xref: /openbmc/qemu/hw/arm/pxa2xx.c (revision 5accc840)
1 /*
2  * Intel XScale PXA255/270 processor support.
3  *
4  * Copyright (c) 2006 Openedhand Ltd.
5  * Written by Andrzej Zaborowski <balrog@zabor.org>
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "hw/sysbus.h"
11 #include "hw/arm/pxa.h"
12 #include "sysemu/sysemu.h"
13 #include "hw/char/serial.h"
14 #include "hw/i2c/i2c.h"
15 #include "hw/ssi.h"
16 #include "sysemu/char.h"
17 #include "sysemu/blockdev.h"
18 
19 static struct {
20     hwaddr io_base;
21     int irqn;
22 } pxa255_serial[] = {
23     { 0x40100000, PXA2XX_PIC_FFUART },
24     { 0x40200000, PXA2XX_PIC_BTUART },
25     { 0x40700000, PXA2XX_PIC_STUART },
26     { 0x41600000, PXA25X_PIC_HWUART },
27     { 0, 0 }
28 }, pxa270_serial[] = {
29     { 0x40100000, PXA2XX_PIC_FFUART },
30     { 0x40200000, PXA2XX_PIC_BTUART },
31     { 0x40700000, PXA2XX_PIC_STUART },
32     { 0, 0 }
33 };
34 
35 typedef struct PXASSPDef {
36     hwaddr io_base;
37     int irqn;
38 } PXASSPDef;
39 
40 #if 0
41 static PXASSPDef pxa250_ssp[] = {
42     { 0x41000000, PXA2XX_PIC_SSP },
43     { 0, 0 }
44 };
45 #endif
46 
47 static PXASSPDef pxa255_ssp[] = {
48     { 0x41000000, PXA2XX_PIC_SSP },
49     { 0x41400000, PXA25X_PIC_NSSP },
50     { 0, 0 }
51 };
52 
53 #if 0
54 static PXASSPDef pxa26x_ssp[] = {
55     { 0x41000000, PXA2XX_PIC_SSP },
56     { 0x41400000, PXA25X_PIC_NSSP },
57     { 0x41500000, PXA26X_PIC_ASSP },
58     { 0, 0 }
59 };
60 #endif
61 
62 static PXASSPDef pxa27x_ssp[] = {
63     { 0x41000000, PXA2XX_PIC_SSP },
64     { 0x41700000, PXA27X_PIC_SSP2 },
65     { 0x41900000, PXA2XX_PIC_SSP3 },
66     { 0, 0 }
67 };
68 
69 #define PMCR	0x00	/* Power Manager Control register */
70 #define PSSR	0x04	/* Power Manager Sleep Status register */
71 #define PSPR	0x08	/* Power Manager Scratch-Pad register */
72 #define PWER	0x0c	/* Power Manager Wake-Up Enable register */
73 #define PRER	0x10	/* Power Manager Rising-Edge Detect Enable register */
74 #define PFER	0x14	/* Power Manager Falling-Edge Detect Enable register */
75 #define PEDR	0x18	/* Power Manager Edge-Detect Status register */
76 #define PCFR	0x1c	/* Power Manager General Configuration register */
77 #define PGSR0	0x20	/* Power Manager GPIO Sleep-State register 0 */
78 #define PGSR1	0x24	/* Power Manager GPIO Sleep-State register 1 */
79 #define PGSR2	0x28	/* Power Manager GPIO Sleep-State register 2 */
80 #define PGSR3	0x2c	/* Power Manager GPIO Sleep-State register 3 */
81 #define RCSR	0x30	/* Reset Controller Status register */
82 #define PSLR	0x34	/* Power Manager Sleep Configuration register */
83 #define PTSR	0x38	/* Power Manager Standby Configuration register */
84 #define PVCR	0x40	/* Power Manager Voltage Change Control register */
85 #define PUCR	0x4c	/* Power Manager USIM Card Control/Status register */
86 #define PKWR	0x50	/* Power Manager Keyboard Wake-Up Enable register */
87 #define PKSR	0x54	/* Power Manager Keyboard Level-Detect Status */
88 #define PCMD0	0x80	/* Power Manager I2C Command register File 0 */
89 #define PCMD31	0xfc	/* Power Manager I2C Command register File 31 */
90 
91 static uint64_t pxa2xx_pm_read(void *opaque, hwaddr addr,
92                                unsigned size)
93 {
94     PXA2xxState *s = (PXA2xxState *) opaque;
95 
96     switch (addr) {
97     case PMCR ... PCMD31:
98         if (addr & 3)
99             goto fail;
100 
101         return s->pm_regs[addr >> 2];
102     default:
103     fail:
104         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
105         break;
106     }
107     return 0;
108 }
109 
110 static void pxa2xx_pm_write(void *opaque, hwaddr addr,
111                             uint64_t value, unsigned size)
112 {
113     PXA2xxState *s = (PXA2xxState *) opaque;
114 
115     switch (addr) {
116     case PMCR:
117         /* Clear the write-one-to-clear bits... */
118         s->pm_regs[addr >> 2] &= ~(value & 0x2a);
119         /* ...and set the plain r/w bits */
120         s->pm_regs[addr >> 2] &= ~0x15;
121         s->pm_regs[addr >> 2] |= value & 0x15;
122         break;
123 
124     case PSSR:	/* Read-clean registers */
125     case RCSR:
126     case PKSR:
127         s->pm_regs[addr >> 2] &= ~value;
128         break;
129 
130     default:	/* Read-write registers */
131         if (!(addr & 3)) {
132             s->pm_regs[addr >> 2] = value;
133             break;
134         }
135 
136         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
137         break;
138     }
139 }
140 
141 static const MemoryRegionOps pxa2xx_pm_ops = {
142     .read = pxa2xx_pm_read,
143     .write = pxa2xx_pm_write,
144     .endianness = DEVICE_NATIVE_ENDIAN,
145 };
146 
147 static const VMStateDescription vmstate_pxa2xx_pm = {
148     .name = "pxa2xx_pm",
149     .version_id = 0,
150     .minimum_version_id = 0,
151     .minimum_version_id_old = 0,
152     .fields      = (VMStateField[]) {
153         VMSTATE_UINT32_ARRAY(pm_regs, PXA2xxState, 0x40),
154         VMSTATE_END_OF_LIST()
155     }
156 };
157 
158 #define CCCR	0x00	/* Core Clock Configuration register */
159 #define CKEN	0x04	/* Clock Enable register */
160 #define OSCC	0x08	/* Oscillator Configuration register */
161 #define CCSR	0x0c	/* Core Clock Status register */
162 
163 static uint64_t pxa2xx_cm_read(void *opaque, hwaddr addr,
164                                unsigned size)
165 {
166     PXA2xxState *s = (PXA2xxState *) opaque;
167 
168     switch (addr) {
169     case CCCR:
170     case CKEN:
171     case OSCC:
172         return s->cm_regs[addr >> 2];
173 
174     case CCSR:
175         return s->cm_regs[CCCR >> 2] | (3 << 28);
176 
177     default:
178         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
179         break;
180     }
181     return 0;
182 }
183 
184 static void pxa2xx_cm_write(void *opaque, hwaddr addr,
185                             uint64_t value, unsigned size)
186 {
187     PXA2xxState *s = (PXA2xxState *) opaque;
188 
189     switch (addr) {
190     case CCCR:
191     case CKEN:
192         s->cm_regs[addr >> 2] = value;
193         break;
194 
195     case OSCC:
196         s->cm_regs[addr >> 2] &= ~0x6c;
197         s->cm_regs[addr >> 2] |= value & 0x6e;
198         if ((value >> 1) & 1)			/* OON */
199             s->cm_regs[addr >> 2] |= 1 << 0;	/* Oscillator is now stable */
200         break;
201 
202     default:
203         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
204         break;
205     }
206 }
207 
208 static const MemoryRegionOps pxa2xx_cm_ops = {
209     .read = pxa2xx_cm_read,
210     .write = pxa2xx_cm_write,
211     .endianness = DEVICE_NATIVE_ENDIAN,
212 };
213 
214 static const VMStateDescription vmstate_pxa2xx_cm = {
215     .name = "pxa2xx_cm",
216     .version_id = 0,
217     .minimum_version_id = 0,
218     .minimum_version_id_old = 0,
219     .fields      = (VMStateField[]) {
220         VMSTATE_UINT32_ARRAY(cm_regs, PXA2xxState, 4),
221         VMSTATE_UINT32(clkcfg, PXA2xxState),
222         VMSTATE_UINT32(pmnc, PXA2xxState),
223         VMSTATE_END_OF_LIST()
224     }
225 };
226 
227 static int pxa2xx_clkcfg_read(CPUARMState *env, const ARMCPRegInfo *ri,
228                               uint64_t *value)
229 {
230     PXA2xxState *s = (PXA2xxState *)ri->opaque;
231     *value = s->clkcfg;
232     return 0;
233 }
234 
235 static int pxa2xx_clkcfg_write(CPUARMState *env, const ARMCPRegInfo *ri,
236                                uint64_t value)
237 {
238     PXA2xxState *s = (PXA2xxState *)ri->opaque;
239     s->clkcfg = value & 0xf;
240     if (value & 2) {
241         printf("%s: CPU frequency change attempt\n", __func__);
242     }
243     return 0;
244 }
245 
246 static int pxa2xx_pwrmode_write(CPUARMState *env, const ARMCPRegInfo *ri,
247                                 uint64_t value)
248 {
249     PXA2xxState *s = (PXA2xxState *)ri->opaque;
250     static const char *pwrmode[8] = {
251         "Normal", "Idle", "Deep-idle", "Standby",
252         "Sleep", "reserved (!)", "reserved (!)", "Deep-sleep",
253     };
254 
255     if (value & 8) {
256         printf("%s: CPU voltage change attempt\n", __func__);
257     }
258     switch (value & 7) {
259     case 0:
260         /* Do nothing */
261         break;
262 
263     case 1:
264         /* Idle */
265         if (!(s->cm_regs[CCCR >> 2] & (1 << 31))) { /* CPDIS */
266             cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
267             break;
268         }
269         /* Fall through.  */
270 
271     case 2:
272         /* Deep-Idle */
273         cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
274         s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
275         goto message;
276 
277     case 3:
278         s->cpu->env.uncached_cpsr =
279             ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
280         s->cpu->env.cp15.c1_sys = 0;
281         s->cpu->env.cp15.c1_coproc = 0;
282         s->cpu->env.cp15.c2_base0 = 0;
283         s->cpu->env.cp15.c3 = 0;
284         s->pm_regs[PSSR >> 2] |= 0x8; /* Set STS */
285         s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
286 
287         /*
288          * The scratch-pad register is almost universally used
289          * for storing the return address on suspend.  For the
290          * lack of a resuming bootloader, perform a jump
291          * directly to that address.
