1 /* 2 * Intel XScale PXA255/270 processor support. 3 * 4 * Copyright (c) 2006 Openedhand Ltd. 5 * Written by Andrzej Zaborowski <balrog@zabor.org> 6 * 7 * This code is licensed under the GPL. 8 */ 9 10 #include "hw/sysbus.h" 11 #include "hw/arm/pxa.h" 12 #include "sysemu/sysemu.h" 13 #include "hw/char/serial.h" 14 #include "hw/i2c/i2c.h" 15 #include "hw/ssi.h" 16 #include "sysemu/char.h" 17 #include "sysemu/blockdev.h" 18 19 static struct { 20 hwaddr io_base; 21 int irqn; 22 } pxa255_serial[] = { 23 { 0x40100000, PXA2XX_PIC_FFUART }, 24 { 0x40200000, PXA2XX_PIC_BTUART }, 25 { 0x40700000, PXA2XX_PIC_STUART }, 26 { 0x41600000, PXA25X_PIC_HWUART }, 27 { 0, 0 } 28 }, pxa270_serial[] = { 29 { 0x40100000, PXA2XX_PIC_FFUART }, 30 { 0x40200000, PXA2XX_PIC_BTUART }, 31 { 0x40700000, PXA2XX_PIC_STUART }, 32 { 0, 0 } 33 }; 34 35 typedef struct PXASSPDef { 36 hwaddr io_base; 37 int irqn; 38 } PXASSPDef; 39 40 #if 0 41 static PXASSPDef pxa250_ssp[] = { 42 { 0x41000000, PXA2XX_PIC_SSP }, 43 { 0, 0 } 44 }; 45 #endif 46 47 static PXASSPDef pxa255_ssp[] = { 48 { 0x41000000, PXA2XX_PIC_SSP }, 49 { 0x41400000, PXA25X_PIC_NSSP }, 50 { 0, 0 } 51 }; 52 53 #if 0 54 static PXASSPDef pxa26x_ssp[] = { 55 { 0x41000000, PXA2XX_PIC_SSP }, 56 { 0x41400000, PXA25X_PIC_NSSP }, 57 { 0x41500000, PXA26X_PIC_ASSP }, 58 { 0, 0 } 59 }; 60 #endif 61 62 static PXASSPDef pxa27x_ssp[] = { 63 { 0x41000000, PXA2XX_PIC_SSP }, 64 { 0x41700000, PXA27X_PIC_SSP2 }, 65 { 0x41900000, PXA2XX_PIC_SSP3 }, 66 { 0, 0 } 67 }; 68 69 #define PMCR 0x00 /* Power Manager Control register */ 70 #define PSSR 0x04 /* Power Manager Sleep Status register */ 71 #define PSPR 0x08 /* Power Manager Scratch-Pad register */ 72 #define PWER 0x0c /* Power Manager Wake-Up Enable register */ 73 #define PRER 0x10 /* Power Manager Rising-Edge Detect Enable register */ 74 #define PFER 0x14 /* Power Manager Falling-Edge Detect Enable register */ 75 #define PEDR 0x18 /* Power Manager Edge-Detect Status register */ 76 #define PCFR 0x1c /* Power Manager General Configuration register */ 77 #define PGSR0 0x20 /* Power Manager GPIO Sleep-State register 0 */ 78 #define PGSR1 0x24 /* Power Manager GPIO Sleep-State register 1 */ 79 #define PGSR2 0x28 /* Power Manager GPIO Sleep-State register 2 */ 80 #define PGSR3 0x2c /* Power Manager GPIO Sleep-State register 3 */ 81 #define RCSR 0x30 /* Reset Controller Status register */ 82 #define PSLR 0x34 /* Power Manager Sleep Configuration register */ 83 #define PTSR 0x38 /* Power Manager Standby Configuration register */ 84 #define PVCR 0x40 /* Power Manager Voltage Change Control register */ 85 #define PUCR 0x4c /* Power Manager USIM Card Control/Status register */ 86 #define PKWR 0x50 /* Power Manager Keyboard Wake-Up Enable register */ 87 #define PKSR 0x54 /* Power Manager Keyboard Level-Detect Status */ 88 #define PCMD0 0x80 /* Power Manager I2C Command register File 0 */ 89 #define PCMD31 0xfc /* Power Manager I2C Command register File 31 */ 90 91 static uint64_t pxa2xx_pm_read(void *opaque, hwaddr addr, 92 unsigned size) 93 { 94 PXA2xxState *s = (PXA2xxState *) opaque; 95 96 switch (addr) { 97 case PMCR ... PCMD31: 98 if (addr & 3) 99 goto fail; 100 101 return s->pm_regs[addr >> 2]; 102 default: 103 fail: 104 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); 105 break; 106 } 107 return 0; 108 } 109 110 static void pxa2xx_pm_write(void *opaque, hwaddr addr, 111 uint64_t value, unsigned size) 112 { 113 PXA2xxState *s = (PXA2xxState *) opaque; 114 115 switch (addr) { 116 case PMCR: 117 /* Clear the write-one-to-clear bits... */ 118 s->pm_regs[addr >> 2] &= ~(value & 0x2a); 119 /* ...and set the plain r/w bits */ 120 s->pm_regs[addr >> 2] &= ~0x15; 121 s->pm_regs[addr >> 2] |= value & 0x15; 122 break; 123 124 case PSSR: /* Read-clean registers */ 125 case RCSR: 126 case PKSR: 127 s->pm_regs[addr >> 2] &= ~value; 128 break; 129 130 default: /* Read-write registers */ 131 if (!(addr & 3)) { 132 s->pm_regs[addr >> 2] = value; 133 break; 134 } 135 136 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); 137 break; 138 } 139 } 140 141 static const MemoryRegionOps pxa2xx_pm_ops = { 142 .read = pxa2xx_pm_read, 143 .write = pxa2xx_pm_write, 144 .endianness = DEVICE_NATIVE_ENDIAN, 145 }; 146 147 static const VMStateDescription vmstate_pxa2xx_pm = { 148 .name = "pxa2xx_pm", 149 .version_id = 0, 150 .minimum_version_id = 0, 151 .minimum_version_id_old = 0, 152 .fields = (VMStateField[]) { 153 VMSTATE_UINT32_ARRAY(pm_regs, PXA2xxState, 0x40), 154 VMSTATE_END_OF_LIST() 155 } 156 }; 157 158 #define CCCR 0x00 /* Core Clock Configuration register */ 159 #define CKEN 0x04 /* Clock Enable register */ 160 #define OSCC 0x08 /* Oscillator Configuration register */ 161 #define CCSR 0x0c /* Core Clock Status register */ 162 163 static uint64_t pxa2xx_cm_read(void *opaque, hwaddr addr, 164 unsigned size) 165 { 166 PXA2xxState *s = (PXA2xxState *) opaque; 167 168 switch (addr) { 169 case CCCR: 170 case CKEN: 171 case OSCC: 172 return s->cm_regs[addr >> 2]; 173 174 case CCSR: 175 return s->cm_regs[CCCR >> 2] | (3 << 28); 176 177 default: 178 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); 179 break; 180 } 181 return 0; 182 } 183 184 static void pxa2xx_cm_write(void *opaque, hwaddr addr, 185 uint64_t value, unsigned size) 186 { 187 PXA2xxState *s = (PXA2xxState *) opaque; 188 189 switch (addr) { 190 case CCCR: 191 case CKEN: 192 s->cm_regs[addr >> 2] = value; 193 break; 194 195 case OSCC: 196 s->cm_regs[addr >> 2] &= ~0x6c; 197 s->cm_regs[addr >> 2] |= value & 0x6e; 198 if ((value >> 1) & 1) /* OON */ 199 s->cm_regs[addr >> 2] |= 1 << 0; /* Oscillator is now stable */ 200 break; 201 202 default: 203 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); 204 break; 205 } 206 } 207 208 static const MemoryRegionOps pxa2xx_cm_ops = { 209 .read = pxa2xx_cm_read, 210 .write = pxa2xx_cm_write, 211 .endianness = DEVICE_NATIVE_ENDIAN, 212 }; 213 214 static const VMStateDescription vmstate_pxa2xx_cm = { 215 .name = "pxa2xx_cm", 216 .version_id = 0, 217 .minimum_version_id = 0, 218 .minimum_version_id_old = 0, 219 .fields = (VMStateField[]) { 220 VMSTATE_UINT32_ARRAY(cm_regs, PXA2xxState, 4), 221 VMSTATE_UINT32(clkcfg, PXA2xxState), 222 VMSTATE_UINT32(pmnc, PXA2xxState), 223 VMSTATE_END_OF_LIST() 224 } 225 }; 226 227 static int pxa2xx_clkcfg_read(CPUARMState *env, const ARMCPRegInfo *ri, 228 uint64_t *value) 229 { 230 PXA2xxState *s = (PXA2xxState *)ri->opaque; 231 *value = s->clkcfg; 232 return 0; 233 } 234 235 static int pxa2xx_clkcfg_write(CPUARMState *env, const ARMCPRegInfo *ri, 236 uint64_t value) 237 { 238 PXA2xxState *s = (PXA2xxState *)ri->opaque; 239 s->clkcfg = value & 0xf; 240 if (value & 2) { 241 printf("%s: CPU frequency change attempt\n", __func__); 242 } 243 return 0; 244 } 245 246 static int pxa2xx_pwrmode_write(CPUARMState *env, const ARMCPRegInfo *ri, 247 uint64_t value) 248 { 249 PXA2xxState *s = (PXA2xxState *)ri->opaque; 250 static const char *pwrmode[8] = { 251 "Normal", "Idle", "Deep-idle", "Standby", 252 "Sleep", "reserved (!)", "reserved (!)", "Deep-sleep", 253 }; 254 255 if (value & 8) { 256 printf("%s: CPU voltage change attempt\n", __func__); 257 } 258 switch (value & 7) { 259 case 0: 260 /* Do nothing */ 261 break; 262 263 case 1: 264 /* Idle */ 265 if (!(s->cm_regs[CCCR >> 2] & (1 << 31))) { /* CPDIS */ 266 cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT); 267 break; 268 } 269 /* Fall through. */ 270 271 case 2: 272 /* Deep-Idle */ 273 cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT); 274 s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */ 275 goto message; 276 277 case 3: 278 s->cpu->env.uncached_cpsr = 279 ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I; 280 s->cpu->env.cp15.c1_sys = 0; 281 s->cpu->env.cp15.c1_coproc = 0; 282 s->cpu->env.cp15.c2_base0 = 0; 283 s->cpu->env.cp15.c3 = 0; 284 s->pm_regs[PSSR >> 2] |= 0x8; /* Set STS */ 285 s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */ 286 287 /* 288 * The scratch-pad register is almost universally used 289 * for storing the return address on suspend. For the 290 * lack of a resuming bootloader, perform a jump 291 * directly to that address. 