1 /* 2 * TI OMAP processors emulation. 3 * 4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org> 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation; either version 2 or 9 * (at your option) version 3 of the License. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License along 17 * with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/error-report.h" 23 #include "qemu/main-loop.h" 24 #include "qapi/error.h" 25 #include "cpu.h" 26 #include "exec/address-spaces.h" 27 #include "hw/hw.h" 28 #include "hw/irq.h" 29 #include "hw/qdev-properties.h" 30 #include "hw/arm/boot.h" 31 #include "hw/arm/omap.h" 32 #include "sysemu/blockdev.h" 33 #include "sysemu/sysemu.h" 34 #include "hw/arm/soc_dma.h" 35 #include "sysemu/qtest.h" 36 #include "sysemu/reset.h" 37 #include "sysemu/runstate.h" 38 #include "sysemu/rtc.h" 39 #include "qemu/range.h" 40 #include "hw/sysbus.h" 41 #include "qemu/cutils.h" 42 #include "qemu/bcd.h" 43 44 static inline void omap_log_badwidth(const char *funcname, hwaddr addr, int sz) 45 { 46 qemu_log_mask(LOG_GUEST_ERROR, "%s: %d-bit register %#08" HWADDR_PRIx "\n", 47 funcname, 8 * sz, addr); 48 } 49 50 /* Should signal the TCMI/GPMC */ 51 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr) 52 { 53 uint8_t ret; 54 55 omap_log_badwidth(__func__, addr, 1); 56 cpu_physical_memory_read(addr, &ret, 1); 57 return ret; 58 } 59 60 void omap_badwidth_write8(void *opaque, hwaddr addr, 61 uint32_t value) 62 { 63 uint8_t val8 = value; 64 65 omap_log_badwidth(__func__, addr, 1); 66 cpu_physical_memory_write(addr, &val8, 1); 67 } 68 69 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr) 70 { 71 uint16_t ret; 72 73 omap_log_badwidth(__func__, addr, 2); 74 cpu_physical_memory_read(addr, &ret, 2); 75 return ret; 76 } 77 78 void omap_badwidth_write16(void *opaque, hwaddr addr, 79 uint32_t value) 80 { 81 uint16_t val16 = value; 82 83 omap_log_badwidth(__func__, addr, 2); 84 cpu_physical_memory_write(addr, &val16, 2); 85 } 86 87 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr) 88 { 89 uint32_t ret; 90 91 omap_log_badwidth(__func__, addr, 4); 92 cpu_physical_memory_read(addr, &ret, 4); 93 return ret; 94 } 95 96 void omap_badwidth_write32(void *opaque, hwaddr addr, 97 uint32_t value) 98 { 99 omap_log_badwidth(__func__, addr, 4); 100 cpu_physical_memory_write(addr, &value, 4); 101 } 102 103 /* MPU OS timers */ 104 struct omap_mpu_timer_s { 105 MemoryRegion iomem; 106 qemu_irq irq; 107 omap_clk clk; 108 uint32_t val; 109 int64_t time; 110 QEMUTimer *timer; 111 QEMUBH *tick; 112 int64_t rate; 113 int it_ena; 114 115 int enable; 116 int ptv; 117 int ar; 118 int st; 119 uint32_t reset_val; 120 }; 121 122 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer) 123 { 124 uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time; 125 126 if (timer->st && timer->enable && timer->rate) 127 return timer->val - muldiv64(distance >> (timer->ptv + 1), 128 timer->rate, NANOSECONDS_PER_SECOND); 129 else 130 return timer->val; 131 } 132 133 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer) 134 { 135 timer->val = omap_timer_read(timer); 136 timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 137 } 138 139 static inline void omap_timer_update(struct omap_mpu_timer_s *timer) 140 { 141 int64_t expires; 142 143 if (timer->enable && timer->st && timer->rate) { 144 timer->val = timer->reset_val; /* Should skip this on clk enable */ 145 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1), 146 