292          */
293         memset(s->cpu->env.regs, 0, 4 * 15);
294         s->cpu->env.regs[15] = s->pm_regs[PSPR >> 2];
295 
296 #if 0
297         buffer = 0xe59ff000; /* ldr     pc, [pc, #0] */
298         cpu_physical_memory_write(0, &buffer, 4);
299         buffer = s->pm_regs[PSPR >> 2];
300         cpu_physical_memory_write(8, &buffer, 4);
301 #endif
302 
303         /* Suspend */
304         cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT);
305 
306         goto message;
307 
308     default:
309     message:
310         printf("%s: machine entered %s mode\n", __func__,
311                pwrmode[value & 7]);
312     }
313 
314     return 0;
315 }
316 
317 static int pxa2xx_cppmnc_read(CPUARMState *env, const ARMCPRegInfo *ri,
318                               uint64_t *value)
319 {
320     PXA2xxState *s = (PXA2xxState *)ri->opaque;
321     *value = s->pmnc;
322     return 0;
323 }
324 
325 static int pxa2xx_cppmnc_write(CPUARMState *env, const ARMCPRegInfo *ri,
326                                uint64_t value)
327 {
328     PXA2xxState *s = (PXA2xxState *)ri->opaque;
329     s->pmnc = value;
330     return 0;
331 }
332 
333 static int pxa2xx_cpccnt_read(CPUARMState *env, const ARMCPRegInfo *ri,
334                               uint64_t *value)
335 {
336     PXA2xxState *s = (PXA2xxState *)ri->opaque;
337     if (s->pmnc & 1) {
338         *value = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
339     } else {
340         *value = 0;
341     }
342     return 0;
343 }
344 
345 static const ARMCPRegInfo pxa_cp_reginfo[] = {
346     /* cp14 crm==1: perf registers */
347     { .name = "CPPMNC", .cp = 14, .crn = 0, .crm = 1, .opc1 = 0, .opc2 = 0,
348       .access = PL1_RW,
349       .readfn = pxa2xx_cppmnc_read, .writefn = pxa2xx_cppmnc_write },
350     { .name = "CPCCNT", .cp = 14, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
351       .access = PL1_RW,
352       .readfn = pxa2xx_cpccnt_read, .writefn = arm_cp_write_ignore },
353     { .name = "CPINTEN", .cp = 14, .crn = 4, .crm = 1, .opc1 = 0, .opc2 = 0,
354       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
355     { .name = "CPFLAG", .cp = 14, .crn = 5, .crm = 1, .opc1 = 0, .opc2 = 0,
356       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
357     { .name = "CPEVTSEL", .cp = 14, .crn = 8, .crm = 1, .opc1 = 0, .opc2 = 0,
358       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
359     /* cp14 crm==2: performance count registers */
360     { .name = "CPPMN0", .cp = 14, .crn = 0, .crm = 2, .opc1 = 0, .opc2 = 0,
361       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
362     { .name = "CPPMN1", .cp = 14, .crn = 1, .crm = 2, .opc1 = 0, .opc2 = 0,
363       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
364     { .name = "CPPMN2", .cp = 14, .crn = 2, .crm = 2, .opc1 = 0, .opc2 = 0,
365       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
366     { .name = "CPPMN3", .cp = 14, .crn = 2, .crm = 3, .opc1 = 0, .opc2 = 0,
367       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
368     /* cp14 crn==6: CLKCFG */
369     { .name = "CLKCFG", .cp = 14, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
370       .access = PL1_RW,
371       .readfn = pxa2xx_clkcfg_read, .writefn = pxa2xx_clkcfg_write },
372     /* cp14 crn==7: PWRMODE */
373     { .name = "PWRMODE", .cp = 14, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 0,
374       .access = PL1_RW,
375       .readfn = arm_cp_read_zero, .writefn = pxa2xx_pwrmode_write },
376     REGINFO_SENTINEL
377 };
378 
379 static void pxa2xx_setup_cp14(PXA2xxState *s)
380 {
381     define_arm_cp_regs_with_opaque(s->cpu, pxa_cp_reginfo, s);
382 }
383 
384 #define MDCNFG		0x00	/* SDRAM Configuration register */
385 #define MDREFR		0x04	/* SDRAM Refresh Control register */
386 #define MSC0		0x08	/* Static Memory Control register 0 */
387 #define MSC1		0x0c	/* Static Memory Control register 1 */
388 #define MSC2		0x10	/* Static Memory Control register 2 */
389 #define MECR		0x14	/* Expansion Memory Bus Config register */
390 #define SXCNFG		0x1c	/* Synchronous Static Memory Config register */
391 #define MCMEM0		0x28	/* PC Card Memory Socket 0 Timing register */
392 #define MCMEM1		0x2c	/* PC Card Memory Socket 1 Timing register */
393 #define MCATT0		0x30	/* PC Card Attribute Socket 0 register */
394 #define MCATT1		0x34	/* PC Card Attribute Socket 1 register */
395 #define MCIO0		0x38	/* PC Card I/O Socket 0 Timing register */
396 #define MCIO1		0x3c	/* PC Card I/O Socket 1 Timing register */
397 #define MDMRS		0x40	/* SDRAM Mode Register Set Config register */
398 #define BOOT_DEF	0x44	/* Boot-time Default Configuration register */
399 #define ARB_CNTL	0x48	/* Arbiter Control register */
400 #define BSCNTR0		0x4c	/* Memory Buffer Strength Control register 0 */
401 #define BSCNTR1		0x50	/* Memory Buffer Strength Control register 1 */
402 #define LCDBSCNTR	0x54	/* LCD Buffer Strength Control register */
403 #define MDMRSLP		0x58	/* Low Power SDRAM Mode Set Config register */
404 #define BSCNTR2		0x5c	/* Memory Buffer Strength Control register 2 */
405 #define BSCNTR3		0x60	/* Memory Buffer Strength Control register 3 */
406 #define SA1110		0x64	/* SA-1110 Memory Compatibility register */
407 
408 static uint64_t pxa2xx_mm_read(void *opaque, hwaddr addr,
409                                unsigned size)
410 {
411     PXA2xxState *s = (PXA2xxState *) opaque;
412 
413     switch (addr) {
414     case MDCNFG ... SA1110:
415         if ((addr & 3) == 0)
416             return s->mm_regs[addr >> 2];
417 
418     default:
419         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
420         break;
421     }
422     return 0;
423 }
424 
425 static void pxa2xx_mm_write(void *opaque, hwaddr addr,
426                             uint64_t value, unsigned size)
427 {
428     PXA2xxState *s = (PXA2xxState *) opaque;
429 
430     switch (addr) {
431     case MDCNFG ... SA1110:
432         if ((addr & 3) == 0) {
433             s->mm_regs[addr >> 2] = value;
434             break;
435         }
436 
437     default:
438         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
439         break;
440     }
441 }
442 
443 static const MemoryRegionOps pxa2xx_mm_ops = {
444     .read = pxa2xx_mm_read,
445     .write = pxa2xx_mm_write,
446     .endianness = DEVICE_NATIVE_ENDIAN,
447 };
448 
449 static const VMStateDescription vmstate_pxa2xx_mm = {
450     .name = "pxa2xx_mm",
451     .version_id = 0,
452     .minimum_version_id = 0,
453     .minimum_version_id_old = 0,
454     .fields      = (VMStateField[]) {
455         VMSTATE_UINT32_ARRAY(mm_regs, PXA2xxState, 0x1a),
456         VMSTATE_END_OF_LIST()
457     }
458 };
459 
460 #define TYPE_PXA2XX_SSP "pxa2xx-ssp"
461 #define PXA2XX_SSP(obj) \
462     OBJECT_CHECK(PXA2xxSSPState, (obj), TYPE_PXA2XX_SSP)
463 
464 /* Synchronous Serial Ports */
465 typedef struct {
466     /*< private >*/
467     SysBusDevice parent_obj;
468     /*< public >*/
469 
470     MemoryRegion iomem;
471     qemu_irq irq;
472     int enable;
473     SSIBus *bus;
474 
475     uint32_t sscr[2];
476     uint32_t sspsp;
477     uint32_t ssto;
478     uint32_t ssitr;
479     uint32_t sssr;
480     uint8_t sstsa;
481     uint8_t ssrsa;
482     uint8_t ssacd;
483 
484     uint32_t rx_fifo[16];
485     int rx_level;
486     int rx_start;
487 } PXA2xxSSPState;
488 
489 #define SSCR0	0x00	/* SSP Control register 0 */
490 #define SSCR1	0x04	/* SSP Control register 1 */
491 #define SSSR	0x08	/* SSP Status register */
492 #define SSITR	0x0c	/* SSP Interrupt Test register */
493 #define SSDR	0x10	/* SSP Data register */
494 #define SSTO	0x28	/* SSP Time-Out register */
495 #define SSPSP	0x2c	/* SSP Programmable Serial Protocol register */
496 #define SSTSA	0x30	/* SSP TX Time Slot Active register */
497 #define SSRSA	0x34	/* SSP RX Time Slot Active register */
498 #define SSTSS	0x38	/* SSP Time Slot Status register */
499 #define SSACD	0x3c	/* SSP Audio Clock Divider register */
500 
501 /* Bitfields for above registers */
502 #define SSCR0_SPI(x)	(((x) & 0x30) == 0x00)
503 #define SSCR0_SSP(x)	(((x) & 0x30) == 0x10)
504 #define SSCR0_UWIRE(x)	(((x) & 0x30) == 0x20)
505 #define SSCR0_PSP(x)	(((x) & 0x30) == 0x30)
506 #define SSCR0_SSE	(1 << 7)
507 #define SSCR0_RIM	(1 << 22)
508 #define SSCR0_TIM	(1 << 23)
509 #define SSCR0_MOD	(1 << 31)
510 #define SSCR0_DSS(x)	(((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1)
511 #define SSCR1_RIE	(1 << 0)
512 #define SSCR1_TIE	(1 << 1)
513 #define SSCR1_LBM	(1 << 2)
514 #define SSCR1_MWDS	(1 << 5)
515 #define SSCR1_TFT(x)	((((x) >> 6) & 0xf) + 1)
516 #define SSCR1_RFT(x)	((((x) >> 10) & 0xf) + 1)
517 #define SSCR1_EFWR	(1 << 14)
518 #define SSCR1_PINTE	(1 << 18)
519 #define SSCR1_TINTE	(1 << 19)
520 #define SSCR1_RSRE	(1 << 20)
521 #define SSCR1_TSRE	(1 << 21)
522 #define SSCR1_EBCEI	(1 << 29)
523 #define SSITR_INT	(7 << 5)
524 #define SSSR_TNF	(1 << 2)
525 #define SSSR_RNE	(1 << 3)
526 #define SSSR_TFS	(1 << 5)
527 #define SSSR_RFS	(1 << 6)
528 #define SSSR_ROR	(1 << 7)
529 #define SSSR_PINT	(1 << 18)
530 #define SSSR_TINT	(1 << 19)
531 #define SSSR_EOC	(1 << 20)
532 #define SSSR_TUR	(1 << 21)
533 #define SSSR_BCE	(1 << 23)
534 #define SSSR_RW		0x00bc0080
535 
536 static void pxa2xx_ssp_int_update(PXA2xxSSPState *s)
537 {
538     int level = 0;
539 
540     level |= s->ssitr & SSITR_INT;
541     level |= (s->sssr & SSSR_BCE)  &&  (s->sscr[1] & SSCR1_EBCEI);
542     level |= (s->sssr & SSSR_TUR)  && !(s->sscr[0] & SSCR0_TIM);
543     level |= (s->sssr & SSSR_EOC)  &&  (s->sssr & (SSSR_TINT | SSSR_PINT));
544     level |= (s->sssr & SSSR_TINT) &&  (s->sscr[1] & SSCR1_TINTE);
545     level |= (s->sssr & SSSR_PINT) &&  (s->sscr[1] & SSCR1_PINTE);
546     level |= (s->sssr & SSSR_ROR)  && !(s->sscr[0] & SSCR0_RIM);
547     level |= (s->sssr & SSSR_RFS)  &&  (s->sscr[1] & SSCR1_RIE);
548     level |= (s->sssr & SSSR_TFS)  &&  (s->sscr[1] & SSCR1_TIE);
549     qemu_set_irq(s->irq, !!level);
550 }
551 
552 static void pxa2xx_ssp_fifo_update(PXA2xxSSPState *s)
553 {
554     s->sssr &= ~(0xf << 12);	/* Clear RFL */
555     s->sssr &= ~(0xf << 8);	/* Clear TFL */
556     s->sssr &= ~SSSR_TFS;
557     s->sssr &= ~SSSR_TNF;
558     if (s->enable) {
559         s->sssr |= ((s->rx_level - 1) & 0xf) << 12;
560         if (s->rx_level >= SSCR1_RFT(s->sscr[1]))