292 */ 293 memset(s->cpu->env.regs, 0, 4 * 15); 294 s->cpu->env.regs[15] = s->pm_regs[PSPR >> 2]; 295 296 #if 0 297 buffer = 0xe59ff000; /* ldr pc, [pc, #0] */ 298 cpu_physical_memory_write(0, &buffer, 4); 299 buffer = s->pm_regs[PSPR >> 2]; 300 cpu_physical_memory_write(8, &buffer, 4); 301 #endif 302 303 /* Suspend */ 304 cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT); 305 306 goto message; 307 308 default: 309 message: 310 printf("%s: machine entered %s mode\n", __func__, 311 pwrmode[value & 7]); 312 } 313 314 return 0; 315 } 316 317 static int pxa2xx_cppmnc_read(CPUARMState *env, const ARMCPRegInfo *ri, 318 uint64_t *value) 319 { 320 PXA2xxState *s = (PXA2xxState *)ri->opaque; 321 *value = s->pmnc; 322 return 0; 323 } 324 325 static int pxa2xx_cppmnc_write(CPUARMState *env, const ARMCPRegInfo *ri, 326 uint64_t value) 327 { 328 PXA2xxState *s = (PXA2xxState *)ri->opaque; 329 s->pmnc = value; 330 return 0; 331 } 332 333 static int pxa2xx_cpccnt_read(CPUARMState *env, const ARMCPRegInfo *ri, 334 uint64_t *value) 335 { 336 PXA2xxState *s = (PXA2xxState *)ri->opaque; 337 if (s->pmnc & 1) { 338 *value = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 339 } else { 340 *value = 0; 341 } 342 return 0; 343 } 344 345 static const ARMCPRegInfo pxa_cp_reginfo[] = { 346 /* cp14 crm==1: perf registers */ 347 { .name = "CPPMNC", .cp = 14, .crn = 0, .crm = 1, .opc1 = 0, .opc2 = 0, 348 .access = PL1_RW, 349 .readfn = pxa2xx_cppmnc_read, .writefn = pxa2xx_cppmnc_write }, 350 { .name = "CPCCNT", .cp = 14, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0, 351 .access = PL1_RW, 352 .readfn = pxa2xx_cpccnt_read, .writefn = arm_cp_write_ignore }, 353 { .name = "CPINTEN", .cp = 14, .crn = 4, .crm = 1, .opc1 = 0, .opc2 = 0, 354 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 355 { .name = "CPFLAG", .cp = 14, .crn = 5, .crm = 1, .opc1 = 0, .opc2 = 0, 356 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 357 { .name = "CPEVTSEL", .cp = 14, .crn = 8, .crm = 1, .opc1 = 0, .opc2 = 0, 358 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 359 /* cp14 crm==2: performance count registers */ 360 { .name = "CPPMN0", .cp = 14, .crn = 0, .crm = 2, .opc1 = 0, .opc2 = 0, 361 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 362 { .name = "CPPMN1", .cp = 14, .crn = 1, .crm = 2, .opc1 = 0, .opc2 = 0, 363 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 364 { .name = "CPPMN2", .cp = 14, .crn = 2, .crm = 2, .opc1 = 0, .opc2 = 0, 365 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 366 { .name = "CPPMN3", .cp = 14, .crn = 2, .crm = 3, .opc1 = 0, .opc2 = 0, 367 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 368 /* cp14 crn==6: CLKCFG */ 369 { .name = "CLKCFG", .cp = 14, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 370 .access = PL1_RW, 371 .readfn = pxa2xx_clkcfg_read, .writefn = pxa2xx_clkcfg_write }, 372 /* cp14 crn==7: PWRMODE */ 373 { .name = "PWRMODE", .cp = 14, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 0, 374 .access = PL1_RW, 375 .readfn = arm_cp_read_zero, .writefn = pxa2xx_pwrmode_write }, 376 REGINFO_SENTINEL 377 }; 378 379 static void pxa2xx_setup_cp14(PXA2xxState *s) 380 { 381 define_arm_cp_regs_with_opaque(s->cpu, pxa_cp_reginfo, s); 382 } 383 384 #define MDCNFG 0x00 /* SDRAM Configuration register */ 385 #define MDREFR 0x04 /* SDRAM Refresh Control register */ 386 #define MSC0 0x08 /* Static Memory Control register 0 */ 387 #define MSC1 0x0c /* Static Memory Control register 1 */ 388 #define MSC2 0x10 /* Static Memory Control register 2 */ 389 #define MECR 0x14 /* Expansion Memory Bus Config register */ 390 #define SXCNFG 0x1c /* Synchronous Static Memory Config register */ 391 #define MCMEM0 0x28 /* PC Card Memory Socket 0 Timing register */ 392 #define MCMEM1 0x2c /* PC Card Memory Socket 1 Timing register */ 393 #define MCATT0 0x30 /* PC Card Attribute Socket 0 register */ 394 #define MCATT1 0x34 /* PC Card Attribute Socket 1 register */ 395 #define MCIO0 0x38 /* PC Card I/O Socket 0 Timing register */ 396 #define MCIO1 0x3c /* PC Card I/O Socket 1 Timing register */ 397 #define MDMRS 0x40 /* SDRAM Mode Register Set Config register */ 398 #define BOOT_DEF 0x44 /* Boot-time Default Configuration register */ 399 #define ARB_CNTL 0x48 /* Arbiter Control register */ 400 #define BSCNTR0 0x4c /* Memory Buffer Strength Control register 0 */ 401 #define BSCNTR1 0x50 /* Memory Buffer Strength Control register 1 */ 402 #define LCDBSCNTR 0x54 /* LCD Buffer Strength Control register */ 403 #define MDMRSLP 0x58 /* Low Power SDRAM Mode Set Config register */ 404 #define BSCNTR2 0x5c /* Memory Buffer Strength Control register 2 */ 405 #define BSCNTR3 0x60 /* Memory Buffer Strength Control register 3 */ 406 #define SA1110 0x64 /* SA-1110 Memory Compatibility register */ 407 408 static uint64_t pxa2xx_mm_read(void *opaque, hwaddr addr, 409 unsigned size) 410 { 411 PXA2xxState *s = (PXA2xxState *) opaque; 412 413 switch (addr) { 414 case MDCNFG ... SA1110: 415 if ((addr & 3) == 0) 416 return s->mm_regs[addr >> 2]; 417 418 default: 419 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); 420 break; 421 } 422 return 0; 423 } 424 425 static void pxa2xx_mm_write(void *opaque, hwaddr addr, 426 uint64_t value, unsigned size) 427 { 428 PXA2xxState *s = (PXA2xxState *) opaque; 429 430 switch (addr) { 431 case MDCNFG ... SA1110: 432 if ((addr & 3) == 0) { 433 s->mm_regs[addr >> 2] = value; 434 break; 435 } 436 437 default: 438 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); 439 break; 440 } 441 } 442 443 static const MemoryRegionOps pxa2xx_mm_ops = { 444 .read = pxa2xx_mm_read, 445 .write = pxa2xx_mm_write, 446 .endianness = DEVICE_NATIVE_ENDIAN, 447 }; 448 449 static const VMStateDescription vmstate_pxa2xx_mm = { 450 .name = "pxa2xx_mm", 451 .version_id = 0, 452 .minimum_version_id = 0, 453 .minimum_version_id_old = 0, 454 .fields = (VMStateField[]) { 455 VMSTATE_UINT32_ARRAY(mm_regs, PXA2xxState, 0x1a), 456 VMSTATE_END_OF_LIST() 457 } 458 }; 459 460 #define TYPE_PXA2XX_SSP "pxa2xx-ssp" 461 #define PXA2XX_SSP(obj) \ 462 OBJECT_CHECK(PXA2xxSSPState, (obj), TYPE_PXA2XX_SSP) 463 464 /* Synchronous Serial Ports */ 465 typedef struct { 466 /*< private >*/ 467 SysBusDevice parent_obj; 468 /*< public >*/ 469 470 MemoryRegion iomem; 471 qemu_irq irq; 472 int enable; 473 SSIBus *bus; 474 475 uint32_t sscr[2]; 476 uint32_t sspsp; 477 uint32_t ssto; 478 uint32_t ssitr; 479 uint32_t sssr; 480 uint8_t sstsa; 481 uint8_t ssrsa; 482 uint8_t ssacd; 483 484 uint32_t rx_fifo[16]; 485 int rx_level; 486 int rx_start; 487 } PXA2xxSSPState; 488 489 #define SSCR0 0x00 /* SSP Control register 0 */ 490 #define SSCR1 0x04 /* SSP Control register 1 */ 491 #define SSSR 0x08 /* SSP Status register */ 492 #define SSITR 0x0c /* SSP Interrupt Test register */ 493 #define SSDR 0x10 /* SSP Data register */ 494 #define SSTO 0x28 /* SSP Time-Out register */ 495 #define SSPSP 0x2c /* SSP Programmable Serial Protocol register */ 496 #define SSTSA 0x30 /* SSP TX Time Slot Active register */ 497 #define SSRSA 0x34 /* SSP RX Time Slot Active register */ 498 #define SSTSS 0x38 /* SSP Time Slot Status register */ 499 #define SSACD 0x3c /* SSP Audio Clock Divider register */ 500 501 /* Bitfields for above registers */ 502 #define SSCR0_SPI(x) (((x) & 0x30) == 0x00) 503 #define SSCR0_SSP(x) (((x) & 0x30) == 0x10) 504 #define SSCR0_UWIRE(x) (((x) & 0x30) == 0x20) 505 #define SSCR0_PSP(x) (((x) & 0x30) == 0x30) 506 #define SSCR0_SSE (1 << 7) 507 #define SSCR0_RIM (1 << 22) 508 #define SSCR0_TIM (1 << 23) 509 #define SSCR0_MOD (1 << 31) 510 #define SSCR0_DSS(x) (((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1) 511 #define SSCR1_RIE (1 << 0) 512 #define SSCR1_TIE (1 << 1) 513 #define SSCR1_LBM (1 << 2) 514 #define SSCR1_MWDS (1 << 5) 515 #define SSCR1_TFT(x) ((((x) >> 6) & 0xf) + 1) 516 #define SSCR1_RFT(x) ((((x) >> 10) & 0xf) + 1) 517 #define SSCR1_EFWR (1 << 14) 518 #define SSCR1_PINTE (1 << 18) 519 #define SSCR1_TINTE (1 << 19) 520 #define SSCR1_RSRE (1 << 20) 521 #define SSCR1_TSRE (1 << 21) 522 #define SSCR1_EBCEI (1 << 29) 523 #define SSITR_INT (7 << 5) 524 #define SSSR_TNF (1 << 2) 525 #define SSSR_RNE (1 << 3) 526 #define SSSR_TFS (1 << 5) 527 #define SSSR_RFS (1 << 6) 528 #define SSSR_ROR (1 << 7) 529 #define SSSR_PINT (1 << 18) 530 #define SSSR_TINT (1 << 19) 531 #define SSSR_EOC (1 << 20) 532 #define SSSR_TUR (1 << 21) 533 #define SSSR_BCE (1 << 23) 534 #define SSSR_RW 0x00bc0080 535 536 static void pxa2xx_ssp_int_update(PXA2xxSSPState *s) 537 { 538 int level = 0; 539 540 level |= s->ssitr & SSITR_INT; 541 level |= (s->sssr & SSSR_BCE) && (s->sscr[1] & SSCR1_EBCEI); 542 level |= (s->sssr & SSSR_TUR) && !(s->sscr[0] & SSCR0_TIM); 543 level |= (s->sssr & SSSR_EOC) && (s->sssr & (SSSR_TINT | SSSR_PINT)); 544 level |= (s->sssr & SSSR_TINT) && (s->sscr[1] & SSCR1_TINTE); 545 level |= (s->sssr & SSSR_PINT) && (s->sscr[1] & SSCR1_PINTE); 546 level |= (s->sssr & SSSR_ROR) && !