xref: /openbmc/qemu/hw/arm/pxa2xx.c (revision 2993683b)
1 /*
2  * Intel XScale PXA255/270 processor support.
3  *
4  * Copyright (c) 2006 Openedhand Ltd.
5  * Written by Andrzej Zaborowski <balrog@zabor.org>
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "hw/sysbus.h"
11 #include "hw/arm/pxa.h"
12 #include "sysemu/sysemu.h"
13 #include "hw/char/serial.h"
14 #include "hw/i2c/i2c.h"
15 #include "hw/ssi.h"
16 #include "sysemu/char.h"
17 #include "sysemu/blockdev.h"
18 
19 static struct {
20     hwaddr io_base;
21     int irqn;
22 } pxa255_serial[] = {
23     { 0x40100000, PXA2XX_PIC_FFUART },
24     { 0x40200000, PXA2XX_PIC_BTUART },
25     { 0x40700000, PXA2XX_PIC_STUART },
26     { 0x41600000, PXA25X_PIC_HWUART },
27     { 0, 0 }
28 }, pxa270_serial[] = {
29     { 0x40100000, PXA2XX_PIC_FFUART },
30     { 0x40200000, PXA2XX_PIC_BTUART },
31     { 0x40700000, PXA2XX_PIC_STUART },
32     { 0, 0 }
33 };
34 
35 typedef struct PXASSPDef {
36     hwaddr io_base;
37     int irqn;
38 } PXASSPDef;
39 
40 #if 0
41 static PXASSPDef pxa250_ssp[] = {
42     { 0x41000000, PXA2XX_PIC_SSP },
43     { 0, 0 }
44 };
45 #endif
46 
47 static PXASSPDef pxa255_ssp[] = {
48     { 0x41000000, PXA2XX_PIC_SSP },
49     { 0x41400000, PXA25X_PIC_NSSP },
50     { 0, 0 }
51 };
52 
53 #if 0
54 static PXASSPDef pxa26x_ssp[] = {
55     { 0x41000000, PXA2XX_PIC_SSP },
56     { 0x41400000, PXA25X_PIC_NSSP },
57     { 0x41500000, PXA26X_PIC_ASSP },
58     { 0, 0 }
59 };
60 #endif
61 
62 static PXASSPDef pxa27x_ssp[] = {
63     { 0x41000000, PXA2XX_PIC_SSP },
64     { 0x41700000, PXA27X_PIC_SSP2 },
65     { 0x41900000, PXA2XX_PIC_SSP3 },
66     { 0, 0 }
67 };
68 
69 #define PMCR	0x00	/* Power Manager Control register */
70 #define PSSR	0x04	/* Power Manager Sleep Status register */
71 #define PSPR	0x08	/* Power Manager Scratch-Pad register */
72 #define PWER	0x0c	/* Power Manager Wake-Up Enable register */
73 #define PRER	0x10	/* Power Manager Rising-Edge Detect Enable register */
74 #define PFER	0x14	/* Power Manager Falling-Edge Detect Enable register */
75 #define PEDR	0x18	/* Power Manager Edge-Detect Status register */
76 #define PCFR	0x1c	/* Power Manager General Configuration register */
77 #define PGSR0	0x20	/* Power Manager GPIO Sleep-State register 0 */
78 #define PGSR1	0x24	/* Power Manager GPIO Sleep-State register 1 */
79 #define PGSR2	0x28	/* Power Manager GPIO Sleep-State register 2 */
80 #define PGSR3	0x2c	/* Power Manager GPIO Sleep-State register 3 */
81 #define RCSR	0x30	/* Reset Controller Status register */
82 #define PSLR	0x34	/* Power Manager Sleep Configuration register */
83 #define PTSR	0x38	/* Power Manager Standby Configuration register */
84 #define PVCR	0x40	/* Power Manager Voltage Change Control register */
85 #define PUCR	0x4c	/* Power Manager USIM Card Control/Status register */
86 #define PKWR	0x50	/* Power Manager Keyboard Wake-Up Enable register */
87 #define PKSR	0x54	/* Power Manager Keyboard Level-Detect Status */
88 #define PCMD0	0x80	/* Power Manager I2C Command register File 0 */
89 #define PCMD31	0xfc	/* Power Manager I2C Command register File 31 */
90 
91 static uint64_t pxa2xx_pm_read(void *opaque, hwaddr addr,
92                                unsigned size)
93 {
94     PXA2xxState *s = (PXA2xxState *) opaque;
95 
96     switch (addr) {
97     case PMCR ... PCMD31:
98         if (addr & 3)
99             goto fail;
100 
101         return s->pm_regs[addr >> 2];
102     default:
103     fail:
104         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
105         break;
106     }
107     return 0;
108 }
109 
110 static void pxa2xx_pm_write(void *opaque, hwaddr addr,
111                             uint64_t value, unsigned size)
112 {
113     PXA2xxState *s = (PXA2xxState *) opaque;
114 
115     switch (addr) {
116     case PMCR:
117         /* Clear the write-one-to-clear bits... */
118         s->pm_regs[addr >> 2] &= ~(value & 0x2a);
119         /* ...and set the plain r/w bits */
120         s->pm_regs[addr >> 2] &= ~0x15;
121         s->pm_regs[addr >> 2] |= value & 0x15;
122         break;
123 
124     case PSSR:	/* Read-clean registers */
125     case RCSR:
126     case PKSR:
127         s->pm_regs[addr >> 2] &= ~value;
128         break;
129 
130     default:	/* Read-write registers */
131         if (!(addr & 3)) {
132             s->pm_regs[addr >> 2] = value;
133             break;
134         }
135 
136         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
137         break;
138     }
139 }
140 
141 static const MemoryRegionOps pxa2xx_pm_ops = {
142     .read = pxa2xx_pm_read,
143     .write = pxa2xx_pm_write,
144     .endianness = DEVICE_NATIVE_ENDIAN,
145 };
146 
147 static const VMStateDescription vmstate_pxa2xx_pm = {
148     .name = "pxa2xx_pm",
149     .version_id = 0,
150     .minimum_version_id = 0,
151     .minimum_version_id_old = 0,
152     .fields      = (VMStateField[]) {
153         VMSTATE_UINT32_ARRAY(pm_regs, PXA2xxState, 0x40),
154         VMSTATE_END_OF_LIST()
155     }
156 };
157 
158 #define CCCR	0x00	/* Core Clock Configuration register */
159 #define CKEN	0x04	/* Clock Enable register */
160 #define OSCC	0x08	/* Oscillator Configuration register */
161 #define CCSR	0x0c	/* Core Clock Status register */
162 
163 static uint64_t pxa2xx_cm_read(void *opaque, hwaddr addr,
164                                unsigned size)
165 {
166     PXA2xxState *s = (PXA2xxState *) opaque;
167 
168     switch (addr) {
169     case CCCR:
170     case CKEN:
171     case OSCC:
172         return s->cm_regs[addr >> 2];
173 
174     case CCSR:
175         return s->cm_regs[CCCR >> 2] | (3 << 28);
176 
177     default:
178         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
179         break;
180     }
181     return 0;
182 }
183 
184 static void pxa2xx_cm_write(void *opaque, hwaddr addr,
185                             uint64_t value, unsigned size)
186 {
187     PXA2xxState *s = (PXA2xxState *) opaque;
188 
189     switch (addr) {
190     case CCCR:
191     case CKEN:
192         s->cm_regs[addr >> 2] = value;
193         break;
194 
195     case OSCC:
196         s->cm_regs[addr >> 2] &= ~0x6c;
197         s->cm_regs[addr >> 2] |= value & 0x6e;
198         if ((value >> 1) & 1)			/* OON */
199             s->cm_regs[addr >> 2] |= 1 << 0;	/* Oscillator is now stable */
200         break;
201 
202     default:
203         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
204         break;
205     }
206 }
207 
208 static const MemoryRegionOps pxa2xx_cm_ops = {
209     .read = pxa2xx_cm_read,
210     .write = pxa2xx_cm_write,
211     .endianness = DEVICE_NATIVE_ENDIAN,
212 };
213 
214 static const VMStateDescription vmstate_pxa2xx_cm = {
215     .name = "pxa2xx_cm",
216     .version_id = 0,
217     .minimum_version_id = 0,
218     .minimum_version_id_old = 0,
219     .fields      = (VMStateField[]) {
220         VMSTATE_UINT32_ARRAY(cm_regs, PXA2xxState, 4),
221         VMSTATE_UINT32(clkcfg, PXA2xxState),
222         VMSTATE_UINT32(pmnc, PXA2xxState),
223         VMSTATE_END_OF_LIST()
224     }
225 };
226 
227 static int pxa2xx_clkcfg_read(CPUARMState *env, const ARMCPRegInfo *ri,
228                               uint64_t *value)
229 {
230     PXA2xxState *s = (PXA2xxState *)ri->opaque;
231     *value = s->clkcfg;
232     return 0;
233 }
234 
235 static int pxa2xx_clkcfg_write(CPUARMState *env, const ARMCPRegInfo *ri,
236                                uint64_t value)
237 {
238     PXA2xxState *s = (PXA2xxState *)ri->opaque;
239     s->clkcfg = value & 0xf;
240     if (value & 2) {
241         printf("%s: CPU frequency change attempt\n", __func__);
242     }
243     return 0;
244 }
245 
246 static int pxa2xx_pwrmode_write(CPUARMState *env, const ARMCPRegInfo *ri,
247                                 uint64_t value)
248 {
249     PXA2xxState *s = (PXA2xxState *)ri->opaque;
250     static const char *pwrmode[8] = {
251         "Normal", "Idle", "Deep-idle", "Standby",
252         "Sleep", "reserved (!)", "reserved (!)", "Deep-sleep",
253     };
254 
255     if (value & 8) {
256         printf("%s: CPU voltage change attempt\n", __func__);
257     }
258     switch (value & 7) {
259     case 0:
260         /* Do nothing */
261         break;
262 
263     case 1:
264         /* Idle */
265         if (!(s->cm_regs[CCCR >> 2] & (1 << 31))) { /* CPDIS */
266             cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
267             break;
268         }
269         /* Fall through.  */
270 
271     case 2:
272         /* Deep-Idle */
273         cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
274         s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
275         goto message;
276 
277     case 3:
278         s->cpu->env.uncached_cpsr =
279             ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
280         s->cpu->env.cp15.c1_sys = 0;
281         s->cpu->env.cp15.c1_coproc = 0;
282         s->cpu->env.cp15.c2_base0 = 0;
283         s->cpu->env.cp15.c3 = 0;
284         s->pm_regs[PSSR >> 2] |= 0x8; /* Set STS */
285         s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
286 
287         /*
288          * The scratch-pad register is almost universally used
289          * for storing the return address on suspend.  For the
290          * lack of a resuming bootloader, perform a jump
291          * directly to that address.