561             s->sssr |= SSSR_RFS;
562         else
563             s->sssr &= ~SSSR_RFS;
564         if (s->rx_level)
565             s->sssr |= SSSR_RNE;
566         else
567             s->sssr &= ~SSSR_RNE;
568         /* TX FIFO is never filled, so it is always in underrun
569            condition if SSP is enabled */
570         s->sssr |= SSSR_TFS;
571         s->sssr |= SSSR_TNF;
572     }
573 
574     pxa2xx_ssp_int_update(s);
575 }
576 
577 static uint64_t pxa2xx_ssp_read(void *opaque, hwaddr addr,
578                                 unsigned size)
579 {
580     PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
581     uint32_t retval;
582 
583     switch (addr) {
584     case SSCR0:
585         return s->sscr[0];
586     case SSCR1:
587         return s->sscr[1];
588     case SSPSP:
589         return s->sspsp;
590     case SSTO:
591         return s->ssto;
592     case SSITR:
593         return s->ssitr;
594     case SSSR:
595         return s->sssr | s->ssitr;
596     case SSDR:
597         if (!s->enable)
598             return 0xffffffff;
599         if (s->rx_level < 1) {
600             printf("%s: SSP Rx Underrun\n", __FUNCTION__);
601             return 0xffffffff;
602         }
603         s->rx_level --;
604         retval = s->rx_fifo[s->rx_start ++];
605         s->rx_start &= 0xf;
606         pxa2xx_ssp_fifo_update(s);
607         return retval;
608     case SSTSA:
609         return s->sstsa;
610     case SSRSA:
611         return s->ssrsa;
612     case SSTSS:
613         return 0;
614     case SSACD:
615         return s->ssacd;
616     default:
617         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
618         break;
619     }
620     return 0;
621 }
622 
623 static void pxa2xx_ssp_write(void *opaque, hwaddr addr,
624                              uint64_t value64, unsigned size)
625 {
626     PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
627     uint32_t value = value64;
628 
629     switch (addr) {
630     case SSCR0:
631         s->sscr[0] = value & 0xc7ffffff;
632         s->enable = value & SSCR0_SSE;
633         if (value & SSCR0_MOD)
634             printf("%s: Attempt to use network mode\n", __FUNCTION__);
635         if (s->enable && SSCR0_DSS(value) < 4)
636             printf("%s: Wrong data size: %i bits\n", __FUNCTION__,
637                             SSCR0_DSS(value));
638         if (!(value & SSCR0_SSE)) {
639             s->sssr = 0;
640             s->ssitr = 0;
641             s->rx_level = 0;
642         }
643         pxa2xx_ssp_fifo_update(s);
644         break;
645 
646     case SSCR1:
647         s->sscr[1] = value;
648         if (value & (SSCR1_LBM | SSCR1_EFWR))
649             printf("%s: Attempt to use SSP test mode\n", __FUNCTION__);
650         pxa2xx_ssp_fifo_update(s);
651         break;
652 
653     case SSPSP:
654         s->sspsp = value;
655         break;
656 
657     case SSTO:
658         s->ssto = value;
659         break;
660 
661     case SSITR:
662         s->ssitr = value & SSITR_INT;
663         pxa2xx_ssp_int_update(s);
664         break;
665 
666     case SSSR:
667         s->sssr &= ~(value & SSSR_RW);
668         pxa2xx_ssp_int_update(s);
669         break;
670 
671     case SSDR:
672         if (SSCR0_UWIRE(s->sscr[0])) {
673             if (s->sscr[1] & SSCR1_MWDS)
674                 value &= 0xffff;
675             else
676                 value &= 0xff;
677         } else
678             /* Note how 32bits overflow does no harm here */
679             value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
680 
681         /* Data goes from here to the Tx FIFO and is shifted out from
682          * there directly to the slave, no need to buffer it.
683          */
684         if (s->enable) {
685             uint32_t readval;
686             readval = ssi_transfer(s->bus, value);
687             if (s->rx_level < 0x10) {
688                 s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = readval;
689             } else {
690                 s->sssr |= SSSR_ROR;
691             }
692         }
693         pxa2xx_ssp_fifo_update(s);
694         break;
695 
696     case SSTSA:
697         s->sstsa = value;
698         break;
699 
700     case SSRSA:
701         s->ssrsa = value;
702         break;
703 
704     case SSACD:
705         s->ssacd = value;
706         break;
707 
708     default:
709         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
710         break;
711     }
712 }
713 
714 static const MemoryRegionOps pxa2xx_ssp_ops = {
715     .read = pxa2xx_ssp_read,
716     .write = pxa2xx_ssp_write,
717     .endianness = DEVICE_NATIVE_ENDIAN,
718 };
719 
720 static void pxa2xx_ssp_save(QEMUFile *f, void *opaque)
721 {
722     PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
723     int i;
724 
725     qemu_put_be32(f, s->enable);
726 
727     qemu_put_be32s(f, &s->sscr[0]);
728     qemu_put_be32s(f, &s->sscr[1]);
729     qemu_put_be32s(f, &s->sspsp);
730     qemu_put_be32s(f, &s->ssto);
731     qemu_put_be32s(f, &s->ssitr);
732     qemu_put_be32s(f, &s->sssr);
733     qemu_put_8s(f, &s->sstsa);
734     qemu_put_8s(f, &s->ssrsa);
735     qemu_put_8s(f, &s->ssacd);
736 
737     qemu_put_byte(f, s->rx_level);
738     for (i = 0; i < s->rx_level; i ++)
739         qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 0xf]);
740 }
741 
742 static int pxa2xx_ssp_load(QEMUFile *f, void *opaque, int version_id)
743 {
744     PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
745     int i;
746 
747     s->enable = qemu_get_be32(f);
748 
749     qemu_get_be32s(f, &s->sscr[0]);
750     qemu_get_be32s(f, &s->sscr[1]);
751     qemu_get_be32s(f, &s->sspsp);
752     qemu_get_be32s(f, &s->ssto);
753     qemu_get_be32s(f, &s->ssitr);
754     qemu_get_be32s(f, &s->sssr);
755     qemu_get_8s(f, &s->sstsa);
756     qemu_get_8s(f, &s->ssrsa);
757     qemu_get_8s(f, &s->ssacd);
758 
759     s->rx_level = qemu_get_byte(f);
760     s->rx_start = 0;
761     for (i = 0; i < s->rx_level; i ++)
762         s->rx_fifo[i] = qemu_get_byte(f);
763 
764     return 0;
765 }
766 
767 static int pxa2xx_ssp_init(SysBusDevice *sbd)
768 {
769     DeviceState *dev = DEVICE(sbd);
770     PXA2xxSSPState *s = PXA2XX_SSP(dev);
771 
772     sysbus_init_irq(sbd, &s->irq);
773 
774     memory_region_init_io(&s->iomem, OBJECT(s), &pxa2xx_ssp_ops, s,
775                           "pxa2xx-ssp", 0x1000);
776     sysbus_init_mmio(sbd, &s->iomem);
777     register_savevm(dev, "pxa2xx_ssp", -1, 0,
778                     pxa2xx_ssp_save, pxa2xx_ssp_load, s);
779 
780     s->bus = ssi_create_bus(dev, "ssi");
781     return 0;
782 }
783 
784 /* Real-Time Clock */
785 #define RCNR		0x00	/* RTC Counter register */
786 #define RTAR		0x04	/* RTC Alarm register */
787 #define RTSR		0x08	/* RTC Status register */
788 #define RTTR		0x0c	/* RTC Timer Trim register */
789 #define RDCR		0x10	/* RTC Day Counter register */
790 #define RYCR		0x14	/* RTC Year Counter register */
791 #define RDAR1		0x18	/* RTC Wristwatch Day Alarm register 1 */
792 #define RYAR1		0x1c	/* RTC Wristwatch Year Alarm register 1 */
793 #define RDAR2		0x20	/* RTC Wristwatch Day Alarm register 2 */
794 #define RYAR2		0x24	/* RTC Wristwatch Year Alarm register 2 */
795 #define SWCR		0x28	/* RTC Stopwatch Counter register */
796 #define SWAR1		0x2c	/* RTC Stopwatch Alarm register 1 */
797 #define SWAR2		0x30	/* RTC Stopwatch Alarm register 2 */
798 #define RTCPICR		0x34	/* RTC Periodic Interrupt Counter register */
799 #define PIAR		0x38	/* RTC Periodic Interrupt Alarm register */
800 
801 #define TYPE_PXA2XX_RTC "pxa2xx_rtc"
802 #define PXA2XX_RTC(obj) \
803     OBJECT_CHECK(PXA2xxRTCState, (obj), TYPE_PXA2XX_RTC)
804 
805 typedef struct {
806     /*< private >*/
807     SysBusDevice parent_obj;
808     /*< public >*/
809 
810     MemoryRegion iomem;
811     uint32_t rttr;
812     uint32_t rtsr;
813     uint32_t rtar;
814     uint32_t rdar1;
815     uint32_t rdar2;
816     uint32_t ryar1;
817     uint32_t ryar2;
818     uint32_t swar1;
819     uint32_t swar2;
820     uint32_t piar;
821     uint32_t last_rcnr;
822     uint32_t last_rdcr;
823     uint32_t last_rycr;
824     uint32_t last_swcr;
825     uint32_t last_rtcpicr;
826     int64_t last_hz;
827     int64_t last_sw;
828     int64_t last_pi;
829     QEMUTimer *rtc_hz;
830     QEMUTimer *rtc_rdal1;
831     QEMUTimer *rtc_rdal2;
832     QEMUTimer *rtc_swal1;
833     QEMUTimer *rtc_swal2;
834     QEMUTimer *rtc_pi;
835     qemu_irq rtc_irq;
836 } PXA2xxRTCState;
837 
838 static inline void pxa2xx_rtc_int_update(PXA2xxRTCState *s)
839 {
840     qemu_set_irq(s->rtc_irq, !!(s->rtsr & 0x2553));
841 }
842 
843 static void pxa2xx_rtc_hzupdate(PXA2xxRTCState *s)
844 {
845     int64_t rt = qemu_clock_get_ms(rtc_clock);
846     s->last_rcnr += ((rt - s->last_hz) << 15) /
847             (1000 * ((s->rttr & 0xffff) + 1));
848     s->last_rdcr += ((rt - s->last_hz) << 15) /
849             (1000 * ((s->rttr & 0xffff) + 1));
850     s->last_hz = rt;
851 }
852 
853 static void pxa2xx_rtc_swupdate(PXA2xxRTCState *s)
854 {
855     int64_t rt = qemu_clock_get_ms(rtc_clock);
856     if (s->rtsr & (1 << 12))
857         s->last_swcr += (rt - s->last_sw) / 10;
858     s->last_sw = rt;
859 }
860 
861 static void pxa2xx_rtc_piupdate(PXA2xxRTCState *s)
862 {
863     int64_t rt = qemu_clock_get_ms(rtc_clock);
864     if (s->rtsr & (1 << 15))
865         s->last_swcr += rt - s->last_pi;
866     s->last_pi = rt;
867 }
868 
869 static inline void pxa2xx_rtc_alarm_update(PXA2xxRTCState *s,
870                 uint32_t rtsr)
871 {
872     if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0)))
873         timer_mod(s->rtc_hz, s->last_hz +
874                 (((s->rtar - s->last_rcnr) * 1000 *
875                   ((s->rttr & 0xffff) + 1)) >> 15));
876     else
877         timer_del(s->rtc_hz);
878 
879     if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4)))
880         timer_mod(s->rtc_rdal1, s->last_hz +
881                 (((s->rdar1 - s->last_rdcr) * 1000 *
882                   ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
883     else
884         timer_del(s->rtc_rdal1);
885 
886     if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6)))
887         timer_mod(s->rtc_rdal2, s->last_hz +