(s->sscr[0] & SSCR0_RIM); 547 level |= (s->sssr & SSSR_RFS) && (s->sscr[1] & SSCR1_RIE); 548 level |= (s->sssr & SSSR_TFS) && (s->sscr[1] & SSCR1_TIE); 549 qemu_set_irq(s->irq, !!level); 550 } 551 552 static void pxa2xx_ssp_fifo_update(PXA2xxSSPState *s) 553 { 554 s->sssr &= ~(0xf << 12); /* Clear RFL */ 555 s->sssr &= ~(0xf << 8); /* Clear TFL */ 556 s->sssr &= ~SSSR_TFS; 557 s->sssr &= ~SSSR_TNF; 558 if (s->enable) { 559 s->sssr |= ((s->rx_level - 1) & 0xf) << 12; 560 if (s->rx_level >= SSCR1_RFT(s->sscr[1])) 561 s->sssr |= SSSR_RFS; 562 else 563 s->sssr &= ~SSSR_RFS; 564 if (s->rx_level) 565 s->sssr |= SSSR_RNE; 566 else 567 s->sssr &= ~SSSR_RNE; 568 /* TX FIFO is never filled, so it is always in underrun 569 condition if SSP is enabled */ 570 s->sssr |= SSSR_TFS; 571 s->sssr |= SSSR_TNF; 572 } 573 574 pxa2xx_ssp_int_update(s); 575 } 576 577 static uint64_t pxa2xx_ssp_read(void *opaque, hwaddr addr, 578 unsigned size) 579 { 580 PXA2xxSSPState *s = (PXA2xxSSPState *) opaque; 581 uint32_t retval; 582 583 switch (addr) { 584 case SSCR0: 585 return s->sscr[0]; 586 case SSCR1: 587 return s->sscr[1]; 588 case SSPSP: 589 return s->sspsp; 590 case SSTO: 591 return s->ssto; 592 case SSITR: 593 return s->ssitr; 594 case SSSR: 595 return s->sssr | s->ssitr; 596 case SSDR: 597 if (!s->enable) 598 return 0xffffffff; 599 if (s->rx_level < 1) { 600 printf("%s: SSP Rx Underrun\n", __FUNCTION__); 601 return 0xffffffff; 602 } 603 s->rx_level --; 604 retval = s->rx_fifo[s->rx_start ++]; 605 s->rx_start &= 0xf; 606 pxa2xx_ssp_fifo_update(s); 607 return retval; 608 case SSTSA: 609 return s->sstsa; 610 case SSRSA: 611 return s->ssrsa; 612 case SSTSS: 613 return 0; 614 case SSACD: 615 return s->ssacd; 616 default: 617 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); 618 break; 619 } 620 return 0; 621 } 622 623 static void pxa2xx_ssp_write(void *opaque, hwaddr addr, 624 uint64_t value64, unsigned size) 625 { 626 PXA2xxSSPState *s = (PXA2xxSSPState *) opaque; 627 uint32_t value = value64; 628 629 switch (addr) { 630 case SSCR0: 631 s->sscr[0] = value & 0xc7ffffff; 632 s->enable = value & SSCR0_SSE; 633 if (value & SSCR0_MOD) 634 printf("%s: Attempt to use network mode\n", __FUNCTION__); 635 if (s->enable && SSCR0_DSS(value) < 4) 636 printf("%s: Wrong data size: %i bits\n", __FUNCTION__, 637 SSCR0_DSS(value)); 638 if (!(value & SSCR0_SSE)) { 639 s->sssr = 0; 640 s->ssitr = 0; 641 s->rx_level = 0; 642 } 643 pxa2xx_ssp_fifo_update(s); 644 break; 645 646 case SSCR1: 647 s->sscr[1] = value; 648 if (value & (SSCR1_LBM | SSCR1_EFWR)) 649 printf("%s: Attempt to use SSP test mode\n", __FUNCTION__); 650 pxa2xx_ssp_fifo_update(s); 651 break; 652 653 case SSPSP: 654 s->sspsp = value; 655 break; 656 657 case SSTO: 658 s->ssto = value; 659 break; 660 661 case SSITR: 662 s->ssitr = value & SSITR_INT; 663 pxa2xx_ssp_int_update(s); 664 break; 665 666 case SSSR: 667 s->sssr &= ~(value & SSSR_RW); 668 pxa2xx_ssp_int_update(s); 669 break; 670 671 case SSDR: 672 if (SSCR0_UWIRE(s->sscr[0])) { 673 if (s->sscr[1] & SSCR1_MWDS) 674 value &= 0xffff; 675 else 676 value &= 0xff; 677 } else 678 /* Note how 32bits overflow does no harm here */ 679 value &= (1 << SSCR0_DSS(s->sscr[0])) - 1; 680 681 /* Data goes from here to the Tx FIFO and is shifted out from 682 * there directly to the slave, no need to buffer it. 683 */ 684 if (s->enable) { 685 uint32_t readval; 686 readval = ssi_transfer(s->bus, value); 687 if (s->rx_level < 0x10) { 688 s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = readval; 689 } else { 690 s->sssr |= SSSR_ROR; 691 } 692 } 693 pxa2xx_ssp_fifo_update(s); 694 break; 695 696 case SSTSA: 697 s->sstsa = value; 698 break; 699 700 case SSRSA: 701 s->ssrsa = value; 702 break; 703 704 case SSACD: 705 s->ssacd = value; 706 break; 707 708 default: 709 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); 710 break; 711 } 712 } 713 714 static const MemoryRegionOps pxa2xx_ssp_ops = { 715 .read = pxa2xx_ssp_read, 716 .write = pxa2xx_ssp_write, 717 .endianness = DEVICE_NATIVE_ENDIAN, 718 }; 719 720 static void pxa2xx_ssp_save(QEMUFile *f, void *opaque) 721 { 722 PXA2xxSSPState *s = (PXA2xxSSPState *) opaque; 723 int i; 724 725 qemu_put_be32(f, s->enable); 726 727 qemu_put_be32s(f, &s->sscr[0]); 728 qemu_put_be32s(f, &s->sscr[1]); 729 qemu_put_be32s(f, &s->sspsp); 730 qemu_put_be32s(f, &s->ssto); 731 qemu_put_be32s(f, &s->ssitr); 732 qemu_put_be32s(f, &s->sssr); 733 qemu_put_8s(f, &s->sstsa); 734 qemu_put_8s(f, &s->ssrsa); 735 qemu_put_8s(f, &s->ssacd); 736 737 qemu_put_byte(f, s->rx_level); 738 for (i = 0; i < s->rx_level; i ++) 739 qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 0xf]); 740 } 741 742 static int pxa2xx_ssp_load(QEMUFile *f, void *opaque, int version_id) 743 { 744 PXA2xxSSPState *s = (PXA2xxSSPState *) opaque; 745 int i; 746 747 s->enable = qemu_get_be32(f); 748 749 qemu_get_be32s(f, &s->sscr[0]); 750 qemu_get_be32s(f, &s->sscr[1]); 751 qemu_get_be32s(f, &s->sspsp); 752 qemu_get_be32s(f, &s->ssto); 753 qemu_get_be32s(f, &s->ssitr); 754 qemu_get_be32s(f, &s->sssr); 755 qemu_get_8s(f, &s->sstsa); 756 qemu_get_8s(f, &s->ssrsa); 757 qemu_get_8s(f, &s->ssacd); 758 759 s->rx_level = qemu_get_byte(f); 760 s->rx_start = 0; 761 for (i = 0; i < s->rx_level; i ++) 762 s->rx_fifo[i] = qemu_get_byte(f); 763 764 return 0; 765 } 766 767 static int pxa2xx_ssp_init(SysBusDevice *sbd) 768 { 769 DeviceState *dev = DEVICE(sbd); 770 PXA2xxSSPState *s = PXA2XX_SSP(dev); 771 772 sysbus_init_irq(sbd, &s->irq); 773 774 memory_region_init_io(&s->iomem, OBJECT(s), &pxa2xx_ssp_ops, s, 775 "pxa2xx-ssp", 0x1000); 776 sysbus_init_mmio(sbd, &s->iomem); 777 register_savevm(dev, "pxa2xx_ssp", -1, 0, 778 pxa2xx_ssp_save, pxa2xx_ssp_load, s); 779 780 s->bus = ssi_create_bus(dev, "ssi"); 781 return 0; 782 } 783 784 /* Real-Time Clock */ 785 #define RCNR 0x00 /* RTC Counter register */ 786 #define RTAR 0x04 /* RTC Alarm register */ 787 #define RTSR 0x08 /* RTC Status register */ 788 #define RTTR 0x0c /* RTC Timer Trim register */ 789 #define RDCR 0x10 /* RTC Day Counter register */ 790 #define RYCR 0x14 /* RTC Year Counter register */ 791 #define RDAR1 0x18 /* RTC Wristwatch Day Alarm register 1 */ 792 #define RYAR1 0x1c /* RTC Wristwatch Year Alarm register 1 */ 793 #define RDAR2 0x20 /* RTC Wristwatch Day Alarm register 2 */ 794 #define RYAR2 0x24 /* RTC Wristwatch Year Alarm register 2 */ 795 #define SWCR 0x28 /* RTC Stopwatch Counter register */ 796 #define SWAR1 0x2c /* RTC Stopwatch Alarm register 1 */ 797 #define SWAR2 0x30 /* RTC Stopwatch Alarm register 2 */ 798 #define RTCPICR 0x34 /* RTC Periodic Interrupt Counter register */ 799 #define PIAR 0x38 /* RTC Periodic Interrupt Alarm register */ 800 801 #define TYPE_PXA2XX_RTC "pxa2xx_rtc" 802 #define PXA2XX_RTC(obj) \ 803 OBJECT_CHECK(PXA2xxRTCState, (obj), TYPE_PXA2XX_RTC) 804 805 typedef struct { 806 /*< private >*/ 807 SysBusDevice parent_obj; 808 /*< public >*/ 809 810 MemoryRegion iomem; 811 uint32_t rttr; 812 uint32_t rtsr; 813 uint32_t rtar; 814 uint32_t rdar1; 815 uint32_t rdar2; 816 uint32_t ryar1; 817 uint32_t ryar2; 818 uint32_t swar1; 819 uint32_t swar2; 820 uint32_t piar; 821 uint32_t last_rcnr; 822 uint32_t last_rdcr; 823 uint32_t last_rycr; 824 uint32_t last_swcr; 825 uint32_t last_rtcpicr; 826 int64_t last_hz; 827 int64_t last_sw; 828 int64_t last_pi; 829 QEMUTimer *rtc_hz; 830 QEMUTimer *rtc_rdal1; 831 QEMUTimer *rtc_rdal2; 832 QEMUTimer *rtc_swal1; 833 QEMUTimer *rtc_swal2; 834 QEMUTimer *rtc_pi; 835 qemu_irq rtc_irq; 836 } PXA2xxRTCState; 837 838 static inline void pxa2xx_rtc_int_update(PXA2xxRTCState *s) 839 { 840 qemu_set_irq(s->rtc_irq, !!(s->rtsr & 0x2553)); 841 } 842 843 static void pxa2xx_rtc_hzupdate(PXA2xxRTCState *s) 844 { 845 int64_t rt = qemu_clock_get_ms(rtc_clock); 846 s->last_rcnr += ((rt - s->last_hz) << 15) / 847 (1000 * ((s->rttr & 0xffff) + 1)); 848 s->last_rdcr += ((rt - s->last_hz) << 15) / 849 (1000 * ((s->rttr & 0xffff) + 1)); 850 s->last_hz = rt; 851 } 852 853 static void pxa2xx_rtc_swupdate(PXA2xxRTCState *s) 854 { 855 int64_t rt = qemu_clock_get_ms(rtc_clock); 856 if (s->rtsr & (1 << 12)) 857 s->last_swcr += (rt - s->last_sw) / 10; 858 s->last_sw = rt; 859 } 860 861 static void pxa2xx_rtc_piupdate(PXA2xxRTCState *s) 862 { 863 int64_t rt = qemu_clock_get_ms(rtc_clock); 864 if (s->rtsr & (1 << 15)) 865 s->last_swcr += rt - s->last_pi; 866 s->last_pi = rt; 867 } 868 869 static inline void pxa2xx_rtc_alarm_update(PXA2xxRTCState *s, 870 uint32_t rtsr) 871 { 872 if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0))) 873 timer_mod(s->rtc_hz, s->last_hz + 874 (((s->rtar - s->last_rcnr) * 1000 * 875 ((s->rttr & 0xffff) + 1)) >> 15)); 876 else 877 timer_del(s->rtc_hz); 878 879 if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4))) 880 timer_mod(s->rtc_rdal1, s->last_hz + 881 (((s->rdar1 - s->last_rdcr) * 1000 * 882 ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */ 883 else 884 timer_del(s->rtc_rdal1); 885 886 if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6))) 887 timer_mod(s->rtc_rdal2, s->last_hz + 888 (((s->rdar2 - s->last_rdcr) * 1000 * 889 ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */ 890 else 891 timer_del(s->rtc_rdal2); 