292          */
293         memset(s->cpu->env.regs, 0, 4 * 15);
294         s->cpu->env.regs[15] = s->pm_regs[PSPR >> 2];
295 
296 #if 0
297         buffer = 0xe59ff000; /* ldr     pc, [pc, #0] */
298         cpu_physical_memory_write(0, &buffer, 4);
299         buffer = s->pm_regs[PSPR >> 2];
300         cpu_physical_memory_write(8, &buffer, 4);
301 #endif
302 
303         /* Suspend */
304         cpu_interrupt(CPU(arm_env_get_cpu(cpu_single_env)),
305                       CPU_INTERRUPT_HALT);
306 
307         goto message;
308 
309     default:
310     message:
311         printf("%s: machine entered %s mode\n", __func__,
312                pwrmode[value & 7]);
313     }
314 
315     return 0;
316 }
317 
318 static int pxa2xx_cppmnc_read(CPUARMState *env, const ARMCPRegInfo *ri,
319                               uint64_t *value)
320 {
321     PXA2xxState *s = (PXA2xxState *)ri->opaque;
322     *value = s->pmnc;
323     return 0;
324 }
325 
326 static int pxa2xx_cppmnc_write(CPUARMState *env, const ARMCPRegInfo *ri,
327                                uint64_t value)
328 {
329     PXA2xxState *s = (PXA2xxState *)ri->opaque;
330     s->pmnc = value;
331     return 0;
332 }
333 
334 static int pxa2xx_cpccnt_read(CPUARMState *env, const ARMCPRegInfo *ri,
335                               uint64_t *value)
336 {
337     PXA2xxState *s = (PXA2xxState *)ri->opaque;
338     if (s->pmnc & 1) {
339         *value = qemu_get_clock_ns(vm_clock);
340     } else {
341         *value = 0;
342     }
343     return 0;
344 }
345 
346 static const ARMCPRegInfo pxa_cp_reginfo[] = {
347     /* cp14 crm==1: perf registers */
348     { .name = "CPPMNC", .cp = 14, .crn = 0, .crm = 1, .opc1 = 0, .opc2 = 0,
349       .access = PL1_RW,
350       .readfn = pxa2xx_cppmnc_read, .writefn = pxa2xx_cppmnc_write },
351     { .name = "CPCCNT", .cp = 14, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
352       .access = PL1_RW,
353       .readfn = pxa2xx_cpccnt_read, .writefn = arm_cp_write_ignore },
354     { .name = "CPINTEN", .cp = 14, .crn = 4, .crm = 1, .opc1 = 0, .opc2 = 0,
355       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
356     { .name = "CPFLAG", .cp = 14, .crn = 5, .crm = 1, .opc1 = 0, .opc2 = 0,
357       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
358     { .name = "CPEVTSEL", .cp = 14, .crn = 8, .crm = 1, .opc1 = 0, .opc2 = 0,
359       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
360     /* cp14 crm==2: performance count registers */
361     { .name = "CPPMN0", .cp = 14, .crn = 0, .crm = 2, .opc1 = 0, .opc2 = 0,
362       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
363     { .name = "CPPMN1", .cp = 14, .crn = 1, .crm = 2, .opc1 = 0, .opc2 = 0,
364       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
365     { .name = "CPPMN2", .cp = 14, .crn = 2, .crm = 2, .opc1 = 0, .opc2 = 0,
366       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
367     { .name = "CPPMN3", .cp = 14, .crn = 2, .crm = 3, .opc1 = 0, .opc2 = 0,
368       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
369     /* cp14 crn==6: CLKCFG */
370     { .name = "CLKCFG", .cp = 14, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
371       .access = PL1_RW,
372       .readfn = pxa2xx_clkcfg_read, .writefn = pxa2xx_clkcfg_write },
373     /* cp14 crn==7: PWRMODE */
374     { .name = "PWRMODE", .cp = 14, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 0,
375       .access = PL1_RW,
376       .readfn = arm_cp_read_zero, .writefn = pxa2xx_pwrmode_write },
377     REGINFO_SENTINEL
378 };
379 
380 static void pxa2xx_setup_cp14(PXA2xxState *s)
381 {
382     define_arm_cp_regs_with_opaque(s->cpu, pxa_cp_reginfo, s);
383 }
384 
385 #define MDCNFG		0x00	/* SDRAM Configuration register */
386 #define MDREFR		0x04	/* SDRAM Refresh Control register */
387 #define MSC0		0x08	/* Static Memory Control register 0 */
388 #define MSC1		0x0c	/* Static Memory Control register 1 */
389 #define MSC2		0x10	/* Static Memory Control register 2 */
390 #define MECR		0x14	/* Expansion Memory Bus Config register */
391 #define SXCNFG		0x1c	/* Synchronous Static Memory Config register */
392 #define MCMEM0		0x28	/* PC Card Memory Socket 0 Timing register */
393 #define MCMEM1		0x2c	/* PC Card Memory Socket 1 Timing register */
394 #define MCATT0		0x30	/* PC Card Attribute Socket 0 register */
395 #define MCATT1		0x34	/* PC Card Attribute Socket 1 register */
396 #define MCIO0		0x38	/* PC Card I/O Socket 0 Timing register */
397 #define MCIO1		0x3c	/* PC Card I/O Socket 1 Timing register */
398 #define MDMRS		0x40	/* SDRAM Mode Register Set Config register */
399 #define BOOT_DEF	0x44	/* Boot-time Default Configuration register */
400 #define ARB_CNTL	0x48	/* Arbiter Control register */
401 #define BSCNTR0		0x4c	/* Memory Buffer Strength Control register 0 */
402 #define BSCNTR1		0x50	/* Memory Buffer Strength Control register 1 */
403 #define LCDBSCNTR	0x54	/* LCD Buffer Strength Control register */
404 #define MDMRSLP		0x58	/* Low Power SDRAM Mode Set Config register */
405 #define BSCNTR2		0x5c	/* Memory Buffer Strength Control register 2 */
406 #define BSCNTR3		0x60	/* Memory Buffer Strength Control register 3 */
407 #define SA1110		0x64	/* SA-1110 Memory Compatibility register */
408 
409 static uint64_t pxa2xx_mm_read(void *opaque, hwaddr addr,
410                                unsigned size)
411 {
412     PXA2xxState *s = (PXA2xxState *) opaque;
413 
414     switch (addr) {
415     case MDCNFG ... SA1110:
416         if ((addr & 3) == 0)
417             return s->mm_regs[addr >> 2];
418 
419     default:
420         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
421         break;
422     }
423     return 0;
424 }
425 
426 static void pxa2xx_mm_write(void *opaque, hwaddr addr,
427                             uint64_t value, unsigned size)
428 {
429     PXA2xxState *s = (PXA2xxState *) opaque;
430 
431     switch (addr) {
432     case MDCNFG ... SA1110:
433         if ((addr & 3) == 0) {
434             s->mm_regs[addr >> 2] = value;
435             break;
436         }
437 
438     default:
439         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
440         break;
441     }
442 }
443 
444 static const MemoryRegionOps pxa2xx_mm_ops = {
445     .read = pxa2xx_mm_read,
446     .write = pxa2xx_mm_write,
447     .endianness = DEVICE_NATIVE_ENDIAN,
448 };
449 
450 static const VMStateDescription vmstate_pxa2xx_mm = {
451     .name = "pxa2xx_mm",
452     .version_id = 0,
453     .minimum_version_id = 0,
454     .minimum_version_id_old = 0,
455     .fields      = (VMStateField[]) {
456         VMSTATE_UINT32_ARRAY(mm_regs, PXA2xxState, 0x1a),
457         VMSTATE_END_OF_LIST()
458     }
459 };
460 
461 /* Synchronous Serial Ports */
462 typedef struct {
463     SysBusDevice busdev;
464     MemoryRegion iomem;
465     qemu_irq irq;
466     int enable;
467     SSIBus *bus;
468 
469     uint32_t sscr[2];
470     uint32_t sspsp;
471     uint32_t ssto;
472     uint32_t ssitr;
473     uint32_t sssr;
474     uint8_t sstsa;
475     uint8_t ssrsa;
476     uint8_t ssacd;
477 
478     uint32_t rx_fifo[16];
479     int rx_level;
480     int rx_start;
481 } PXA2xxSSPState;
482 
483 #define SSCR0	0x00	/* SSP Control register 0 */
484 #define SSCR1	0x04	/* SSP Control register 1 */
485 #define SSSR	0x08	/* SSP Status register */
486 #define SSITR	0x0c	/* SSP Interrupt Test register */
487 #define SSDR	0x10	/* SSP Data register */
488 #define SSTO	0x28	/* SSP Time-Out register */
489 #define SSPSP	0x2c	/* SSP Programmable Serial Protocol register */
490 #define SSTSA	0x30	/* SSP TX Time Slot Active register */
491 #define SSRSA	0x34	/* SSP RX Time Slot Active register */
492 #define SSTSS	0x38	/* SSP Time Slot Status register */
493 #define SSACD	0x3c	/* SSP Audio Clock Divider register */
494 
495 /* Bitfields for above registers */
496 #define SSCR0_SPI(x)	(((x) & 0x30) == 0x00)
497 #define SSCR0_SSP(x)	(((x) & 0x30) == 0x10)
498 #define SSCR0_UWIRE(x)	(((x) & 0x30) == 0x20)
499 #define SSCR0_PSP(x)	(((x) & 0x30) == 0x30)
500 #define SSCR0_SSE	(1 << 7)
501 #define SSCR0_RIM	(1 << 22)
502 #define SSCR0_TIM	(1 << 23)
503 #define SSCR0_MOD	(1 << 31)
504 #define SSCR0_DSS(x)	(((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1)
505 #define SSCR1_RIE	(1 << 0)
506 #define SSCR1_TIE	(1 << 1)
507 #define SSCR1_LBM	(1 << 2)
508 #define SSCR1_MWDS	(1 << 5)
509 #define SSCR1_TFT(x)	((((x) >> 6) & 0xf) + 1)
510 #define SSCR1_RFT(x)	((((x) >> 10) & 0xf) + 1)
511 #define SSCR1_EFWR	(1 << 14)
512 #define SSCR1_PINTE	(1 << 18)
513 #define SSCR1_TINTE	(1 << 19)
514 #define SSCR1_RSRE	(1 << 20)
515 #define SSCR1_TSRE	(1 << 21)
516 #define SSCR1_EBCEI	(1 << 29)
517 #define SSITR_INT	(7 << 5)
518 #define SSSR_TNF	(1 << 2)
519 #define SSSR_RNE	(1 << 3)
520 #define SSSR_TFS	(1 << 5)
521 #define SSSR_RFS	(1 << 6)
522 #define SSSR_ROR	(1 << 7)
523 #define SSSR_PINT	(1 << 18)
524 #define SSSR_TINT	(1 << 19)
525 #define SSSR_EOC	(1 << 20)
526 #define SSSR_TUR	(1 << 21)
527 #define SSSR_BCE	(1 << 23)
528 #define SSSR_RW		0x00bc0080
529 
530 static void pxa2xx_ssp_int_update(PXA2xxSSPState *s)
531 {
532     int level = 0;
533 
534     level |= s->ssitr & SSITR_INT;
535     level |= (s->sssr & SSSR_BCE)  &&  (s->sscr[1] & SSCR1_EBCEI);
536     level |= (s->sssr & SSSR_TUR)  && !(s->sscr[0] & SSCR0_TIM);
537     level |= (s->sssr & SSSR_EOC)  &&  (s->sssr & (SSSR_TINT | SSSR_PINT));
538     level |= (s->sssr & SSSR_TINT) &&  (s->sscr[1] & SSCR1_TINTE);
539     level |= (s->sssr & SSSR_PINT) &&  (s->sscr[1] & SSCR1_PINTE);
540     level |= (s->sssr & SSSR_ROR)  && !(s->sscr[0] & SSCR0_RIM);
541     level |= (s->sssr & SSSR_RFS)  &&  (s->sscr[1] & SSCR1_RIE);
542     level |= (s->sssr & SSSR_TFS)  &&  (s->sscr[1] & SSCR1_TIE);
543     qemu_set_irq(s->irq, !!level);
544 }
545 
546 static void pxa2xx_ssp_fifo_update(PXA2xxSSPState *s)
547 {
548     s->sssr &= ~(0xf << 12);	/* Clear RFL */
549     s->sssr &= ~(0xf << 8);	/* Clear TFL */
550     s->sssr &= ~SSSR_TFS;
551     s->sssr &= ~SSSR_TNF;
552     if (s->enable) {
553         s->sssr |= ((s->rx_level - 1) & 0xf) << 12;
554         if (s->rx_level >= SSCR1_RFT(s->sscr[1]))
555             s->sssr |= SSSR_RFS;
556         else