NANOSECONDS_PER_SECOND, timer->rate); 147 148 /* If timer expiry would be sooner than in about 1 ms and 149 * auto-reload isn't set, then fire immediately. This is a hack 150 * to make systems like PalmOS run in acceptable time. PalmOS 151 * sets the interval to a very low value and polls the status bit 152 * in a busy loop when it wants to sleep just a couple of CPU 153 * ticks. */ 154 if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) { 155 timer_mod(timer->timer, timer->time + expires); 156 } else { 157 qemu_bh_schedule(timer->tick); 158 } 159 } else 160 timer_del(timer->timer); 161 } 162 163 static void omap_timer_fire(void *opaque) 164 { 165 struct omap_mpu_timer_s *timer = opaque; 166 167 if (!timer->ar) { 168 timer->val = 0; 169 timer->st = 0; 170 } 171 172 if (timer->it_ena) 173 /* Edge-triggered irq */ 174 qemu_irq_pulse(timer->irq); 175 } 176 177 static void omap_timer_tick(void *opaque) 178 { 179 struct omap_mpu_timer_s *timer = opaque; 180 181 omap_timer_sync(timer); 182 omap_timer_fire(timer); 183 omap_timer_update(timer); 184 } 185 186 static void omap_timer_clk_update(void *opaque, int line, int on) 187 { 188 struct omap_mpu_timer_s *timer = opaque; 189 190 omap_timer_sync(timer); 191 timer->rate = on ? omap_clk_getrate(timer->clk) : 0; 192 omap_timer_update(timer); 193 } 194 195 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer) 196 { 197 omap_clk_adduser(timer->clk, 198 qemu_allocate_irq(omap_timer_clk_update, timer, 0)); 199 timer->rate = omap_clk_getrate(timer->clk); 200 } 201 202 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr, 203 unsigned size) 204 { 205 struct omap_mpu_timer_s *s = opaque; 206 207 if (size != 4) { 208 return omap_badwidth_read32(opaque, addr); 209 } 210 211 switch (addr) { 212 case 0x00: /* CNTL_TIMER */ 213 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st; 214 215 case 0x04: /* LOAD_TIM */ 216 break; 217 218 case 0x08: /* READ_TIM */ 219 return omap_timer_read(s); 220 } 221 222 OMAP_BAD_REG(addr); 223 return 0; 224 } 225 226 static void omap_mpu_timer_write(void *opaque, hwaddr addr, 227 uint64_t value, unsigned size) 228 { 229 struct omap_mpu_timer_s *s = opaque; 230 231 if (size != 4) { 232 omap_badwidth_write32(opaque, addr, value); 233 return; 234 } 235 236 switch (addr) { 237 case 0x00: /* CNTL_TIMER */ 238 omap_timer_sync(s); 239 s->enable = (value >> 5) & 1; 240 s->ptv = (value >> 2) & 7; 241 s->ar = (value >> 1) & 1; 242 s->st = value & 1; 243 omap_timer_update(s); 244 return; 245 246 case 0x04: /* LOAD_TIM */ 247 s->reset_val = value; 248 return; 249 250 case 0x08: /* READ_TIM */ 251 OMAP_RO_REG(addr); 252 break; 253 254 default: 255 OMAP_BAD_REG(addr); 256 } 257 } 258 259 static const MemoryRegionOps omap_mpu_timer_ops = { 260 .read = omap_mpu_timer_read, 261 .write = omap_mpu_timer_write, 262 .endianness = DEVICE_LITTLE_ENDIAN, 263 }; 264 265 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s) 266 { 267 timer_del(s->timer); 268 s->enable = 0; 269 s->reset_val = 31337; 270 s->val = 0; 271 s->ptv = 0; 272 s->ar = 0; 273 s->st = 0; 274 s->it_ena = 1; 275 } 276 277 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory, 278 hwaddr base, 279 qemu_irq irq, omap_clk clk) 280 { 281 struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1); 282 283 s->irq = irq; 284 s->clk = clk; 285 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s); 286 s->tick = qemu_bh_new(omap_timer_fire, s); 287 omap_mpu_timer_reset(s); 288 omap_timer_clk_setup(s); 289 290 memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s, 291 "omap-mpu-timer", 0x100); 292 293 memory_region_add_subregion(system_memory, base, &s->iomem); 294 295 return s; 296 } 297 298 /* Watchdog timer */ 299 struct omap_watchdog_timer_s { 300 struct omap_mpu_timer_s timer; 301 MemoryRegion iomem; 302 uint8_t last_wr; 303 int mode; 304 int free; 305 int reset; 306 }; 307 308 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr, 309 unsigned size) 310 { 311 struct omap_watchdog_timer_s *s = opaque; 312 313 if (size != 2) { 314 return omap_badwidth_read16(opaque, addr); 315 } 316 317 switch (addr) { 318 case 0x00: /* CNTL_TIMER */ 319 return (s->timer.ptv << 9) | (s->timer.ar << 8) | 320 (s->timer.st << 7) | (s->free << 1); 321 322 case 0x04: /* READ_TIMER */ 323 return omap_timer_read(&s->timer); 324 325 case 0x08: /* TIMER_MODE */ 326 return s->mode << 15; 327 } 328 329 OMAP_BAD_REG(addr); 330 return 0; 331 } 332 333 static void omap_wd_timer_write(void *opaque, hwaddr addr, 334 uint64_t value, unsigned size) 335 { 336 struct omap_watchdog_timer_s *s = opaque; 337 338 if (size != 2) { 339 omap_badwidth_write16(opaque, addr, value); 340 return; 341 } 342 343 switch (addr) { 344 case 0x00: /* CNTL_TIMER */ 345 omap_timer_sync(&s->timer); 346 s->timer.ptv = (value >> 9) & 7; 347 s->timer.ar = (value >> 8) & 1; 348 s->timer.st = (value >> 7) & 1; 349 s->free = (value >> 1) & 1; 350 omap_timer_update(&s->timer); 351 break; 352 353 case 0x04: /* LOAD_TIMER */ 354 s->timer.reset_val = value & 0xffff; 355 break; 356 357 case 0x08: /* TIMER_MODE */ 358 if (!s->mode && ((value >> 15) & 1)) 359 omap_clk_get(s->timer.clk); 360 s->mode |= (value >> 15) & 1; 361 if (s->last_wr == 0xf5) { 362 if ((value & 0xff) == 0xa0) { 363 if (s->mode) { 364 s->mode = 0; 365 omap_clk_put(s->timer.clk); 366 } 367 } else { 368 /* XXX: on T|E hardware somehow this has no effect, 369 * on Zire 71 it works as specified. */ 370 s->reset = 1; 371 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 372 } 373 } 374 s->last_wr = value & 0xff; 375 break; 376 377 default: 378 OMAP_BAD_REG(addr); 379 } 380 } 381 382 static const MemoryRegionOps omap_wd_timer_ops = { 383 .read = omap_wd_timer_read, 384 .write = omap_wd_timer_write, 385 .endianness = DEVICE_NATIVE_ENDIAN, 386 }; 387 388 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s) 389 { 390 timer_del(s->timer.timer); 391 if (!s->mode) 392 omap_clk_get(s->timer.clk); 393 s->mode = 1; 394 s->free = 1; 395 s->reset = 0; 396 s->timer.enable = 1; 397 s->timer.it_ena = 1; 398 s->timer.reset_val = 0xffff; 399 s->timer.val = 0; 400 s->timer.st = 0; 401 s->timer.ptv = 0; 402 s->timer.ar = 0; 403 omap_timer_update(&s->timer); 404 } 405 406 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory, 407 hwaddr base, 408 qemu_irq irq, omap_clk clk) 409 { 410 struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1); 411 412 s->timer.irq = irq; 413 s->timer.clk = clk; 414 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer); 415 omap_wd_timer_reset(s); 416 omap_timer_clk_setup(&s->timer); 417 418 memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s, 419 "omap-wd-timer", 0x100); 420 memory_region_add_subregion(memory, base, &s->iomem); 421 422 return s; 423 } 424 425 /* 32-kHz timer */ 426 struct omap_32khz_timer_s { 427 struct omap_mpu_timer_s timer; 428 MemoryRegion iomem; 429 }; 430 431 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr, 432 unsigned size) 433 { 434 struct omap_32khz_timer_s *s = opaque; 