .readfn = arm_cp_read_zero, .writefn = pxa2xx_pwrmode_write },
376     REGINFO_SENTINEL
377 };
378 
379 static void pxa2xx_setup_cp14(PXA2xxState *s)
380 {
381     define_arm_cp_regs_with_opaque(s->cpu, pxa_cp_reginfo, s);
382 }
383 
384 #define MDCNFG		0x00	/* SDRAM Configuration register */
385 #define MDREFR		0x04	/* SDRAM Refresh Control register */
386 #define MSC0		0x08	/* Static Memory Control register 0 */
387 #define MSC1		0x0c	/* Static Memory Control register 1 */
388 #define MSC2		0x10	/* Static Memory Control register 2 */
389 #define MECR		0x14	/* Expansion Memory Bus Config register */
390 #define SXCNFG		0x1c	/* Synchronous Static Memory Config register */
391 #define MCMEM0		0x28	/* PC Card Memory Socket 0 Timing register */
392 #define MCMEM1		0x2c	/* PC Card Memory Socket 1 Timing register */
393 #define MCATT0		0x30	/* PC Card Attribute Socket 0 register */
394 #define MCATT1		0x34	/* PC Card Attribute Socket 1 register */
395 #define MCIO0		0x38	/* PC Card I/O Socket 0 Timing register */
396 #define MCIO1		0x3c	/* PC Card I/O Socket 1 Timing register */
397 #define MDMRS		0x40	/* SDRAM Mode Register Set Config register */
398 #define BOOT_DEF	0x44	/* Boot-time Default Configuration register */
399 #define ARB_CNTL	0x48	/* Arbiter Control register */
400 #define BSCNTR0		0x4c	/* Memory Buffer Strength Control register 0 */
401 #define BSCNTR1		0x50	/* Memory Buffer Strength Control register 1 */
402 #define LCDBSCNTR	0x54	/* LCD Buffer Strength Control register */
403 #define MDMRSLP		0x58	/* Low Power SDRAM Mode Set Config register */
404 #define BSCNTR2		0x5c	/* Memory Buffer Strength Control register 2 */
405 #define BSCNTR3		0x60	/* Memory Buffer Strength Control register 3 */
406 #define SA1110		0x64	/* SA-1110 Memory Compatibility register */
407 
408 static uint64_t pxa2xx_mm_read(void *opaque, hwaddr addr,
409                                unsigned size)
410 {
411     PXA2xxState *s = (PXA2xxState *) opaque;
412 
413     switch (addr) {
414     case MDCNFG ... SA1110:
415         if ((addr & 3) == 0)
416             return s->mm_regs[addr >> 2];
417 
418     default:
419         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
420         break;
421     }
422     return 0;
423 }
424 
425 static void pxa2xx_mm_write(void *opaque, hwaddr addr,
426                             uint64_t value, unsigned size)
427 {
428     PXA2xxState *s = (PXA2xxState *) opaque;
429 
430     switch (addr) {
431     case MDCNFG ... SA1110:
432         if ((addr & 3) == 0) {
433             s->mm_regs[addr >> 2] = value;
434             break;
435         }
436 
437     default:
438         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
439         break;
440     }
441 }
442 
443 static const MemoryRegionOps pxa2xx_mm_ops = {
444     .read = pxa2xx_mm_read,
445     .write = pxa2xx_mm_write,
446     .endianness = DEVICE_NATIVE_ENDIAN,
447 };
448 
449 static const VMStateDescription vmstate_pxa2xx_mm = {
450     .name = "pxa2xx_mm",
451     .version_id = 0,
452     .minimum_version_id = 0,
453     .minimum_version_id_old = 0,
454     .fields      = (VMStateField[]) {
455         VMSTATE_UINT32_ARRAY(mm_regs, PXA2xxState, 0x1a),
456         VMSTATE_END_OF_LIST()
457     }
458 };
459 
460 #define TYPE_PXA2XX_SSP "pxa2xx-ssp"
461 #define PXA2XX_SSP(obj) \
462     OBJECT_CHECK(PXA2xxSSPState, (obj), TYPE_PXA2XX_SSP)
463 
464 /* Synchronous Serial Ports */
465 typedef struct {
466     /*< private >*/
467     SysBusDevice parent_obj;
468     /*< public >*/
469 
470     MemoryRegion iomem;
471     qemu_irq irq;
472     int enable;
473     SSIBus *bus;
474 
475     uint32_t sscr[2];
476     uint32_t sspsp;
477     uint32_t ssto;
478     uint32_t ssitr;
479     uint32_t sssr;
480     uint8_t sstsa;
481     uint8_t ssrsa;
482     uint8_t ssacd;
483 
484     uint32_t rx_fifo[16];
485     int rx_level;
486     int rx_start;
487 } PXA2xxSSPState;
488 
489 #define SSCR0	0x00	/* SSP Control register 0 */
490 #define SSCR1	0x04	/* SSP Control register 1 */
491 #define SSSR	0x08	/* SSP Status register */
492 #define SSITR	0x0c	/* SSP Interrupt Test register */
493 #define SSDR	0x10	/* SSP Data register */
494 #define SSTO	0x28	/* SSP Time-Out register */
495 #define SSPSP	0x2c	/* SSP Programmable Serial Protocol register */
496 #define SSTSA	0x30	/* SSP TX Time Slot Active register */
497 #define SSRSA	0x34	/* SSP RX Time Slot Active register */
498 #define SSTSS	0x38	/* SSP Time Slot Status register */
499 #define SSACD	0x3c	/* SSP Audio Clock Divider register */
500 
501 /* Bitfields for above registers */
502 #define SSCR0_SPI(x)	(((x) & 0x30) == 0x00)
503 #define SSCR0_SSP(x)	(((x) & 0x30) == 0x10)
504 #define SSCR0_UWIRE(x)	(((x) & 0x30) == 0x20)
505 #define SSCR0_PSP(x)	(((x) & 0x30) == 0x30)
506 #define SSCR0_SSE	(1 << 7)
507 #define SSCR0_RIM	(1 << 22)
508 #define SSCR0_TIM	(1 << 23)
509 #define SSCR0_MOD	(1 << 31)
510 #define SSCR0_DSS(x)	(((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1)
511 #define SSCR1_RIE	(1 << 0)
512 #define SSCR1_TIE	(1 << 1)
513 #define SSCR1_LBM	(1 << 2)
514 #define SSCR1_MWDS	(1 << 5)
515 #define SSCR1_TFT(x)	((((x) >> 6) & 0xf) + 1)
516 #define SSCR1_RFT(x)	((((x) >> 10) & 0xf) + 1)
517 #define SSCR1_EFWR	(1 << 14)
518 #define SSCR1_PINTE	(1 << 18)
519 #define SSCR1_TINTE	(1 << 19)
520 #define SSCR1_RSRE	(1 << 20)
521 #define SSCR1_TSRE	(1 << 21)
522 #define SSCR1_EBCEI	(1 << 29)
523 #define SSITR_INT	(7 << 5)
524 #define SSSR_TNF	(1 << 2)
525 #define SSSR_RNE	(1 << 3)
526 #define SSSR_TFS	(1 << 5)
527 #define SSSR_RFS	(1 << 6)
528 #define SSSR_ROR	(1 << 7)
529 #define SSSR_PINT	(1 << 18)
530 #define SSSR_TINT	(1 << 19)
531 #define SSSR_EOC	(1 << 20)
532 #define SSSR_TUR	(1 << 21)
533 #define SSSR_BCE	(1 << 23)
534 #define SSSR_RW		0x00bc0080
535 
536 static void pxa2xx_ssp_int_update(PXA2xxSSPState *s)
537 {
538     int level = 0;
539 
540     level |= s->ssitr & SSITR_INT;
541     level |= (s->sssr & SSSR_BCE)  &&  (s->sscr[1] & SSCR1_EBCEI);
542     level |= (s->sssr & SSSR_TUR)  && !(s->sscr[0] & SSCR0_TIM);
543     level |= (s->sssr & SSSR_EOC)  &&  (s->sssr & (SSSR_TINT | SSSR_PINT));
544     level |= (s->sssr & SSSR_TINT) &&  (s->sscr[1] & SSCR1_TINTE);
545     level |= (s->sssr & SSSR_PINT) &&  (s->sscr[1] & SSCR1_PINTE);
546     level |= (s->sssr & SSSR_ROR)  && !(s->sscr[0] & SSCR0_RIM);
547     level |= (s->sssr & SSSR_RFS)  &&  (s->sscr[1] & SSCR1_RIE);
548     level |= (s->sssr & SSSR_TFS)  &&  (s->sscr[1] & SSCR1_TIE);
549     qemu_set_irq(s->irq, !!level);
550 }
551 
552 static void pxa2xx_ssp_fifo_update(PXA2xxSSPState *s)
553 {
554     s->sssr &= ~(0xf << 12);	/* Clear RFL */
555     s->sssr &= ~(0xf << 8);	/* Clear TFL */
556     s->sssr &= ~SSSR_TFS;
557     s->sssr &= ~SSSR_TNF;
558     if (s->enable) {
559         s->sssr |= ((s->rx_level - 1) & 0xf) << 12;
560         if (s->rx_level >= SSCR1_RFT(s->sscr[1]))
561             s->sssr |= SSSR_RFS;
562         else
563             s->sssr &= ~SSSR_RFS;
564         if (s->rx_level)
565             s->sssr |= SSSR_RNE;
566         else
567             s->sssr &= ~SSSR_RNE;
568         /* TX FIFO is never filled, so it is always in underrun
569            condition if SSP is enabled */
570         s->sssr |= SSSR_TFS;
571         s->sssr |= SSSR_TNF;
572     }
573 
574     pxa2xx_ssp_int_update(s);
575 }
576 
577 static uint64_t pxa2xx_ssp_read(void *opaque, hwaddr addr,
578                                 unsigned size)
579 {
580     PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
581     uint32_t retval;
582 
583     switch (addr) {
584     case SSCR0:
585         return s->sscr[0];
586     case SSCR1:
587         return s->sscr[1];
588     case SSPSP:
589         return s->sspsp;
590     case SSTO:
591         return s->ssto;
592     case SSITR:
593         return s->ssitr;
594     case SSSR:
595         return s->sssr | s->ssitr;
596     case SSDR:
597         if (!s->enable)
598             return 0xffffffff;
599         if (s->rx_level < 1) {
600             printf("%s: SSP Rx Underrun\n", __FUNCTION__);
601             return 0xffffffff;
602         }
603         s->rx_level --;
604         retval = s->rx_fifo[s->rx_start ++];
605         s->rx_start &= 0xf;
606         pxa2xx_ssp_fifo_update(s);
607         return retval;
608     case SSTSA:
609         return s->sstsa;
610     case SSRSA:
611         return s->ssrsa;
612     case SSTSS:
613         return 0;
614     case SSACD:
615         return s->ssacd;
616     default:
617         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
618         break;
619     }
620     return 0;
621 }
622 