557             s->sssr &= ~SSSR_RFS;
558         if (s->rx_level)
559             s->sssr |= SSSR_RNE;
560         else
561             s->sssr &= ~SSSR_RNE;
562         /* TX FIFO is never filled, so it is always in underrun
563            condition if SSP is enabled */
564         s->sssr |= SSSR_TFS;
565         s->sssr |= SSSR_TNF;
566     }
567 
568     pxa2xx_ssp_int_update(s);
569 }
570 
571 static uint64_t pxa2xx_ssp_read(void *opaque, hwaddr addr,
572                                 unsigned size)
573 {
574     PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
575     uint32_t retval;
576 
577     switch (addr) {
578     case SSCR0:
579         return s->sscr[0];
580     case SSCR1:
581         return s->sscr[1];
582     case SSPSP:
583         return s->sspsp;
584     case SSTO:
585         return s->ssto;
586     case SSITR:
587         return s->ssitr;
588     case SSSR:
589         return s->sssr | s->ssitr;
590     case SSDR:
591         if (!s->enable)
592             return 0xffffffff;
593         if (s->rx_level < 1) {
594             printf("%s: SSP Rx Underrun\n", __FUNCTION__);
595             return 0xffffffff;
596         }
597         s->rx_level --;
598         retval = s->rx_fifo[s->rx_start ++];
599         s->rx_start &= 0xf;
600         pxa2xx_ssp_fifo_update(s);
601         return retval;
602     case SSTSA:
603         return s->sstsa;
604     case SSRSA:
605         return s->ssrsa;
606     case SSTSS:
607         return 0;
608     case SSACD:
609         return s->ssacd;
610     default:
611         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
612         break;
613     }
614     return 0;
615 }
616 
617 static void pxa2xx_ssp_write(void *opaque, hwaddr addr,
618                              uint64_t value64, unsigned size)
619 {
620     PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
621     uint32_t value = value64;
622 
623     switch (addr) {
624     case SSCR0:
625         s->sscr[0] = value & 0xc7ffffff;
626         s->enable = value & SSCR0_SSE;
627         if (value & SSCR0_MOD)
628             printf("%s: Attempt to use network mode\n", __FUNCTION__);
629         if (s->enable && SSCR0_DSS(value) < 4)
630             printf("%s: Wrong data size: %i bits\n", __FUNCTION__,
631                             SSCR0_DSS(value));
632         if (!(value & SSCR0_SSE)) {
633             s->sssr = 0;
634             s->ssitr = 0;
635             s->rx_level = 0;
636         }
637         pxa2xx_ssp_fifo_update(s);
638         break;
639 
640     case SSCR1:
641         s->sscr[1] = value;
642         if (value & (SSCR1_LBM | SSCR1_EFWR))
643             printf("%s: Attempt to use SSP test mode\n", __FUNCTION__);
644         pxa2xx_ssp_fifo_update(s);
645         break;
646 
647     case SSPSP:
648         s->sspsp = value;
649         break;
650 
651     case SSTO:
652         s->ssto = value;
653         break;
654 
655     case SSITR:
656         s->ssitr = value & SSITR_INT;
657         pxa2xx_ssp_int_update(s);
658         break;
659 
660     case SSSR:
661         s->sssr &= ~(value & SSSR_RW);
662         pxa2xx_ssp_int_update(s);
663         break;
664 
665     case SSDR:
666         if (SSCR0_UWIRE(s->sscr[0])) {
667             if (s->sscr[1] & SSCR1_MWDS)
668                 value &= 0xffff;
669             else
670                 value &= 0xff;
671         } else
672             /* Note how 32bits overflow does no harm here */
673             value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
674 
675         /* Data goes from here to the Tx FIFO and is shifted out from
676          * there directly to the slave, no need to buffer it.
677          */
678         if (s->enable) {
679             uint32_t readval;
680             readval = ssi_transfer(s->bus, value);
681             if (s->rx_level < 0x10) {
682                 s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = readval;
683             } else {
684                 s->sssr |= SSSR_ROR;
685             }
686         }
687         pxa2xx_ssp_fifo_update(s);
688         break;
689 
690     case SSTSA:
691         s->sstsa = value;
692         break;
693 
694     case SSRSA:
695         s->ssrsa = value;
696         break;
697 
698     case SSACD:
699         s->ssacd = value;
700         break;
701 
702     default:
703         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
704         break;
705     }
706 }
707 
708 static const MemoryRegionOps pxa2xx_ssp_ops = {
709     .read = pxa2xx_ssp_read,
710     .write = pxa2xx_ssp_write,
711     .endianness = DEVICE_NATIVE_ENDIAN,
712 };
713 
714 static void pxa2xx_ssp_save(QEMUFile *f, void *opaque)
715 {
716     PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
717     int i;
718 
719     qemu_put_be32(f, s->enable);
720 
721     qemu_put_be32s(f, &s->sscr[0]);
722     qemu_put_be32s(f, &s->sscr[1]);
723     qemu_put_be32s(f, &s->sspsp);
724     qemu_put_be32s(f, &s->ssto);
725     qemu_put_be32s(f, &s->ssitr);
726     qemu_put_be32s(f, &s->sssr);
727     qemu_put_8s(f, &s->sstsa);
728     qemu_put_8s(f, &s->ssrsa);
729     qemu_put_8s(f, &s->ssacd);
730 
731     qemu_put_byte(f, s->rx_level);
732     for (i = 0; i < s->rx_level; i ++)
733         qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 0xf]);
734 }
735 
736 static int pxa2xx_ssp_load(QEMUFile *f, void *opaque, int version_id)
737 {
738     PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
739     int i;
740 
741     s->enable = qemu_get_be32(f);
742 
743     qemu_get_be32s(f, &s->sscr[0]);
744     qemu_get_be32s(f, &s->sscr[1]);
745     qemu_get_be32s(f, &s->sspsp);
746     qemu_get_be32s(f, &s->ssto);
747     qemu_get_be32s(f, &s->ssitr);
748     qemu_get_be32s(f, &s->sssr);
749     qemu_get_8s(f, &s->sstsa);
750     qemu_get_8s(f, &s->ssrsa);
751     qemu_get_8s(f, &s->ssacd);
752 
753     s->rx_level = qemu_get_byte(f);
754     s->rx_start = 0;
755     for (i = 0; i < s->rx_level; i ++)
756         s->rx_fifo[i] = qemu_get_byte(f);
757 
758     return 0;
759 }
760 
761 static int pxa2xx_ssp_init(SysBusDevice *dev)
762 {
763     PXA2xxSSPState *s = FROM_SYSBUS(PXA2xxSSPState, dev);
764 
765     sysbus_init_irq(dev, &s->irq);
766 
767     memory_region_init_io(&s->iomem, &pxa2xx_ssp_ops, s, "pxa2xx-ssp", 0x1000);
768     sysbus_init_mmio(dev, &s->iomem);
769     register_savevm(&dev->qdev, "pxa2xx_ssp", -1, 0,
770                     pxa2xx_ssp_save, pxa2xx_ssp_load, s);
771 
772     s->bus = ssi_create_bus(&dev->qdev, "ssi");
773     return 0;
774 }
775 
776 /* Real-Time Clock */
777 #define RCNR		0x00	/* RTC Counter register */
778 #define RTAR		0x04	/* RTC Alarm register */
779 #define RTSR		0x08	/* RTC Status register */
780 #define RTTR		0x0c	/* RTC Timer Trim register */
781 #define RDCR		0x10	/* RTC Day Counter register */
782 #define RYCR		0x14	/* RTC Year Counter register */
783 #define RDAR1		0x18	/* RTC Wristwatch Day Alarm register 1 */
784 #define RYAR1		0x1c	/* RTC Wristwatch Year Alarm register 1 */
785 #define RDAR2		0x20	/* RTC Wristwatch Day Alarm register 2 */
786 #define RYAR2		0x24	/* RTC Wristwatch Year Alarm register 2 */
787 #define SWCR		0x28	/* RTC Stopwatch Counter register */
788 #define SWAR1		0x2c	/* RTC Stopwatch Alarm register 1 */
789 #define SWAR2		0x30	/* RTC Stopwatch Alarm register 2 */
790 #define RTCPICR		0x34	/* RTC Periodic Interrupt Counter register */
791 #define PIAR		0x38	/* RTC Periodic Interrupt Alarm register */
792 
793 typedef struct {
794     SysBusDevice busdev;
795     MemoryRegion iomem;
796     uint32_t rttr;
797     uint32_t rtsr;
798     uint32_t rtar;
799     uint32_t rdar1;
800     uint32_t rdar2;
801     uint32_t ryar1;
802     uint32_t ryar2;
803     uint32_t swar1;
804     uint32_t swar2;
805     uint32_t piar;
806     uint32_t last_rcnr;
807     uint32_t last_rdcr;
808     uint32_t last_rycr;
809     uint32_t last_swcr;
810     uint32_t last_rtcpicr;
811     int64_t last_hz;
812     int64_t last_sw;
813     int64_t last_pi;
814     QEMUTimer *rtc_hz;
815     QEMUTimer *rtc_rdal1;
816     QEMUTimer *rtc_rdal2;
817     QEMUTimer *rtc_swal1;
818     QEMUTimer *rtc_swal2;
819     QEMUTimer *rtc_pi;
820     qemu_irq rtc_irq;
821 } PXA2xxRTCState;
822 
823 static inline void pxa2xx_rtc_int_update(PXA2xxRTCState *s)
824 {
825     qemu_set_irq(s->rtc_irq, !!(s->rtsr & 0x2553));
826 }
827 
828 static void pxa2xx_rtc_hzupdate(PXA2xxRTCState *s)
829 {
830     int64_t rt = qemu_get_clock_ms(rtc_clock);
831     s->last_rcnr += ((rt - s->last_hz) << 15) /
832             (1000 * ((s->rttr & 0xffff) + 1));
833     s->last_rdcr += ((rt - s->last_hz) << 15) /
834             (1000 * ((s->rttr & 0xffff) + 1));
835     s->last_hz = rt;
836 }
837 
838 static void pxa2xx_rtc_swupdate(PXA2xxRTCState *s)
839 {
840     int64_t rt = qemu_get_clock_ms(rtc_clock);
841     if (s->rtsr & (1 << 12))
842         s->last_swcr += (rt - s->last_sw) / 10;
843     s->last_sw = rt;
844 }
845 
846 static void pxa2xx_rtc_piupdate(PXA2xxRTCState *s)
847 {
848     int64_t rt = qemu_get_clock_ms(rtc_clock);
849     if (s->rtsr & (1 << 15))
850         s->last_swcr += rt - s->last_pi;
851     s->last_pi = rt;
852 }
853 
854 static inline void pxa2xx_rtc_alarm_update(PXA2xxRTCState *s,
855                 uint32_t rtsr)
856 {
857     if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0)))
858         qemu_mod_timer(s->rtc_hz, s->last_hz +
859                 (((s->rtar - s->last_rcnr) * 1000 *
860                   ((s->rttr & 0xffff) + 1)) >> 15));
861     else
862         qemu_del_timer(s->rtc_hz);
863 
864     if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4)))
865         qemu_mod_timer(s->rtc_rdal1, s->last_hz +
866                 (((s->rdar1 - s->last_rdcr) * 1000 *
867                   ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
868     else
869         qemu_del_timer(s->rtc_rdal1);
870 
871     if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6)))
872         qemu_mod_timer(s->rtc_rdal2, s->last_hz +
873                 (((s->rdar2 - s->last_rdcr) * 1000 *
874                   ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
875     else
876         qemu_del_timer(s->rtc_rdal2);
877 
878     if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8)))