892 893 if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8))) 894 timer_mod(s->rtc_swal1, s->last_sw + 895 (s->swar1 - s->last_swcr) * 10); /* TODO: fixup */ 896 else 897 timer_del(s->rtc_swal1); 898 899 if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10))) 900 timer_mod(s->rtc_swal2, s->last_sw + 901 (s->swar2 - s->last_swcr) * 10); /* TODO: fixup */ 902 else 903 timer_del(s->rtc_swal2); 904 905 if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13))) 906 timer_mod(s->rtc_pi, s->last_pi + 907 (s->piar & 0xffff) - s->last_rtcpicr); 908 else 909 timer_del(s->rtc_pi); 910 } 911 912 static inline void pxa2xx_rtc_hz_tick(void *opaque) 913 { 914 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque; 915 s->rtsr |= (1 << 0); 916 pxa2xx_rtc_alarm_update(s, s->rtsr); 917 pxa2xx_rtc_int_update(s); 918 } 919 920 static inline void pxa2xx_rtc_rdal1_tick(void *opaque) 921 { 922 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque; 923 s->rtsr |= (1 << 4); 924 pxa2xx_rtc_alarm_update(s, s->rtsr); 925 pxa2xx_rtc_int_update(s); 926 } 927 928 static inline void pxa2xx_rtc_rdal2_tick(void *opaque) 929 { 930 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque; 931 s->rtsr |= (1 << 6); 932 pxa2xx_rtc_alarm_update(s, s->rtsr); 933 pxa2xx_rtc_int_update(s); 934 } 935 936 static inline void pxa2xx_rtc_swal1_tick(void *opaque) 937 { 938 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque; 939 s->rtsr |= (1 << 8); 940 pxa2xx_rtc_alarm_update(s, s->rtsr); 941 pxa2xx_rtc_int_update(s); 942 } 943 944 static inline void pxa2xx_rtc_swal2_tick(void *opaque) 945 { 946 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque; 947 s->rtsr |= (1 << 10); 948 pxa2xx_rtc_alarm_update(s, s->rtsr); 949 pxa2xx_rtc_int_update(s); 950 } 951 952 static inline void pxa2xx_rtc_pi_tick(void *opaque) 953 { 954 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque; 955 s->rtsr |= (1 << 13); 956 pxa2xx_rtc_piupdate(s); 957 s->last_rtcpicr = 0; 958 pxa2xx_rtc_alarm_update(s, s->rtsr); 959 pxa2xx_rtc_int_update(s); 960 } 961 962 static uint64_t pxa2xx_rtc_read(void *opaque, hwaddr addr, 963 unsigned size) 964 { 965 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque; 966 967 switch (addr) { 968 case RTTR: 969 return s->rttr; 970 case RTSR: 971 return s->rtsr; 972 case RTAR: 973 return s->rtar; 974 case RDAR1: 975 return s->rdar1; 976 case RDAR2: 977 return s->rdar2; 978 case RYAR1: 979 return s->ryar1; 980 case RYAR2: 981 return s->ryar2; 982 case SWAR1: 983 return s->swar1; 984 case SWAR2: 985 return s->swar2; 986 case PIAR: 987 return s->piar; 988 case RCNR: 989 return s->last_rcnr + 990 ((qemu_clock_get_ms(rtc_clock) - s->last_hz) << 15) / 991 (1000 * ((s->rttr & 0xffff) + 1)); 992 case RDCR: 993 return s->last_rdcr + 994 ((qemu_clock_get_ms(rtc_clock) - s->last_hz) << 15) / 995 (1000 * ((s->rttr & 0xffff) + 1)); 996 case RYCR: 997 return s->last_rycr; 998 case SWCR: 999 if (s->rtsr & (1 << 12)) 1000 return s->last_swcr + 1001 (qemu_clock_get_ms(rtc_clock) - s->last_sw) / 10; 1002 else 1003 return s->last_swcr; 1004 default: 1005 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); 1006 break; 1007 } 1008 return 0; 1009 } 1010 1011 static void pxa2xx_rtc_write(void *opaque, hwaddr addr, 1012 uint64_t value64, unsigned size) 1013 { 1014 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque; 1015 uint32_t value = value64; 1016 1017 switch (addr) { 1018 case RTTR: 1019 if (!(s->rttr & (1 << 31))) { 1020 pxa2xx_rtc_hzupdate(s); 1021 s->rttr = value; 1022 pxa2xx_rtc_alarm_update(s, s->rtsr); 1023 } 1024 break; 1025 1026 case RTSR: 1027 if ((s->rtsr ^ value) & (1 << 15)) 1028 pxa2xx_rtc_piupdate(s); 1029 1030 if ((s->rtsr ^ value) & (1 << 12)) 1031 pxa2xx_rtc_swupdate(s); 1032 1033 if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac)) 1034 pxa2xx_rtc_alarm_update(s, value); 1035 1036 s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac)); 1037 pxa2xx_rtc_int_update(s); 1038 break; 1039 1040 case RTAR: 1041 s->rtar = value; 1042 pxa2xx_rtc_alarm_update(s, s->rtsr); 1043 break; 1044 1045 case RDAR1: 1046 s->rdar1 = value; 1047 pxa2xx_rtc_alarm_update(s, s->rtsr); 1048 break; 1049 1050 case RDAR2: 1051 s->rdar2 = value; 1052 pxa2xx_rtc_alarm_update(s, s->rtsr); 1053 break; 1054 1055 case RYAR1: 1056 s->ryar1 = value; 1057 pxa2xx_rtc_alarm_update(s, s->rtsr); 1058 break; 1059 1060 case RYAR2: 1061 s->ryar2 = value; 1062 pxa2xx_rtc_alarm_update(s, s->rtsr); 1063 break; 1064 1065 case SWAR1: 1066 pxa2xx_rtc_swupdate(s); 1067 s->swar1 = value; 1068 s->last_swcr = 0; 1069 pxa2xx_rtc_alarm_update(s, s->rtsr); 1070 break; 1071 1072 case SWAR2: 1073 s->swar2 = value; 1074 pxa2xx_rtc_alarm_update(s, s->rtsr); 1075 break; 1076 1077 case PIAR: 1078 s->piar = value; 1079 pxa2xx_rtc_alarm_update(s, s->rtsr); 1080 break; 1081 1082 case RCNR: 1083 pxa2xx_rtc_hzupdate(s); 1084 s->last_rcnr = value; 1085 pxa2xx_rtc_alarm_update(s, s->rtsr); 1086 break; 1087 1088 case RDCR: 1089 pxa2xx_rtc_hzupdate(s); 1090 s->last_rdcr = value; 1091 pxa2xx_rtc_alarm_update(s, s->rtsr); 1092 break; 1093 1094 case RYCR: 1095 s->last_rycr = value; 1096 break; 1097 1098 case SWCR: 1099 pxa2xx_rtc_swupdate(s); 1100 s->last_swcr = value; 1101 pxa2xx_rtc_alarm_update(s, s->rtsr); 1102 break; 1103 1104 case RTCPICR: 1105 pxa2xx_rtc_piupdate(s); 1106 s->last_rtcpicr = value & 0xffff; 1107 pxa2xx_rtc_alarm_update(s, s->rtsr); 1108 break; 1109 1110 default: 1111 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); 1112 } 1113 } 1114 1115 static const MemoryRegionOps pxa2xx_rtc_ops = { 1116 .read = pxa2xx_rtc_read, 1117 .write = pxa2xx_rtc_write, 1118 .endianness = DEVICE_NATIVE_ENDIAN, 1119 }; 1120 1121 static int pxa2xx_rtc_init(SysBusDevice *dev) 1122 { 1123 PXA2xxRTCState *s = PXA2XX_RTC(dev); 1124 struct tm tm; 1125 int wom; 1126 1127 s->rttr = 0x7fff; 1128 s->rtsr = 0; 1129 1130 qemu_get_timedate(&tm, 0); 1131 wom = ((tm.tm_mday - 1) / 7) + 1; 1132 1133 s->last_rcnr = (uint32_t) mktimegm(&tm); 1134 s->last_rdcr = (wom << 20) | ((tm.tm_wday + 1) << 17) | 1135 (tm.tm_hour << 12) | (tm.tm_min << 6) | tm.tm_sec; 1136 s->last_rycr = ((tm.tm_year + 1900) << 9) | 1137 ((tm.tm_mon + 1) << 5) | tm.tm_mday; 1138 s->last_swcr = (tm.tm_hour << 19) | 1139 (tm.tm_min << 13) | (tm.tm_sec << 7); 1140 s->last_rtcpicr = 0; 1141 s->last_hz = s->last_sw = s->last_pi = qemu_clock_get_ms(rtc_clock); 1142 1143 s->rtc_hz = timer_new_ms(rtc_clock, pxa2xx_rtc_hz_tick, s); 1144 s->rtc_rdal1 = timer_new_ms(rtc_clock, pxa2xx_rtc_rdal1_tick, s); 1145 s->rtc_rdal2 = timer_new_ms(rtc_clock, pxa2xx_rtc_rdal2_tick, s); 1146 s->rtc_swal1 = timer_new_ms(rtc_clock, pxa2xx_rtc_swal1_tick, s); 1147 s->rtc_swal2 = timer_new_ms(rtc_clock, pxa2xx_rtc_swal2_tick, s); 1148 s->rtc_pi = timer_new_ms(rtc_clock, pxa2xx_rtc_pi_tick, s); 1149 1150 sysbus_init_irq(dev, &s->rtc_irq); 1151 1152 memory_region_init_io(&s->iomem, OBJECT(s), &pxa2xx_rtc_ops, s, 1153 "pxa2xx-rtc", 0x10000); 1154 sysbus_init_mmio(dev, &s->iomem); 1155 1156 return 0; 1157 } 1158 1159 static void pxa2xx_rtc_pre_save(void *opaque) 1160 { 1161 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque; 1162 1163 pxa2xx_rtc_hzupdate(s); 1164 pxa2xx_rtc_piupdate(s); 1165 pxa2xx_rtc_swupdate(s); 1166 } 1167 1168 static int pxa2xx_rtc_post_load(void *opaque, int version_id) 1169 { 1170 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque; 1171 1172 pxa2xx_rtc_alarm_update(s, s->rtsr); 1173 1174 return 0; 1175 } 1176 1177 static const VMStateDescription vmstate_pxa2xx_rtc_regs = { 1178 .name = "pxa2xx_rtc", 1179 .version_id = 0, 1180 .minimum_version_id = 0, 1181 .minimum_version_id_old = 0, 1182 .pre_save = pxa2xx_rtc_pre_save, 1183 .post_load = pxa2xx_rtc_post_load, 1184 .fields = (VMStateField[]) { 1185 VMSTATE_UINT32(rttr, PXA2xxRTCState), 1186 VMSTATE_UINT32(rtsr, PXA2xxRTCState), 1187 VMSTATE_UINT32(rtar, PXA2xxRTCState), 1188 VMSTATE_UINT32(rdar1, PXA2xxRTCState), 1189 VMSTATE_UINT32(rdar2, PXA2xxRTCState), 1190 VMSTATE_UINT32(ryar1, PXA2xxRTCState), 1191 VMSTATE_UINT32(ryar2, PXA2xxRTCState), 1192 VMSTATE_UINT32(swar1, PXA2xxRTCState), 1193 VMSTATE_UINT32(swar2, PXA2xxRTCState), 1194 VMSTATE_UINT32(piar, PXA2xxRTCState), 1195 VMSTATE_UINT32(last_rcnr, PXA2xxRTCState), 1196 VMSTATE_UINT32(last_rdcr, PXA2xxRTCState), 1197 VMSTATE_UINT32(last_rycr, PXA2xxRTCState), 1198 VMSTATE_UINT32(last_swcr, PXA2xxRTCState), 1199 VMSTATE_UINT32(last_rtcpicr, PXA2xxRTCState), 1200 VMSTATE_INT64(last_hz, PXA2xxRTCState), 1201 VMSTATE_INT64(last_sw, PXA2xxRTCState), 1202 VMSTATE_INT64(last_pi, PXA2xxRTCState), 1203 VMSTATE_END_OF_LIST(), 1204 }, 1205 }; 1206 1207 static void pxa2xx_rtc_sysbus_class_init(ObjectClass *klass, void *data) 1208 { 1209 DeviceClass *dc = DEVICE_CLASS(klass); 1210 