435 int offset = addr & OMAP_MPUI_REG_MASK; 436 437 if (size != 4) { 438 return omap_badwidth_read32(opaque, addr); 439 } 440 441 switch (offset) { 442 case 0x00: /* TVR */ 443 return s->timer.reset_val; 444 445 case 0x04: /* TCR */ 446 return omap_timer_read(&s->timer); 447 448 case 0x08: /* CR */ 449 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st; 450 451 default: 452 break; 453 } 454 OMAP_BAD_REG(addr); 455 return 0; 456 } 457 458 static void omap_os_timer_write(void *opaque, hwaddr addr, 459 uint64_t value, unsigned size) 460 { 461 struct omap_32khz_timer_s *s = opaque; 462 int offset = addr & OMAP_MPUI_REG_MASK; 463 464 if (size != 4) { 465 omap_badwidth_write32(opaque, addr, value); 466 return; 467 } 468 469 switch (offset) { 470 case 0x00: /* TVR */ 471 s->timer.reset_val = value & 0x00ffffff; 472 break; 473 474 case 0x04: /* TCR */ 475 OMAP_RO_REG(addr); 476 break; 477 478 case 0x08: /* CR */ 479 s->timer.ar = (value >> 3) & 1; 480 s->timer.it_ena = (value >> 2) & 1; 481 if (s->timer.st != (value & 1) || (value & 2)) { 482 omap_timer_sync(&s->timer); 483 s->timer.enable = value & 1; 484 s->timer.st = value & 1; 485 omap_timer_update(&s->timer); 486 } 487 break; 488 489 default: 490 OMAP_BAD_REG(addr); 491 } 492 } 493 494 static const MemoryRegionOps omap_os_timer_ops = { 495 .read = omap_os_timer_read, 496 .write = omap_os_timer_write, 497 .endianness = DEVICE_NATIVE_ENDIAN, 498 }; 499 500 static void omap_os_timer_reset(struct omap_32khz_timer_s *s) 501 { 502 timer_del(s->timer.timer); 503 s->timer.enable = 0; 504 s->timer.it_ena = 0; 505 s->timer.reset_val = 0x00ffffff; 506 s->timer.val = 0; 507 s->timer.st = 0; 508 s->timer.ptv = 0; 509 s->timer.ar = 1; 510 } 511 512 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory, 513 hwaddr base, 514 qemu_irq irq, omap_clk clk) 515 { 516 struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1); 517 518 s->timer.irq = irq; 519 s->timer.clk = clk; 520 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer); 521 omap_os_timer_reset(s); 522 omap_timer_clk_setup(&s->timer); 523 524 memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s, 525 "omap-os-timer", 0x800); 526 memory_region_add_subregion(memory, base, &s->iomem); 527 528 return s; 529 } 530 531 /* Ultra Low-Power Device Module */ 532 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr, 533 unsigned size) 534 { 535 struct omap_mpu_state_s *s = opaque; 536 uint16_t ret; 537 538 if (size != 2) { 539 return omap_badwidth_read16(opaque, addr); 540 } 541 542 switch (addr) { 543 case 0x14: /* IT_STATUS */ 544 ret = s->ulpd_pm_regs[addr >> 2]; 545 s->ulpd_pm_regs[addr >> 2] = 0; 546 qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K)); 547 return ret; 548 549 case 0x18: /* Reserved */ 550 case 0x1c: /* Reserved */ 551 case 0x20: /* Reserved */ 552 case 0x28: /* Reserved */ 553 case 0x2c: /* Reserved */ 554 OMAP_BAD_REG(addr); 555 /* fall through */ 556 case 0x00: /* COUNTER_32_LSB */ 557 case 0x04: /* COUNTER_32_MSB */ 558 case 0x08: /* COUNTER_HIGH_FREQ_LSB */ 559 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */ 560 case 0x10: /* GAUGING_CTRL */ 561 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */ 562 case 0x30: /* CLOCK_CTRL */ 563 case 0x34: /* SOFT_REQ */ 564 case 0x38: /* COUNTER_32_FIQ */ 565 case 0x3c: /* DPLL_CTRL */ 566 case 0x40: /* STATUS_REQ */ 567 /* XXX: check clk::usecount state for every clock */ 568 case 0x48: /* LOCL_TIME */ 569 case 0x4c: /* APLL_CTRL */ 570 case 0x50: /* POWER_CTRL */ 571 return s->ulpd_pm_regs[addr >> 2]; 572 } 573 574 OMAP_BAD_REG(addr); 575 return 0; 576 } 577 578 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s, 579 uint16_t diff, uint16_t value) 580 { 581 if (diff & (1 << 4)) /* USB_MCLK_EN */ 582 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1); 583 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */ 584 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1); 585 } 586 587 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s, 588 uint16_t diff, uint16_t value) 589 { 590 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */ 591 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1); 592 if (diff & (1 << 1)) /* SOFT_COM_REQ */ 593 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1); 594 if (diff & (1 << 2)) /* SOFT_SDW_REQ */ 595 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1); 596 if (diff & (1 << 3)) /* SOFT_USB_REQ */ 597 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1); 598 } 599 600 static void omap_ulpd_pm_write(void *opaque, hwaddr addr, 601 uint64_t value, unsigned size) 602 { 603 struct omap_mpu_state_s *s = opaque; 604 int64_t now, ticks; 605 int div, mult; 606 static const int bypass_div[4] = { 1, 2, 4, 4 }; 607 uint16_t diff; 608 609 if (size != 2) { 610 omap_badwidth_write16(opaque, addr, value); 611 return; 612 } 613 614 switch (addr) { 615 case 0x00: /* COUNTER_32_LSB */ 616 case 0x04: /* COUNTER_32_MSB */ 617 case 0x08: /* COUNTER_HIGH_FREQ_LSB */ 618 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */ 619 case 0x14: /* IT_STATUS */ 620 case 0x40: /* STATUS_REQ */ 621 OMAP_RO_REG(addr); 622 break; 623 624 case 0x10: /* GAUGING_CTRL */ 625 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */ 626 if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) { 627 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 628 629 if (value & 1) 630 s->ulpd_gauge_start = now; 631 else { 632 now -= s->ulpd_gauge_start; 633 634 /* 32-kHz ticks */ 635 ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND); 636 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff; 637 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff; 638 if (ticks >> 32) /* OVERFLOW_32K */ 639 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2; 640 641 /* High frequency ticks */ 642 ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND); 643 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff; 644 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff; 645 if (ticks >> 32) /* OVERFLOW_HI_FREQ */ 646 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1; 647 648 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */ 649 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K)); 650 } 651 } 652 s->ulpd_pm_regs[addr >> 2] = value; 653 break; 654 655 case 0x18: /* Reserved */ 656 case 0x1c: /* Reserved */ 657 case 0x20: /* Reserved */ 658 case 0x28: /* Reserved */ 659 case 0x2c: /* Reserved */ 660 OMAP_BAD_REG(addr); 661 /* fall through */ 662 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */ 663 case 0x38: /* COUNTER_32_FIQ */ 664 case 0x48: /* LOCL_TIME */ 665 case 0x50: /* POWER_CTRL */ 666 s->ulpd_pm_regs[addr >> 2] = value; 667 break; 668 669 case 0x30: /* CLOCK_CTRL */ 670 diff = s->ulpd_pm_regs[addr >> 2] ^ value; 671 s->ulpd_pm_regs[addr >> 2] = value & 0x3f; 672 omap_ulpd_clk_update(s, diff, value); 673 break; 674 675 case 0x34: /* SOFT_REQ */ 676 diff = s->ulpd_pm_regs[addr >> 2] ^ value; 677 s->ulpd_pm_regs[addr >> 