879         qemu_mod_timer(s->rtc_swal1, s->last_sw +
880                         (s->swar1 - s->last_swcr) * 10); /* TODO: fixup */
881     else
882         qemu_del_timer(s->rtc_swal1);
883 
884     if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10)))
885         qemu_mod_timer(s->rtc_swal2, s->last_sw +
886                         (s->swar2 - s->last_swcr) * 10); /* TODO: fixup */
887     else
888         qemu_del_timer(s->rtc_swal2);
889 
890     if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13)))
891         qemu_mod_timer(s->rtc_pi, s->last_pi +
892                         (s->piar & 0xffff) - s->last_rtcpicr);
893     else
894         qemu_del_timer(s->rtc_pi);
895 }
896 
897 static inline void pxa2xx_rtc_hz_tick(void *opaque)
898 {
899     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
900     s->rtsr |= (1 << 0);
901     pxa2xx_rtc_alarm_update(s, s->rtsr);
902     pxa2xx_rtc_int_update(s);
903 }
904 
905 static inline void pxa2xx_rtc_rdal1_tick(void *opaque)
906 {
907     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
908     s->rtsr |= (1 << 4);
909     pxa2xx_rtc_alarm_update(s, s->rtsr);
910     pxa2xx_rtc_int_update(s);
911 }
912 
913 static inline void pxa2xx_rtc_rdal2_tick(void *opaque)
914 {
915     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
916     s->rtsr |= (1 << 6);
917     pxa2xx_rtc_alarm_update(s, s->rtsr);
918     pxa2xx_rtc_int_update(s);
919 }
920 
921 static inline void pxa2xx_rtc_swal1_tick(void *opaque)
922 {
923     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
924     s->rtsr |= (1 << 8);
925     pxa2xx_rtc_alarm_update(s, s->rtsr);
926     pxa2xx_rtc_int_update(s);
927 }
928 
929 static inline void pxa2xx_rtc_swal2_tick(void *opaque)
930 {
931     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
932     s->rtsr |= (1 << 10);
933     pxa2xx_rtc_alarm_update(s, s->rtsr);
934     pxa2xx_rtc_int_update(s);
935 }
936 
937 static inline void pxa2xx_rtc_pi_tick(void *opaque)
938 {
939     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
940     s->rtsr |= (1 << 13);
941     pxa2xx_rtc_piupdate(s);
942     s->last_rtcpicr = 0;
943     pxa2xx_rtc_alarm_update(s, s->rtsr);
944     pxa2xx_rtc_int_update(s);
945 }
946 
947 static uint64_t pxa2xx_rtc_read(void *opaque, hwaddr addr,
948                                 unsigned size)
949 {
950     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
951 
952     switch (addr) {
953     case RTTR:
954         return s->rttr;
955     case RTSR:
956         return s->rtsr;
957     case RTAR:
958         return s->rtar;
959     case RDAR1:
960         return s->rdar1;
961     case RDAR2:
962         return s->rdar2;
963     case RYAR1:
964         return s->ryar1;
965     case RYAR2:
966         return s->ryar2;
967     case SWAR1:
968         return s->swar1;
969     case SWAR2:
970         return s->swar2;
971     case PIAR:
972         return s->piar;
973     case RCNR:
974         return s->last_rcnr + ((qemu_get_clock_ms(rtc_clock) - s->last_hz) << 15) /
975                 (1000 * ((s->rttr & 0xffff) + 1));
976     case RDCR:
977         return s->last_rdcr + ((qemu_get_clock_ms(rtc_clock) - s->last_hz) << 15) /
978                 (1000 * ((s->rttr & 0xffff) + 1));
979     case RYCR:
980         return s->last_rycr;
981     case SWCR:
982         if (s->rtsr & (1 << 12))
983             return s->last_swcr + (qemu_get_clock_ms(rtc_clock) - s->last_sw) / 10;
984         else
985             return s->last_swcr;
986     default:
987         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
988         break;
989     }
990     return 0;
991 }
992 
993 static void pxa2xx_rtc_write(void *opaque, hwaddr addr,
994                              uint64_t value64, unsigned size)
995 {
996     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
997     uint32_t value = value64;
998 
999     switch (addr) {
1000     case RTTR:
1001         if (!(s->rttr & (1 << 31))) {
1002             pxa2xx_rtc_hzupdate(s);
1003             s->rttr = value;
1004             pxa2xx_rtc_alarm_update(s, s->rtsr);
1005         }
1006         break;
1007 
1008     case RTSR:
1009         if ((s->rtsr ^ value) & (1 << 15))
1010             pxa2xx_rtc_piupdate(s);
1011 
1012         if ((s->rtsr ^ value) & (1 << 12))
1013             pxa2xx_rtc_swupdate(s);
1014 
1015         if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac))
1016             pxa2xx_rtc_alarm_update(s, value);
1017 
1018         s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac));
1019         pxa2xx_rtc_int_update(s);
1020         break;
1021 
1022     case RTAR:
1023         s->rtar = value;
1024         pxa2xx_rtc_alarm_update(s, s->rtsr);
1025         break;
1026 
1027     case RDAR1:
1028         s->rdar1 = value;
1029         pxa2xx_rtc_alarm_update(s, s->rtsr);
1030         break;
1031 
1032     case RDAR2:
1033         s->rdar2 = value;
1034         pxa2xx_rtc_alarm_update(s, s->rtsr);
1035         break;
1036 
1037     case RYAR1:
1038         s->ryar1 = value;
1039         pxa2xx_rtc_alarm_update(s, s->rtsr);
1040         break;
1041 
1042     case RYAR2:
1043         s->ryar2 = value;
1044         pxa2xx_rtc_alarm_update(s, s->rtsr);
1045         break;
1046 
1047     case SWAR1:
1048         pxa2xx_rtc_swupdate(s);
1049         s->swar1 = value;
1050         s->last_swcr = 0;
1051         pxa2xx_rtc_alarm_update(s, s->rtsr);
1052         break;
1053 
1054     case SWAR2:
1055         s->swar2 = value;
1056         pxa2xx_rtc_alarm_update(s, s->rtsr);
1057         break;
1058 
1059     case PIAR:
1060         s->piar = value;
1061         pxa2xx_rtc_alarm_update(s, s->rtsr);
1062         break;
1063 
1064     case RCNR:
1065         pxa2xx_rtc_hzupdate(s);
1066         s->last_rcnr = value;
1067         pxa2xx_rtc_alarm_update(s, s->rtsr);
1068         break;
1069 
1070     case RDCR:
1071         pxa2xx_rtc_hzupdate(s);
1072         s->last_rdcr = value;
1073         pxa2xx_rtc_alarm_update(s, s->rtsr);
1074         break;
1075 
1076     case RYCR:
1077         s->last_rycr = value;
1078         break;
1079 
1080     case SWCR:
1081         pxa2xx_rtc_swupdate(s);
1082         s->last_swcr = value;
1083         pxa2xx_rtc_alarm_update(s, s->rtsr);
1084         break;
1085 
1086     case RTCPICR:
1087         pxa2xx_rtc_piupdate(s);
1088         s->last_rtcpicr = value & 0xffff;
1089         pxa2xx_rtc_alarm_update(s, s->rtsr);
1090         break;
1091 
1092     default:
1093         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1094     }
1095 }
1096 
1097 static const MemoryRegionOps pxa2xx_rtc_ops = {
1098     .read = pxa2xx_rtc_read,
1099     .write = pxa2xx_rtc_write,
1100     .endianness = DEVICE_NATIVE_ENDIAN,
1101 };
1102 
1103 static int pxa2xx_rtc_init(SysBusDevice *dev)
1104 {
1105     PXA2xxRTCState *s = FROM_SYSBUS(PXA2xxRTCState, dev);
1106     struct tm tm;
1107     int wom;
1108 
1109     s->rttr = 0x7fff;
1110     s->rtsr = 0;
1111 
1112     qemu_get_timedate(&tm, 0);
1113     wom = ((tm.tm_mday - 1) / 7) + 1;
1114 
1115     s->last_rcnr = (uint32_t) mktimegm(&tm);
1116     s->last_rdcr = (wom << 20) | ((tm.tm_wday + 1) << 17) |
1117             (tm.tm_hour << 12) | (tm.tm_min << 6) | tm.tm_sec;
1118     s->last_rycr = ((tm.tm_year + 1900) << 9) |
1119             ((tm.tm_mon + 1) << 5) | tm.tm_mday;
1120     s->last_swcr = (tm.tm_hour << 19) |
1121             (tm.tm_min << 13) | (tm.tm_sec << 7);
1122     s->last_rtcpicr = 0;
1123     s->last_hz = s->last_sw = s->last_pi = qemu_get_clock_ms(rtc_clock);
1124 
1125     s->rtc_hz    = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_hz_tick,    s);
1126     s->rtc_rdal1 = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_rdal1_tick, s);
1127     s->rtc_rdal2 = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_rdal2_tick, s);
1128     s->rtc_swal1 = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_swal1_tick, s);
1129     s->rtc_swal2 = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_swal2_tick, s);
1130     s->rtc_pi    = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_pi_tick,    s);
1131 
1132     sysbus_init_irq(dev, &s->rtc_irq);
1133 
1134     memory_region_init_io(&s->iomem, &pxa2xx_rtc_ops, s, "pxa2xx-rtc", 0x10000);
1135     sysbus_init_mmio(dev, &s->iomem);
1136 
1137     return 0;
1138 }
1139 
1140 static void pxa2xx_rtc_pre_save(void *opaque)
1141 {
1142     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1143 
1144     pxa2xx_rtc_hzupdate(s);
1145     pxa2xx_rtc_piupdate(s);
1146     pxa2xx_rtc_swupdate(s);
1147 }
1148 
1149 static int pxa2xx_rtc_post_load(void *opaque, int version_id)
1150 {
1151     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1152 
1153     pxa2xx_rtc_alarm_update(s, s->rtsr);
1154 
1155     return 0;
1156 }
1157 
1158 static const VMStateDescription vmstate_pxa2xx_rtc_regs = {
1159     .name = "pxa2xx_rtc",
1160     .version_id = 0,
1161     .minimum_version_id = 0,
1162     .minimum_version_id_old = 0,
1163     .pre_save = pxa2xx_rtc_pre_save,
1164     .post_load = pxa2xx_rtc_post_load,
1165     .fields = (VMStateField[]) {
1166         VMSTATE_UINT32(rttr, PXA2xxRTCState),
1167         VMSTATE_UINT32(rtsr, PXA2xxRTCState),
1168         VMSTATE_UINT32(rtar, PXA2xxRTCState),
1169         VMSTATE_UINT32(rdar1, PXA2xxRTCState),
1170         VMSTATE_UINT32(rdar2, PXA2xxRTCState),
1171         VMSTATE_UINT32(ryar1, PXA2xxRTCState),
1172         VMSTATE_UINT32(ryar2, PXA2xxRTCState),
1173         VMSTATE_UINT32(swar1, PXA2xxRTCState),
1174         VMSTATE_UINT32(swar2, PXA2xxRTCState),
1175         VMSTATE_UINT32(piar, PXA2xxRTCState),
1176         VMSTATE_UINT32(last_rcnr, PXA2xxRTCState),
1177         VMSTATE_UINT32(last_rdcr, PXA2xxRTCState),
1178         VMSTATE_UINT32(last_rycr, PXA2xxRTCState),
1179         VMSTATE_UINT32(last_swcr, PXA2xxRTCState),
1180         VMSTATE_UINT32(last_rtcpicr, PXA2xxRTCState),
1181         VMSTATE_INT64(last_hz, PXA2xxRTCState),
1182         VMSTATE_INT64(last_sw, PXA2xxRTCState),
1183         VMSTATE_INT64(last_pi, PXA2xxRTCState),
1184         VMSTATE_END_OF_LIST(),
1185     },
1186 };
1187 
1188 static void pxa2xx_rtc_sysbus_class_init(ObjectClass *klass, void *data)