623 static void pxa2xx_ssp_write(void *opaque, hwaddr addr,
624                              uint64_t value64, unsigned size)
625 {
626     PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
627     uint32_t value = value64;
628 
629     switch (addr) {
630     case SSCR0:
631         s->sscr[0] = value & 0xc7ffffff;
632         s->enable = value & SSCR0_SSE;
633         if (value & SSCR0_MOD)
634             printf("%s: Attempt to use network mode\n", __FUNCTION__);
635         if (s->enable && SSCR0_DSS(value) < 4)
636             printf("%s: Wrong data size: %i bits\n", __FUNCTION__,
637                             SSCR0_DSS(value));
638         if (!(value & SSCR0_SSE)) {
639             s->sssr = 0;
640             s->ssitr = 0;
641             s->rx_level = 0;
642         }
643         pxa2xx_ssp_fifo_update(s);
644         break;
645 
646     case SSCR1:
647         s->sscr[1] = value;
648         if (value & (SSCR1_LBM | SSCR1_EFWR))
649             printf("%s: Attempt to use SSP test mode\n", __FUNCTION__);
650         pxa2xx_ssp_fifo_update(s);
651         break;
652 
653     case SSPSP:
654         s->sspsp = value;
655         break;
656 
657     case SSTO:
658         s->ssto = value;
659         break;
660 
661     case SSITR:
662         s->ssitr = value & SSITR_INT;
663         pxa2xx_ssp_int_update(s);
664         break;
665 
666     case SSSR:
667         s->sssr &= ~(value & SSSR_RW);
668         pxa2xx_ssp_int_update(s);
669         break;
670 
671     case SSDR:
672         if (SSCR0_UWIRE(s->sscr[0])) {
673             if (s->sscr[1] & SSCR1_MWDS)
674                 value &= 0xffff;
675             else
676                 value &= 0xff;
677         } else
678             /* Note how 32bits overflow does no harm here */
679             value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
680 
681         /* Data goes from here to the Tx FIFO and is shifted out from
682          * there directly to the slave, no need to buffer it.
683          */
684         if (s->enable) {
685             uint32_t readval;
686             readval = ssi_transfer(s->bus, value);
687             if (s->rx_level < 0x10) {
688                 s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = readval;
689             } else {
690                 s->sssr |= SSSR_ROR;
691             }
692         }
693         pxa2xx_ssp_fifo_update(s);
694         break;
695 
696     case SSTSA:
697         s->sstsa = value;
698         break;
699 
700     case SSRSA:
701         s->ssrsa = value;
702         break;
703 
704     case SSACD:
705         s->ssacd = value;
706         break;
707 
708     default:
709         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
710         break;
711     }
712 }
713 
714 static const MemoryRegionOps pxa2xx_ssp_ops = {
715     .read = pxa2xx_ssp_read,
716     .write = pxa2xx_ssp_write,
717     .endianness = DEVICE_NATIVE_ENDIAN,
718 };
719 
720 static void pxa2xx_ssp_save(QEMUFile *f, void *opaque)
721 {
722     PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
723     int i;
724 
725     qemu_put_be32(f, s->enable);
726 
727     qemu_put_be32s(f, &s->sscr[0]);
728     qemu_put_be32s(f, &s->sscr[1]);
729     qemu_put_be32s(f, &s->sspsp);
730     qemu_put_be32s(f, &s->ssto);
731     qemu_put_be32s(f, &s->ssitr);
732     qemu_put_be32s(f, &s->sssr);
733     qemu_put_8s(f, &s->sstsa);
734     qemu_put_8s(f, &s->ssrsa);
735     qemu_put_8s(f, &s->ssacd);
736 
737     qemu_put_byte(f, s->rx_level);
738     for (i = 0; i < s->rx_level; i ++)
739         qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 0xf]);
740 }
741 
742 static int pxa2xx_ssp_load(QEMUFile *f, void *opaque, int version_id)
743 {
744     PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
745     int i;
746 
747     s->enable = qemu_get_be32(f);
748 
749     qemu_get_be32s(f, &s->sscr[0]);
750     qemu_get_be32s(f, &s->sscr[1]);
751     qemu_get_be32s(f, &s->sspsp);
752     qemu_get_be32s(f, &s->ssto);
753     qemu_get_be32s(f, &s->ssitr);
754     qemu_get_be32s(f, &s->sssr);
755     qemu_get_8s(f, &s->sstsa);
756     qemu_get_8s(f, &s->ssrsa);
757     qemu_get_8s(f, &s->ssacd);
758 
759     s->rx_level = qemu_get_byte(f);
760     s->rx_start = 0;
761     for (i = 0; i < s->rx_level; i ++)
762         s->rx_fifo[i] = qemu_get_byte(f);
763 
764     return 0;
765 }
766 
767 static int pxa2xx_ssp_init(SysBusDevice *sbd)
768 {
769     DeviceState *dev = DEVICE(sbd);
770     PXA2xxSSPState *s = PXA2XX_SSP(dev);
771 
772     sysbus_init_irq(sbd, &s->irq);
773 
774     memory_region_init_io(&s->iomem, OBJECT(s), &pxa2xx_ssp_ops, s,
775                           "pxa2xx-ssp", 0x1000);
776     sysbus_init_mmio(sbd, &s->iomem);
777     register_savevm(dev, "pxa2xx_ssp", -1, 0,
778                     pxa2xx_ssp_save, pxa2xx_ssp_load, s);
779 
780     s->bus = ssi_create_bus(dev, "ssi");
781     return 0;
782 }
783 
784 /* Real-Time Clock */
785 #define RCNR		0x00	/* RTC Counter register */
786 #define RTAR		0x04	/* RTC Alarm register */
787 #define RTSR		0x08	/* RTC Status register */
788 #define RTTR		0x0c	/* RTC Timer Trim register */
789 #define RDCR		0x10	/* RTC Day Counter register */
790 #define RYCR		0x14	/* RTC Year Counter register */
791 #define RDAR1		0x18	/* RTC Wristwatch Day Alarm register 1 */
792 #define RYAR1		0x1c	/* RTC Wristwatch Year Alarm register 1 */
793 #define RDAR2		0x20	/* RTC Wristwatch Day Alarm register 2 */
794 #define RYAR2		0x24	/* RTC Wristwatch Year Alarm register 2 */
795 #define SWCR		0x28	/* RTC Stopwatch Counter register */
796 #define SWAR1		0x2c	/* RTC Stopwatch Alarm register 1 */
797 #define SWAR2		0x30	/* RTC Stopwatch Alarm register 2 */
798 #define RTCPICR		0x34	/* RTC Periodic Interrupt Counter register */
799 #define PIAR		0x38	/* RTC Periodic Interrupt Alarm register */
800 
801 #define TYPE_PXA2XX_RTC "pxa2xx_rtc"
802 #define PXA2XX_RTC(obj) \
803     OBJECT_CHECK(PXA2xxRTCState, (obj), TYPE_PXA2XX_RTC)
804 
805 typedef struct {
806     /*< private >*/
807     SysBusDevice parent_obj;
808     /*< public >*/
809 
810     MemoryRegion iomem;
811     uint32_t rttr;
812     uint32_t rtsr;
813     uint32_t rtar;
814     uint32_t rdar1;
815     uint32_t rdar2;
816     uint32_t ryar1;
817     uint32_t ryar2;
818     uint32_t swar1;
819     uint32_t swar2;
820     uint32_t piar;
821     uint32_t last_rcnr;
822     uint32_t last_rdcr;
823     uint32_t last_rycr;
824     uint32_t last_swcr;
825     uint32_t last_rtcpicr;
826     int64_t last_hz;
827     int64_t last_sw;
828     int64_t last_pi;
829     QEMUTimer *rtc_hz;
830     QEMUTimer *rtc_rdal1;
831     QEMUTimer *rtc_rdal2;
832     QEMUTimer *rtc_swal1;
833     QEMUTimer *rtc_swal2;
834     QEMUTimer *rtc_pi;
835     qemu_irq rtc_irq;
836 } PXA2xxRTCState;
837 
838 static inline void pxa2xx_rtc_int_update(PXA2xxRTCState *s)
839 {
840     qemu_set_irq(s->rtc_irq, !!(s->rtsr & 0x2553));
841 }
842 
843 static void pxa2xx_rtc_hzupdate(PXA2xxRTCState *s)
844 {
845     int64_t rt = qemu_clock_get_ms(rtc_clock);
846     s->last_rcnr += ((rt - s->last_hz) << 15) /
847             (1000 * ((s->rttr & 0xffff) + 1));
848     s->last_rdcr += ((rt - s->last_hz) << 15) /
849             (1000 * ((s->rttr & 0xffff) + 1));
850     s->last_hz = rt;
851 }
852 
853 static void pxa2xx_rtc_swupdate(PXA2xxRTCState *s)
854 {
855     int64_t rt = qemu_clock_get_ms(rtc_clock);
856     if (s->rtsr & (1 << 12))
857         s->last_swcr += (rt - s->last_sw) / 10;
858     s->last_sw = rt;
859 }
860 
861 static void pxa2xx_rtc_piupdate(PXA2xxRTCState *s)
862 {
863     int64_t rt = qemu_clock_get_ms(rtc_clock);
864     if (s->rtsr & (1 << 15))
865         s->last_swcr += rt - s->last_pi;
866     s->last_pi = rt;
867 }
868 
869 static inline void pxa2xx_rtc_alarm_update(PXA2xxRTCState *s,
870                 uint32_t rtsr)
871 {
872     if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0)))
873         timer_mod(s->rtc_hz, s->last_hz +
874                 (((s->rtar - s->last_rcnr) * 1000 *
875                   ((s->rttr & 0xffff) + 1)) >> 15));
876     else
877         timer_del(s->rtc_hz);
878 
879     if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4)))
880         timer_mod(s->rtc_rdal1, s->last_hz +
881                 (((s->rdar1 - s->last_rdcr) * 1000 *
882                   ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
883     else
884         timer_del(s->rtc_rdal1);
885 
886     if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6)))
887         timer_mod(s->rtc_rdal2, s->last_hz +
888                 (((s->rdar2 - s->last_rdcr) * 1000 *
889                   ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