2] = value & 0x1f; 678 omap_ulpd_req_update(s, diff, value); 679 break; 680 681 case 0x3c: /* DPLL_CTRL */ 682 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is 683 * omitted altogether, probably a typo. */ 684 /* This register has identical semantics with DPLL(1:3) control 685 * registers, see omap_dpll_write() */ 686 diff = s->ulpd_pm_regs[addr >> 2] & value; 687 s->ulpd_pm_regs[addr >> 2] = value & 0x2fff; 688 if (diff & (0x3ff << 2)) { 689 if (value & (1 << 4)) { /* PLL_ENABLE */ 690 div = ((value >> 5) & 3) + 1; /* PLL_DIV */ 691 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */ 692 } else { 693 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */ 694 mult = 1; 695 } 696 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult); 697 } 698 699 /* Enter the desired mode. */ 700 s->ulpd_pm_regs[addr >> 2] = 701 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) | 702 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1); 703 704 /* Act as if the lock is restored. */ 705 s->ulpd_pm_regs[addr >> 2] |= 2; 706 break; 707 708 case 0x4c: /* APLL_CTRL */ 709 diff = s->ulpd_pm_regs[addr >> 2] & value; 710 s->ulpd_pm_regs[addr >> 2] = value & 0xf; 711 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */ 712 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s, 713 (value & (1 << 0)) ? "apll" : "dpll4")); 714 break; 715 716 default: 717 OMAP_BAD_REG(addr); 718 } 719 } 720 721 static const MemoryRegionOps omap_ulpd_pm_ops = { 722 .read = omap_ulpd_pm_read, 723 .write = omap_ulpd_pm_write, 724 .endianness = DEVICE_NATIVE_ENDIAN, 725 }; 726 727 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu) 728 { 729 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001; 730 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000; 731 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001; 732 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000; 733 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000; 734 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01; 735 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01; 736 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01; 737 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff; 738 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01; 739 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01; 740 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000); 741 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000; 742 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000); 743 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000; 744 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001; 745 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211; 746 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */ 747 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960; 748 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08; 749 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08; 750 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4); 751 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4")); 752 } 753 754 static void omap_ulpd_pm_init(MemoryRegion *system_memory, 755 hwaddr base, 756 struct omap_mpu_state_s *mpu) 757 { 758 memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu, 759 "omap-ulpd-pm", 0x800); 760 memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem); 761 omap_ulpd_pm_reset(mpu); 762 } 763 764 /* OMAP Pin Configuration */ 765 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr, 