888                 (((s->rdar2 - s->last_rdcr) * 1000 *
889                   ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
890     else
891         timer_del(s->rtc_rdal2);
892 
893     if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8)))
894         timer_mod(s->rtc_swal1, s->last_sw +
895                         (s->swar1 - s->last_swcr) * 10); /* TODO: fixup */
896     else
897         timer_del(s->rtc_swal1);
898 
899     if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10)))
900         timer_mod(s->rtc_swal2, s->last_sw +
901                         (s->swar2 - s->last_swcr) * 10); /* TODO: fixup */
902     else
903         timer_del(s->rtc_swal2);
904 
905     if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13)))
906         timer_mod(s->rtc_pi, s->last_pi +
907                         (s->piar & 0xffff) - s->last_rtcpicr);
908     else
909         timer_del(s->rtc_pi);
910 }
911 
912 static inline void pxa2xx_rtc_hz_tick(void *opaque)
913 {
914     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
915     s->rtsr |= (1 << 0);
916     pxa2xx_rtc_alarm_update(s, s->rtsr);
917     pxa2xx_rtc_int_update(s);
918 }
919 
920 static inline void pxa2xx_rtc_rdal1_tick(void *opaque)
921 {
922     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
923     s->rtsr |= (1 << 4);
924     pxa2xx_rtc_alarm_update(s, s->rtsr);
925     pxa2xx_rtc_int_update(s);
926 }
927 
928 static inline void pxa2xx_rtc_rdal2_tick(void *opaque)
929 {
930     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
931     s->rtsr |= (1 << 6);
932     pxa2xx_rtc_alarm_update(s, s->rtsr);
933     pxa2xx_rtc_int_update(s);
934 }
935 
936 static inline void pxa2xx_rtc_swal1_tick(void *opaque)
937 {
938     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
939     s->rtsr |= (1 << 8);
940     pxa2xx_rtc_alarm_update(s, s->rtsr);
941     pxa2xx_rtc_int_update(s);
942 }
943 
944 static inline void pxa2xx_rtc_swal2_tick(void *opaque)
945 {
946     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
947     s->rtsr |= (1 << 10);
948     pxa2xx_rtc_alarm_update(s, s->rtsr);
949     pxa2xx_rtc_int_update(s);
950 }
951 
952 static inline void pxa2xx_rtc_pi_tick(void *opaque)
953 {
954     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
955     s->rtsr |= (1 << 13);
956     pxa2xx_rtc_piupdate(s);
957     s->last_rtcpicr = 0;
958     pxa2xx_rtc_alarm_update(s, s->rtsr);
959     pxa2xx_rtc_int_update(s);
960 }
961 
962 static uint64_t pxa2xx_rtc_read(void *opaque, hwaddr addr,
963                                 unsigned size)
964 {
965     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
966 
967     switch (addr) {
968     case RTTR:
969         return s->rttr;
970     case RTSR:
971         return s->rtsr;
972     case RTAR:
973         return s->rtar;
974     case RDAR1:
975         return s->rdar1;
976     case RDAR2:
977         return s->rdar2;
978     case RYAR1:
979         return s->ryar1;
980     case RYAR2:
981         return s->ryar2;
982     case SWAR1:
983         return s->swar1;
984     case SWAR2:
985         return s->swar2;
986     case PIAR:
987         return s->piar;
988     case RCNR:
989         return s->last_rcnr +
990             ((qemu_clock_get_ms(rtc_clock) - s->last_hz) << 15) /
991             (1000 * ((s->rttr & 0xffff) + 1));
992     case RDCR:
993         return s->last_rdcr +
994             ((qemu_clock_get_ms(rtc_clock) - s->last_hz) << 15) /
995             (1000 * ((s->rttr & 0xffff) + 1));
996     case RYCR:
997         return s->last_rycr;
998     case SWCR:
999         if (s->rtsr & (1 << 12))
1000             return s->last_swcr +
1001                 (qemu_clock_get_ms(rtc_clock) - s->last_sw) / 10;
1002         else
1003             return s->last_swcr;
1004     default:
1005         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1006         break;
1007     }
1008     return 0;
1009 }
1010 
1011 static void pxa2xx_rtc_write(void *opaque, hwaddr addr,
1012                              uint64_t value64, unsigned size)
1013 {
1014     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1015     uint32_t value = value64;
1016 
1017     switch (addr) {
1018     case RTTR:
1019         if (!(s->rttr & (1 << 31))) {
1020             pxa2xx_rtc_hzupdate(s);
1021             s->rttr = value;
1022             pxa2xx_rtc_alarm_update(s, s->rtsr);
1023         }
1024         break;
1025 
1026     case RTSR:
1027         if ((s->rtsr ^ value) & (1 << 15))
1028             pxa2xx_rtc_piupdate(s);
1029 
1030         if ((s->rtsr ^ value) & (1 << 12))
1031             pxa2xx_rtc_swupdate(s);
1032 
1033         if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac))
1034             pxa2xx_rtc_alarm_update(s, value);
1035 
1036         s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac));
1037         pxa2xx_rtc_int_update(s);
1038         break;
1039 
1040     case RTAR:
1041         s->rtar = value;
1042         pxa2xx_rtc_alarm_update(s, s->rtsr);
1043         break;
1044 
1045     case RDAR1:
1046         s->rdar1 = value;
1047         pxa2xx_rtc_alarm_update(s, s->rtsr);
1048         break;
1049 
1050     case RDAR2:
1051         s->rdar2 = value;
1052         pxa2xx_rtc_alarm_update(s, s->rtsr);
1053         break;
1054 
1055     case RYAR1:
1056         s->ryar1 = value;
1057         pxa2xx_rtc_alarm_update(s, s->rtsr);
1058         break;
1059 
1060     case RYAR2:
1061         s->ryar2 = value;
1062         pxa2xx_rtc_alarm_update(s, s->rtsr);
1063         break;
1064 
1065     case SWAR1:
1066         pxa2xx_rtc_swupdate(s);
1067         s->swar1 = value;
1068         s->last_swcr = 0;
1069         pxa2xx_rtc_alarm_update(s, s->rtsr);
1070         break;
1071 
1072     case SWAR2:
1073         s->swar2 = value;
1074         pxa2xx_rtc_alarm_update(s, s->rtsr);
1075         break;
1076 
1077     case PIAR:
1078         s->piar = value;
1079         pxa2xx_rtc_alarm_update(s, s->rtsr);
1080         break;
1081 
1082     case RCNR:
1083         pxa2xx_rtc_hzupdate(s);
1084         s->last_rcnr = value;
1085         pxa2xx_rtc_alarm_update(s, s->rtsr);
1086         break;
1087 
1088     case RDCR:
1089         pxa2xx_rtc_hzupdate(s);
1090         s->last_rdcr = value;
1091         pxa2xx_rtc_alarm_update(s, s->rtsr);
1092         break;
1093 
1094     case RYCR:
1095         s->last_rycr = value;
1096         break;
1097 
1098     case SWCR:
1099         pxa2xx_rtc_swupdate(s);
1100         s->last_swcr = value;
1101         pxa2xx_rtc_alarm_update(s, s->rtsr);
1102         break;
1103 
1104     case RTCPICR:
1105         pxa2xx_rtc_piupdate(s);
1106         s->last_rtcpicr = value & 0xffff;
1107         pxa2xx_rtc_alarm_update(s, s->rtsr);
1108         break;
1109 
1110     default:
1111         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1112     }
1113 }
1114 
1115 static const MemoryRegionOps pxa2xx_rtc_ops = {
1116     .read = pxa2xx_rtc_read,
1117     .write = pxa2xx_rtc_write,
1118     .endianness = DEVICE_NATIVE_ENDIAN,
1119 };
1120 
1121 static int pxa2xx_rtc_init(SysBusDevice *dev)
1122 {
1123     PXA2xxRTCState *s = PXA2XX_RTC(dev);
1124     struct tm tm;
1125     int wom;
1126 
1127     s->rttr = 0x7fff;
1128     s->rtsr = 0;
1129 
1130     qemu_get_timedate(&tm, 0);
1131     wom = ((tm.tm_mday - 1) / 7) + 1;
1132 
1133     s->last_rcnr = (uint32_t) mktimegm(&tm);
1134     s->last_rdcr = (wom << 20) | ((tm.tm_wday + 1) << 17) |
1135             (tm.tm_hour << 12) | (tm.tm_min << 6) | tm.tm_sec;
1136     s->last_rycr = ((tm.tm_year + 1900) << 9) |
1137             ((tm.tm_mon + 1) << 5) | tm.tm_mday;
1138     s->last_swcr = (tm.tm_hour << 19) |
1139             (tm.tm_min << 13) | (tm.tm_sec << 7);
1140     s->last_rtcpicr = 0;
1141     s->last_hz = s->last_sw = s->last_pi = qemu_clock_get_ms(rtc_clock);
1142 
1143     s->rtc_hz    = timer_new_ms(rtc_clock, pxa2xx_rtc_hz_tick,    s);
1144     s->rtc_rdal1 = timer_new_ms(rtc_clock, pxa2xx_rtc_rdal1_tick, s);
1145     s->rtc_rdal2 = timer_new_ms(rtc_clock, pxa2xx_rtc_rdal2_tick, s);
1146     s->rtc_swal1 = timer_new_ms(rtc_clock, pxa2xx_rtc_swal1_tick, s);
1147     s->rtc_swal2 = timer_new_ms(rtc_clock, pxa2xx_rtc_swal2_tick, s);
1148     s->rtc_pi    = timer_new_ms(rtc_clock, pxa2xx_rtc_pi_tick,    s);
1149 
1150     sysbus_init_irq(dev, &s->rtc_irq);
1151 
1152     memory_region_init_io(&s->iomem, OBJECT(s), &pxa2xx_rtc_ops, s,
1153                           "pxa2xx-rtc", 0x10000);
1154     sysbus_init_mmio(dev, &s->iomem);
1155 
1156     return 0;
1157 }
1158 
1159 static void pxa2xx_rtc_pre_save(void *opaque)
1160 {
1161     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1162 
1163     pxa2xx_rtc_hzupdate(s);
1164     pxa2xx_rtc_piupdate(s);
1165     pxa2xx_rtc_swupdate(s);
1166 }
1167 
1168 static int pxa2xx_rtc_post_load(void *opaque, int version_id)
1169 {
1170     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1171 
1172     pxa2xx_rtc_alarm_update(s, s->rtsr);
1173 
1174     return 0;
1175 }
1176 
1177 static const VMStateDescription vmstate_pxa2xx_rtc_regs = {
1178     .name = "pxa2xx_rtc",
1179     .version_id = 0,
1180     .minimum_version_id = 0,
1181     .minimum_version_id_old = 0,
1182     .pre_save = pxa2xx_rtc_pre_save,
1183     .post_load = pxa2xx_rtc_post_load,
1184     .fields = (VMStateField[]) {
1185         VMSTATE_UINT32(rttr, PXA2xxRTCState),
1186         VMSTATE_UINT32(rtsr, PXA2xxRTCState),
1187         VMSTATE_UINT32(rtar, PXA2xxRTCState),
1188         VMSTATE_UINT32(rdar1, PXA2xxRTCState),
1189         VMSTATE_UINT32(rdar2, PXA2xxRTCState),
1190         VMSTATE_UINT32(ryar1, PXA2xxRTCState),
1191         VMSTATE_UINT32(ryar2, PXA2xxRTCState),
1192         VMSTATE_UINT32(swar1, PXA2xxRTCState),
1193         VMSTATE_UINT32(swar2, PXA2xxRTCState),
1194         VMSTATE_UINT32(piar, PXA2xxRTCState),
1195         VMSTATE_UINT32(last_rcnr, PXA2xxRTCState),
1196         VMSTATE_UINT32(last_rdcr, PXA2xxRTCState),
1197         VMSTATE_UINT32(last_rycr, PXA2xxRTCState),
1198         VMSTATE_UINT32(last_swcr, PXA2xxRTCState),
1199         VMSTATE_UINT32(last_rtcpicr, PXA2xxRTCState),
1200         VMSTATE_INT64(last_hz, PXA2xxRTCState),
1201         VMSTATE_INT64(last_sw, PXA2xxRTCState),
1202         VMSTATE_INT64(last_pi, PXA2xxRTCState),
1203         VMSTATE_END_OF_LIST(),
1204     },
1205 };
1206 