890     else
891         timer_del(s->rtc_rdal2);
892 
893     if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8)))
894         timer_mod(s->rtc_swal1, s->last_sw +
895                         (s->swar1 - s->last_swcr) * 10); /* TODO: fixup */
896     else
897         timer_del(s->rtc_swal1);
898 
899     if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10)))
900         timer_mod(s->rtc_swal2, s->last_sw +
901                         (s->swar2 - s->last_swcr) * 10); /* TODO: fixup */
902     else
903         timer_del(s->rtc_swal2);
904 
905     if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13)))
906         timer_mod(s->rtc_pi, s->last_pi +
907                         (s->piar & 0xffff) - s->last_rtcpicr);
908     else
909         timer_del(s->rtc_pi);
910 }
911 
912 static inline void pxa2xx_rtc_hz_tick(void *opaque)
913 {
914     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
915     s->rtsr |= (1 << 0);
916     pxa2xx_rtc_alarm_update(s, s->rtsr);
917     pxa2xx_rtc_int_update(s);
918 }
919 
920 static inline void pxa2xx_rtc_rdal1_tick(void *opaque)
921 {
922     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
923     s->rtsr |= (1 << 4);
924     pxa2xx_rtc_alarm_update(s, s->rtsr);
925     pxa2xx_rtc_int_update(s);
926 }
927 
928 static inline void pxa2xx_rtc_rdal2_tick(void *opaque)
929 {
930     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
931     s->rtsr |= (1 << 6);
932     pxa2xx_rtc_alarm_update(s, s->rtsr);
933     pxa2xx_rtc_int_update(s);
934 }
935 
936 static inline void pxa2xx_rtc_swal1_tick(void *opaque)
937 {
938     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
939     s->rtsr |= (1 << 8);
940     pxa2xx_rtc_alarm_update(s, s->rtsr);
941     pxa2xx_rtc_int_update(s);
942 }
943 
944 static inline void pxa2xx_rtc_swal2_tick(void *opaque)
945 {
946     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
947     s->rtsr |= (1 << 10);
948     pxa2xx_rtc_alarm_update(s, s->rtsr);
949     pxa2xx_rtc_int_update(s);
950 }
951 
952 static inline void pxa2xx_rtc_pi_tick(void *opaque)
953 {
954     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
955     s->rtsr |= (1 << 13);
956     pxa2xx_rtc_piupdate(s);
957     s->last_rtcpicr = 0;
958     pxa2xx_rtc_alarm_update(s, s->rtsr);
959     pxa2xx_rtc_int_update(s);
960 }
961 
962 static uint64_t pxa2xx_rtc_read(void *opaque, hwaddr addr,
963                                 unsigned size)
964 {
965     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
966 
967     switch (addr) {
968     case RTTR:
969         return s->rttr;
970     case RTSR:
971         return s->rtsr;
972     case RTAR:
973         return s->rtar;
974     case RDAR1:
975         return s->rdar1;
976     case RDAR2:
977         return s->rdar2;
978     case RYAR1:
979         return s->ryar1;
980     case RYAR2:
981         return s->ryar2;
982     case SWAR1:
983         return s->swar1;
984     case SWAR2:
985         return s->swar2;
986     case PIAR:
987         return s->piar;
988     case RCNR:
989         return s->last_rcnr +
990             ((qemu_clock_get_ms(rtc_clock) - s->last_hz) << 15) /
991             (1000 * ((s->rttr & 0xffff) + 1));
992     case RDCR:
993         return s->last_rdcr +
994             ((qemu_clock_get_ms(rtc_clock) - s->last_hz) << 15) /
995             (1000 * ((s->rttr & 0xffff) + 1));
996     case RYCR:
997         return s->last_rycr;
998     case SWCR:
999         if (s->rtsr & (1 << 12))
1000             return s->last_swcr +
1001                 (qemu_clock_get_ms(rtc_clock) - s->last_sw) / 10;
1002         else
1003             return s->last_swcr;
1004     default:
1005         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1006         break;
1007     }
1008     return 0;
1009 }
1010 
1011 static void pxa2xx_rtc_write(void *opaque, hwaddr addr,
1012                              uint64_t value64, unsigned size)
1013 {
1014     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1015     uint32_t value = value64;
1016 
1017     switch (addr) {
1018     case RTTR:
1019         if (!(s->rttr & (1 << 31))) {
1020             pxa2xx_rtc_hzupdate(s);
1021             s->rttr = value;
1022             pxa2xx_rtc_alarm_update(s, s->rtsr);
1023         }
1024         break;
1025 
1026     case RTSR:
1027         if ((s->rtsr ^ value) & (1 << 15))
1028             pxa2xx_rtc_piupdate(s);
1029 
1030         if ((s->rtsr ^ value) & (1 << 12))
1031             pxa2xx_rtc_swupdate(s);
1032 
1033         if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac))
1034             pxa2xx_rtc_alarm_update(s, value);
1035 
1036         s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac));
1037         pxa2xx_rtc_int_update(s);
1038         break;
1039 
1040     case RTAR:
1041         s->rtar = value;
1042         pxa2xx_rtc_alarm_update(s, s->rtsr);
1043         break;
1044 
1045     case RDAR1:
1046         s->rdar1 = value;
1047         pxa2xx_rtc_alarm_update(s, s->rtsr);
1048         break;
1049 
1050     case RDAR2:
1051         s->rdar2 = value;
1052         pxa2xx_rtc_alarm_update(s, s->rtsr);
1053         break;
1054 
1055     case RYAR1:
1056         s->ryar1 = value;
1057         pxa2xx_rtc_alarm_update(s, s->rtsr);
1058         break;
1059 
1060     case RYAR2:
1061         s->ryar2 = value;
1062         pxa2xx_rtc_alarm_update(s, s->rtsr);
1063         break;
1064 
1065     case SWAR1:
1066         pxa2xx_rtc_swupdate(s);
1067         s->swar1 = value;
1068         s->last_swcr = 0;
1069         pxa2xx_rtc_alarm_update(s, s->rtsr);
1070         break;
1071 
1072     case SWAR2:
1073         s->swar2 = value;
1074         pxa2xx_rtc_alarm_update(s, s->rtsr);
1075         break;
1076 
1077     case PIAR:
1078         s->piar = value;
1079         pxa2xx_rtc_alarm_update(s, s->rtsr);
1080         break;
1081 
1082     case RCNR:
1083         pxa2xx_rtc_hzupdate(s);
1084         s->last_rcnr = value;
1085         pxa2xx_rtc_alarm_update(s, s->rtsr);
1086         break;
1087 
1088     case RDCR:
1089         pxa2xx_rtc_hzupdate(s);
1090         s->last_rdcr = value;
1091         pxa2xx_rtc_alarm_update(s, s->rtsr);
1092         break;
1093 
1094     case RYCR:
1095         s->last_rycr = value;
1096         break;
1097 
1098     case SWCR:
1099         pxa2xx_rtc_swupdate(s);
1100         s->last_swcr = value;
1101         pxa2xx_rtc_alarm_update(s, s->rtsr);
1102         break;
1103 
1104     case RTCPICR:
1105         pxa2xx_rtc_piupdate(s);
1106         s->last_rtcpicr = value & 0xffff;
1107         pxa2xx_rtc_alarm_update(s, s->rtsr);
1108         break;
1109 
1110     default:
1111         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1112     }
1113 }
1114 
1115 static const MemoryRegionOps pxa2xx_rtc_ops = {
1116     .read = pxa2xx_rtc_read,
1117     .write = pxa2xx_rtc_write,
1118     .endianness = DEVICE_NATIVE_ENDIAN,
1119 };
1120 
1121 static int pxa2xx_rtc_init(SysBusDevice *dev)
1122 {
1123     PXA2xxRTCState *s = PXA2XX_RTC(dev);
1124     struct tm tm;
1125     int wom;
1126 
1127     s->rttr = 0x7fff;
1128     s->rtsr = 0;
1129 
1130     qemu_get_timedate(&tm, 0);
1131     wom = ((tm.tm_mday - 1) / 7) + 1;
1132 
1133     s->last_rcnr = (uint32_t) mktimegm(&tm);
1134     s->last_rdcr = (wom << 20) | ((tm.tm_wday + 1) << 17) |
1135             (tm.tm_hour << 12) | (tm.tm_min << 6) | tm.tm_sec;
1136     s->last_rycr = ((tm.tm_year + 1900) << 9) |
1137             ((tm.tm_mon + 1) << 5) | tm.tm_mday;
1138     s->last_swcr = (tm.tm_hour << 19) |
1139             (tm.tm_min << 13) | (tm.tm_sec << 7);
1140     s->last_rtcpicr = 0;
1141     s->last_hz = s->last_sw = s->last_pi = qemu_clock_get_ms(rtc_clock);
1142 
1143     s->rtc_hz    = timer_new_ms(rtc_clock, pxa2xx_rtc_hz_tick,    s);
1144     s->rtc_rdal1 = timer_new_ms(rtc_clock, pxa2xx_rtc_rdal1_tick, s);
1145     s->rtc_rdal2 = timer_new_ms(rtc_clock, pxa2xx_rtc_rdal2_tick, s);
1146     s->rtc_swal1 = timer_new_ms(rtc_clock, pxa2xx_rtc_swal1_tick, s);
1147     s->rtc_swal2 = timer_new_ms(rtc_clock, pxa2xx_rtc_swal2_tick, s);
1148     s->rtc_pi    = timer_new_ms(rtc_clock, pxa2xx_rtc_pi_tick,    s);
1149 
1150     sysbus_init_irq(dev, &s->rtc_irq);
1151 
1152     memory_region_init_io(&s->iomem, OBJECT(s), &pxa2xx_rtc_ops, s,
1153                           "pxa2xx-rtc", 0x10000);
1154     sysbus_init_mmio(dev, &s->iomem);
1155 
1156     return 0;
1157 }
1158 
1159 static void pxa2xx_rtc_pre_save(void *opaque)
1160 {
1161     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1162 
1163     pxa2xx_rtc_hzupdate(s);
1164     pxa2xx_rtc_piupdate(s);