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); 1211 1212 k->init = pxa2xx_rtc_init; 1213 dc->desc = "PXA2xx RTC Controller"; 1214 dc->vmsd = &vmstate_pxa2xx_rtc_regs; 1215 } 1216 1217 static const TypeInfo pxa2xx_rtc_sysbus_info = { 1218 .name = TYPE_PXA2XX_RTC, 1219 .parent = TYPE_SYS_BUS_DEVICE, 1220 .instance_size = sizeof(PXA2xxRTCState), 1221 .class_init = pxa2xx_rtc_sysbus_class_init, 1222 }; 1223 1224 /* I2C Interface */ 1225 1226 #define TYPE_PXA2XX_I2C_SLAVE "pxa2xx-i2c-slave" 1227 #define PXA2XX_I2C_SLAVE(obj) \ 1228 OBJECT_CHECK(PXA2xxI2CSlaveState, (obj), TYPE_PXA2XX_I2C_SLAVE) 1229 1230 typedef struct PXA2xxI2CSlaveState { 1231 I2CSlave parent_obj; 1232 1233 PXA2xxI2CState *host; 1234 } PXA2xxI2CSlaveState; 1235 1236 #define TYPE_PXA2XX_I2C "pxa2xx_i2c" 1237 #define PXA2XX_I2C(obj) \ 1238 OBJECT_CHECK(PXA2xxI2CState, (obj), TYPE_PXA2XX_I2C) 1239 1240 struct PXA2xxI2CState { 1241 /*< private >*/ 1242 SysBusDevice parent_obj; 1243 /*< public >*/ 1244 1245 MemoryRegion iomem; 1246 PXA2xxI2CSlaveState *slave; 1247 I2CBus *bus; 1248 qemu_irq irq; 1249 uint32_t offset; 1250 uint32_t region_size; 1251 1252 uint16_t control; 1253 uint16_t status; 1254 uint8_t ibmr; 1255 uint8_t data; 1256 }; 1257 1258 #define IBMR 0x80 /* I2C Bus Monitor register */ 1259 #define IDBR 0x88 /* I2C Data Buffer register */ 1260 #define ICR 0x90 /* I2C Control register */ 1261 #define ISR 0x98 /* I2C Status register */ 1262 #define ISAR 0xa0 /* I2C Slave Address register */ 1263 1264 static void pxa2xx_i2c_update(PXA2xxI2CState *s) 1265 { 1266 uint16_t level = 0; 1267 level |= s->status & s->control & (1 << 10); /* BED */ 1268 level |= (s->status & (1 << 7)) && (s->control & (1 << 9)); /* IRF */ 1269 level |= (s->status & (1 << 6)) && (s->control & (1 << 8)); /* ITE */ 1270 level |= s->status & (1 << 9); /* SAD */ 1271 qemu_set_irq(s->irq, !!level); 1272 } 1273 1274 /* These are only stubs now. */ 1275 static void pxa2xx_i2c_event(I2CSlave *i2c, enum i2c_event event) 1276 { 1277 PXA2xxI2CSlaveState *slave = PXA2XX_I2C_SLAVE(i2c); 1278 PXA2xxI2CState *s = slave->host; 1279 1280 switch (event) { 1281 case I2C_START_SEND: 1282 s->status |= (1 << 9); /* set SAD */ 1283 s->status &= ~(1 << 0); /* clear RWM */ 1284 break; 1285 case I2C_START_RECV: 1286 s->status |= (1 << 9); /* set SAD */ 1287 s->status |= 1 << 0; /* set RWM */ 1288 break; 1289 case I2C_FINISH: 1290 s->status |= (1 << 4); /* set SSD */ 1291 break; 1292 case I2C_NACK: 1293 s->status |= 1 << 1; /* set ACKNAK */ 1294 break; 1295 } 1296 pxa2xx_i2c_update(s); 1297 } 1298 1299 static int pxa2xx_i2c_rx(I2CSlave *i2c) 1300 { 1301 PXA2xxI2CSlaveState *slave = PXA2XX_I2C_SLAVE(i2c); 1302 PXA2xxI2CState *s = slave->host; 1303 1304 if ((s->control & (1 << 14)) || !(s->control & (1 << 6))) { 1305 return 0; 1306 } 1307 1308 if (s->status & (1 << 0)) { /* RWM */ 1309 s->status |= 1 << 6; /* set ITE */ 1310 } 1311 pxa2xx_i2c_update(s); 1312 1313 return s->data; 1314 } 1315 1316 static int pxa2xx_i2c_tx(I2CSlave *i2c, uint8_t data) 1317 { 1318 PXA2xxI2CSlaveState *slave = PXA2XX_I2C_SLAVE(i2c); 1319 PXA2xxI2CState *s = slave->host; 1320 1321 if ((s->control & (1 << 14)) || !(s->control & (1 << 6))) { 1322 return 1; 1323 } 1324 1325 if (!(s->status & (1 << 0))) { /* RWM */ 1326 s->status |= 1 << 7; /* set IRF */ 1327 s->data = data; 1328 } 1329 pxa2xx_i2c_update(s); 1330 1331 return 1; 1332 } 1333 1334 static uint64_t pxa2xx_i2c_read(void *opaque, hwaddr addr, 1335 unsigned size) 1336 { 1337 PXA2xxI2CState *s = (PXA2xxI2CState *) opaque; 1338 I2CSlave *slave; 1339 1340 addr -= s->offset; 1341 switch (addr) { 1342 case ICR: 1343 return s->control; 1344 case ISR: 1345 return s->status | (i2c_bus_busy(s->bus) << 2); 1346 case ISAR: 1347 slave = I2C_SLAVE(s->slave); 1348 return slave->address; 1349 case IDBR: 1350 return s->data; 1351 case IBMR: 1352 if (s->status & (1 << 2)) 1353 s->ibmr ^= 3; /* Fake SCL and SDA pin changes */ 1354 else 1355 s->ibmr = 0; 1356 return s->ibmr; 1357 default: 1358 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); 1359 break; 1360 } 1361 return 0; 1362 } 1363 1364 static void pxa2xx_i2c_write(void *opaque, hwaddr addr, 1365 uint64_t value64, unsigned size) 1366 { 1367 PXA2xxI2CState *s = (PXA2xxI2CState *) opaque; 1368 uint32_t value = value64; 1369 int ack; 1370 1371 addr -= s->offset; 1372 switch (addr) { 1373 case ICR: 1374 s->control = value & 0xfff7; 1375 if ((value & (1 << 3)) && (value & (1 << 6))) { /* TB and IUE */ 1376 /* TODO: slave mode */ 1377 if (value & (1 << 0)) { /* START condition */ 1378 if (s->data & 1) 1379 s->status |= 1 << 0; /* set RWM */ 1380 else 1381 s->status &= ~(1 << 0); /* clear RWM */ 1382 ack = !i2c_start_transfer(s->bus, s->data >> 1, s->data & 1); 1383 } else { 1384 if (s->status & (1 << 0)) { /* RWM */ 1385 s->data = i2c_recv(s->bus); 1386 if (value & (1 << 2)) /* ACKNAK */ 1387 i2c_nack(s->bus); 1388 ack = 1; 1389 } else 1390 ack = !i2c_send(s->bus, s->data); 1391 } 1392 1393 if (value & (1 << 1)) /* STOP condition */ 1394 i2c_end_transfer(s->bus); 1395 1396 if (ack) { 1397 if (value & (1 << 0)) /* START condition */ 1398 s->status |= 1 << 6; /* set ITE */ 1399 else 1400 if (s->status & (1 << 0)) /* RWM */ 1401 s->status |= 1 << 7; /* set IRF */ 1402 else 1403 s->status |= 1 << 6; /* set ITE */ 1404 s->status &= ~(1 << 1); /* clear ACKNAK */ 1405 } else { 1406 s->status |= 1 << 6; /* set ITE */ 1407 s->status |= 1 << 10; /* set BED */ 1408 s->status |= 1 << 1; /* set ACKNAK */ 1409 } 1410 } 1411 if (!(value & (1 << 3)) && (value & (1 << 6))) /* !TB and IUE */ 1412 if (value & (1 << 4)) /* MA */ 1413 i2c_end_transfer(s->bus); 1414 pxa2xx_i2c_update(s); 1415 break; 1416 1417 case ISR: 1418 s->status &= ~(value & 0x07f0); 1419 pxa2xx_i2c_update(s); 1420 break; 1421 1422 case ISAR: 1423 i2c_set_slave_address(I2C_SLAVE(s->slave), value & 0x7f); 1424 break; 1425 1426 case IDBR: 1427 s->data = value & 0xff; 1428 break; 1429 1430 default: 1431 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); 1432 } 1433 } 1434 1435 static const MemoryRegionOps pxa2xx_i2c_ops = { 1436 .read = pxa2xx_i2c_read, 1437 .write = pxa2xx_i2c_write, 1438 .endianness = DEVICE_NATIVE_ENDIAN, 1439 }; 1440 1441 static const VMStateDescription vmstate_pxa2xx_i2c_slave = { 1442 .name = "pxa2xx_i2c_slave", 1443 .version_id = 1, 1444 .minimum_version_id = 1, 1445 .minimum_version_id_old = 1, 1446 .fields = (VMStateField []) { 1447 VMSTATE_I2C_SLAVE(parent_obj, PXA2xxI2CSlaveState), 1448 VMSTATE_END_OF_LIST() 1449 } 1450 }; 1451 1452 static const VMStateDescription vmstate_pxa2xx_i2c = { 1453 .name = "pxa2xx_i2c", 1454 .version_id = 1, 1455 .minimum_version_id = 1, 1456 .minimum_version_id_old = 1, 1457 .fields = (VMStateField []) { 1458 VMSTATE_UINT16(control, PXA2xxI2CState), 1459 VMSTATE_UINT16(status, PXA2xxI2CState), 1460 VMSTATE_UINT8(ibmr, PXA2xxI2CState), 1461 VMSTATE_UINT8(data, PXA2xxI2CState), 1462 VMSTATE_STRUCT_POINTER(slave, PXA2xxI2CState, 1463 vmstate_pxa2xx_i2c_slave, PXA2xxI2CSlaveState), 1464 VMSTATE_END_OF_LIST() 1465 } 1466 }; 1467 1468 static int pxa2xx_i2c_slave_init(I2CSlave *i2c) 1469 { 1470 /* Nothing to do. */ 1471 return 0; 1472 } 1473 1474 static void pxa2xx_i2c_slave_class_init(ObjectClass *klass, void *data) 1475 { 1476 I2CSlaveClass *k = I2C_SLAVE_CLASS(klass); 1477 1478 k->init = pxa2xx_i2c_slave_init; 1479 k->event = pxa2xx_i2c_event; 1480 k->recv = pxa2xx_i2c_rx; 1481 k->send = pxa2xx_i2c_tx; 1482 } 1483 1484 static const TypeInfo pxa2xx_i2c_slave_info = { 1485 .name = TYPE_PXA2XX_I2C_SLAVE, 1486 .parent = TYPE_I2C_SLAVE, 1487 .instance_size = sizeof(PXA2xxI2CSlaveState), 1488 .class_init = pxa2xx_i2c_slave_class_init, 1489 }; 1490 1491 PXA2xxI2CState *pxa2xx_i2c_init(hwaddr base, 1492 qemu_irq irq, uint32_t region_size) 1493 { 1494 DeviceState *dev; 1495 SysBusDevice *i2c_dev; 1496 PXA2xxI2CState *s; 1497 I2CBus *i2cbus; 1498 1499 dev = qdev_create(NULL, TYPE_PXA2XX_I2C); 1500 qdev_prop_set_uint32(dev, "size", region_size + 1); 1501 qdev_prop_set_uint32(dev, "offset", base & region_size); 1502 qdev_init_nofail(dev); 1503 1504 i2c_dev = SYS_BUS_DEVICE(dev); 1505 sysbus_mmio_map(i2c_dev, 0, base & ~region_size); 1506 sysbus_connect_irq(i2c_dev, 0, irq); 1507 1508 s = PXA2XX_I2C(i2c_dev); 1509 /* FIXME: Should the slave device really be on a separate bus? */ 1510 i2cbus = i2c_init_bus(dev, "dummy"); 1511 dev = i2c_create_slave(i2cbus, TYPE_PXA2XX_I2C_SLAVE, 0); 1512 s->slave = PXA2XX_I2C_SLAVE(dev); 1513 s->slave->host = s; 1514 1515 return s; 1516 } 1517 1518 static int pxa2xx_i2c_initfn(SysBusDevice *sbd) 1519 { 1520 DeviceState *dev = DEVICE(sbd); 1521 PXA2xxI2CState *s = PXA2XX_I2C(dev); 1522 1523 s->bus = i2c_init_bus(dev, "i2c"); 1524 1525 memory_region_init_io(&s->iomem, OBJECT(s), &pxa2xx_i2c_ops, s, 1526 "pxa2xx-i2c", s->region_size); 1527 sysbus_init_mmio(sbd, &s->iomem); 1528 sysbus_init_irq(sbd, &s->irq); 1529 1530 return 0; 1531 } 1532 1533 I2CBus *pxa2xx_i2c_bus(PXA2xxI2CState *s) 1534 { 1535 return s->bus; 1536 } 1537 1538 static Property pxa2xx_i2c_properties[] = { 1539 DEFINE_PROP_UINT32("size", PXA2xxI2CState, region_size, 0x10000), 1540 DEFINE_PROP_UINT32("offset", PXA2xxI2CState, offset, 0), 1541 DEFINE_PROP_END_OF_LIST(), 1542 }; 1543 1544 static void pxa2xx_i2c_class_init(ObjectClass *klass, void *data) 1545 { 1546 DeviceClass *dc = DEVICE_CLASS(klass); 1547 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); 1548 1549 k->init = pxa2xx_i2c_initfn; 1550 dc->desc = "PXA2xx I2C Bus Controller"; 1551 dc->vmsd = &vmstate_pxa2xx_i2c; 1552 dc->props = pxa2xx_i2c_properties; 1553 } 1554 1555 static const TypeInfo pxa2xx_i2c_info = { 1556 .name = TYPE_PXA2XX_I2C, 1557 .parent = TYPE_SYS_BUS_DEVICE, 1558 .instance_size = sizeof(PXA2xxI2CState), 1559 .class_init = pxa2xx_i2c_class_init, 1560 }; 1561 1562 /* PXA Inter-IC Sound Controller */ 1563 static void pxa2xx_i2s_reset(PXA2xxI2SState *i2s) 1564 { 1565 i2s->rx_len = 0; 1566 i2s->tx_len = 0; 1567 i2s->fifo_len = 0; 1568 i2s->clk = 0x1a; 1569 i2s->control[0] = 0x00; 1570 i2s->control[1] = 0x00; 1571 i2s->status = 0x00; 1572 i2s->mask = 0x00; 1573 } 1574 1575 #define SACR_TFTH(val) ((val >> 8) & 0xf) 1576 #define SACR_RFTH(val) ((val >> 12) & 0xf) 1577 #define SACR_DREC(val) (val & (1 << 3)) 1578 #define SACR_DPRL(val) (val & (1 << 4)) 1579 1580 static inline void pxa2xx_i2s_update(PXA2xxI2SState *i2s) 1581 { 1582 int rfs, tfs; 1583 rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len && 1584 !SACR_DREC(i2s->control[1]); 1585 tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) && 1586 i2s->enable && !SACR_DPRL(i2s->control[1]); 1587 1588 qemu_set_irq(i2s->rx_dma, rfs); 1589 qemu_set_irq(i2s->tx_dma, tfs); 1590 1591 i2s->status &= 0xe0; 1592 if (i2s->fifo_len < 16 || !i2s->enable) 1593 i2s->status |= 1 << 0; /* TNF */ 1594 if (i2s->rx_len) 1595 i2s->status |= 1 << 1; /* RNE */ 1596 if (i2s->enable) 1597 i2s->status |= 1 << 2; /* BSY */ 1598 if (tfs) 1599 i2s->status |= 1 << 3; /* TFS */ 1600 if (rfs) 1601 i2s->status |= 1 << 4; /* RFS */ 1602 if (!(i2s->tx_len && i2s->enable)) 1603 i2s->status |= i2s->fifo_len << 8; /* TFL */ 1604 i2s->status |= MAX(i2s->rx_len, 0xf) << 12; /* RFL */ 1605 1606 qemu_set_irq(i2s->irq, i2s->status & i2s->mask); 1607 } 1608 1609 #define SACR0 0x00 /* Serial Audio Global Control register */ 1610 #define SACR1 0x04 /* Serial Audio I2S/MSB-Justified Control register */ 1611 #define SASR0 0x0c /* Serial Audio Interface and FIFO Status register */ 1612 #define SAIMR 0x14 /* Serial Audio Interrupt Mask register */ 1613 #define SAICR 0x18 /* Serial Audio Interrupt Clear register */ 1614 #define SADIV 0x60 /* Serial Audio Clock Divider register */ 1615 #define SADR 0x80 /* Serial Audio Data register */ 1616 1617 static uint64_t pxa2xx_i2s_read(void *opaque, hwaddr addr, 1618 unsigned size) 1619 { 1620 PXA2xxI2SState *s = (PXA2xxI2SState *) opaque; 1621 1622 switch (addr) { 1623 case SACR0: 1624 return s->control[0]; 1625 case SACR1: 1626 return s->control[1]; 1627 case SASR0: 1628 return s->status; 1629 case SAIMR: 1630 return s->mask; 1631 case SAICR: 1632 return 0; 1633 case SADIV: 1634 return s->clk; 1635 case SADR: 1636 if (s->rx_len > 0) { 1637 s->rx_len --; 1638 pxa2xx_i2s_update(s); 1639 return s->codec_in(s->opaque); 1640 } 1641 return 0; 1642 default: 1643 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); 1644 break; 1645 } 1646 return 0; 1647 } 1648 1649 static void pxa2xx_i2s_write(void *opaque, hwaddr addr, 1650 uint64_t value, unsigned size) 1651 { 1652 PXA2xxI2SState *s = (PXA2xxI2SState *) opaque; 1653 uint32_t *sample; 1654 1655 switch (addr) { 1656 case SACR0: 1657 if (value & (1 << 3)) /* RST */ 1658 pxa2xx_i2s_reset(s); 1659 s->control[0] = value & 0xff3d; 1660 if (!s->enable && (value & 1) && s->tx_len) { /* ENB */ 1661 for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++) 1662 s->codec_out(s->opaque, *sample); 1663 s->status &= ~(1 << 7); /* I2SOFF */ 1664 } 1665 if (value & (1 << 4)) /* EFWR */ 1666 printf("%s: Attempt to use special function\n", __FUNCTION__); 1667 s->enable = (value & 9) == 1; /* ENB && !RST*/ 1668 pxa2xx_i2s_update(s); 1669 break; 1670 case SACR1: 1671 s->control[1] = value & 0x0039; 1672 if (value & (1 << 5)) /* ENLBF */ 1673 printf("%s: Attempt to use loopback function\n", __FUNCTION__); 1674 if (value & (1 << 4)) /* DPRL */ 1675 s->fifo_len = 0; 1676 pxa2xx_i2s_update(s); 1677 break; 1678 case SAIMR: 1679 s->mask = value & 0x0078; 1680 pxa2xx_i2s_update(s); 1681 break; 1682 case SAICR: 1683 s->status &= ~(value & (3 << 5)); 1684 pxa2xx_i2s_update(s); 1685 break; 1686 case SADIV: 1687 s->clk = value & 0x007f; 1688 break; 1689 case SADR: 1690 if (s->tx_len && s->enable) { 1691 s->tx_len --; 1692 pxa2xx_i2s_update(s); 1693 s->codec_out(s->opaque, value); 1694 } else if (s->fifo_len < 16) { 1695 s->fifo[s->fifo_len ++] = value; 1696 pxa2xx_i2s_update(s); 1697 } 1698 break; 1699 default: 1700 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); 1701 } 1702 } 1703 1704 static const MemoryRegionOps pxa2xx_i2s_ops = { 1705 .read = pxa2xx_i2s_read, 1706 .write = pxa2xx_i2s_write, 1707 .endianness = DEVICE_NATIVE_ENDIAN, 1708 }; 1709 1710 static const VMStateDescription vmstate_pxa2xx_i2s = { 1711 .name = "pxa2xx_i2s", 1712 .version_id = 0, 1713 .minimum_version_id = 0, 1714 .minimum_version_id_old = 0, 1715 .fields = (VMStateField[]) { 1716 VMSTATE_UINT32_ARRAY(control, PXA2xxI2SState, 2), 1717 VMSTATE_UINT32(status, PXA2xxI2SState), 1718 VMSTATE_UINT32(mask, PXA2xxI2SState), 1719 VMSTATE_UINT32(clk, PXA2xxI2SState), 1720 VMSTATE_INT32(enable, PXA2xxI2SState), 1721 VMSTATE_INT32(rx_len, PXA2xxI2SState), 1722 VMSTATE_INT32(tx_len, PXA2xxI2SState), 1723 VMSTATE_INT32(fifo_len, PXA2xxI2SState), 1724 VMSTATE_END_OF_LIST() 1725 } 1726 }; 1727 1728 static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx) 1729 { 1730 PXA2xxI2SState *s = (PXA2xxI2SState *) opaque; 1731 uint32_t *sample; 1732 1733 /* Signal FIFO errors */ 1734 if (s->enable && s->tx_len) 1735 s->status |= 1 << 5; /* TUR */ 1736 if (s->enable && s->rx_len) 1737 s->status |= 1 << 6; /* ROR */ 1738 1739 /* Should be tx - MIN(tx, s->fifo_len) but we don't really need to 1740 * handle the cases where it makes a difference. */ 1741 s->tx_len = tx - s->fifo_len; 1742 s->rx_len = rx; 1743 /* Note that is s->codec_out wasn't set, we wouldn't get called. */ 1744 if (s->enable) 1745 for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++) 1746 s->codec_out(s->opaque, *sample); 1747 pxa2xx_i2s_update(s); 1748 } 1749 1750 static PXA2xxI2SState *pxa2xx_i2s_init(MemoryRegion *sysmem, 1751 hwaddr base, 1752 qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma) 1753 { 1754 PXA2xxI2SState *s = (PXA2xxI2SState *) 1755 g_malloc0(sizeof(PXA2xxI2SState)); 1756 1757 s->irq = irq; 1758 s->rx_dma = rx_dma; 1759 s->tx_dma = tx_dma; 1760 s->data_req = pxa2xx_i2s_data_req; 1761 1762 pxa2xx_i2s_reset(s); 1763 1764 memory_region_init_io(&s->iomem, NULL, &pxa2xx_i2s_ops, s, 1765 "pxa2xx-i2s", 0x100000); 1766 memory_region_add_subregion(sysmem, base, &s->iomem); 1767 1768 vmstate_register(NULL, base, &vmstate_pxa2xx_i2s, s); 1769 1770 return s; 1771 } 1772 1773 /* PXA Fast Infra-red Communications Port */ 1774 struct PXA2xxFIrState { 1775 MemoryRegion iomem; 1776 qemu_irq irq; 1777 qemu_irq rx_dma; 1778 qemu_irq tx_dma; 1779 int enable; 1780 CharDriverState *chr; 1781 1782 uint8_t control[3]; 1783 uint8_t status[2]; 1784 1785 int rx_len; 1786 int rx_start; 1787 uint8_t rx_fifo[64]; 1788 }; 1789 1790 static void pxa2xx_fir_reset(PXA2xxFIrState *s) 1791 { 1792 s->control[0] = 0x00; 1793 s->control[1] = 0x00; 1794 s->control[2] = 0x00; 1795 s->status[0] = 0x00; 1796 s->status[1] = 0x00; 1797 s->enable = 0; 1798 } 1799 1800 static inline void pxa2xx_fir_update(PXA2xxFIrState *s) 1801 { 1802 static const int tresh[4] = { 8, 16, 32, 0 }; 1803 int intr = 0; 1804 if ((s->control[0] & (1 << 4)) && /* RXE */ 1805 s->rx_len >= tresh[s->control[2] & 3]) /* TRIG */ 1806 s->status[0] |= 1 << 4; /* RFS */ 1807 else 1808 s->status[0] &= ~(1 << 4); /* RFS */ 1809 if (s->control[0] & (1 << 3)) /* TXE */ 1810 s->status[0] |= 1 << 3; /* TFS */ 1811 else 1812 s->status[0] &= ~(1 << 3); /* TFS */ 1813 if (s->rx_len) 1814 s->status[1] |= 1 << 2; /* RNE */ 1815 else 1816 s->status[1] &= ~(1 << 2); /* RNE */ 1817 if (s->control[0] & (1 << 4)) /* RXE */ 1818 s->status[1] |= 1 << 0; /* RSY */ 1819 else 1820 s->status[1] &= ~(1 << 0); /* RSY */ 1821 1822 intr |= (s->control[0] & (1 << 5)) && /* RIE */ 1823 (s->status[0] & (1 << 4)); /* RFS */ 1824 