1207 static void pxa2xx_rtc_sysbus_class_init(ObjectClass *klass, void *data)
1208 {
1209     DeviceClass *dc = DEVICE_CLASS(klass);
1210     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1211 
1212     k->init = pxa2xx_rtc_init;
1213     dc->desc = "PXA2xx RTC Controller";
1214     dc->vmsd = &vmstate_pxa2xx_rtc_regs;
1215 }
1216 
1217 static const TypeInfo pxa2xx_rtc_sysbus_info = {
1218     .name          = TYPE_PXA2XX_RTC,
1219     .parent        = TYPE_SYS_BUS_DEVICE,
1220     .instance_size = sizeof(PXA2xxRTCState),
1221     .class_init    = pxa2xx_rtc_sysbus_class_init,
1222 };
1223 
1224 /* I2C Interface */
1225 typedef struct {
1226     I2CSlave i2c;
1227     PXA2xxI2CState *host;
1228 } PXA2xxI2CSlaveState;
1229 
1230 #define TYPE_PXA2XX_I2C "pxa2xx_i2c"
1231 #define PXA2XX_I2C(obj) \
1232     OBJECT_CHECK(PXA2xxI2CState, (obj), TYPE_PXA2XX_I2C)
1233 
1234 struct PXA2xxI2CState {
1235     /*< private >*/
1236     SysBusDevice parent_obj;
1237     /*< public >*/
1238 
1239     MemoryRegion iomem;
1240     PXA2xxI2CSlaveState *slave;
1241     i2c_bus *bus;
1242     qemu_irq irq;
1243     uint32_t offset;
1244     uint32_t region_size;
1245 
1246     uint16_t control;
1247     uint16_t status;
1248     uint8_t ibmr;
1249     uint8_t data;
1250 };
1251 
1252 #define IBMR	0x80	/* I2C Bus Monitor register */
1253 #define IDBR	0x88	/* I2C Data Buffer register */
1254 #define ICR	0x90	/* I2C Control register */
1255 #define ISR	0x98	/* I2C Status register */
1256 #define ISAR	0xa0	/* I2C Slave Address register */
1257 
1258 static void pxa2xx_i2c_update(PXA2xxI2CState *s)
1259 {
1260     uint16_t level = 0;
1261     level |= s->status & s->control & (1 << 10);		/* BED */
1262     level |= (s->status & (1 << 7)) && (s->control & (1 << 9));	/* IRF */
1263     level |= (s->status & (1 << 6)) && (s->control & (1 << 8));	/* ITE */
1264     level |= s->status & (1 << 9);				/* SAD */
1265     qemu_set_irq(s->irq, !!level);
1266 }
1267 
1268 /* These are only stubs now.  */
1269 static void pxa2xx_i2c_event(I2CSlave *i2c, enum i2c_event event)
1270 {
1271     PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1272     PXA2xxI2CState *s = slave->host;
1273 
1274     switch (event) {
1275     case I2C_START_SEND:
1276         s->status |= (1 << 9);				/* set SAD */
1277         s->status &= ~(1 << 0);				/* clear RWM */
1278         break;
1279     case I2C_START_RECV:
1280         s->status |= (1 << 9);				/* set SAD */
1281         s->status |= 1 << 0;				/* set RWM */
1282         break;
1283     case I2C_FINISH:
1284         s->status |= (1 << 4);				/* set SSD */
1285         break;
1286     case I2C_NACK:
1287         s->status |= 1 << 1;				/* set ACKNAK */
1288         break;
1289     }
1290     pxa2xx_i2c_update(s);
1291 }
1292 
1293 static int pxa2xx_i2c_rx(I2CSlave *i2c)
1294 {
1295     PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1296     PXA2xxI2CState *s = slave->host;
1297     if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1298         return 0;
1299 
1300     if (s->status & (1 << 0)) {			/* RWM */
1301         s->status |= 1 << 6;			/* set ITE */
1302     }
1303     pxa2xx_i2c_update(s);
1304 
1305     return s->data;
1306 }
1307 
1308 static int pxa2xx_i2c_tx(I2CSlave *i2c, uint8_t data)
1309 {
1310     PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1311     PXA2xxI2CState *s = slave->host;
1312     if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1313         return 1;
1314 
1315     if (!(s->status & (1 << 0))) {		/* RWM */
1316         s->status |= 1 << 7;			/* set IRF */
1317         s->data = data;
1318     }
1319     pxa2xx_i2c_update(s);
1320 
1321     return 1;
1322 }
1323 
1324 static uint64_t pxa2xx_i2c_read(void *opaque, hwaddr addr,
1325                                 unsigned size)
1326 {
1327     PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1328 
1329     addr -= s->offset;
1330     switch (addr) {
1331     case ICR:
1332         return s->control;
1333     case ISR:
1334         return s->status | (i2c_bus_busy(s->bus) << 2);
1335     case ISAR:
1336         return s->slave->i2c.address;
1337     case IDBR:
1338         return s->data;
1339     case IBMR:
1340         if (s->status & (1 << 2))
1341             s->ibmr ^= 3;	/* Fake SCL and SDA pin changes */
1342         else
1343             s->ibmr = 0;
1344         return s->ibmr;
1345     default:
1346         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1347         break;
1348     }
1349     return 0;
1350 }
1351 
1352 static void pxa2xx_i2c_write(void *opaque, hwaddr addr,
1353                              uint64_t value64, unsigned size)
1354 {
1355     PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1356     uint32_t value = value64;
1357     int ack;
1358 
1359     addr -= s->offset;
1360     switch (addr) {
1361     case ICR:
1362         s->control = value & 0xfff7;
1363         if ((value & (1 << 3)) && (value & (1 << 6))) {	/* TB and IUE */
1364             /* TODO: slave mode */
1365             if (value & (1 << 0)) {			/* START condition */
1366                 if (s->data & 1)
1367                     s->status |= 1 << 0;		/* set RWM */
1368                 else
1369                     s->status &= ~(1 << 0);		/* clear RWM */
1370                 ack = !i2c_start_transfer(s->bus, s->data >> 1, s->data & 1);
1371             } else {
1372                 if (s->status & (1 << 0)) {		/* RWM */
1373                     s->data = i2c_recv(s->bus);
1374                     if (value & (1 << 2))		/* ACKNAK */
1375                         i2c_nack(s->bus);
1376                     ack = 1;
1377                 } else
1378                     ack = !i2c_send(s->bus, s->data);
1379             }
1380 
1381             if (value & (1 << 1))			/* STOP condition */
1382                 i2c_end_transfer(s->bus);
1383 
1384             if (ack) {
1385                 if (value & (1 << 0))			/* START condition */
1386                     s->status |= 1 << 6;		/* set ITE */
1387                 else
1388                     if (s->status & (1 << 0))		/* RWM */
1389                         s->status |= 1 << 7;		/* set IRF */
1390                     else
1391                         s->status |= 1 << 6;		/* set ITE */
1392                 s->status &= ~(1 << 1);			/* clear ACKNAK */
1393             } else {
1394                 s->status |= 1 << 6;			/* set ITE */
1395                 s->status |= 1 << 10;			/* set BED */
1396                 s->status |= 1 << 1;			/* set ACKNAK */
1397             }
1398         }
1399         if (!(value & (1 << 3)) && (value & (1 << 6)))	/* !TB and IUE */
1400             if (value & (1 << 4))			/* MA */
1401                 i2c_end_transfer(s->bus);
1402         pxa2xx_i2c_update(s);
1403         break;
1404 
1405     case ISR:
1406         s->status &= ~(value & 0x07f0);
1407         pxa2xx_i2c_update(s);
1408         break;
1409 
1410     case ISAR:
1411         i2c_set_slave_address(&s->slave->i2c, value & 0x7f);
1412         break;
1413 
1414     case IDBR:
1415         s->data = value & 0xff;
1416         break;
1417 
1418     default:
1419         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1420     }
1421 }
1422 
1423 static const MemoryRegionOps pxa2xx_i2c_ops = {
1424     .read = pxa2xx_i2c_read,
1425     .write = pxa2xx_i2c_write,
1426     .endianness = DEVICE_NATIVE_ENDIAN,
1427 };
1428 
1429 static const VMStateDescription vmstate_pxa2xx_i2c_slave = {
1430     .name = "pxa2xx_i2c_slave",
1431     .version_id = 1,
1432     .minimum_version_id = 1,
1433     .minimum_version_id_old = 1,
1434     .fields      = (VMStateField []) {
1435         VMSTATE_I2C_SLAVE(i2c, PXA2xxI2CSlaveState),
1436         VMSTATE_END_OF_LIST()
1437     }
1438 };
1439 
1440 static const VMStateDescription vmstate_pxa2xx_i2c = {
1441     .name = "pxa2xx_i2c",
1442     .version_id = 1,
1443     .minimum_version_id = 1,
1444     .minimum_version_id_old = 1,
1445     .fields      = (VMStateField []) {
1446         VMSTATE_UINT16(control, PXA2xxI2CState),
1447         VMSTATE_UINT16(status, PXA2xxI2CState),
1448         VMSTATE_UINT8(ibmr, PXA2xxI2CState),
1449         VMSTATE_UINT8(data, PXA2xxI2CState),
1450         VMSTATE_STRUCT_POINTER(slave, PXA2xxI2CState,
1451                                vmstate_pxa2xx_i2c_slave, PXA2xxI2CSlaveState *),
1452         VMSTATE_END_OF_LIST()
1453     }
1454 };
1455 
1456 static int pxa2xx_i2c_slave_init(I2CSlave *i2c)
1457 {
1458     /* Nothing to do.  */
1459     return 0;
1460 }
1461 
1462 static void pxa2xx_i2c_slave_class_init(ObjectClass *klass, void *data)
1463 {
1464     I2CSlaveClass *k = I2C_SLAVE_CLASS(klass);
1465 
1466     k->init = pxa2xx_i2c_slave_init;
1467     k->event = pxa2xx_i2c_event;
1468     k->recv = pxa2xx_i2c_rx;
1469     k->send = pxa2xx_i2c_tx;
1470 }
1471 
1472 static const TypeInfo pxa2xx_i2c_slave_info = {
1473     .name          = "pxa2xx-i2c-slave",
1474     .parent        = TYPE_I2C_SLAVE,
1475     .instance_size = sizeof(PXA2xxI2CSlaveState),
1476     .class_init    = pxa2xx_i2c_slave_class_init,
1477 };
1478 
1479 PXA2xxI2CState *pxa2xx_i2c_init(hwaddr base,
1480                 qemu_irq irq, uint32_t region_size)
1481 {
1482     DeviceState *dev;
1483     SysBusDevice *i2c_dev;
1484     PXA2xxI2CState *s;
1485     i2c_bus *i2cbus;
1486 
1487     dev = qdev_create(NULL, TYPE_PXA2XX_I2C);
1488     qdev_prop_set_uint32(dev, "size", region_size + 1);
1489     qdev_prop_set_uint32(dev, "offset", base & region_size);
1490     qdev_init_nofail(dev);
1491 
1492     i2c_dev = SYS_BUS_DEVICE(dev);
1493     sysbus_mmio_map(i2c_dev, 0, base & ~region_size);
1494     sysbus_connect_irq(i2c_dev, 0, irq);
1495 
1496     s = PXA2XX_I2C(i2c_dev);
1497     /* FIXME: Should the slave device really be on a separate bus?  */
1498     i2cbus = i2c_init_bus(dev, "dummy");
1499     dev = i2c_create_slave(i2cbus, "pxa2xx-i2c-slave", 0);
1500     s->slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, I2C_SLAVE(dev));
1501     s->slave->host = s;
1502 
1503     return s;
1504 }
1505 
1506 static int pxa2xx_i2c_initfn(SysBusDevice *sbd)
1507 {
1508     DeviceState *dev = DEVICE(sbd);
1509     PXA2xxI2CState *s = PXA2XX_I2C(dev);
1510 
1511     s->bus = i2c_init_bus(dev, "i2c");
1512 