1165     pxa2xx_rtc_swupdate(s);
1166 }
1167 
1168 static int pxa2xx_rtc_post_load(void *opaque, int version_id)
1169 {
1170     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1171 
1172     pxa2xx_rtc_alarm_update(s, s->rtsr);
1173 
1174     return 0;
1175 }
1176 
1177 static const VMStateDescription vmstate_pxa2xx_rtc_regs = {
1178     .name = "pxa2xx_rtc",
1179     .version_id = 0,
1180     .minimum_version_id = 0,
1181     .minimum_version_id_old = 0,
1182     .pre_save = pxa2xx_rtc_pre_save,
1183     .post_load = pxa2xx_rtc_post_load,
1184     .fields = (VMStateField[]) {
1185         VMSTATE_UINT32(rttr, PXA2xxRTCState),
1186         VMSTATE_UINT32(rtsr, PXA2xxRTCState),
1187         VMSTATE_UINT32(rtar, PXA2xxRTCState),
1188         VMSTATE_UINT32(rdar1, PXA2xxRTCState),
1189         VMSTATE_UINT32(rdar2, PXA2xxRTCState),
1190         VMSTATE_UINT32(ryar1, PXA2xxRTCState),
1191         VMSTATE_UINT32(ryar2, PXA2xxRTCState),
1192         VMSTATE_UINT32(swar1, PXA2xxRTCState),
1193         VMSTATE_UINT32(swar2, PXA2xxRTCState),
1194         VMSTATE_UINT32(piar, PXA2xxRTCState),
1195         VMSTATE_UINT32(last_rcnr, PXA2xxRTCState),
1196         VMSTATE_UINT32(last_rdcr, PXA2xxRTCState),
1197         VMSTATE_UINT32(last_rycr, PXA2xxRTCState),
1198         VMSTATE_UINT32(last_swcr, PXA2xxRTCState),
1199         VMSTATE_UINT32(last_rtcpicr, PXA2xxRTCState),
1200         VMSTATE_INT64(last_hz, PXA2xxRTCState),
1201         VMSTATE_INT64(last_sw, PXA2xxRTCState),
1202         VMSTATE_INT64(last_pi, PXA2xxRTCState),
1203         VMSTATE_END_OF_LIST(),
1204     },
1205 };
1206 
1207 static void pxa2xx_rtc_sysbus_class_init(ObjectClass *klass, void *data)
1208 {
1209     DeviceClass *dc = DEVICE_CLASS(klass);
1210     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1211 
1212     k->init = pxa2xx_rtc_init;
1213     dc->desc = "PXA2xx RTC Controller";
1214     dc->vmsd = &vmstate_pxa2xx_rtc_regs;
1215 }
1216 
1217 static const TypeInfo pxa2xx_rtc_sysbus_info = {
1218     .name          = TYPE_PXA2XX_RTC,
1219     .parent        = TYPE_SYS_BUS_DEVICE,
1220     .instance_size = sizeof(PXA2xxRTCState),
1221     .class_init    = pxa2xx_rtc_sysbus_class_init,
1222 };
1223 
1224 /* I2C Interface */
1225 
1226 #define TYPE_PXA2XX_I2C_SLAVE "pxa2xx-i2c-slave"
1227 #define PXA2XX_I2C_SLAVE(obj) \
1228     OBJECT_CHECK(PXA2xxI2CSlaveState, (obj), TYPE_PXA2XX_I2C_SLAVE)
1229 
1230 typedef struct PXA2xxI2CSlaveState {
1231     I2CSlave parent_obj;
1232 
1233     PXA2xxI2CState *host;
1234 } PXA2xxI2CSlaveState;
1235 
1236 #define TYPE_PXA2XX_I2C "pxa2xx_i2c"
1237 #define PXA2XX_I2C(obj) \
1238     OBJECT_CHECK(PXA2xxI2CState, (obj), TYPE_PXA2XX_I2C)
1239 
1240 struct PXA2xxI2CState {
1241     /*< private >*/
1242     SysBusDevice parent_obj;
1243     /*< public >*/
1244 
1245     MemoryRegion iomem;
1246     PXA2xxI2CSlaveState *slave;
1247     I2CBus *bus;
1248     qemu_irq irq;
1249     uint32_t offset;
1250     uint32_t region_size;
1251 
1252     uint16_t control;
1253     uint16_t status;
1254     uint8_t ibmr;
1255     uint8_t data;
1256 };
1257 
1258 #define IBMR	0x80	/* I2C Bus Monitor register */
1259 #define IDBR	0x88	/* I2C Data Buffer register */
1260 #define ICR	0x90	/* I2C Control register */
1261 #define ISR	0x98	/* I2C Status register */
1262 #define ISAR	0xa0	/* I2C Slave Address register */
1263 
1264 static void pxa2xx_i2c_update(PXA2xxI2CState *s)
1265 {
1266     uint16_t level = 0;
1267     level |= s->status & s->control & (1 << 10);		/* BED */
1268     level |= (s->status & (1 << 7)) && (s->control & (1 << 9));	/* IRF */
1269     level |= (s->status & (1 << 6)) && (s->control & (1 << 8));	/* ITE */
1270     level |= s->status & (1 << 9);				/* SAD */
1271     qemu_set_irq(s->irq, !!level);
1272 }
1273 
1274 /* These are only stubs now.  */
1275 static void pxa2xx_i2c_event(I2CSlave *i2c, enum i2c_event event)
1276 {
1277     PXA2xxI2CSlaveState *slave = PXA2XX_I2C_SLAVE(i2c);
1278     PXA2xxI2CState *s = slave->host;
1279 
1280     switch (event) {
1281     case I2C_START_SEND:
1282         s->status |= (1 << 9);				/* set SAD */
1283         s->status &= ~(1 << 0);				/* clear RWM */
1284         break;
1285     case I2C_START_RECV:
1286         s->status |= (1 << 9);				/* set SAD */
1287         s->status |= 1 << 0;				/* set RWM */
1288         break;
1289     case I2C_FINISH:
1290         s->status |= (1 << 4);				/* set SSD */
1291         break;
1292     case I2C_NACK:
1293         s->status |= 1 << 1;				/* set ACKNAK */
1294         break;
1295     }
1296     pxa2xx_i2c_update(s);
1297 }
1298 
1299 static int pxa2xx_i2c_rx(I2CSlave *i2c)
1300 {
1301     PXA2xxI2CSlaveState *slave = PXA2XX_I2C_SLAVE(i2c);
1302     PXA2xxI2CState *s = slave->host;
1303 
1304     if ((s->control & (1 << 14)) || !(s->control & (1 << 6))) {
1305         return 0;
1306     }
1307 
1308     if (s->status & (1 << 0)) {			/* RWM */
1309         s->status |= 1 << 6;			/* set ITE */
1310     }
1311     pxa2xx_i2c_update(s);
1312 
1313     return s->data;
1314 }
1315 
1316 static int pxa2xx_i2c_tx(I2CSlave *i2c, uint8_t data)
1317 {
1318     PXA2xxI2CSlaveState *slave = PXA2XX_I2C_SLAVE(i2c);
1319     PXA2xxI2CState *s = slave->host;
1320 
1321     if ((s->control & (1 << 14)) || !(s->control & (1 << 6))) {
1322         return 1;
1323     }
1324 
1325     if (!(s->status & (1 << 0))) {		/* RWM */
1326         s->status |= 1 << 7;			/* set IRF */
1327         s->data = data;
1328     }
1329     pxa2xx_i2c_update(s);
1330 
1331     return 1;
1332 }
1333 
1334 static uint64_t pxa2xx_i2c_read(void *opaque, hwaddr addr,
1335                                 unsigned size)
1336 {
1337     PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1338     I2CSlave *slave;
1339 
1340     addr -= s->offset;
1341     switch (addr) {
1342     case ICR:
1343         return s->control;
1344     case ISR:
1345         return s->status | (i2c_bus_busy(s->bus) << 2);
1346     case ISAR:
1347         slave = I2C_SLAVE(s->slave);
1348         return slave->address;
1349     case IDBR:
1350         return s->data;
1351     case IBMR:
1352         if (s->status & (1 << 2))
1353             s->ibmr ^= 3;	/* Fake SCL and SDA pin changes */
1354         else
1355             s->ibmr = 0;
1356         return s->ibmr;
1357     default:
1358         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1359         break;
1360     }
1361     return 0;
1362 }
1363 
1364 static void pxa2xx_i2c_write(void *opaque, hwaddr addr,
1365                              uint64_t value64, unsigned size)
1366 {
1367     PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1368     uint32_t value = value64;
1369     int ack;
1370 
1371     addr -= s->offset;
1372     switch (addr) {
1373     case ICR:
1374         s->control = value & 0xfff7;
1375         if ((value & (1 << 3)) && (value & (1 << 6))) {	/* TB and IUE */
1376             /* TODO: slave mode */
1377             if (value & (1 << 0)) {			/* START condition */
1378                 if (s->data & 1)
1379                     s->status |= 1 << 0;		/* set RWM */
1380                 else
1381                     s->status &= ~(1 << 0);		/* clear RWM */
1382                 ack = !i2c_start_transfer(s->bus, s->data >> 1, s->data & 1);
1383             } else {
1384                 if (s->status & (1 << 0)) {		/* RWM */
1385                     s->data = i2c_recv(s->bus);
1386                     if (value & (1 << 2))		/* ACKNAK */
1387                         i2c_nack(s->bus);
1388                     ack = 1;
1389                 } else
1390                     ack = !i2c_send(s->bus, s->data);
1391             }
1392 
1393             if (value & (1 << 1))			/* STOP condition */
1394                 i2c_end_transfer(s->bus);
1395 
1396             if (ack) {
1397                 if (value & (1 << 0))			/* START condition */
1398                     s->status |= 1 << 6;		/* set ITE */
1399                 else
1400                     if (s->status & (1 << 0))		/* RWM */
1401                         s->status |= 1 << 7;		/* set IRF */
1402                     else
1403                         s->status |= 1 << 6;		/* set ITE */
1404                 s->status &= ~(1 << 1);			/* clear ACKNAK */
1405             } else {
1406                 s->status |= 1 << 6;			/* set ITE */
1407                 s->status |= 1 << 10;			/* set BED */
1408                 s->status |= 1 << 1;			/* set ACKNAK */
1409             }
1410         }
1411         if (!(value & (1 << 3)) && (value & (1 << 6)))	/* !TB and IUE */
1412             if (value & (1 << 4))			/* MA */