1189 {
1190     DeviceClass *dc = DEVICE_CLASS(klass);
1191     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1192 
1193     k->init = pxa2xx_rtc_init;
1194     dc->desc = "PXA2xx RTC Controller";
1195     dc->vmsd = &vmstate_pxa2xx_rtc_regs;
1196 }
1197 
1198 static const TypeInfo pxa2xx_rtc_sysbus_info = {
1199     .name          = "pxa2xx_rtc",
1200     .parent        = TYPE_SYS_BUS_DEVICE,
1201     .instance_size = sizeof(PXA2xxRTCState),
1202     .class_init    = pxa2xx_rtc_sysbus_class_init,
1203 };
1204 
1205 /* I2C Interface */
1206 typedef struct {
1207     I2CSlave i2c;
1208     PXA2xxI2CState *host;
1209 } PXA2xxI2CSlaveState;
1210 
1211 struct PXA2xxI2CState {
1212     SysBusDevice busdev;
1213     MemoryRegion iomem;
1214     PXA2xxI2CSlaveState *slave;
1215     i2c_bus *bus;
1216     qemu_irq irq;
1217     uint32_t offset;
1218     uint32_t region_size;
1219 
1220     uint16_t control;
1221     uint16_t status;
1222     uint8_t ibmr;
1223     uint8_t data;
1224 };
1225 
1226 #define IBMR	0x80	/* I2C Bus Monitor register */
1227 #define IDBR	0x88	/* I2C Data Buffer register */
1228 #define ICR	0x90	/* I2C Control register */
1229 #define ISR	0x98	/* I2C Status register */
1230 #define ISAR	0xa0	/* I2C Slave Address register */
1231 
1232 static void pxa2xx_i2c_update(PXA2xxI2CState *s)
1233 {
1234     uint16_t level = 0;
1235     level |= s->status & s->control & (1 << 10);		/* BED */
1236     level |= (s->status & (1 << 7)) && (s->control & (1 << 9));	/* IRF */
1237     level |= (s->status & (1 << 6)) && (s->control & (1 << 8));	/* ITE */
1238     level |= s->status & (1 << 9);				/* SAD */
1239     qemu_set_irq(s->irq, !!level);
1240 }
1241 
1242 /* These are only stubs now.  */
1243 static void pxa2xx_i2c_event(I2CSlave *i2c, enum i2c_event event)
1244 {
1245     PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1246     PXA2xxI2CState *s = slave->host;
1247 
1248     switch (event) {
1249     case I2C_START_SEND:
1250         s->status |= (1 << 9);				/* set SAD */
1251         s->status &= ~(1 << 0);				/* clear RWM */
1252         break;
1253     case I2C_START_RECV:
1254         s->status |= (1 << 9);				/* set SAD */
1255         s->status |= 1 << 0;				/* set RWM */
1256         break;
1257     case I2C_FINISH:
1258         s->status |= (1 << 4);				/* set SSD */
1259         break;
1260     case I2C_NACK:
1261         s->status |= 1 << 1;				/* set ACKNAK */
1262         break;
1263     }
1264     pxa2xx_i2c_update(s);
1265 }
1266 
1267 static int pxa2xx_i2c_rx(I2CSlave *i2c)
1268 {
1269     PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1270     PXA2xxI2CState *s = slave->host;
1271     if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1272         return 0;
1273 
1274     if (s->status & (1 << 0)) {			/* RWM */
1275         s->status |= 1 << 6;			/* set ITE */
1276     }
1277     pxa2xx_i2c_update(s);
1278 
1279     return s->data;
1280 }
1281 
1282 static int pxa2xx_i2c_tx(I2CSlave *i2c, uint8_t data)
1283 {
1284     PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1285     PXA2xxI2CState *s = slave->host;
1286     if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1287         return 1;
1288 
1289     if (!(s->status & (1 << 0))) {		/* RWM */
1290         s->status |= 1 << 7;			/* set IRF */
1291         s->data = data;
1292     }
1293     pxa2xx_i2c_update(s);
1294 
1295     return 1;
1296 }
1297 
1298 static uint64_t pxa2xx_i2c_read(void *opaque, hwaddr addr,
1299                                 unsigned size)
1300 {
1301     PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1302 
1303     addr -= s->offset;
1304     switch (addr) {
1305     case ICR:
1306         return s->control;
1307     case ISR:
1308         return s->status | (i2c_bus_busy(s->bus) << 2);
1309     case ISAR:
1310         return s->slave->i2c.address;
1311     case IDBR:
1312         return s->data;
1313     case IBMR:
1314         if (s->status & (1 << 2))
1315             s->ibmr ^= 3;	/* Fake SCL and SDA pin changes */
1316         else
1317             s->ibmr = 0;
1318         return s->ibmr;
1319     default:
1320         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1321         break;
1322     }
1323     return 0;
1324 }
1325 
1326 static void pxa2xx_i2c_write(void *opaque, hwaddr addr,
1327                              uint64_t value64, unsigned size)
1328 {
1329     PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1330     uint32_t value = value64;
1331     int ack;
1332 
1333     addr -= s->offset;
1334     switch (addr) {
1335     case ICR:
1336         s->control = value & 0xfff7;
1337         if ((value & (1 << 3)) && (value & (1 << 6))) {	/* TB and IUE */
1338             /* TODO: slave mode */
1339             if (value & (1 << 0)) {			/* START condition */
1340                 if (s->data & 1)
1341                     s->status |= 1 << 0;		/* set RWM */
1342                 else
1343                     s->status &= ~(1 << 0);		/* clear RWM */
1344                 ack = !i2c_start_transfer(s->bus, s->data >> 1, s->data & 1);
1345             } else {
1346                 if (s->status & (1 << 0)) {		/* RWM */
1347                     s->data = i2c_recv(s->bus);
1348                     if (value & (1 << 2))		/* ACKNAK */
1349                         i2c_nack(s->bus);
1350                     ack = 1;
1351                 } else
1352                     ack = !i2c_send(s->bus, s->data);
1353             }
1354 
1355             if (value & (1 << 1))			/* STOP condition */
1356                 i2c_end_transfer(s->bus);
1357 
1358             if (ack) {
1359                 if (value & (1 << 0))			/* START condition */
1360                     s->status |= 1 << 6;		/* set ITE */
1361                 else
1362                     if (s->status & (1 << 0))		/* RWM */
1363                         s->status |= 1 << 7;		/* set IRF */
1364                     else
1365                         s->status |= 1 << 6;		/* set ITE */
1366                 s->status &= ~(1 << 1);			/* clear ACKNAK */
1367             } else {
1368                 s->status |= 1 << 6;			/* set ITE */
1369                 s->status |= 1 << 10;			/* set BED */
1370                 s->status |= 1 << 1;			/* set ACKNAK */
1371             }
1372         }
1373         if (!(value & (1 << 3)) && (value & (1 << 6)))	/* !TB and IUE */
1374             if (value & (1 << 4))			/* MA */
1375                 i2c_end_transfer(s->bus);
1376         pxa2xx_i2c_update(s);
1377         break;
1378 
1379     case ISR:
1380         s->status &= ~(value & 0x07f0);
1381         pxa2xx_i2c_update(s);
1382         break;
1383 
1384     case ISAR:
1385         i2c_set_slave_address(&s->slave->i2c, value & 0x7f);
1386         break;
1387 
1388     case IDBR:
1389         s->data = value & 0xff;
1390         break;
1391 
1392     default:
1393         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1394     }
1395 }
1396 
1397 static const MemoryRegionOps pxa2xx_i2c_ops = {
1398     .read = pxa2xx_i2c_read,
1399     .write = pxa2xx_i2c_write,
1400     .endianness = DEVICE_NATIVE_ENDIAN,
1401 };
1402 
1403 static const VMStateDescription vmstate_pxa2xx_i2c_slave = {
1404     .name = "pxa2xx_i2c_slave",
1405     .version_id = 1,
1406     .minimum_version_id = 1,
1407     .minimum_version_id_old = 1,
1408     .fields      = (VMStateField []) {
1409         VMSTATE_I2C_SLAVE(i2c, PXA2xxI2CSlaveState),
1410         VMSTATE_END_OF_LIST()
1411     }
1412 };
1413 
1414 static const VMStateDescription vmstate_pxa2xx_i2c = {
1415     .name = "pxa2xx_i2c",
1416     .version_id = 1,
1417     .minimum_version_id = 1,
1418     .minimum_version_id_old = 1,
1419     .fields      = (VMStateField []) {
1420         VMSTATE_UINT16(control, PXA2xxI2CState),
1421         VMSTATE_UINT16(status, PXA2xxI2CState),
1422         VMSTATE_UINT8(ibmr, PXA2xxI2CState),
1423         VMSTATE_UINT8(data, PXA2xxI2CState),
1424         VMSTATE_STRUCT_POINTER(slave, PXA2xxI2CState,
1425                                vmstate_pxa2xx_i2c_slave, PXA2xxI2CSlaveState *),
1426         VMSTATE_END_OF_LIST()
1427     }
1428 };
1429 
1430 static int pxa2xx_i2c_slave_init(I2CSlave *i2c)
1431 {
1432     /* Nothing to do.  */
1433     return 0;
1434 }
1435 
1436 static void pxa2xx_i2c_slave_class_init(ObjectClass *klass, void *data)
1437 {
1438     I2CSlaveClass *k = I2C_SLAVE_CLASS(klass);
1439 
1440     k->init = pxa2xx_i2c_slave_init;
1441     k->event = pxa2xx_i2c_event;
1442     k->recv = pxa2xx_i2c_rx;
1443     k->send = pxa2xx_i2c_tx;
1444 }
1445 
1446 static const TypeInfo pxa2xx_i2c_slave_info = {
1447     .name          = "pxa2xx-i2c-slave",
1448     .parent        = TYPE_I2C_SLAVE,
1449     .instance_size = sizeof(PXA2xxI2CSlaveState),
1450     .class_init    = pxa2xx_i2c_slave_class_init,
1451 };
1452 
1453 PXA2xxI2CState *pxa2xx_i2c_init(hwaddr base,
1454                 qemu_irq irq, uint32_t region_size)
1455 {
1456     DeviceState *dev;
1457     SysBusDevice *i2c_dev;
1458     PXA2xxI2CState *s;
1459 
1460     i2c_dev = SYS_BUS_DEVICE(qdev_create(NULL, "pxa2xx_i2c"));
1461     qdev_prop_set_uint32(&i2c_dev->qdev, "size", region_size + 1);
1462     qdev_prop_set_uint32(&i2c_dev->qdev, "offset", base & region_size);
1463 
1464     qdev_init_nofail(&i2c_dev->qdev);
1465 
1466     sysbus_mmio_map(i2c_dev, 0, base & ~region_size);
1467     sysbus_connect_irq(i2c_dev, 0, irq);
1468 
1469     s = FROM_SYSBUS(PXA2xxI2CState, i2c_dev);
1470     /* FIXME: Should the slave device really be on a separate bus?  */
1471     dev = i2c_create_slave(i2c_init_bus(NULL, "dummy"), "pxa2xx-i2c-slave", 0);
1472     s->slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, I2C_SLAVE(dev));
1473     s->slave->host = s;
1474 
1475     return s;
1476 }
1477 
1478 static int pxa2xx_i2c_initfn(SysBusDevice *dev)
1479 {
1480     PXA2xxI2CState *s = FROM_SYSBUS(PXA2xxI2CState, dev);
1481 
1482     s->bus = i2c_init_bus(&dev->qdev, "i2c");
1483 
1484     memory_region_init_io(&s->iomem, &pxa2xx_i2c_ops, s,
1485                           "pxa2xx-i2x", s->region_size);
1486     sysbus_init_mmio(dev, &s->iomem);
1487     sysbus_init_irq(dev, &s->irq);
1488 
1489     return 0;