1513     memory_region_init_io(&s->iomem, OBJECT(s), &pxa2xx_i2c_ops, s,
1514                           "pxa2xx-i2c", s->region_size);
1515     sysbus_init_mmio(sbd, &s->iomem);
1516     sysbus_init_irq(sbd, &s->irq);
1517 
1518     return 0;
1519 }
1520 
1521 i2c_bus *pxa2xx_i2c_bus(PXA2xxI2CState *s)
1522 {
1523     return s->bus;
1524 }
1525 
1526 static Property pxa2xx_i2c_properties[] = {
1527     DEFINE_PROP_UINT32("size", PXA2xxI2CState, region_size, 0x10000),
1528     DEFINE_PROP_UINT32("offset", PXA2xxI2CState, offset, 0),
1529     DEFINE_PROP_END_OF_LIST(),
1530 };
1531 
1532 static void pxa2xx_i2c_class_init(ObjectClass *klass, void *data)
1533 {
1534     DeviceClass *dc = DEVICE_CLASS(klass);
1535     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1536 
1537     k->init = pxa2xx_i2c_initfn;
1538     dc->desc = "PXA2xx I2C Bus Controller";
1539     dc->vmsd = &vmstate_pxa2xx_i2c;
1540     dc->props = pxa2xx_i2c_properties;
1541 }
1542 
1543 static const TypeInfo pxa2xx_i2c_info = {
1544     .name          = TYPE_PXA2XX_I2C,
1545     .parent        = TYPE_SYS_BUS_DEVICE,
1546     .instance_size = sizeof(PXA2xxI2CState),
1547     .class_init    = pxa2xx_i2c_class_init,
1548 };
1549 
1550 /* PXA Inter-IC Sound Controller */
1551 static void pxa2xx_i2s_reset(PXA2xxI2SState *i2s)
1552 {
1553     i2s->rx_len = 0;
1554     i2s->tx_len = 0;
1555     i2s->fifo_len = 0;
1556     i2s->clk = 0x1a;
1557     i2s->control[0] = 0x00;
1558     i2s->control[1] = 0x00;
1559     i2s->status = 0x00;
1560     i2s->mask = 0x00;
1561 }
1562 
1563 #define SACR_TFTH(val)	((val >> 8) & 0xf)
1564 #define SACR_RFTH(val)	((val >> 12) & 0xf)
1565 #define SACR_DREC(val)	(val & (1 << 3))
1566 #define SACR_DPRL(val)	(val & (1 << 4))
1567 
1568 static inline void pxa2xx_i2s_update(PXA2xxI2SState *i2s)
1569 {
1570     int rfs, tfs;
1571     rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len &&
1572             !SACR_DREC(i2s->control[1]);
1573     tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) &&
1574             i2s->enable && !SACR_DPRL(i2s->control[1]);
1575 
1576     qemu_set_irq(i2s->rx_dma, rfs);
1577     qemu_set_irq(i2s->tx_dma, tfs);
1578 
1579     i2s->status &= 0xe0;
1580     if (i2s->fifo_len < 16 || !i2s->enable)
1581         i2s->status |= 1 << 0;			/* TNF */
1582     if (i2s->rx_len)
1583         i2s->status |= 1 << 1;			/* RNE */
1584     if (i2s->enable)
1585         i2s->status |= 1 << 2;			/* BSY */
1586     if (tfs)
1587         i2s->status |= 1 << 3;			/* TFS */
1588     if (rfs)
1589         i2s->status |= 1 << 4;			/* RFS */
1590     if (!(i2s->tx_len && i2s->enable))
1591         i2s->status |= i2s->fifo_len << 8;	/* TFL */
1592     i2s->status |= MAX(i2s->rx_len, 0xf) << 12;	/* RFL */
1593 
1594     qemu_set_irq(i2s->irq, i2s->status & i2s->mask);
1595 }
1596 
1597 #define SACR0	0x00	/* Serial Audio Global Control register */
1598 #define SACR1	0x04	/* Serial Audio I2S/MSB-Justified Control register */
1599 #define SASR0	0x0c	/* Serial Audio Interface and FIFO Status register */
1600 #define SAIMR	0x14	/* Serial Audio Interrupt Mask register */
1601 #define SAICR	0x18	/* Serial Audio Interrupt Clear register */
1602 #define SADIV	0x60	/* Serial Audio Clock Divider register */
1603 #define SADR	0x80	/* Serial Audio Data register */
1604 
1605 static uint64_t pxa2xx_i2s_read(void *opaque, hwaddr addr,
1606                                 unsigned size)
1607 {
1608     PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1609 
1610     switch (addr) {
1611     case SACR0:
1612         return s->control[0];
1613     case SACR1:
1614         return s->control[1];
1615     case SASR0:
1616         return s->status;
1617     case SAIMR:
1618         return s->mask;
1619     case SAICR:
1620         return 0;
1621     case SADIV:
1622         return s->clk;
1623     case SADR:
1624         if (s->rx_len > 0) {
1625             s->rx_len --;
1626             pxa2xx_i2s_update(s);
1627             return s->codec_in(s->opaque);
1628         }
1629         return 0;
1630     default:
1631         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1632         break;
1633     }
1634     return 0;
1635 }
1636 
1637 static void pxa2xx_i2s_write(void *opaque, hwaddr addr,
1638                              uint64_t value, unsigned size)
1639 {
1640     PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1641     uint32_t *sample;
1642 
1643     switch (addr) {
1644     case SACR0:
1645         if (value & (1 << 3))				/* RST */
1646             pxa2xx_i2s_reset(s);
1647         s->control[0] = value & 0xff3d;
1648         if (!s->enable && (value & 1) && s->tx_len) {	/* ENB */
1649             for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++)
1650                 s->codec_out(s->opaque, *sample);
1651             s->status &= ~(1 << 7);			/* I2SOFF */
1652         }
1653         if (value & (1 << 4))				/* EFWR */
1654             printf("%s: Attempt to use special function\n", __FUNCTION__);
1655         s->enable = (value & 9) == 1;			/* ENB && !RST*/
1656         pxa2xx_i2s_update(s);
1657         break;
1658     case SACR1:
1659         s->control[1] = value & 0x0039;
1660         if (value & (1 << 5))				/* ENLBF */
1661             printf("%s: Attempt to use loopback function\n", __FUNCTION__);
1662         if (value & (1 << 4))				/* DPRL */
1663             s->fifo_len = 0;
1664         pxa2xx_i2s_update(s);
1665         break;
1666     case SAIMR:
1667         s->mask = value & 0x0078;
1668         pxa2xx_i2s_update(s);
1669         break;
1670     case SAICR:
1671         s->status &= ~(value & (3 << 5));
1672         pxa2xx_i2s_update(s);
1673         break;
1674     case SADIV:
1675         s->clk = value & 0x007f;
1676         break;
1677     case SADR:
1678         if (s->tx_len && s->enable) {
1679             s->tx_len --;
1680             pxa2xx_i2s_update(s);
1681             s->codec_out(s->opaque, value);
1682         } else if (s->fifo_len < 16) {
1683             s->fifo[s->fifo_len ++] = value;
1684             pxa2xx_i2s_update(s);
1685         }
1686         break;
1687     default:
1688         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1689     }
1690 }
1691 
1692 static const MemoryRegionOps pxa2xx_i2s_ops = {
1693     .read = pxa2xx_i2s_read,
1694     .write = pxa2xx_i2s_write,
1695     .endianness = DEVICE_NATIVE_ENDIAN,
1696 };
1697 
1698 static const VMStateDescription vmstate_pxa2xx_i2s = {
1699     .name = "pxa2xx_i2s",
1700     .version_id = 0,
1701     .minimum_version_id = 0,
1702     .minimum_version_id_old = 0,
1703     .fields      = (VMStateField[]) {
1704         VMSTATE_UINT32_ARRAY(control, PXA2xxI2SState, 2),
1705         VMSTATE_UINT32(status, PXA2xxI2SState),
1706         VMSTATE_UINT32(mask, PXA2xxI2SState),
1707         VMSTATE_UINT32(clk, PXA2xxI2SState),
1708         VMSTATE_INT32(enable, PXA2xxI2SState),
1709         VMSTATE_INT32(rx_len, PXA2xxI2SState),
1710         VMSTATE_INT32(tx_len, PXA2xxI2SState),
1711         VMSTATE_INT32(fifo_len, PXA2xxI2SState),
1712         VMSTATE_END_OF_LIST()
1713     }
1714 };
1715 
1716 static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx)
1717 {
1718     PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1719     uint32_t *sample;
1720 
1721     /* Signal FIFO errors */
1722     if (s->enable && s->tx_len)
1723         s->status |= 1 << 5;		/* TUR */
1724     if (s->enable && s->rx_len)
1725         s->status |= 1 << 6;		/* ROR */
1726 
1727     /* Should be tx - MIN(tx, s->fifo_len) but we don't really need to
1728      * handle the cases where it makes a difference.  */
1729     s->tx_len = tx - s->fifo_len;
1730     s->rx_len = rx;
1731     /* Note that is s->codec_out wasn't set, we wouldn't get called.  */
1732     if (s->enable)
1733         for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++)
1734             s->codec_out(s->opaque, *sample);
1735     pxa2xx_i2s_update(s);
1736 }
1737 
1738 static PXA2xxI2SState *pxa2xx_i2s_init(MemoryRegion *sysmem,
1739                 hwaddr base,
1740                 qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma)
1741 {
1742     PXA2xxI2SState *s = (PXA2xxI2SState *)
1743             g_malloc0(sizeof(PXA2xxI2SState));
1744 
1745     s->irq = irq;
1746     s->rx_dma = rx_dma;
1747     s->tx_dma = tx_dma;
1748     s->data_req = pxa2xx_i2s_data_req;
1749 
1750     pxa2xx_i2s_reset(s);
1751 
1752     memory_region_init_io(&s->iomem, NULL, &pxa2xx_i2s_ops, s,
1753                           "pxa2xx-i2s", 0x100000);
1754     memory_region_add_subregion(sysmem, base, &s->iomem);
1755 
1756     vmstate_register(NULL, base, &vmstate_pxa2xx_i2s, s);
1757 
1758     return s;
1759 }
1760 
1761 /* PXA Fast Infra-red Communications Port */
1762 struct PXA2xxFIrState {
1763     MemoryRegion iomem;
1764     qemu_irq irq;
1765     qemu_irq rx_dma;
1766     qemu_irq tx_dma;
1767     int enable;
1768     CharDriverState *chr;
1769 
1770     uint8_t control[3];
1771     uint8_t status[2];
1772 
1773     int rx_len;
1774     int rx_start;
1775     uint8_t rx_fifo[64];
1776 };
1777 
1778 static void pxa2xx_fir_reset(PXA2xxFIrState *s)
1779 {
1780     s->control[0] = 0x00;
1781     s->control[1] = 0x00;
1782     s->control[2] = 0x00;
1783     s->status[0] = 0x00;
1784     s->status[1] = 0x00;
1785     s->enable = 0;
1786 }
1787 
1788 static inline void pxa2xx_fir_update(PXA2xxFIrState *s)
1789 {
1790     static const int tresh[4] = { 8, 16, 32, 0 };
1791     int intr = 0;
1792     if ((s->control[0] & (1 << 4)) &&			/* RXE */
1793                     s->rx_len >= tresh[s->control[2] & 3])	/* TRIG */
1794         s->status[0] |= 1 << 4;				/* RFS */
1795     else
1796         s->status[0] &= ~(1 << 4);			/* RFS */
1797     if (s->control[0] & (1 << 3))			/* TXE */
1798         s->status[0] |= 1 << 3;				/* TFS */
1799     else
1800         s->status[0] &= ~(1 << 3);			/* TFS */
1801     if (s->rx_len)
1802         s->status[1] |= 1 << 2;				/* RNE */
1803     else
1804         s->status[1] &= ~(1 << 2);			/* RNE */
1805     if (s->control[0] & (1 << 4))			/* RXE */
1806         s->status[1] |= 1 << 0;				/* RSY */
1807     else
1808         s->status[1] &= ~(1 << 0);			/* RSY */
1809 
1810     intr |= (s->control[0] & (1 << 5)) &&		/* RIE */
1811             (s->status[0] & (1 << 4));			/* RFS */