1413                 i2c_end_transfer(s->bus);
1414         pxa2xx_i2c_update(s);
1415         break;
1416 
1417     case ISR:
1418         s->status &= ~(value & 0x07f0);
1419         pxa2xx_i2c_update(s);
1420         break;
1421 
1422     case ISAR:
1423         i2c_set_slave_address(I2C_SLAVE(s->slave), value & 0x7f);
1424         break;
1425 
1426     case IDBR:
1427         s->data = value & 0xff;
1428         break;
1429 
1430     default:
1431         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1432     }
1433 }
1434 
1435 static const MemoryRegionOps pxa2xx_i2c_ops = {
1436     .read = pxa2xx_i2c_read,
1437     .write = pxa2xx_i2c_write,
1438     .endianness = DEVICE_NATIVE_ENDIAN,
1439 };
1440 
1441 static const VMStateDescription vmstate_pxa2xx_i2c_slave = {
1442     .name = "pxa2xx_i2c_slave",
1443     .version_id = 1,
1444     .minimum_version_id = 1,
1445     .minimum_version_id_old = 1,
1446     .fields      = (VMStateField []) {
1447         VMSTATE_I2C_SLAVE(parent_obj, PXA2xxI2CSlaveState),
1448         VMSTATE_END_OF_LIST()
1449     }
1450 };
1451 
1452 static const VMStateDescription vmstate_pxa2xx_i2c = {
1453     .name = "pxa2xx_i2c",
1454     .version_id = 1,
1455     .minimum_version_id = 1,
1456     .minimum_version_id_old = 1,
1457     .fields      = (VMStateField []) {
1458         VMSTATE_UINT16(control, PXA2xxI2CState),
1459         VMSTATE_UINT16(status, PXA2xxI2CState),
1460         VMSTATE_UINT8(ibmr, PXA2xxI2CState),
1461         VMSTATE_UINT8(data, PXA2xxI2CState),
1462         VMSTATE_STRUCT_POINTER(slave, PXA2xxI2CState,
1463                                vmstate_pxa2xx_i2c_slave, PXA2xxI2CSlaveState),
1464         VMSTATE_END_OF_LIST()
1465     }
1466 };
1467 
1468 static int pxa2xx_i2c_slave_init(I2CSlave *i2c)
1469 {
1470     /* Nothing to do.  */
1471     return 0;
1472 }
1473 
1474 static void pxa2xx_i2c_slave_class_init(ObjectClass *klass, void *data)
1475 {
1476     I2CSlaveClass *k = I2C_SLAVE_CLASS(klass);
1477 
1478     k->init = pxa2xx_i2c_slave_init;
1479     k->event = pxa2xx_i2c_event;
1480     k->recv = pxa2xx_i2c_rx;
1481     k->send = pxa2xx_i2c_tx;
1482 }
1483 
1484 static const TypeInfo pxa2xx_i2c_slave_info = {
1485     .name          = TYPE_PXA2XX_I2C_SLAVE,
1486     .parent        = TYPE_I2C_SLAVE,
1487     .instance_size = sizeof(PXA2xxI2CSlaveState),
1488     .class_init    = pxa2xx_i2c_slave_class_init,
1489 };
1490 
1491 PXA2xxI2CState *pxa2xx_i2c_init(hwaddr base,
1492                 qemu_irq irq, uint32_t region_size)
1493 {
1494     DeviceState *dev;
1495     SysBusDevice *i2c_dev;
1496     PXA2xxI2CState *s;
1497     I2CBus *i2cbus;
1498 
1499     dev = qdev_create(NULL, TYPE_PXA2XX_I2C);
1500     qdev_prop_set_uint32(dev, "size", region_size + 1);
1501     qdev_prop_set_uint32(dev, "offset", base & region_size);
1502     qdev_init_nofail(dev);
1503 
1504     i2c_dev = SYS_BUS_DEVICE(dev);
1505     sysbus_mmio_map(i2c_dev, 0, base & ~region_size);
1506     sysbus_connect_irq(i2c_dev, 0, irq);
1507 
1508     s = PXA2XX_I2C(i2c_dev);
1509     /* FIXME: Should the slave device really be on a separate bus?  */
1510     i2cbus = i2c_init_bus(dev, "dummy");
1511     dev = i2c_create_slave(i2cbus, TYPE_PXA2XX_I2C_SLAVE, 0);
1512     s->slave = PXA2XX_I2C_SLAVE(dev);
1513     s->slave->host = s;
1514 
1515     return s;
1516 }
1517 
1518 static int pxa2xx_i2c_initfn(SysBusDevice *sbd)
1519 {
1520     DeviceState *dev = DEVICE(sbd);
1521     PXA2xxI2CState *s = PXA2XX_I2C(dev);
1522 
1523     s->bus = i2c_init_bus(dev, "i2c");
1524 
1525     memory_region_init_io(&s->iomem, OBJECT(s), &pxa2xx_i2c_ops, s,
1526                           "pxa2xx-i2c", s->region_size);
1527     sysbus_init_mmio(sbd, &s->iomem);
1528     sysbus_init_irq(sbd, &s->irq);
1529 
1530     return 0;
1531 }
1532 
1533 I2CBus *pxa2xx_i2c_bus(PXA2xxI2CState *s)
1534 {
1535     return s->bus;
1536 }
1537 
1538 static Property pxa2xx_i2c_properties[] = {
1539     DEFINE_PROP_UINT32("size", PXA2xxI2CState, region_size, 0x10000),
1540     DEFINE_PROP_UINT32("offset", PXA2xxI2CState, offset, 0),
1541     DEFINE_PROP_END_OF_LIST(),
1542 };
1543 
1544 static void pxa2xx_i2c_class_init(ObjectClass *klass, void *data)
1545 {
1546     DeviceClass *dc = DEVICE_CLASS(klass);
1547     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1548 
1549     k->init = pxa2xx_i2c_initfn;
1550     dc->desc = "PXA2xx I2C Bus Controller";
1551     dc->vmsd = &vmstate_pxa2xx_i2c;
1552     dc->props = pxa2xx_i2c_properties;
1553 }
1554 
1555 static const TypeInfo pxa2xx_i2c_info = {
1556     .name          = TYPE_PXA2XX_I2C,
1557     .parent        = TYPE_SYS_BUS_DEVICE,
1558     .instance_size = sizeof(PXA2xxI2CState),
1559     .class_init    = pxa2xx_i2c_class_init,
1560 };
1561 
1562 /* PXA Inter-IC Sound Controller */
1563 static void pxa2xx_i2s_reset(PXA2xxI2SState *i2s)
1564 {
1565     i2s->rx_len = 0;
1566     i2s->tx_len = 0;
1567     i2s->fifo_len = 0;
1568     i2s->clk = 0x1a;
1569     i2s->control[0] = 0x00;
1570     i2s->control[1] = 0x00;
1571     i2s->status = 0x00;
1572     i2s->mask = 0x00;
1573 }
1574 
1575 #define SACR_TFTH(val)	((val >> 8) & 0xf)
1576 #define SACR_RFTH(val)	((val >> 12) & 0xf)
1577 #define SACR_DREC(val)	(val & (1 << 3))
1578 #define SACR_DPRL(val)	(val & (1 << 4))
1579 
1580 static inline void pxa2xx_i2s_update(PXA2xxI2SState *i2s)
1581 {
1582     int rfs, tfs;
1583     rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len &&
1584             !SACR_DREC(i2s->control[1]);
1585     tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) &&
1586             i2s->enable && !SACR_DPRL(i2s->control[1]);
1587 
1588     qemu_set_irq(i2s->rx_dma, rfs);
1589     qemu_set_irq(i2s->tx_dma, tfs);
1590 
1591     i2s->status &= 0xe0;
1592     if (i2s->fifo_len < 16 || !i2s->enable)
1593         i2s->status |= 1 << 0;			/* TNF */
1594     if (i2s->rx_len)
1595         i2s->status |= 1 << 1;			/* RNE */
1596     if (i2s->enable)
1597         i2s->status |= 1 << 2;			/* BSY */
1598     if (tfs)
1599         i2s->status |= 1 << 3;			/* TFS */
1600     if (rfs)
1601         i2s->status |= 1 << 4;			/* RFS */
1602     if (!(i2s->tx_len && i2s->enable))
1603         i2s->status |= i2s->fifo_len << 8;	/* TFL */
1604     i2s->status |= MAX(i2s->rx_len, 0xf) << 12;	/* RFL */
1605 
1606     qemu_set_irq(i2s->irq, i2s->status & i2s->mask);
1607 }
1608 
1609 #define SACR0	0x00	/* Serial Audio Global Control register */
1610 #define SACR1	0x04	/* Serial Audio I2S/MSB-Justified Control register */
1611 #define SASR0	0x0c	/* Serial Audio Interface and FIFO Status register */
1612 #define SAIMR	0x14	/* Serial Audio Interrupt Mask register */
1613 #define SAICR	0x18	/* Serial Audio Interrupt Clear register */
1614 #define SADIV	0x60	/* Serial Audio Clock Divider register */
1615 #define SADR	0x80	/* Serial Audio Data register */
1616 
1617 static uint64_t pxa2xx_i2s_read(void *opaque, hwaddr addr,
1618                                 unsigned size)
1619 {
1620     PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1621 
1622     switch (addr) {
1623     case SACR0:
1624         return s->control[0];
1625     case SACR1:
1626         return s->control[1];
1627     case SASR0:
1628         return s->status;
1629     case SAIMR:
1630         return s->mask;
1631     case SAICR:
1632         return 0;
1633     case SADIV:
1634         return s->clk;
1635     case SADR:
1636         if (s->rx_len > 0) {
1637             s->rx_len --;
1638             pxa2xx_i2s_update(s);
1639             return s->codec_in(s->opaque);
1640         }
1641         return 0;
1642     default:
1643         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1644         break;
1645     }
1646     return 0;
1647 }
1648 
1649 static void pxa2xx_i2s_write(void *opaque, hwaddr addr,
1650                              uint64_t value, unsigned size)
1651 {
1652     PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1653     uint32_t *sample;
1654 
1655     switch (addr) {
1656     case SACR0:
1657         if (value & (1 << 3))				/* RST */
1658             pxa2xx_i2s_reset(s);
1659         s->control[0] = value & 0xff3d;
1660         if (!s->enable && (value & 1) && s->tx_len) {	/* ENB */
1661             for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++)
1662                 s->codec_out(s->opaque, *sample);
1663             s->status &= ~(1 << 7);			/* I2SOFF */
1664         }
1665         if (value & (1 << 4))				/* EFWR */
1666             printf("%s: Attempt to use special function\n", __FUNCTION__);
1667         s->enable = (value & 9) == 1;			/* ENB && !RST*/
1668         pxa2xx_i2s_update(s);