1490 }
1491 
1492 i2c_bus *pxa2xx_i2c_bus(PXA2xxI2CState *s)
1493 {
1494     return s->bus;
1495 }
1496 
1497 static Property pxa2xx_i2c_properties[] = {
1498     DEFINE_PROP_UINT32("size", PXA2xxI2CState, region_size, 0x10000),
1499     DEFINE_PROP_UINT32("offset", PXA2xxI2CState, offset, 0),
1500     DEFINE_PROP_END_OF_LIST(),
1501 };
1502 
1503 static void pxa2xx_i2c_class_init(ObjectClass *klass, void *data)
1504 {
1505     DeviceClass *dc = DEVICE_CLASS(klass);
1506     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1507 
1508     k->init = pxa2xx_i2c_initfn;
1509     dc->desc = "PXA2xx I2C Bus Controller";
1510     dc->vmsd = &vmstate_pxa2xx_i2c;
1511     dc->props = pxa2xx_i2c_properties;
1512 }
1513 
1514 static const TypeInfo pxa2xx_i2c_info = {
1515     .name          = "pxa2xx_i2c",
1516     .parent        = TYPE_SYS_BUS_DEVICE,
1517     .instance_size = sizeof(PXA2xxI2CState),
1518     .class_init    = pxa2xx_i2c_class_init,
1519 };
1520 
1521 /* PXA Inter-IC Sound Controller */
1522 static void pxa2xx_i2s_reset(PXA2xxI2SState *i2s)
1523 {
1524     i2s->rx_len = 0;
1525     i2s->tx_len = 0;
1526     i2s->fifo_len = 0;
1527     i2s->clk = 0x1a;
1528     i2s->control[0] = 0x00;
1529     i2s->control[1] = 0x00;
1530     i2s->status = 0x00;
1531     i2s->mask = 0x00;
1532 }
1533 
1534 #define SACR_TFTH(val)	((val >> 8) & 0xf)
1535 #define SACR_RFTH(val)	((val >> 12) & 0xf)
1536 #define SACR_DREC(val)	(val & (1 << 3))
1537 #define SACR_DPRL(val)	(val & (1 << 4))
1538 
1539 static inline void pxa2xx_i2s_update(PXA2xxI2SState *i2s)
1540 {
1541     int rfs, tfs;
1542     rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len &&
1543             !SACR_DREC(i2s->control[1]);
1544     tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) &&
1545             i2s->enable && !SACR_DPRL(i2s->control[1]);
1546 
1547     qemu_set_irq(i2s->rx_dma, rfs);
1548     qemu_set_irq(i2s->tx_dma, tfs);
1549 
1550     i2s->status &= 0xe0;
1551     if (i2s->fifo_len < 16 || !i2s->enable)
1552         i2s->status |= 1 << 0;			/* TNF */
1553     if (i2s->rx_len)
1554         i2s->status |= 1 << 1;			/* RNE */
1555     if (i2s->enable)
1556         i2s->status |= 1 << 2;			/* BSY */
1557     if (tfs)
1558         i2s->status |= 1 << 3;			/* TFS */
1559     if (rfs)
1560         i2s->status |= 1 << 4;			/* RFS */
1561     if (!(i2s->tx_len && i2s->enable))
1562         i2s->status |= i2s->fifo_len << 8;	/* TFL */
1563     i2s->status |= MAX(i2s->rx_len, 0xf) << 12;	/* RFL */
1564 
1565     qemu_set_irq(i2s->irq, i2s->status & i2s->mask);
1566 }
1567 
1568 #define SACR0	0x00	/* Serial Audio Global Control register */
1569 #define SACR1	0x04	/* Serial Audio I2S/MSB-Justified Control register */
1570 #define SASR0	0x0c	/* Serial Audio Interface and FIFO Status register */
1571 #define SAIMR	0x14	/* Serial Audio Interrupt Mask register */
1572 #define SAICR	0x18	/* Serial Audio Interrupt Clear register */
1573 #define SADIV	0x60	/* Serial Audio Clock Divider register */
1574 #define SADR	0x80	/* Serial Audio Data register */
1575 
1576 static uint64_t pxa2xx_i2s_read(void *opaque, hwaddr addr,
1577                                 unsigned size)
1578 {
1579     PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1580 
1581     switch (addr) {
1582     case SACR0:
1583         return s->control[0];
1584     case SACR1:
1585         return s->control[1];
1586     case SASR0:
1587         return s->status;
1588     case SAIMR:
1589         return s->mask;
1590     case SAICR:
1591         return 0;
1592     case SADIV:
1593         return s->clk;
1594     case SADR:
1595         if (s->rx_len > 0) {
1596             s->rx_len --;
1597             pxa2xx_i2s_update(s);
1598             return s->codec_in(s->opaque);
1599         }
1600         return 0;
1601     default:
1602         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1603         break;
1604     }
1605     return 0;
1606 }
1607 
1608 static void pxa2xx_i2s_write(void *opaque, hwaddr addr,
1609                              uint64_t value, unsigned size)
1610 {
1611     PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1612     uint32_t *sample;
1613 
1614     switch (addr) {
1615     case SACR0:
1616         if (value & (1 << 3))				/* RST */
1617             pxa2xx_i2s_reset(s);
1618         s->control[0] = value & 0xff3d;
1619         if (!s->enable && (value & 1) && s->tx_len) {	/* ENB */
1620             for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++)
1621                 s->codec_out(s->opaque, *sample);
1622             s->status &= ~(1 << 7);			/* I2SOFF */
1623         }
1624         if (value & (1 << 4))				/* EFWR */
1625             printf("%s: Attempt to use special function\n", __FUNCTION__);
1626         s->enable = (value & 9) == 1;			/* ENB && !RST*/
1627         pxa2xx_i2s_update(s);
1628         break;
1629     case SACR1:
1630         s->control[1] = value & 0x0039;
1631         if (value & (1 << 5))				/* ENLBF */
1632             printf("%s: Attempt to use loopback function\n", __FUNCTION__);
1633         if (value & (1 << 4))				/* DPRL */
1634             s->fifo_len = 0;
1635         pxa2xx_i2s_update(s);
1636         break;
1637     case SAIMR:
1638         s->mask = value & 0x0078;
1639         pxa2xx_i2s_update(s);
1640         break;
1641     case SAICR:
1642         s->status &= ~(value & (3 << 5));
1643         pxa2xx_i2s_update(s);
1644         break;
1645     case SADIV:
1646         s->clk = value & 0x007f;
1647         break;
1648     case SADR:
1649         if (s->tx_len && s->enable) {
1650             s->tx_len --;
1651             pxa2xx_i2s_update(s);
1652             s->codec_out(s->opaque, value);
1653         } else if (s->fifo_len < 16) {
1654             s->fifo[s->fifo_len ++] = value;
1655             pxa2xx_i2s_update(s);
1656         }
1657         break;
1658     default:
1659         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1660     }
1661 }
1662 
1663 static const MemoryRegionOps pxa2xx_i2s_ops = {
1664     .read = pxa2xx_i2s_read,
1665     .write = pxa2xx_i2s_write,
1666     .endianness = DEVICE_NATIVE_ENDIAN,
1667 };
1668 
1669 static const VMStateDescription vmstate_pxa2xx_i2s = {
1670     .name = "pxa2xx_i2s",
1671     .version_id = 0,
1672     .minimum_version_id = 0,
1673     .minimum_version_id_old = 0,
1674     .fields      = (VMStateField[]) {
1675         VMSTATE_UINT32_ARRAY(control, PXA2xxI2SState, 2),
1676         VMSTATE_UINT32(status, PXA2xxI2SState),
1677         VMSTATE_UINT32(mask, PXA2xxI2SState),
1678         VMSTATE_UINT32(clk, PXA2xxI2SState),
1679         VMSTATE_INT32(enable, PXA2xxI2SState),
1680         VMSTATE_INT32(rx_len, PXA2xxI2SState),
1681         VMSTATE_INT32(tx_len, PXA2xxI2SState),
1682         VMSTATE_INT32(fifo_len, PXA2xxI2SState),
1683         VMSTATE_END_OF_LIST()
1684     }
1685 };
1686 
1687 static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx)
1688 {
1689     PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1690     uint32_t *sample;
1691 
1692     /* Signal FIFO errors */
1693     if (s->enable && s->tx_len)
1694         s->status |= 1 << 5;		/* TUR */
1695     if (s->enable && s->rx_len)
1696         s->status |= 1 << 6;		/* ROR */
1697 
1698     /* Should be tx - MIN(tx, s->fifo_len) but we don't really need to
1699      * handle the cases where it makes a difference.  */
1700     s->tx_len = tx - s->fifo_len;
1701     s->rx_len = rx;
1702     /* Note that is s->codec_out wasn't set, we wouldn't get called.  */
1703     if (s->enable)
1704         for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++)
1705             s->codec_out(s->opaque, *sample);
1706     pxa2xx_i2s_update(s);
1707 }
1708 
1709 static PXA2xxI2SState *pxa2xx_i2s_init(MemoryRegion *sysmem,
1710                 hwaddr base,
1711                 qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma)
1712 {
1713     PXA2xxI2SState *s = (PXA2xxI2SState *)
1714             g_malloc0(sizeof(PXA2xxI2SState));
1715 
1716     s->irq = irq;
1717     s->rx_dma = rx_dma;
1718     s->tx_dma = tx_dma;
1719     s->data_req = pxa2xx_i2s_data_req;
1720 
1721     pxa2xx_i2s_reset(s);
1722 
1723     memory_region_init_io(&s->iomem, &pxa2xx_i2s_ops, s,
1724                           "pxa2xx-i2s", 0x100000);
1725     memory_region_add_subregion(sysmem, base, &s->iomem);
1726 
1727     vmstate_register(NULL, base, &vmstate_pxa2xx_i2s, s);
1728 
1729     return s;
1730 }
1731 
1732 /* PXA Fast Infra-red Communications Port */
1733 struct PXA2xxFIrState {
1734     MemoryRegion iomem;
1735     qemu_irq irq;
1736     qemu_irq rx_dma;
1737     qemu_irq tx_dma;
1738     int enable;
1739     CharDriverState *chr;
1740 
1741     uint8_t control[3];
1742     uint8_t status[2];
1743 
1744     int rx_len;
1745     int rx_start;
1746     uint8_t rx_fifo[64];
1747 };
1748 
1749 static void pxa2xx_fir_reset(PXA2xxFIrState *s)
1750 {
1751     s->control[0] = 0x00;
1752     s->control[1] = 0x00;
1753     s->control[2] = 0x00;
1754     s->status[0] = 0x00;
1755     s->status[1] = 0x00;
1756     s->enable = 0;
1757 }
1758 
1759 static inline void pxa2xx_fir_update(PXA2xxFIrState *s)
1760 {
1761     static const int tresh[4] = { 8, 16, 32, 0 };
1762     int intr = 0;
1763     if ((s->control[0] & (1 << 4)) &&			/* RXE */
1764                     s->rx_len >= tresh[s->control[2] & 3])	/* TRIG */
1765         s->status[0] |= 1 << 4;				/* RFS */
1766     else
1767         s->status[0] &= ~(1 << 4);			/* RFS */
1768     if (s->control[0] & (1 << 3))			/* TXE */
1769         s->status[0] |= 1 << 3;				/* TFS */
1770     else
1771         s->status[0] &= ~(1 << 3);			/* TFS */
1772     if (s->rx_len)
1773         s->status[1] |= 1 << 2;				/* RNE */
1774     else
1775         s->status[1] &= ~(1 << 2);			/* RNE */
1776     if (s->control[0] & (1 << 4))			/* RXE */
1777         s->status[1] |= 1 << 0;				/* RSY */
1778     else
1779         s->status[1] &= ~(1 << 0);			/* RSY */
1780 
1781     intr |= (s->control[0] & (1 << 5)) &&		/* RIE */
1782             (s->status[0] & (1 << 4));			/* RFS */
1783     intr |= (s->control[0] & (1 << 6)) &&		/* TIE */
1784             (s->status[0] & (1 << 3));			/* TFS */