1812     intr |= (s->control[0] & (1 << 6)) &&		/* TIE */
1813             (s->status[0] & (1 << 3));			/* TFS */
1814     intr |= (s->control[2] & (1 << 4)) &&		/* TRAIL */
1815             (s->status[0] & (1 << 6));			/* EOC */
1816     intr |= (s->control[0] & (1 << 2)) &&		/* TUS */
1817             (s->status[0] & (1 << 1));			/* TUR */
1818     intr |= s->status[0] & 0x25;			/* FRE, RAB, EIF */
1819 
1820     qemu_set_irq(s->rx_dma, (s->status[0] >> 4) & 1);
1821     qemu_set_irq(s->tx_dma, (s->status[0] >> 3) & 1);
1822 
1823     qemu_set_irq(s->irq, intr && s->enable);
1824 }
1825 
1826 #define ICCR0	0x00	/* FICP Control register 0 */
1827 #define ICCR1	0x04	/* FICP Control register 1 */
1828 #define ICCR2	0x08	/* FICP Control register 2 */
1829 #define ICDR	0x0c	/* FICP Data register */
1830 #define ICSR0	0x14	/* FICP Status register 0 */
1831 #define ICSR1	0x18	/* FICP Status register 1 */
1832 #define ICFOR	0x1c	/* FICP FIFO Occupancy Status register */
1833 
1834 static uint64_t pxa2xx_fir_read(void *opaque, hwaddr addr,
1835                                 unsigned size)
1836 {
1837     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1838     uint8_t ret;
1839 
1840     switch (addr) {
1841     case ICCR0:
1842         return s->control[0];
1843     case ICCR1:
1844         return s->control[1];
1845     case ICCR2:
1846         return s->control[2];
1847     case ICDR:
1848         s->status[0] &= ~0x01;
1849         s->status[1] &= ~0x72;
1850         if (s->rx_len) {
1851             s->rx_len --;
1852             ret = s->rx_fifo[s->rx_start ++];
1853             s->rx_start &= 63;
1854             pxa2xx_fir_update(s);
1855             return ret;
1856         }
1857         printf("%s: Rx FIFO underrun.\n", __FUNCTION__);
1858         break;
1859     case ICSR0:
1860         return s->status[0];
1861     case ICSR1:
1862         return s->status[1] | (1 << 3);			/* TNF */
1863     case ICFOR:
1864         return s->rx_len;
1865     default:
1866         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1867         break;
1868     }
1869     return 0;
1870 }
1871 
1872 static void pxa2xx_fir_write(void *opaque, hwaddr addr,
1873                              uint64_t value64, unsigned size)
1874 {
1875     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1876     uint32_t value = value64;
1877     uint8_t ch;
1878 
1879     switch (addr) {
1880     case ICCR0:
1881         s->control[0] = value;
1882         if (!(value & (1 << 4)))			/* RXE */
1883             s->rx_len = s->rx_start = 0;
1884         if (!(value & (1 << 3))) {                      /* TXE */
1885             /* Nop */
1886         }
1887         s->enable = value & 1;				/* ITR */
1888         if (!s->enable)
1889             s->status[0] = 0;
1890         pxa2xx_fir_update(s);
1891         break;
1892     case ICCR1:
1893         s->control[1] = value;
1894         break;
1895     case ICCR2:
1896         s->control[2] = value & 0x3f;
1897         pxa2xx_fir_update(s);
1898         break;
1899     case ICDR:
1900         if (s->control[2] & (1 << 2))			/* TXP */
1901             ch = value;
1902         else
1903             ch = ~value;
1904         if (s->chr && s->enable && (s->control[0] & (1 << 3)))	/* TXE */
1905             qemu_chr_fe_write(s->chr, &ch, 1);
1906         break;
1907     case ICSR0:
1908         s->status[0] &= ~(value & 0x66);
1909         pxa2xx_fir_update(s);
1910         break;
1911     case ICFOR:
1912         break;
1913     default:
1914         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1915     }
1916 }
1917 
1918 static const MemoryRegionOps pxa2xx_fir_ops = {
1919     .read = pxa2xx_fir_read,
1920     .write = pxa2xx_fir_write,
1921     .endianness = DEVICE_NATIVE_ENDIAN,
1922 };
1923 
1924 static int pxa2xx_fir_is_empty(void *opaque)
1925 {
1926     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1927     return (s->rx_len < 64);
1928 }
1929 
1930 static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size)
1931 {
1932     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1933     if (!(s->control[0] & (1 << 4)))			/* RXE */
1934         return;
1935 
1936     while (size --) {
1937         s->status[1] |= 1 << 4;				/* EOF */
1938         if (s->rx_len >= 64) {
1939             s->status[1] |= 1 << 6;			/* ROR */
1940             break;
1941         }
1942 
1943         if (s->control[2] & (1 << 3))			/* RXP */
1944             s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++);
1945         else
1946             s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++);
1947     }
1948 
1949     pxa2xx_fir_update(s);
1950 }
1951 
1952 static void pxa2xx_fir_event(void *opaque, int event)
1953 {
1954 }
1955 
1956 static void pxa2xx_fir_save(QEMUFile *f, void *opaque)
1957 {
1958     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1959     int i;
1960 
1961     qemu_put_be32(f, s->enable);
1962 
1963     qemu_put_8s(f, &s->control[0]);
1964     qemu_put_8s(f, &s->control[1]);
1965     qemu_put_8s(f, &s->control[2]);
1966     qemu_put_8s(f, &s->status[0]);
1967     qemu_put_8s(f, &s->status[1]);
1968 
1969     qemu_put_byte(f, s->rx_len);
1970     for (i = 0; i < s->rx_len; i ++)
1971         qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 63]);
1972 }
1973 
1974 static int pxa2xx_fir_load(QEMUFile *f, void *opaque, int version_id)
1975 {
1976     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1977     int i;
1978 
1979     s->enable = qemu_get_be32(f);
1980 
1981     qemu_get_8s(f, &s->control[0]);
1982     qemu_get_8s(f, &s->control[1]);
1983     qemu_get_8s(f, &s->control[2]);
1984     qemu_get_8s(f, &s->status[0]);
1985     qemu_get_8s(f, &s->status[1]);
1986 
1987     s->rx_len = qemu_get_byte(f);
1988     s->rx_start = 0;
1989     for (i = 0; i < s->rx_len; i ++)
1990         s->rx_fifo[i] = qemu_get_byte(f);
1991 
1992     return 0;
1993 }
1994 
1995 static PXA2xxFIrState *pxa2xx_fir_init(MemoryRegion *sysmem,
1996                 hwaddr base,
1997                 qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma,
1998                 CharDriverState *chr)
1999 {
2000     PXA2xxFIrState *s = (PXA2xxFIrState *)
2001             g_malloc0(sizeof(PXA2xxFIrState));
2002 
2003     s->irq = irq;
2004     s->rx_dma = rx_dma;
2005     s->tx_dma = tx_dma;
2006     s->chr = chr;
2007 
2008     pxa2xx_fir_reset(s);
2009 
2010     memory_region_init_io(&s->iomem, NULL, &pxa2xx_fir_ops, s, "pxa2xx-fir", 0x1000);
2011     memory_region_add_subregion(sysmem, base, &s->iomem);
2012 
2013     if (chr) {
2014         qemu_chr_fe_claim_no_fail(chr);
2015         qemu_chr_add_handlers(chr, pxa2xx_fir_is_empty,
2016                         pxa2xx_fir_rx, pxa2xx_fir_event, s);
2017     }
2018 
2019     register_savevm(NULL, "pxa2xx_fir", 0, 0, pxa2xx_fir_save,
2020                     pxa2xx_fir_load, s);
2021 
2022     return s;
2023 }
2024 
2025 static void pxa2xx_reset(void *opaque, int line, int level)
2026 {
2027     PXA2xxState *s = (PXA2xxState *) opaque;
2028 
2029     if (level && (s->pm_regs[PCFR >> 2] & 0x10)) {	/* GPR_EN */
2030         cpu_reset(CPU(s->cpu));
2031         /* TODO: reset peripherals */
2032     }
2033 }
2034 
2035 /* Initialise a PXA270 integrated chip (ARM based core).  */
2036 PXA2xxState *pxa270_init(MemoryRegion *address_space,
2037                          unsigned int sdram_size, const char *revision)
2038 {
2039     PXA2xxState *s;
2040     int i;
2041     DriveInfo *dinfo;
2042     s = (PXA2xxState *) g_malloc0(sizeof(PXA2xxState));
2043 
2044     if (revision && strncmp(revision, "pxa27", 5)) {
2045         fprintf(stderr, "Machine requires a PXA27x processor.\n");
2046         exit(1);
2047     }
2048     if (!revision)
2049         revision = "pxa270";
2050 
2051     s->cpu = cpu_arm_init(revision);
2052     if (s->cpu == NULL) {
2053         fprintf(stderr, "Unable to find CPU definition\n");
2054         exit(1);
2055     }
2056     s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2057 
2058     /* SDRAM & Internal Memory Storage */
2059     memory_region_init_ram(&s->sdram, NULL, "pxa270.sdram", sdram_size);
2060     vmstate_register_ram_global(&s->sdram);
2061     memory_region_add_subregion(address_space, PXA2XX_SDRAM_BASE, &s->sdram);
2062     memory_region_init_ram(&s->internal, NULL, "pxa270.internal", 0x40000);
2063     vmstate_register_ram_global(&s->internal);
2064     memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE,
2065                                 &s->internal);
2066 
2067     s->pic = pxa2xx_pic_init(0x40d00000, s->cpu);
2068 
2069     s->dma = pxa27x_dma_init(0x40000000,
2070                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
2071 
2072     sysbus_create_varargs("pxa27x-timer", 0x40a00000,
2073                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0),
2074                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1),
2075                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2),
2076                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3),
2077                     qdev_get_gpio_in(s->pic, PXA27X_PIC_OST_4_11),
2078                     NULL);
2079 
2080     s->gpio = pxa2xx_gpio_init(0x40e00000, s->cpu, s->pic, 121);
2081 
2082     dinfo = drive_get(IF_SD, 0, 0);
2083     if (!dinfo) {
2084         fprintf(stderr, "qemu: missing SecureDigital device\n");
2085         exit(1);
2086     }
2087     s->mmc = pxa2xx_mmci_init(address_space, 0x41100000, dinfo->bdrv,
2088                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC),
2089                     qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI),
2090                     qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI));
2091 
2092     for (i = 0; pxa270_serial[i].io_base; i++) {
2093         if (serial_hds[i]) {
2094             serial_mm_init(address_space, pxa270_serial[i].io_base, 2,
2095                            qdev_get_gpio_in(s->pic, pxa270_serial[i].irqn),
2096                            14857000 / 16, serial_hds[i],
2097                            DEVICE_NATIVE_ENDIAN);
2098         } else {
2099             break;
2100         }
2101     }
2102     if (serial_hds[i])
2103         s->fir = pxa2xx_fir_init(address_space, 0x40800000,