intr |= (s->control[0] & (1 << 6)) && /* TIE */ 1825 (s->status[0] & (1 << 3)); /* TFS */ 1826 intr |= (s->control[2] & (1 << 4)) && /* TRAIL */ 1827 (s->status[0] & (1 << 6)); /* EOC */ 1828 intr |= (s->control[0] & (1 << 2)) && /* TUS */ 1829 (s->status[0] & (1 << 1)); /* TUR */ 1830 intr |= s->status[0] & 0x25; /* FRE, RAB, EIF */ 1831 1832 qemu_set_irq(s->rx_dma, (s->status[0] >> 4) & 1); 1833 qemu_set_irq(s->tx_dma, (s->status[0] >> 3) & 1); 1834 1835 qemu_set_irq(s->irq, intr && s->enable); 1836 } 1837 1838 #define ICCR0 0x00 /* FICP Control register 0 */ 1839 #define ICCR1 0x04 /* FICP Control register 1 */ 1840 #define ICCR2 0x08 /* FICP Control register 2 */ 1841 #define ICDR 0x0c /* FICP Data register */ 1842 #define ICSR0 0x14 /* FICP Status register 0 */ 1843 #define ICSR1 0x18 /* FICP Status register 1 */ 1844 #define ICFOR 0x1c /* FICP FIFO Occupancy Status register */ 1845 1846 static uint64_t pxa2xx_fir_read(void *opaque, hwaddr addr, 1847 unsigned size) 1848 { 1849 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque; 1850 uint8_t ret; 1851 1852 switch (addr) { 1853 case ICCR0: 1854 return s->control[0]; 1855 case ICCR1: 1856 return s->control[1]; 1857 case ICCR2: 1858 return s->control[2]; 1859 case ICDR: 1860 s->status[0] &= ~0x01; 1861 s->status[1] &= ~0x72; 1862 if (s->rx_len) { 1863 s->rx_len --; 1864 ret = s->rx_fifo[s->rx_start ++]; 1865 s->rx_start &= 63; 1866 pxa2xx_fir_update(s); 1867 return ret; 1868 } 1869 printf("%s: Rx FIFO underrun.\n", __FUNCTION__); 1870 break; 1871 case ICSR0: 1872 return s->status[0]; 1873 case ICSR1: 1874 return s->status[1] | (1 << 3); /* TNF */ 1875 case ICFOR: 1876 return s->rx_len; 1877 default: 1878 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); 1879 break; 1880 } 1881 return 0; 1882 } 1883 1884 static void pxa2xx_fir_write(void *opaque, hwaddr addr, 1885 uint64_t value64, unsigned size) 1886 { 1887 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque; 1888 uint32_t value = value64; 1889 uint8_t ch; 1890 1891 switch (addr) { 1892 case ICCR0: 1893 s->control[0] = value; 1894 if (!(value & (1 << 4))) /* RXE */ 1895 s->rx_len = s->rx_start = 0; 1896 if (!(value & (1 << 3))) { /* TXE */ 1897 /* Nop */ 1898 } 1899 s->enable = value & 1; /* ITR */ 1900 if (!s->enable) 1901 s->status[0] = 0; 1902 pxa2xx_fir_update(s); 1903 break; 1904 case ICCR1: 1905 s->control[1] = value; 1906 break; 1907 case ICCR2: 1908 s->control[2] = value & 0x3f; 1909 pxa2xx_fir_update(s); 1910 break; 1911 case ICDR: 1912 if (s->control[2] & (1 << 2)) /* TXP */ 1913 ch = value; 1914 else 1915 ch = ~value; 1916 if (s->chr && s->enable && (s->control[0] & (1 << 3))) /* TXE */ 1917 qemu_chr_fe_write(s->chr, &ch, 1); 1918 break; 1919 case ICSR0: 1920 s->status[0] &= ~(value & 0x66); 1921 pxa2xx_fir_update(s); 1922 break; 1923 case ICFOR: 1924 break; 1925 default: 1926 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); 1927 } 1928 } 1929 1930 static const MemoryRegionOps pxa2xx_fir_ops = { 1931 .read = pxa2xx_fir_read, 1932 .write = pxa2xx_fir_write, 1933 .endianness = DEVICE_NATIVE_ENDIAN, 1934 }; 1935 1936 static int pxa2xx_fir_is_empty(void *opaque) 1937 { 1938 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque; 1939 return (s->rx_len < 64); 1940 } 1941 1942 static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size) 1943 { 1944 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque; 1945 if (!(s->control[0] & (1 << 4))) /* RXE */ 1946 return; 1947 1948 while (size --) { 1949 s->status[1] |= 1 << 4; /* EOF */ 1950 if (s->rx_len >= 64) { 1951 s->status[1] |= 1 << 6; /* ROR */ 1952 break; 1953 } 1954 1955 if (s->control[2] & (1 << 3)) /* RXP */ 1956 s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++); 1957 else 1958 s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++); 1959 } 1960 1961 pxa2xx_fir_update(s); 1962 } 1963 1964 static void pxa2xx_fir_event(void *opaque, int event) 1965 { 1966 } 1967 1968 static void pxa2xx_fir_save(QEMUFile *f, void *opaque) 1969 { 1970 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque; 1971 int i; 1972 1973 qemu_put_be32(f, s->enable); 1974 1975 qemu_put_8s(f, &s->control[0]); 1976 qemu_put_8s(f, &s->control[1]); 1977 qemu_put_8s(f, &s->control[2]); 1978 qemu_put_8s(f, &s->status[0]); 1979 qemu_put_8s(f, &s->status[1]); 1980 1981 qemu_put_byte(f, s->rx_len); 1982 for (i = 0; i < s->rx_len; i ++) 1983 qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 63]); 1984 } 1985 1986 static int pxa2xx_fir_load(QEMUFile *f, void *opaque, int version_id) 1987 { 1988 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque; 1989 int i; 1990 1991 s->enable = qemu_get_be32(f); 1992 1993 qemu_get_8s(f, &s->control[0]); 1994 qemu_get_8s(f, &s->control[1]); 1995 qemu_get_8s(f, &s->control[2]); 1996 qemu_get_8s(f, &s->status[0]); 1997 qemu_get_8s(f, &s->status[1]); 1998 1999 s->rx_len = qemu_get_byte(f); 2000 s->rx_start = 0; 2001 for (i = 0; i < s->rx_len; i ++) 2002 s->rx_fifo[i] = qemu_get_byte(f); 2003 2004 return 0; 2005 } 2006 2007 static PXA2xxFIrState *pxa2xx_fir_init(MemoryRegion *sysmem, 2008 hwaddr base, 2009 qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma, 2010 CharDriverState *chr) 2011 { 2012 PXA2xxFIrState *s = (PXA2xxFIrState *) 2013 g_malloc0(sizeof(PXA2xxFIrState)); 2014 2015 s->irq = irq; 2016 s->rx_dma = rx_dma; 2017 s->tx_dma = tx_dma; 2018 s->chr = chr; 2019 2020 pxa2xx_fir_reset(s); 2021 2022 memory_region_init_io(&s->iomem, NULL, &pxa2xx_fir_ops, s, "pxa2xx-fir", 0x1000); 2023 memory_region_add_subregion(sysmem, base, &s->iomem); 2024 2025 if (chr) { 2026 qemu_chr_fe_claim_no_fail(chr); 2027 qemu_chr_add_handlers(chr, pxa2xx_fir_is_empty, 2028 pxa2xx_fir_rx, pxa2xx_fir_event, s); 2029 } 2030 2031 register_savevm(NULL, "pxa2xx_fir", 0, 0, pxa2xx_fir_save, 2032 pxa2xx_fir_load, s); 2033 2034 return s; 2035 } 2036 2037 static void pxa2xx_reset(void *opaque, int line, int level) 2038 { 2039 PXA2xxState *s = (PXA2xxState *) opaque; 2040 2041 if (level && (s->pm_regs[PCFR >> 2] & 0x10)) { /* GPR_EN */ 2042 cpu_reset(CPU(s->cpu)); 2043 /* TODO: reset peripherals */ 2044 } 2045 } 2046 2047 /* Initialise a PXA270 integrated chip (ARM based core). */ 2048 PXA2xxState *pxa270_init(MemoryRegion *address_space, 2049 unsigned int sdram_size, const char *revision) 2050 { 2051 PXA2xxState *s; 2052 int i; 2053 DriveInfo *dinfo; 2054 s = (PXA2xxState *) g_malloc0(sizeof(PXA2xxState)); 2055 2056 if (revision && strncmp(revision, "pxa27", 5)) { 2057 fprintf(stderr, "Machine requires a PXA27x processor.\n"); 2058 exit(1); 2059 } 2060 if (!revision) 2061 revision = "pxa270"; 2062 2063 s->cpu = cpu_arm_init(revision); 2064 if (s->cpu == NULL) { 2065 fprintf(stderr, "Unable to find CPU definition\n"); 2066 exit(1); 2067 } 2068 s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0]; 2069 2070 /* SDRAM & Internal Memory Storage */ 2071 memory_region_init_ram(&s->sdram, NULL, "pxa270.sdram", sdram_size); 2072 vmstate_register_ram_global(&s->sdram); 2073 memory_region_add_subregion(address_space, PXA2XX_SDRAM_BASE, &s->sdram); 2074 memory_region_init_ram(&s->internal, NULL, "pxa270.internal", 0x40000); 2075 vmstate_register_ram_global(&s->internal); 2076 memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE, 2077 &s->internal); 2078 2079 s->pic = pxa2xx_pic_init(0x40d00000, s->cpu); 2080 2081 s->dma = pxa27x_dma_init(0x40000000, 2082 qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA)); 2083 2084 sysbus_create_varargs("pxa27x-timer", 0x40a00000, 2085 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0), 2086 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1), 2087 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2), 2088 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3), 2089 qdev_get_gpio_in(s->pic, PXA27X_PIC_OST_4_11), 2090 NULL); 2091 2092 s->gpio = pxa2xx_gpio_init(0x40e00000, s->cpu, s->pic, 121); 2093 2094 dinfo = drive_get(IF_SD, 0, 0); 2095 if (!dinfo) { 2096 fprintf(stderr, "qemu: missing SecureDigital device\n"); 2097 exit(1); 2098 } 2099 s->mmc = pxa2xx_mmci_init(address_space, 0x41100000, dinfo->bdrv, 2100 qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC), 2101 qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI), 2102 qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI)); 2103 2104 for (i = 0; pxa270_serial[i].io_base; i++) { 2105 if (serial_hds[i]) { 2106 serial_mm_init(address_space, pxa270_serial[i].io_base, 2, 2107 qdev_get_gpio_in(s->pic, pxa270_serial[i].irqn), 2108 14857000 / 16, serial_hds[i], 2109 DEVICE_NATIVE_ENDIAN); 2110 } else { 2111 break; 2112 } 2113 } 2114 if (serial_hds[i]) 2115 s->fir = pxa2xx_fir_init(address_space, 0x40800000, 2116 qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP), 2117 qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP), 