1785     intr |= (s->control[2] & (1 << 4)) &&		/* TRAIL */
1786             (s->status[0] & (1 << 6));			/* EOC */
1787     intr |= (s->control[0] & (1 << 2)) &&		/* TUS */
1788             (s->status[0] & (1 << 1));			/* TUR */
1789     intr |= s->status[0] & 0x25;			/* FRE, RAB, EIF */
1790 
1791     qemu_set_irq(s->rx_dma, (s->status[0] >> 4) & 1);
1792     qemu_set_irq(s->tx_dma, (s->status[0] >> 3) & 1);
1793 
1794     qemu_set_irq(s->irq, intr && s->enable);
1795 }
1796 
1797 #define ICCR0	0x00	/* FICP Control register 0 */
1798 #define ICCR1	0x04	/* FICP Control register 1 */
1799 #define ICCR2	0x08	/* FICP Control register 2 */
1800 #define ICDR	0x0c	/* FICP Data register */
1801 #define ICSR0	0x14	/* FICP Status register 0 */
1802 #define ICSR1	0x18	/* FICP Status register 1 */
1803 #define ICFOR	0x1c	/* FICP FIFO Occupancy Status register */
1804 
1805 static uint64_t pxa2xx_fir_read(void *opaque, hwaddr addr,
1806                                 unsigned size)
1807 {
1808     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1809     uint8_t ret;
1810 
1811     switch (addr) {
1812     case ICCR0:
1813         return s->control[0];
1814     case ICCR1:
1815         return s->control[1];
1816     case ICCR2:
1817         return s->control[2];
1818     case ICDR:
1819         s->status[0] &= ~0x01;
1820         s->status[1] &= ~0x72;
1821         if (s->rx_len) {
1822             s->rx_len --;
1823             ret = s->rx_fifo[s->rx_start ++];
1824             s->rx_start &= 63;
1825             pxa2xx_fir_update(s);
1826             return ret;
1827         }
1828         printf("%s: Rx FIFO underrun.\n", __FUNCTION__);
1829         break;
1830     case ICSR0:
1831         return s->status[0];
1832     case ICSR1:
1833         return s->status[1] | (1 << 3);			/* TNF */
1834     case ICFOR:
1835         return s->rx_len;
1836     default:
1837         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1838         break;
1839     }
1840     return 0;
1841 }
1842 
1843 static void pxa2xx_fir_write(void *opaque, hwaddr addr,
1844                              uint64_t value64, unsigned size)
1845 {
1846     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1847     uint32_t value = value64;
1848     uint8_t ch;
1849 
1850     switch (addr) {
1851     case ICCR0:
1852         s->control[0] = value;
1853         if (!(value & (1 << 4)))			/* RXE */
1854             s->rx_len = s->rx_start = 0;
1855         if (!(value & (1 << 3))) {                      /* TXE */
1856             /* Nop */
1857         }
1858         s->enable = value & 1;				/* ITR */
1859         if (!s->enable)
1860             s->status[0] = 0;
1861         pxa2xx_fir_update(s);
1862         break;
1863     case ICCR1:
1864         s->control[1] = value;
1865         break;
1866     case ICCR2:
1867         s->control[2] = value & 0x3f;
1868         pxa2xx_fir_update(s);
1869         break;
1870     case ICDR:
1871         if (s->control[2] & (1 << 2))			/* TXP */
1872             ch = value;
1873         else
1874             ch = ~value;
1875         if (s->chr && s->enable && (s->control[0] & (1 << 3)))	/* TXE */
1876             qemu_chr_fe_write(s->chr, &ch, 1);
1877         break;
1878     case ICSR0:
1879         s->status[0] &= ~(value & 0x66);
1880         pxa2xx_fir_update(s);
1881         break;
1882     case ICFOR:
1883         break;
1884     default:
1885         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1886     }
1887 }
1888 
1889 static const MemoryRegionOps pxa2xx_fir_ops = {
1890     .read = pxa2xx_fir_read,
1891     .write = pxa2xx_fir_write,
1892     .endianness = DEVICE_NATIVE_ENDIAN,
1893 };
1894 
1895 static int pxa2xx_fir_is_empty(void *opaque)
1896 {
1897     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1898     return (s->rx_len < 64);
1899 }
1900 
1901 static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size)
1902 {
1903     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1904     if (!(s->control[0] & (1 << 4)))			/* RXE */
1905         return;
1906 
1907     while (size --) {
1908         s->status[1] |= 1 << 4;				/* EOF */
1909         if (s->rx_len >= 64) {
1910             s->status[1] |= 1 << 6;			/* ROR */
1911             break;
1912         }
1913 
1914         if (s->control[2] & (1 << 3))			/* RXP */
1915             s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++);
1916         else
1917             s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++);
1918     }
1919 
1920     pxa2xx_fir_update(s);
1921 }
1922 
1923 static void pxa2xx_fir_event(void *opaque, int event)
1924 {
1925 }
1926 
1927 static void pxa2xx_fir_save(QEMUFile *f, void *opaque)
1928 {
1929     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1930     int i;
1931 
1932     qemu_put_be32(f, s->enable);
1933 
1934     qemu_put_8s(f, &s->control[0]);
1935     qemu_put_8s(f, &s->control[1]);
1936     qemu_put_8s(f, &s->control[2]);
1937     qemu_put_8s(f, &s->status[0]);
1938     qemu_put_8s(f, &s->status[1]);
1939 
1940     qemu_put_byte(f, s->rx_len);
1941     for (i = 0; i < s->rx_len; i ++)
1942         qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 63]);
1943 }
1944 
1945 static int pxa2xx_fir_load(QEMUFile *f, void *opaque, int version_id)
1946 {
1947     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1948     int i;
1949 
1950     s->enable = qemu_get_be32(f);
1951 
1952     qemu_get_8s(f, &s->control[0]);
1953     qemu_get_8s(f, &s->control[1]);
1954     qemu_get_8s(f, &s->control[2]);
1955     qemu_get_8s(f, &s->status[0]);
1956     qemu_get_8s(f, &s->status[1]);
1957 
1958     s->rx_len = qemu_get_byte(f);
1959     s->rx_start = 0;
1960     for (i = 0; i < s->rx_len; i ++)
1961         s->rx_fifo[i] = qemu_get_byte(f);
1962 
1963     return 0;
1964 }
1965 
1966 static PXA2xxFIrState *pxa2xx_fir_init(MemoryRegion *sysmem,
1967                 hwaddr base,
1968                 qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma,
1969                 CharDriverState *chr)
1970 {
1971     PXA2xxFIrState *s = (PXA2xxFIrState *)
1972             g_malloc0(sizeof(PXA2xxFIrState));
1973 
1974     s->irq = irq;
1975     s->rx_dma = rx_dma;
1976     s->tx_dma = tx_dma;
1977     s->chr = chr;
1978 
1979     pxa2xx_fir_reset(s);
1980 
1981     memory_region_init_io(&s->iomem, &pxa2xx_fir_ops, s, "pxa2xx-fir", 0x1000);
1982     memory_region_add_subregion(sysmem, base, &s->iomem);
1983 
1984     if (chr) {
1985         qemu_chr_fe_claim_no_fail(chr);
1986         qemu_chr_add_handlers(chr, pxa2xx_fir_is_empty,
1987                         pxa2xx_fir_rx, pxa2xx_fir_event, s);
1988     }
1989 
1990     register_savevm(NULL, "pxa2xx_fir", 0, 0, pxa2xx_fir_save,
1991                     pxa2xx_fir_load, s);
1992 
1993     return s;
1994 }
1995 
1996 static void pxa2xx_reset(void *opaque, int line, int level)
1997 {
1998     PXA2xxState *s = (PXA2xxState *) opaque;
1999 
2000     if (level && (s->pm_regs[PCFR >> 2] & 0x10)) {	/* GPR_EN */
2001         cpu_reset(CPU(s->cpu));
2002         /* TODO: reset peripherals */
2003     }
2004 }
2005 
2006 /* Initialise a PXA270 integrated chip (ARM based core).  */
2007 PXA2xxState *pxa270_init(MemoryRegion *address_space,
2008                          unsigned int sdram_size, const char *revision)
2009 {
2010     PXA2xxState *s;
2011     int i;
2012     DriveInfo *dinfo;
2013     s = (PXA2xxState *) g_malloc0(sizeof(PXA2xxState));
2014 
2015     if (revision && strncmp(revision, "pxa27", 5)) {
2016         fprintf(stderr, "Machine requires a PXA27x processor.\n");
2017         exit(1);
2018     }
2019     if (!revision)
2020         revision = "pxa270";
2021 
2022     s->cpu = cpu_arm_init(revision);
2023     if (s->cpu == NULL) {
2024         fprintf(stderr, "Unable to find CPU definition\n");
2025         exit(1);
2026     }
2027     s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2028 
2029     /* SDRAM & Internal Memory Storage */
2030     memory_region_init_ram(&s->sdram, "pxa270.sdram", sdram_size);
2031     vmstate_register_ram_global(&s->sdram);
2032     memory_region_add_subregion(address_space, PXA2XX_SDRAM_BASE, &s->sdram);
2033     memory_region_init_ram(&s->internal, "pxa270.internal", 0x40000);
2034     vmstate_register_ram_global(&s->internal);
2035     memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE,
2036                                 &s->internal);
2037 
2038     s->pic = pxa2xx_pic_init(0x40d00000, s->cpu);
2039 
2040     s->dma = pxa27x_dma_init(0x40000000,
2041                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
2042 
2043     sysbus_create_varargs("pxa27x-timer", 0x40a00000,
2044                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0),
2045                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1),
2046                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2),
2047                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3),
2048                     qdev_get_gpio_in(s->pic, PXA27X_PIC_OST_4_11),
2049                     NULL);
2050 
2051     s->gpio = pxa2xx_gpio_init(0x40e00000, s->cpu, s->pic, 121);
2052 
2053     dinfo = drive_get(IF_SD, 0, 0);
2054     if (!dinfo) {
2055         fprintf(stderr, "qemu: missing SecureDigital device\n");
2056         exit(1);
2057     }
2058     s->mmc = pxa2xx_mmci_init(address_space, 0x41100000, dinfo->bdrv,
2059                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC),
2060                     qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI),
2061                     qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI));
2062 
2063     for (i = 0; pxa270_serial[i].io_base; i++) {
2064         if (serial_hds[i]) {
2065             serial_mm_init(address_space, pxa270_serial[i].io_base, 2,
2066                            qdev_get_gpio_in(s->pic, pxa270_serial[i].irqn),
2067                            14857000 / 16, serial_hds[i],
2068                            DEVICE_NATIVE_ENDIAN);
2069         } else {
2070             break;
2071         }
2072     }
2073     if (serial_hds[i])
2074         s->fir = pxa2xx_fir_init(address_space, 0x40800000,
2075                         qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP),