1669         break;
1670     case SACR1:
1671         s->control[1] = value & 0x0039;
1672         if (value & (1 << 5))				/* ENLBF */
1673             printf("%s: Attempt to use loopback function\n", __FUNCTION__);
1674         if (value & (1 << 4))				/* DPRL */
1675             s->fifo_len = 0;
1676         pxa2xx_i2s_update(s);
1677         break;
1678     case SAIMR:
1679         s->mask = value & 0x0078;
1680         pxa2xx_i2s_update(s);
1681         break;
1682     case SAICR:
1683         s->status &= ~(value & (3 << 5));
1684         pxa2xx_i2s_update(s);
1685         break;
1686     case SADIV:
1687         s->clk = value & 0x007f;
1688         break;
1689     case SADR:
1690         if (s->tx_len && s->enable) {
1691             s->tx_len --;
1692             pxa2xx_i2s_update(s);
1693             s->codec_out(s->opaque, value);
1694         } else if (s->fifo_len < 16) {
1695             s->fifo[s->fifo_len ++] = value;
1696             pxa2xx_i2s_update(s);
1697         }
1698         break;
1699     default:
1700         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1701     }
1702 }
1703 
1704 static const MemoryRegionOps pxa2xx_i2s_ops = {
1705     .read = pxa2xx_i2s_read,
1706     .write = pxa2xx_i2s_write,
1707     .endianness = DEVICE_NATIVE_ENDIAN,
1708 };
1709 
1710 static const VMStateDescription vmstate_pxa2xx_i2s = {
1711     .name = "pxa2xx_i2s",
1712     .version_id = 0,
1713     .minimum_version_id = 0,
1714     .minimum_version_id_old = 0,
1715     .fields      = (VMStateField[]) {
1716         VMSTATE_UINT32_ARRAY(control, PXA2xxI2SState, 2),
1717         VMSTATE_UINT32(status, PXA2xxI2SState),
1718         VMSTATE_UINT32(mask, PXA2xxI2SState),
1719         VMSTATE_UINT32(clk, PXA2xxI2SState),
1720         VMSTATE_INT32(enable, PXA2xxI2SState),
1721         VMSTATE_INT32(rx_len, PXA2xxI2SState),
1722         VMSTATE_INT32(tx_len, PXA2xxI2SState),
1723         VMSTATE_INT32(fifo_len, PXA2xxI2SState),
1724         VMSTATE_END_OF_LIST()
1725     }
1726 };
1727 
1728 static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx)
1729 {
1730     PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1731     uint32_t *sample;
1732 
1733     /* Signal FIFO errors */
1734     if (s->enable && s->tx_len)
1735         s->status |= 1 << 5;		/* TUR */
1736     if (s->enable && s->rx_len)
1737         s->status |= 1 << 6;		/* ROR */
1738 
1739     /* Should be tx - MIN(tx, s->fifo_len) but we don't really need to
1740      * handle the cases where it makes a difference.  */
1741     s->tx_len = tx - s->fifo_len;
1742     s->rx_len = rx;
1743     /* Note that is s->codec_out wasn't set, we wouldn't get called.  */
1744     if (s->enable)
1745         for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++)
1746             s->codec_out(s->opaque, *sample);
1747     pxa2xx_i2s_update(s);
1748 }
1749 
1750 static PXA2xxI2SState *pxa2xx_i2s_init(MemoryRegion *sysmem,
1751                 hwaddr base,
1752                 qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma)
1753 {
1754     PXA2xxI2SState *s = (PXA2xxI2SState *)
1755             g_malloc0(sizeof(PXA2xxI2SState));
1756 
1757     s->irq = irq;
1758     s->rx_dma = rx_dma;
1759     s->tx_dma = tx_dma;
1760     s->data_req = pxa2xx_i2s_data_req;
1761 
1762     pxa2xx_i2s_reset(s);
1763 
1764     memory_region_init_io(&s->iomem, NULL, &pxa2xx_i2s_ops, s,
1765                           "pxa2xx-i2s", 0x100000);
1766     memory_region_add_subregion(sysmem, base, &s->iomem);
1767 
1768     vmstate_register(NULL, base, &vmstate_pxa2xx_i2s, s);
1769 
1770     return s;
1771 }
1772 
1773 /* PXA Fast Infra-red Communications Port */
1774 struct PXA2xxFIrState {
1775     MemoryRegion iomem;
1776     qemu_irq irq;
1777     qemu_irq rx_dma;
1778     qemu_irq tx_dma;
1779     int enable;
1780     CharDriverState *chr;
1781 
1782     uint8_t control[3];
1783     uint8_t status[2];
1784 
1785     int rx_len;
1786     int rx_start;
1787     uint8_t rx_fifo[64];
1788 };
1789 
1790 static void pxa2xx_fir_reset(PXA2xxFIrState *s)
1791 {
1792     s->control[0] = 0x00;
1793     s->control[1] = 0x00;
1794     s->control[2] = 0x00;
1795     s->status[0] = 0x00;
1796     s->status[1] = 0x00;
1797     s->enable = 0;
1798 }
1799 
1800 static inline void pxa2xx_fir_update(PXA2xxFIrState *s)
1801 {
1802     static const int tresh[4] = { 8, 16, 32, 0 };
1803     int intr = 0;
1804     if ((s->control[0] & (1 << 4)) &&			/* RXE */
1805                     s->rx_len >= tresh[s->control[2] & 3])	/* TRIG */
1806         s->status[0] |= 1 << 4;				/* RFS */
1807     else
1808         s->status[0] &= ~(1 << 4);			/* RFS */
1809     if (s->control[0] & (1 << 3))			/* TXE */
1810         s->status[0] |= 1 << 3;				/* TFS */
1811     else
1812         s->status[0] &= ~(1 << 3);			/* TFS */
1813     if (s->rx_len)
1814         s->status[1] |= 1 << 2;				/* RNE */
1815     else
1816         s->status[1] &= ~(1 << 2);			/* RNE */
1817     if (s->control[0] & (1 << 4))			/* RXE */
1818         s->status[1] |= 1 << 0;				/* RSY */
1819     else
1820         s->status[1] &= ~(1 << 0);			/* RSY */
1821 
1822     intr |= (s->control[0] & (1 << 5)) &&		/* RIE */
1823             (s->status[0] & (1 << 4));			/* RFS */
1824     intr |= (s->control[0] & (1 << 6)) &&		/* TIE */
1825             (s->status[0] & (1 << 3));			/* TFS */
1826     intr |= (s->control[2] & (1 << 4)) &&		/* TRAIL */
1827             (s->status[0] & (1 << 6));			/* EOC */
1828     intr |= (s->control[0] & (1 << 2)) &&		/* TUS */
1829             (s->status[0] & (1 << 1));			/* TUR */
1830     intr |= s->status[0] & 0x25;			/* FRE, RAB, EIF */
1831 
1832     qemu_set_irq(s->rx_dma, (s->status[0] >> 4) & 1);
1833     qemu_set_irq(s->tx_dma, (s->status[0] >> 3) & 1);
1834 
1835     qemu_set_irq(s->irq, intr && s->enable);
1836 }
1837 
1838 #define ICCR0	0x00	/* FICP Control register 0 */
1839 #define ICCR1	0x04	/* FICP Control register 1 */
1840 #define ICCR2	0x08	/* FICP Control register 2 */
1841 #define ICDR	0x0c	/* FICP Data register */
1842 #define ICSR0	0x14	/* FICP Status register 0 */
1843 #define ICSR1	0x18	/* FICP Status register 1 */
1844 #define ICFOR	0x1c	/* FICP FIFO Occupancy Status register */
1845 
1846 static uint64_t pxa2xx_fir_read(void *opaque, hwaddr addr,
1847                                 unsigned size)
1848 {
1849     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1850     uint8_t ret;
1851 
1852     switch (addr) {
1853     case ICCR0:
1854         return s->control[0];
1855     case ICCR1:
1856         return s->control[1];
1857     case ICCR2:
1858         return s->control[2];
1859     case ICDR:
1860         s->status[0] &= ~0x01;
1861         s->status[1] &= ~0x72;
1862         if (s->rx_len) {
1863             s->rx_len --;
1864             ret = s->rx_fifo[s->rx_start ++];
1865             s->rx_start &= 63;
1866             pxa2xx_fir_update(s);
1867             return ret;
1868         }
1869         printf("%s: Rx FIFO underrun.\n", __FUNCTION__);
1870         break;
1871     case ICSR0:
1872         return s->status[0];
1873     case ICSR1:
1874         return s->status[1] | (1 << 3);			/* TNF */
1875     case ICFOR:
1876         return s->rx_len;
1877     default:
1878         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1879         break;
1880     }
1881     return 0;
1882 }
1883 
1884 static void pxa2xx_fir_write(void *opaque, hwaddr addr,
1885                              uint64_t value64, unsigned size)
1886 {
1887     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1888     uint32_t value = value64;
1889     uint8_t ch;
1890 
1891     switch (addr) {
1892     case ICCR0:
1893         s->control[0] = value;
1894         if (!(value & (1 << 4)))			/* RXE */
1895             s->rx_len = s->rx_start = 0;
1896         if (!(value & (1 << 3))) {                      /* TXE */
1897             /* Nop */
1898         }
1899         s->enable = value & 1;				/* ITR */
1900         if (!s->enable)
1901             s->status[0] = 0;
1902         pxa2xx_fir_update(s);
1903         break;
1904     case ICCR1:
1905         s->control[1] = value;
1906         break;
1907     case ICCR2:
1908         s->control[2] = value & 0x3f;
1909         pxa2xx_fir_update(s);
1910         break;
1911     case ICDR:
1912         if (s->control[2] & (1 << 2))			/* TXP */
1913             ch = value;
1914         else
1915             ch = ~value;
1916         if (s->chr && s->enable && (s->control[0] & (1 << 3)))	/* TXE */
1917             qemu_chr_fe_write(s->chr, &ch, 1);
1918         break;
1919     case ICSR0:
1920         s->status[0] &= ~(value & 0x66);
1921         pxa2xx_fir_update(s);
1922         break;
1923     case ICFOR:
1924         break;
1925     default:
1926         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1927     }
1928 }
1929 
1930 static const MemoryRegionOps pxa2xx_fir_ops = {
1931     .read = pxa2xx_fir_read,
1932     .write = pxa2xx_fir_write,
1933     .endianness = DEVICE_NATIVE_ENDIAN,
1934 };
1935 
1936 static int pxa2xx_fir_is_empty(void *opaque)
1937 {
1938     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1939     return (s->rx_len < 64);
1940 }
1941 
1942 static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size)
1943 {
1944     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1945     if (!(s->control[0] & (1 << 4)))			/* RXE */
1946         return;
1947 
1948     while (size --) {
1949         s->status[1] |= 1 << 4;				/* EOF */
1950         if (s->rx_len >= 64) {
1951             s->status[1] |= 1 << 6;			/* ROR */
1952             break;
1953         }
1954 
1955         if (s->control[2] & (1 << 3))			/* RXP */
1956             s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++);
1957         else
1958             s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++);
1959     }
1960 
1961     pxa2xx_fir_update(s);
1962 }
1963 
1964 static void pxa2xx_fir_event(void *opaque, int event)
1965 {
1966 }
1967 
1968 static void pxa2xx_fir_save(QEMUFile *f, void *opaque)
1969 {
1970     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1971     int i;
1972 
1973     qemu_put_be32(f, s->enable);
1974 
1975     qemu_put_8s(f, &s->control[0]);
1976     qemu_put_8s(f, &s->control[1]);
1977     qemu_put_8s(f, &s->control[2]);
1978     qemu_put_8s(f, &s->status[0]);
1979     qemu_put_8s(f, &s->status[1]);
1980 
1981     qemu_put_byte(f, s->rx_len);
1982     for (i = 0; i < s->rx_len; i ++)
1983         qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 63]);
1984 }
1985 
1986 static int pxa2xx_fir_load(QEMUFile *f, void *opaque, int version_id)
1987 {
1988     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1989     int i;
1990 
1991     s->enable = qemu_get_be32(f);
1992 
1993     qemu_get_8s(f, &s->control[0]);
1994     qemu_get_8s(f, &s->control[1]);
1995     qemu_get_8s(f, &s->control[2]);
1996     qemu_get_8s(f, &s->status[0]);
1997     qemu_get_8s(f, &s->status[1]);
1998 
1999     s->rx_len = qemu_get_byte(f);
2000     s->rx_start = 0;
2001     for (i = 0; i < s->rx_len; i ++)
2002         s->rx_fifo[i] = qemu_get_byte(f);
2003 
2004     return 0;
2005 }
2006 
2007 static PXA2xxFIrState *pxa2xx_fir_init(MemoryRegion *sysmem,
2008                 hwaddr base,
2009                 qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma,
2010                 CharDriverState *chr)
2011 {
2012     PXA2xxFIrState *s = (PXA2xxFIrState *)
2013             g_malloc0(sizeof(PXA2xxFIrState));
2014 
2015     s->irq = irq;
2016     s->rx_dma = rx_dma;
2017     s->tx_dma = tx_dma;
2018     s->chr = chr;
2019 
2020     pxa2xx_fir_reset(s);
2021 
2022     memory_region_init_io(&s->iomem, NULL, &pxa2xx_fir_ops, s, "pxa2xx-fir", 0x1000);
2023     memory_region_add_subregion(sysmem, base, &s->iomem);
2024 
2025     if (chr) {
2026         qemu_chr_fe_claim_no_fail(chr);
2027         qemu_chr_add_handlers(chr, pxa2xx_fir_is_empty,
2028                         pxa2xx_fir_rx, pxa2xx_fir_event, s);
2029     }
2030 
2031     register_savevm(NULL, "pxa2xx_fir", 0, 0, pxa2xx_fir_save,
2032                     pxa2xx_fir_load, s);
2033 
2034     return s;
2035 }
2036 
2037 static void pxa2xx_reset(void *opaque, int line, int level)
2038 {
2039     PXA2xxState *s = (PXA2xxState *) opaque;
2040 
2041     if (level && (s->pm_regs[PCFR >> 2] & 0x10)) {	/* GPR_EN */
2042         cpu_reset(CPU(s->cpu));
2043         /* TODO: reset peripherals */
2044     }
2045 }
2046 
2047 /* Initialise a PXA270 integrated chip (ARM based core).  */
2048 PXA2xxState *pxa270_init(MemoryRegion *address_space,
2049                          unsigned int sdram_size, const char *revision)
2050 {
2051     PXA2xxState *s;
2052     int i;
2053     DriveInfo *dinfo;
2054     s = (PXA2xxState *) g_malloc0(sizeof(PXA2xxState));
2055 
2056     if (revision && strncmp(revision, "pxa27", 5)) {
2057         fprintf(stderr, "Machine requires a PXA27x processor.\n");
2058         exit(1);
2059     }
2060     if (!revision)
2061         revision = "pxa270";
2062 
2063     s->cpu = cpu_arm_init(revision);
2064     if (s->cpu == NULL) {
2065         fprintf(stderr, "Unable to find CPU definition\n");
2066         exit(1);
2067     }
2068     s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2069 
2070     /* SDRAM & Internal Memory Storage */
2071     memory_region_init_ram(&s->sdram, NULL, "pxa270.sdram", sdram_size);
2072     vmstate_register_ram_global(&s->sdram);
2073     memory_region_add_subregion(address_space, PXA2XX_SDRAM_BASE, &s->sdram);
2074     memory_region_init_ram(&s->internal, NULL, "pxa270.internal", 0x40000);
2075     vmstate_register_ram_global(&s->internal);
2076     memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE,
2077                                 &s->internal);
2078 
2079     s->pic = pxa2xx_pic_init(0x40d00000, s->cpu);
2080 
2081     s->dma = pxa27x_dma_init(0x40000000,
2082                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
2083 
2084     sysbus_create_varargs("pxa27x-timer", 0x40a00000,
2085                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0),
2086                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1),
2087                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2),
2088                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3),
2089                     qdev_get_gpio_in(s->pic, PXA27X_PIC_OST_4_11),
2090                     NULL);
2091 
2092     s->gpio = pxa2xx_gpio_init(0x40e00000, s->cpu, s->pic, 121);
2093 
2094     dinfo = drive_get(IF_SD, 0, 0);
2095     if (!dinfo) {
2096         fprintf(stderr, "qemu: missing SecureDigital device\n");
2097         exit(1);
2098     }
2099     s->mmc = pxa2xx_mmci_init(address_space, 0x41100000, dinfo->bdrv,
2100                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC),
2101                     qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI),
2102                     qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI));
2103 
2104     for (i = 0; pxa270_serial[i].io_base; i++) {
2105         if (serial_hds[i]) {
2106             serial_mm_init(address_space, pxa270_serial[i].io_base, 2,
2107                            qdev_get_gpio_in(s->pic, pxa270_serial[i].irqn),
2108                            14857000 / 16, serial_hds[i],
2109                            DEVICE_NATIVE_ENDIAN);
2110         } else {
2111             break;
2112         }
2113     }
2114     if (serial_hds[i])
2115         s->fir = pxa2xx_fir_init(address_space, 0x40800000,
2116                         qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP),
2117                         qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP),
2118                         qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP),
2119                         serial_hds[i]);
2120 
2121     s->lcd = pxa2xx_lcdc_init(address_space, 0x44000000,
2122                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD));
2123 
2124     s->cm_base = 0x41300000;
2125     s->cm_regs[CCCR >> 2] = 0x02000210;	/* 416.0 MHz */
2126     s->clkcfg = 0x00000009;		/* Turbo mode active */
2127     memory_region_init_io(&s->cm_iomem, NULL, &pxa2xx_cm_ops, s, "pxa2xx-cm", 0x1000);
2128     memory_region_add_subregion(address_space, s->cm_base, &s->cm_iomem);
2129     vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s);
2130 
2131     pxa2xx_setup_cp14(s);
2132 
2133     s->mm_base = 0x48000000;
2134     s->mm_regs[MDMRS >> 2] = 0x00020002;
2135     s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2136     s->mm_regs[MECR >> 2] = 0x00000001;	/* Two PC Card sockets */
2137     memory_region_init_io(&s->mm_iomem, NULL, &pxa2xx_mm_ops, s, "pxa2xx-mm", 0x1000);
2138     memory_region_add_subregion(address_space, s->mm_base, &s->mm_iomem);
2139     vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s);
2140 
2141     s->pm_base = 0x40f00000;
2142     memory_region_init_io(&s->pm_iomem, NULL, &pxa2xx_pm_ops, s, "pxa2xx-pm", 0x100);
2143     memory_region_add_subregion(address_space, s->pm_base, &s->pm_iomem);
2144     vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s);
2145 
2146     for (i = 0; pxa27x_ssp[i].io_base; i ++);