2118 qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP), 2119 serial_hds[i]); 2120 2121 s->lcd = pxa2xx_lcdc_init(address_space, 0x44000000, 2122 qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD)); 2123 2124 s->cm_base = 0x41300000; 2125 s->cm_regs[CCCR >> 2] = 0x02000210; /* 416.0 MHz */ 2126 s->clkcfg = 0x00000009; /* Turbo mode active */ 2127 memory_region_init_io(&s->cm_iomem, NULL, &pxa2xx_cm_ops, s, "pxa2xx-cm", 0x1000); 2128 memory_region_add_subregion(address_space, s->cm_base, &s->cm_iomem); 2129 vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s); 2130 2131 pxa2xx_setup_cp14(s); 2132 2133 s->mm_base = 0x48000000; 2134 s->mm_regs[MDMRS >> 2] = 0x00020002; 2135 s->mm_regs[MDREFR >> 2] = 0x03ca4000; 2136 s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */ 2137 memory_region_init_io(&s->mm_iomem, NULL, &pxa2xx_mm_ops, s, "pxa2xx-mm", 0x1000); 2138 memory_region_add_subregion(address_space, s->mm_base, &s->mm_iomem); 2139 vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s); 2140 2141 s->pm_base = 0x40f00000; 2142 memory_region_init_io(&s->pm_iomem, NULL, &pxa2xx_pm_ops, s, "pxa2xx-pm", 0x100); 2143 memory_region_add_subregion(address_space, s->pm_base, &s->pm_iomem); 2144 vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s); 2145 2146 for (i = 0; pxa27x_ssp[i].io_base; i ++); 2147 s->ssp = (SSIBus **)g_malloc0(sizeof(SSIBus *) * i); 2148 for (i = 0; pxa27x_ssp[i].io_base; i ++) { 2149 DeviceState *dev; 2150 dev = sysbus_create_simple(TYPE_PXA2XX_SSP, pxa27x_ssp[i].io_base, 2151 qdev_get_gpio_in(s->pic, pxa27x_ssp[i].irqn)); 2152 s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi"); 2153 } 2154 2155 if (usb_enabled(false)) { 2156 sysbus_create_simple("sysbus-ohci", 0x4c000000, 2157 qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1)); 2158 } 2159 2160 s->pcmcia[0] = pxa2xx_pcmcia_init(address_space, 0x20000000); 2161 s->pcmcia[1] = pxa2xx_pcmcia_init(address_space, 0x30000000); 2162 2163 sysbus_create_simple(TYPE_PXA2XX_RTC, 0x40900000, 2164 qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM)); 2165 2166 s->i2c[0] = pxa2xx_i2c_init(0x40301600, 2167 qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff); 2168 s->i2c[1] = pxa2xx_i2c_init(0x40f00100, 2169 qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff); 2170 2171 s->i2s = pxa2xx_i2s_init(address_space, 0x40400000, 2172 qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S), 2173 qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S), 2174 qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S)); 2175 2176 s->kp = pxa27x_keypad_init(address_space, 0x41500000, 2177 qdev_get_gpio_in(s->pic, PXA2XX_PIC_KEYPAD)); 2178 2179 /* GPIO1 resets the processor */ 2180 /* The handler can be overridden by board-specific code */ 2181 qdev_connect_gpio_out(s->gpio, 1, s->reset); 2182 return s; 2183 } 2184 2185 /* Initialise a PXA255 integrated chip (ARM based core). */ 2186 PXA2xxState *pxa255_init(MemoryRegion *address_space, unsigned int sdram_size) 2187 { 2188 PXA2xxState *s; 2189 int i; 2190 DriveInfo *dinfo; 2191 2192 s = (PXA2xxState *) g_malloc0(sizeof(PXA2xxState)); 2193 2194 s->cpu = cpu_arm_init("pxa255"); 2195 if (s->cpu == NULL) { 2196 fprintf(stderr, "Unable to find CPU definition\n"); 2197 exit(1); 2198 } 2199 s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0]; 2200 2201 /* SDRAM & Internal Memory Storage */ 2202 memory_region_init_ram(&s->sdram, NULL, "pxa255.sdram", sdram_size); 2203 vmstate_register_ram_global(&s->sdram); 2204 memory_region_add_subregion(address_space, PXA2XX_SDRAM_BASE, &s->sdram); 2205 memory_region_init_ram(&s->internal, NULL, "pxa255.internal", 2206 PXA2XX_INTERNAL_SIZE); 2207 vmstate_register_ram_global(&s->internal); 2208 memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE, 2209 &s->internal); 2210 2211 s->pic = pxa2xx_pic_init(0x40d00000, s->cpu); 2212 2213 s->dma = pxa255_dma_init(0x40000000, 2214 qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA)); 2215 2216 sysbus_create_varargs("pxa25x-timer", 0x40a00000, 2217 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0), 2218 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1), 2219 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2), 2220 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3), 2221 NULL); 2222 2223 s->gpio = pxa2xx_gpio_init(0x40e00000, s->cpu, s->pic, 85); 2224 2225 dinfo = drive_get(IF_SD, 0, 0); 2226 if (!dinfo) { 2227 fprintf(stderr, "qemu: missing SecureDigital device\n"); 2228 exit(1); 2229 } 2230 s->mmc = pxa2xx_mmci_init(address_space, 0x41100000, dinfo->bdrv, 2231 qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC), 2232 qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI), 2233 qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI)); 2234 2235 for (i = 0; pxa255_serial[i].io_base; i++) { 2236 if (serial_hds[i]) { 2237 serial_mm_init(address_space, pxa255_serial[i].io_base, 2, 2238 qdev_get_gpio_in(s->pic, pxa255_serial[i].irqn), 2239 14745600 / 16, serial_hds[i], 2240 DEVICE_NATIVE_ENDIAN); 2241 } else { 2242 break; 2243 } 2244 } 2245 if (serial_hds[i]) 2246 s->fir = pxa2xx_fir_init(address_space, 0x40800000, 2247 qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP), 2248 qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP), 2249 qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP), 2250 serial_hds[i]); 2251 2252 s->lcd = pxa2xx_lcdc_init(address_space, 0x44000000, 2253 qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD)); 2254 2255 s->cm_base = 0x41300000; 2256 s->cm_regs[CCCR >> 2] = 0x02000210; /* 416.0 MHz */ 2257 s->clkcfg = 0x00000009; /* Turbo mode active */ 2258 memory_region_init_io(&s->cm_iomem, NULL, &pxa2xx_cm_ops, s, "pxa2xx-cm", 0x1000); 2259 memory_region_add_subregion(address_space, s->cm_base, &s->cm_iomem); 2260 vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s); 2261 2262 pxa2xx_setup_cp14(s); 2263 2264 s->mm_base = 0x48000000; 2265 s->mm_regs[MDMRS >> 2] = 0x00020002; 2266 s->mm_regs[MDREFR >> 2] = 0x03ca4000; 2267 s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */ 2268 memory_region_init_io(&s->mm_iomem, NULL, &pxa2xx_mm_ops, s, "pxa2xx-mm", 0x1000); 2269 memory_region_add_subregion(address_space, s->mm_base, &s->mm_iomem); 2270 vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s); 2271 2272 s->pm_base = 0x40f00000; 2273 memory_region_init_io(&s->pm_iomem, NULL, &pxa2xx_pm_ops, s, "pxa2xx-pm", 0x100); 2274 memory_region_add_subregion(address_space, s->pm_base, &s->pm_iomem); 2275 vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s); 2276 2277 for (i = 0; pxa255_ssp[i].io_base; i ++); 2278 s->ssp = (SSIBus **)g_malloc0(sizeof(SSIBus *) * i); 2279 for (i = 0; pxa255_ssp[i].io_base; i ++) { 2280 DeviceState *dev; 2281 dev = sysbus_create_simple(TYPE_PXA2XX_SSP, pxa255_ssp[i].io_base, 2282 qdev_get_gpio_in(s->pic, pxa255_ssp[i].irqn)); 2283 s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi"); 2284 } 2285 2286 if (usb_enabled(false)) { 2287 sysbus_create_simple("sysbus-ohci", 0x4c000000, 2288 qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1)); 2289 } 2290 2291 s->pcmcia[0] = pxa2xx_pcmcia_init(address_space, 0x20000000); 2292 s->pcmcia[1] = pxa2xx_pcmcia_init(address_space, 0x30000000); 2293 2294 sysbus_create_simple(TYPE_PXA2XX_RTC, 0x40900000, 2295 qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM)); 2296 2297 s->i2c[0] = pxa2xx_i2c_init(0x40301600, 2298 qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff); 2299 s->i2c[1] = pxa2xx_i2c_init(0x40f00100, 2300 qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff); 2301 2302 s->i2s = pxa2xx_i2s_init(address_space, 0x40400000, 2303 qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S), 2304 qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S), 2305 qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S)); 2306 2307 /* GPIO1 resets the processor */ 2308 /* The handler can be overridden by board-specific code */ 2309 qdev_connect_gpio_out(s->gpio, 1, s->reset); 2310 return s; 2311 } 2312 2313 static void pxa2xx_ssp_class_init(ObjectClass *klass, void *data) 2314 { 2315 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass); 2316 2317 sdc->init = pxa2xx_ssp_init; 2318 } 2319 2320 static const TypeInfo pxa2xx_ssp_info = { 2321 .name = TYPE_PXA2XX_SSP, 2322 .parent = TYPE_SYS_BUS_DEVICE, 2323 .instance_size = sizeof(PXA2xxSSPState), 2324 .class_init = pxa2xx_ssp_class_init, 2325 }; 2326 2327 static void pxa2xx_register_types(void) 2328 { 2329 type_register_static(&pxa2xx_i2c_slave_info); 2330 type_register_static(&pxa2xx_ssp_info); 2331 type_register_static(&pxa2xx_i2c_info); 2332 type_register_static(&pxa2xx_rtc_sysbus_info); 2333 } 2334 2335 type_init(pxa2xx_register_types) 2336