2076                         qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP),
2077                         qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP),
2078                         serial_hds[i]);
2079 
2080     s->lcd = pxa2xx_lcdc_init(address_space, 0x44000000,
2081                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD));
2082 
2083     s->cm_base = 0x41300000;
2084     s->cm_regs[CCCR >> 2] = 0x02000210;	/* 416.0 MHz */
2085     s->clkcfg = 0x00000009;		/* Turbo mode active */
2086     memory_region_init_io(&s->cm_iomem, &pxa2xx_cm_ops, s, "pxa2xx-cm", 0x1000);
2087     memory_region_add_subregion(address_space, s->cm_base, &s->cm_iomem);
2088     vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s);
2089 
2090     pxa2xx_setup_cp14(s);
2091 
2092     s->mm_base = 0x48000000;
2093     s->mm_regs[MDMRS >> 2] = 0x00020002;
2094     s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2095     s->mm_regs[MECR >> 2] = 0x00000001;	/* Two PC Card sockets */
2096     memory_region_init_io(&s->mm_iomem, &pxa2xx_mm_ops, s, "pxa2xx-mm", 0x1000);
2097     memory_region_add_subregion(address_space, s->mm_base, &s->mm_iomem);
2098     vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s);
2099 
2100     s->pm_base = 0x40f00000;
2101     memory_region_init_io(&s->pm_iomem, &pxa2xx_pm_ops, s, "pxa2xx-pm", 0x100);
2102     memory_region_add_subregion(address_space, s->pm_base, &s->pm_iomem);
2103     vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s);
2104 
2105     for (i = 0; pxa27x_ssp[i].io_base; i ++);
2106     s->ssp = (SSIBus **)g_malloc0(sizeof(SSIBus *) * i);
2107     for (i = 0; pxa27x_ssp[i].io_base; i ++) {
2108         DeviceState *dev;
2109         dev = sysbus_create_simple("pxa2xx-ssp", pxa27x_ssp[i].io_base,
2110                         qdev_get_gpio_in(s->pic, pxa27x_ssp[i].irqn));
2111         s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2112     }
2113 
2114     if (usb_enabled(false)) {
2115         sysbus_create_simple("sysbus-ohci", 0x4c000000,
2116                         qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1));
2117     }
2118 
2119     s->pcmcia[0] = pxa2xx_pcmcia_init(address_space, 0x20000000);
2120     s->pcmcia[1] = pxa2xx_pcmcia_init(address_space, 0x30000000);
2121 
2122     sysbus_create_simple("pxa2xx_rtc", 0x40900000,
2123                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM));
2124 
2125     s->i2c[0] = pxa2xx_i2c_init(0x40301600,
2126                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff);
2127     s->i2c[1] = pxa2xx_i2c_init(0x40f00100,
2128                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff);
2129 
2130     s->i2s = pxa2xx_i2s_init(address_space, 0x40400000,
2131                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S),
2132                     qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S),
2133                     qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S));
2134 
2135     s->kp = pxa27x_keypad_init(address_space, 0x41500000,
2136                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_KEYPAD));
2137 
2138     /* GPIO1 resets the processor */
2139     /* The handler can be overridden by board-specific code */
2140     qdev_connect_gpio_out(s->gpio, 1, s->reset);
2141     return s;
2142 }
2143 
2144 /* Initialise a PXA255 integrated chip (ARM based core).  */
2145 PXA2xxState *pxa255_init(MemoryRegion *address_space, unsigned int sdram_size)
2146 {
2147     PXA2xxState *s;
2148     int i;
2149     DriveInfo *dinfo;
2150 
2151     s = (PXA2xxState *) g_malloc0(sizeof(PXA2xxState));
2152 
2153     s->cpu = cpu_arm_init("pxa255");
2154     if (s->cpu == NULL) {
2155         fprintf(stderr, "Unable to find CPU definition\n");
2156         exit(1);
2157     }
2158     s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2159 
2160     /* SDRAM & Internal Memory Storage */
2161     memory_region_init_ram(&s->sdram, "pxa255.sdram", sdram_size);
2162     vmstate_register_ram_global(&s->sdram);
2163     memory_region_add_subregion(address_space, PXA2XX_SDRAM_BASE, &s->sdram);
2164     memory_region_init_ram(&s->internal, "pxa255.internal",
2165                            PXA2XX_INTERNAL_SIZE);
2166     vmstate_register_ram_global(&s->internal);
2167     memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE,
2168                                 &s->internal);
2169 
2170     s->pic = pxa2xx_pic_init(0x40d00000, s->cpu);
2171 
2172     s->dma = pxa255_dma_init(0x40000000,
2173                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
2174 
2175     sysbus_create_varargs("pxa25x-timer", 0x40a00000,
2176                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0),
2177                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1),
2178                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2),
2179                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3),
2180                     NULL);
2181 
2182     s->gpio = pxa2xx_gpio_init(0x40e00000, s->cpu, s->pic, 85);
2183 
2184     dinfo = drive_get(IF_SD, 0, 0);
2185     if (!dinfo) {
2186         fprintf(stderr, "qemu: missing SecureDigital device\n");
2187         exit(1);
2188     }
2189     s->mmc = pxa2xx_mmci_init(address_space, 0x41100000, dinfo->bdrv,
2190                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC),
2191                     qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI),
2192                     qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI));
2193 
2194     for (i = 0; pxa255_serial[i].io_base; i++) {
2195         if (serial_hds[i]) {
2196             serial_mm_init(address_space, pxa255_serial[i].io_base, 2,
2197                            qdev_get_gpio_in(s->pic, pxa255_serial[i].irqn),
2198                            14745600 / 16, serial_hds[i],
2199                            DEVICE_NATIVE_ENDIAN);
2200         } else {
2201             break;
2202         }
2203     }
2204     if (serial_hds[i])
2205         s->fir = pxa2xx_fir_init(address_space, 0x40800000,
2206                         qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP),
2207                         qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP),
2208                         qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP),
2209                         serial_hds[i]);
2210 
2211     s->lcd = pxa2xx_lcdc_init(address_space, 0x44000000,
2212                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD));
2213 
2214     s->cm_base = 0x41300000;
2215     s->cm_regs[CCCR >> 2] = 0x02000210;	/* 416.0 MHz */
2216     s->clkcfg = 0x00000009;		/* Turbo mode active */
2217     memory_region_init_io(&s->cm_iomem, &pxa2xx_cm_ops, s, "pxa2xx-cm", 0x1000);
2218     memory_region_add_subregion(address_space, s->cm_base, &s->cm_iomem);
2219     vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s);
2220 
2221     pxa2xx_setup_cp14(s);
2222 
2223     s->mm_base = 0x48000000;
2224     s->mm_regs[MDMRS >> 2] = 0x00020002;
2225     s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2226     s->mm_regs[MECR >> 2] = 0x00000001;	/* Two PC Card sockets */
2227     memory_region_init_io(&s->mm_iomem, &pxa2xx_mm_ops, s, "pxa2xx-mm", 0x1000);
2228     memory_region_add_subregion(address_space, s->mm_base, &s->mm_iomem);
2229     vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s);
2230 
2231     s->pm_base = 0x40f00000;
2232     memory_region_init_io(&s->pm_iomem, &pxa2xx_pm_ops, s, "pxa2xx-pm", 0x100);
2233     memory_region_add_subregion(address_space, s->pm_base, &s->pm_iomem);
2234     vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s);
2235 
2236     for (i = 0; pxa255_ssp[i].io_base; i ++);
2237     s->ssp = (SSIBus **)g_malloc0(sizeof(SSIBus *) * i);
2238     for (i = 0; pxa255_ssp[i].io_base; i ++) {
2239         DeviceState *dev;
2240         dev = sysbus_create_simple("pxa2xx-ssp", pxa255_ssp[i].io_base,
2241                         qdev_get_gpio_in(s->pic, pxa255_ssp[i].irqn));
2242         s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2243     }
2244 
2245     if (usb_enabled(false)) {
2246         sysbus_create_simple("sysbus-ohci", 0x4c000000,
2247                         qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1));
2248     }
2249 
2250     s->pcmcia[0] = pxa2xx_pcmcia_init(address_space, 0x20000000);
2251     s->pcmcia[1] = pxa2xx_pcmcia_init(address_space, 0x30000000);
2252 
2253     sysbus_create_simple("pxa2xx_rtc", 0x40900000,
2254                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM));
2255 
2256     s->i2c[0] = pxa2xx_i2c_init(0x40301600,
2257                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff);
2258     s->i2c[1] = pxa2xx_i2c_init(0x40f00100,
2259                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff);
2260 
2261     s->i2s = pxa2xx_i2s_init(address_space, 0x40400000,
2262                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S),
2263                     qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S),
2264                     qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S));
2265 
2266     /* GPIO1 resets the processor */
2267     /* The handler can be overridden by board-specific code */
2268     qdev_connect_gpio_out(s->gpio, 1, s->reset);
2269     return s;
2270 }
2271 
2272 static void pxa2xx_ssp_class_init(ObjectClass *klass, void *data)
2273 {
2274     SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
2275 
2276     sdc->init = pxa2xx_ssp_init;
2277 }
2278 
2279 static const TypeInfo pxa2xx_ssp_info = {
2280     .name          = "pxa2xx-ssp",
2281     .parent        = TYPE_SYS_BUS_DEVICE,
2282     .instance_size = sizeof(PXA2xxSSPState),
2283     .class_init    = pxa2xx_ssp_class_init,
2284 };
2285 
2286 static void pxa2xx_register_types(void)
2287 {
2288     type_register_static(&pxa2xx_i2c_slave_info);
2289     type_register_static(&pxa2xx_ssp_info);
2290     type_register_static(&pxa2xx_i2c_info);
2291     type_register_static(&pxa2xx_rtc_sysbus_info);
2292 }
2293 
2294 type_init(pxa2xx_register_types)
2295