2147     s->ssp = (SSIBus **)g_malloc0(sizeof(SSIBus *) * i);
2148     for (i = 0; pxa27x_ssp[i].io_base; i ++) {
2149         DeviceState *dev;
2150         dev = sysbus_create_simple(TYPE_PXA2XX_SSP, pxa27x_ssp[i].io_base,
2151                         qdev_get_gpio_in(s->pic, pxa27x_ssp[i].irqn));
2152         s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2153     }
2154 
2155     if (usb_enabled(false)) {
2156         sysbus_create_simple("sysbus-ohci", 0x4c000000,
2157                         qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1));
2158     }
2159 
2160     s->pcmcia[0] = pxa2xx_pcmcia_init(address_space, 0x20000000);
2161     s->pcmcia[1] = pxa2xx_pcmcia_init(address_space, 0x30000000);
2162 
2163     sysbus_create_simple(TYPE_PXA2XX_RTC, 0x40900000,
2164                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM));
2165 
2166     s->i2c[0] = pxa2xx_i2c_init(0x40301600,
2167                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff);
2168     s->i2c[1] = pxa2xx_i2c_init(0x40f00100,
2169                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff);
2170 
2171     s->i2s = pxa2xx_i2s_init(address_space, 0x40400000,
2172                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S),
2173                     qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S),
2174                     qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S));
2175 
2176     s->kp = pxa27x_keypad_init(address_space, 0x41500000,
2177                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_KEYPAD));
2178 
2179     /* GPIO1 resets the processor */
2180     /* The handler can be overridden by board-specific code */
2181     qdev_connect_gpio_out(s->gpio, 1, s->reset);
2182     return s;
2183 }
2184 
2185 /* Initialise a PXA255 integrated chip (ARM based core).  */
2186 PXA2xxState *pxa255_init(MemoryRegion *address_space, unsigned int sdram_size)
2187 {
2188     PXA2xxState *s;
2189     int i;
2190     DriveInfo *dinfo;
2191 
2192     s = (PXA2xxState *) g_malloc0(sizeof(PXA2xxState));
2193 
2194     s->cpu = cpu_arm_init("pxa255");
2195     if (s->cpu == NULL) {
2196         fprintf(stderr, "Unable to find CPU definition\n");
2197         exit(1);
2198     }
2199     s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2200 
2201     /* SDRAM & Internal Memory Storage */
2202     memory_region_init_ram(&s->sdram, NULL, "pxa255.sdram", sdram_size);
2203     vmstate_register_ram_global(&s->sdram);
2204     memory_region_add_subregion(address_space, PXA2XX_SDRAM_BASE, &s->sdram);
2205     memory_region_init_ram(&s->internal, NULL, "pxa255.internal",
2206                            PXA2XX_INTERNAL_SIZE);
2207     vmstate_register_ram_global(&s->internal);
2208     memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE,
2209                                 &s->internal);
2210 
2211     s->pic = pxa2xx_pic_init(0x40d00000, s->cpu);
2212 
2213     s->dma = pxa255_dma_init(0x40000000,
2214                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
2215 
2216     sysbus_create_varargs("pxa25x-timer", 0x40a00000,
2217                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0),
2218                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1),
2219                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2),
2220                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3),
2221                     NULL);
2222 
2223     s->gpio = pxa2xx_gpio_init(0x40e00000, s->cpu, s->pic, 85);
2224 
2225     dinfo = drive_get(IF_SD, 0, 0);
2226     if (!dinfo) {
2227         fprintf(stderr, "qemu: missing SecureDigital device\n");
2228         exit(1);
2229     }
2230     s->mmc = pxa2xx_mmci_init(address_space, 0x41100000, dinfo->bdrv,
2231                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC),
2232                     qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI),
2233                     qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI));
2234 
2235     for (i = 0; pxa255_serial[i].io_base; i++) {
2236         if (serial_hds[i]) {
2237             serial_mm_init(address_space, pxa255_serial[i].io_base, 2,
2238                            qdev_get_gpio_in(s->pic, pxa255_serial[i].irqn),
2239                            14745600 / 16, serial_hds[i],
2240                            DEVICE_NATIVE_ENDIAN);
2241         } else {
2242             break;
2243         }
2244     }
2245     if (serial_hds[i])
2246         s->fir = pxa2xx_fir_init(address_space, 0x40800000,
2247                         qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP),
2248                         qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP),
2249                         qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP),
2250                         serial_hds[i]);
2251 
2252     s->lcd = pxa2xx_lcdc_init(address_space, 0x44000000,
2253                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD));
2254 
2255     s->cm_base = 0x41300000;
2256     s->cm_regs[CCCR >> 2] = 0x02000210;	/* 416.0 MHz */
2257     s->clkcfg = 0x00000009;		/* Turbo mode active */
2258     memory_region_init_io(&s->cm_iomem, NULL, &pxa2xx_cm_ops, s, "pxa2xx-cm", 0x1000);
2259     memory_region_add_subregion(address_space, s->cm_base, &s->cm_iomem);
2260     vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s);
2261 
2262     pxa2xx_setup_cp14(s);
2263 
2264     s->mm_base = 0x48000000;
2265     s->mm_regs[MDMRS >> 2] = 0x00020002;
2266     s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2267     s->mm_regs[MECR >> 2] = 0x00000001;	/* Two PC Card sockets */
2268     memory_region_init_io(&s->mm_iomem, NULL, &pxa2xx_mm_ops, s, "pxa2xx-mm", 0x1000);
2269     memory_region_add_subregion(address_space, s->mm_base, &s->mm_iomem);
2270     vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s);
2271 
2272     s->pm_base = 0x40f00000;
2273     memory_region_init_io(&s->pm_iomem, NULL, &pxa2xx_pm_ops, s, "pxa2xx-pm", 0x100);
2274     memory_region_add_subregion(address_space, s->pm_base, &s->pm_iomem);
2275     vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s);
2276 
2277     for (i = 0; pxa255_ssp[i].io_base; i ++);
2278     s->ssp = (SSIBus **)g_malloc0(sizeof(SSIBus *) * i);
2279     for (i = 0; pxa255_ssp[i].io_base; i ++) {
2280         DeviceState *dev;
2281         dev = sysbus_create_simple(TYPE_PXA2XX_SSP, pxa255_ssp[i].io_base,
2282                         qdev_get_gpio_in(s->pic, pxa255_ssp[i].irqn));
2283         s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2284     }
2285 
2286     if (usb_enabled(false)) {
2287         sysbus_create_simple("sysbus-ohci", 0x4c000000,
2288                         qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1));
2289     }
2290 
2291     s->pcmcia[0] = pxa2xx_pcmcia_init(address_space, 0x20000000);
2292     s->pcmcia[1] = pxa2xx_pcmcia_init(address_space, 0x30000000);
2293 
2294     sysbus_create_simple(TYPE_PXA2XX_RTC, 0x40900000,
2295                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM));
2296 
2297     s->i2c[0] = pxa2xx_i2c_init(0x40301600,
2298                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff);
2299     s->i2c[1] = pxa2xx_i2c_init(0x40f00100,
2300                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff);
2301 
2302     s->i2s = pxa2xx_i2s_init(address_space, 0x40400000,
2303                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S),
2304                     qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S),
2305                     qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S));
2306 
2307     /* GPIO1 resets the processor */
2308     /* The handler can be overridden by board-specific code */
2309     qdev_connect_gpio_out(s->gpio, 1, s->reset);
2310     return s;
2311 }
2312 
2313 static void pxa2xx_ssp_class_init(ObjectClass *klass, void *data)
2314 {
2315     SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
2316 
2317     sdc->init = pxa2xx_ssp_init;
2318 }
2319 
2320 static const TypeInfo pxa2xx_ssp_info = {
2321     .name          = TYPE_PXA2XX_SSP,
2322     .parent        = TYPE_SYS_BUS_DEVICE,
2323     .instance_size = sizeof(PXA2xxSSPState),
2324     .class_init    = pxa2xx_ssp_class_init,
2325 };
2326 
2327 static void pxa2xx_register_types(void)
2328 {
2329     type_register_static(&pxa2xx_i2c_slave_info);
2330     type_register_static(&pxa2xx_ssp_info);
2331     type_register_static(&pxa2xx_i2c_info);
2332     type_register_static(&pxa2xx_rtc_sysbus_info);
2333 }
2334 
2335 type_init(pxa2xx_register_types)
2336