2104                         qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP),
2105                         qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP),
2106                         qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP),
2107                         serial_hds[i]);
2108 
2109     s->lcd = pxa2xx_lcdc_init(address_space, 0x44000000,
2110                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD));
2111 
2112     s->cm_base = 0x41300000;
2113     s->cm_regs[CCCR >> 2] = 0x02000210;	/* 416.0 MHz */
2114     s->clkcfg = 0x00000009;		/* Turbo mode active */
2115     memory_region_init_io(&s->cm_iomem, NULL, &pxa2xx_cm_ops, s, "pxa2xx-cm", 0x1000);
2116     memory_region_add_subregion(address_space, s->cm_base, &s->cm_iomem);
2117     vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s);
2118 
2119     pxa2xx_setup_cp14(s);
2120 
2121     s->mm_base = 0x48000000;
2122     s->mm_regs[MDMRS >> 2] = 0x00020002;
2123     s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2124     s->mm_regs[MECR >> 2] = 0x00000001;	/* Two PC Card sockets */
2125     memory_region_init_io(&s->mm_iomem, NULL, &pxa2xx_mm_ops, s, "pxa2xx-mm", 0x1000);
2126     memory_region_add_subregion(address_space, s->mm_base, &s->mm_iomem);
2127     vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s);
2128 
2129     s->pm_base = 0x40f00000;
2130     memory_region_init_io(&s->pm_iomem, NULL, &pxa2xx_pm_ops, s, "pxa2xx-pm", 0x100);
2131     memory_region_add_subregion(address_space, s->pm_base, &s->pm_iomem);
2132     vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s);
2133 
2134     for (i = 0; pxa27x_ssp[i].io_base; i ++);
2135     s->ssp = (SSIBus **)g_malloc0(sizeof(SSIBus *) * i);
2136     for (i = 0; pxa27x_ssp[i].io_base; i ++) {
2137         DeviceState *dev;
2138         dev = sysbus_create_simple(TYPE_PXA2XX_SSP, pxa27x_ssp[i].io_base,
2139                         qdev_get_gpio_in(s->pic, pxa27x_ssp[i].irqn));
2140         s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2141     }
2142 
2143     if (usb_enabled(false)) {
2144         sysbus_create_simple("sysbus-ohci", 0x4c000000,
2145                         qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1));
2146     }
2147 
2148     s->pcmcia[0] = pxa2xx_pcmcia_init(address_space, 0x20000000);
2149     s->pcmcia[1] = pxa2xx_pcmcia_init(address_space, 0x30000000);
2150 
2151     sysbus_create_simple(TYPE_PXA2XX_RTC, 0x40900000,
2152                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM));
2153 
2154     s->i2c[0] = pxa2xx_i2c_init(0x40301600,
2155                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff);
2156     s->i2c[1] = pxa2xx_i2c_init(0x40f00100,
2157                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff);
2158 
2159     s->i2s = pxa2xx_i2s_init(address_space, 0x40400000,
2160                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S),
2161                     qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S),
2162                     qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S));
2163 
2164     s->kp = pxa27x_keypad_init(address_space, 0x41500000,
2165                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_KEYPAD));
2166 
2167     /* GPIO1 resets the processor */
2168     /* The handler can be overridden by board-specific code */
2169     qdev_connect_gpio_out(s->gpio, 1, s->reset);
2170     return s;
2171 }
2172 
2173 /* Initialise a PXA255 integrated chip (ARM based core).  */
2174 PXA2xxState *pxa255_init(MemoryRegion *address_space, unsigned int sdram_size)
2175 {
2176     PXA2xxState *s;
2177     int i;
2178     DriveInfo *dinfo;
2179 
2180     s = (PXA2xxState *) g_malloc0(sizeof(PXA2xxState));
2181 
2182     s->cpu = cpu_arm_init("pxa255");
2183     if (s->cpu == NULL) {
2184         fprintf(stderr, "Unable to find CPU definition\n");
2185         exit(1);
2186     }
2187     s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2188 
2189     /* SDRAM & Internal Memory Storage */
2190     memory_region_init_ram(&s->sdram, NULL, "pxa255.sdram", sdram_size);
2191     vmstate_register_ram_global(&s->sdram);
2192     memory_region_add_subregion(address_space, PXA2XX_SDRAM_BASE, &s->sdram);
2193     memory_region_init_ram(&s->internal, NULL, "pxa255.internal",
2194                            PXA2XX_INTERNAL_SIZE);
2195     vmstate_register_ram_global(&s->internal);
2196     memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE,
2197                                 &s->internal);
2198 
2199     s->pic = pxa2xx_pic_init(0x40d00000, s->cpu);
2200 
2201     s->dma = pxa255_dma_init(0x40000000,
2202                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
2203 
2204     sysbus_create_varargs("pxa25x-timer", 0x40a00000,
2205                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0),
2206                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1),
2207                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2),
2208                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3),
2209                     NULL);
2210 
2211     s->gpio = pxa2xx_gpio_init(0x40e00000, s->cpu, s->pic, 85);
2212 
2213     dinfo = drive_get(IF_SD, 0, 0);
2214     if (!dinfo) {
2215         fprintf(stderr, "qemu: missing SecureDigital device\n");
2216         exit(1);
2217     }
2218     s->mmc = pxa2xx_mmci_init(address_space, 0x41100000, dinfo->bdrv,
2219                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC),
2220                     qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI),
2221                     qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI));
2222 
2223     for (i = 0; pxa255_serial[i].io_base; i++) {
2224         if (serial_hds[i]) {
2225             serial_mm_init(address_space, pxa255_serial[i].io_base, 2,
2226                            qdev_get_gpio_in(s->pic, pxa255_serial[i].irqn),
2227                            14745600 / 16, serial_hds[i],
2228                            DEVICE_NATIVE_ENDIAN);
2229         } else {
2230             break;
2231         }
2232     }
2233     if (serial_hds[i])
2234         s->fir = pxa2xx_fir_init(address_space, 0x40800000,
2235                         qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP),
2236                         qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP),
2237                         qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP),
2238                         serial_hds[i]);
2239 
2240     s->lcd = pxa2xx_lcdc_init(address_space, 0x44000000,
2241                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD));
2242 
2243     s->cm_base = 0x41300000;
2244     s->cm_regs[CCCR >> 2] = 0x02000210;	/* 416.0 MHz */
2245     s->clkcfg = 0x00000009;		/* Turbo mode active */
2246     memory_region_init_io(&s->cm_iomem, NULL, &pxa2xx_cm_ops, s, "pxa2xx-cm", 0x1000);
2247     memory_region_add_subregion(address_space, s->cm_base, &s->cm_iomem);
2248     vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s);
2249 
2250     pxa2xx_setup_cp14(s);
2251 
2252     s->mm_base = 0x48000000;
2253     s->mm_regs[MDMRS >> 2] = 0x00020002;
2254     s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2255     s->mm_regs[MECR >> 2] = 0x00000001;	/* Two PC Card sockets */
2256     memory_region_init_io(&s->mm_iomem, NULL, &pxa2xx_mm_ops, s, "pxa2xx-mm", 0x1000);
2257     memory_region_add_subregion(address_space, s->mm_base, &s->mm_iomem);
2258     vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s);
2259 
2260     s->pm_base = 0x40f00000;
2261     memory_region_init_io(&s->pm_iomem, NULL, &pxa2xx_pm_ops, s, "pxa2xx-pm", 0x100);
2262     memory_region_add_subregion(address_space, s->pm_base, &s->pm_iomem);
2263     vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s);
2264 
2265     for (i = 0; pxa255_ssp[i].io_base; i ++);
2266     s->ssp = (SSIBus **)g_malloc0(sizeof(SSIBus *) * i);
2267     for (i = 0; pxa255_ssp[i].io_base; i ++) {
2268         DeviceState *dev;
2269         dev = sysbus_create_simple(TYPE_PXA2XX_SSP, pxa255_ssp[i].io_base,
2270                         qdev_get_gpio_in(s->pic, pxa255_ssp[i].irqn));
2271         s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2272     }
2273 
2274     if (usb_enabled(false)) {
2275         sysbus_create_simple("sysbus-ohci", 0x4c000000,
2276                         qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1));
2277     }
2278 
2279     s->pcmcia[0] = pxa2xx_pcmcia_init(address_space, 0x20000000);
2280     s->pcmcia[1] = pxa2xx_pcmcia_init(address_space, 0x30000000);
2281 
2282     sysbus_create_simple(TYPE_PXA2XX_RTC, 0x40900000,
2283                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM));
2284 
2285     s->i2c[0] = pxa2xx_i2c_init(0x40301600,
2286                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff);
2287     s->i2c[1] = pxa2xx_i2c_init(0x40f00100,
2288                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff);
2289 
2290     s->i2s = pxa2xx_i2s_init(address_space, 0x40400000,
2291                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S),
2292                     qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S),
2293                     qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S));
2294 
2295     /* GPIO1 resets the processor */
2296     /* The handler can be overridden by board-specific code */
2297     qdev_connect_gpio_out(s->gpio, 1, s->reset);
2298     return s;
2299 }
2300 
2301 static void pxa2xx_ssp_class_init(ObjectClass *klass, void *data)
2302 {
2303     SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
2304 
2305     sdc->init = pxa2xx_ssp_init;
2306 }
2307 
2308 static const TypeInfo pxa2xx_ssp_info = {
2309     .name          = TYPE_PXA2XX_SSP,
2310     .parent        = TYPE_SYS_BUS_DEVICE,
2311     .instance_size = sizeof(PXA2xxSSPState),
2312     .class_init    = pxa2xx_ssp_class_init,
2313 };
2314 
2315 static void pxa2xx_register_types(void)
2316 {
2317     type_register_static(&pxa2xx_i2c_slave_info);
2318     type_register_static(&pxa2xx_ssp_info);
2319     type_register_static(&pxa2xx_i2c_info);
2320     type_register_static(&pxa2xx_rtc_sysbus_info);
2321 }
2322 
2323 type_init(pxa2xx_register_types)
2324