766 unsigned size) 767 { 768 struct omap_mpu_state_s *s = opaque; 769 770 if (size != 4) { 771 return omap_badwidth_read32(opaque, addr); 772 } 773 774 switch (addr) { 775 case 0x00: /* FUNC_MUX_CTRL_0 */ 776 case 0x04: /* FUNC_MUX_CTRL_1 */ 777 case 0x08: /* FUNC_MUX_CTRL_2 */ 778 return s->func_mux_ctrl[addr >> 2]; 779 780 case 0x0c: /* COMP_MODE_CTRL_0 */ 781 return s->comp_mode_ctrl[0]; 782 783 case 0x10: /* FUNC_MUX_CTRL_3 */ 784 case 0x14: /* FUNC_MUX_CTRL_4 */ 785 case 0x18: /* FUNC_MUX_CTRL_5 */ 786 case 0x1c: /* FUNC_MUX_CTRL_6 */ 787 case 0x20: /* FUNC_MUX_CTRL_7 */ 788 case 0x24: /* FUNC_MUX_CTRL_8 */ 789 case 0x28: /* FUNC_MUX_CTRL_9 */ 790 case 0x2c: /* FUNC_MUX_CTRL_A */ 791 case 0x30: /* FUNC_MUX_CTRL_B */ 792 case 0x34: /* FUNC_MUX_CTRL_C */ 793 case 0x38: /* FUNC_MUX_CTRL_D */ 794 return s->func_mux_ctrl[(addr >> 2) - 1]; 795 796 case 0x40: /* PULL_DWN_CTRL_0 */ 797 case 0x44: /* PULL_DWN_CTRL_1 */ 798 case 0x48: /* PULL_DWN_CTRL_2 */ 799 case 0x4c: /* PULL_DWN_CTRL_3 */ 800 return s->pull_dwn_ctrl[(addr & 0xf) >> 2]; 801 802 case 0x50: /* GATE_INH_CTRL_0 */ 803 return s->gate_inh_ctrl[0]; 804 805 case 0x60: /* VOLTAGE_CTRL_0 */ 806 return s->voltage_ctrl[0]; 807 808 case 0x70: /* TEST_DBG_CTRL_0 */ 809 return s->test_dbg_ctrl[0]; 810 811 case 0x80: /* MOD_CONF_CTRL_0 */ 812 return s->mod_conf_ctrl[0]; 813 } 814 815 OMAP_BAD_REG(addr); 816 return 0; 817 } 818 819 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s, 820 uint32_t diff, uint32_t value) 821 { 822 if (s->compat1509) { 823 if (diff & (1 << 9)) /* BLUETOOTH */ 824 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"), 825 (~value >> 9) & 1); 826 if (diff & (1 << 7)) /* USB.CLKO */ 827 omap_clk_onoff(omap_findclk(s, "usb.clko"), 828 (value >> 7) & 1); 829 } 830 } 831 832 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s, 833 uint32_t diff, uint32_t value) 834 { 835 if (s->compat1509) { 836 if (diff & (1U << 31)) { 837 /* MCBSP3_CLK_HIZ_DI */ 838 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1); 839 } 840 if (diff & (1 << 1)) { 841 /* CLK32K */ 842 omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1); 843 } 844 } 845 } 846 847 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s, 848 uint32_t diff, uint32_t value) 849 { 850 if (diff & (1U << 31)) { 851 /* CONF_MOD_UART3_CLK_MODE_R */ 852 omap_clk_reparent(omap_findclk(s, "uart3_ck"), 853 omap_findclk(s, ((value >> 31) & 1) ? 854 "ck_48m" : "armper_ck")); 855 } 856 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */ 857 omap_clk_reparent(omap_findclk(s, "uart2_ck"), 858 omap_findclk(s, ((value >> 30) & 1) ? 859 "ck_48m" : "armper_ck")); 860 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */ 861 omap_clk_reparent(omap_findclk(s, "uart1_ck"), 862 omap_findclk(s, ((value >> 29) & 1) ? 863 "ck_48m" : "armper_ck")); 864 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */ 865 omap_clk_reparent(omap_findclk(s, "mmc_ck"), 866 omap_findclk(s, ((value >> 23) & 1) ? 867 "ck_48m" : "armper_ck")); 868 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */ 869 omap_clk_reparent(omap_findclk(s, "com_mclk_out"), 870 omap_findclk(s, ((value >> 12) & 1) ? 871 "ck_48m" : "armper_ck")); 872 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */ 873 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1); 874 } 875 876 static void omap_pin_cfg_write(void *opaque, hwaddr addr, 877 uint64_t value, unsigned size) 878 { 879 struct omap_mpu_state_s *s = opaque; 880 uint32_t diff; 881 882 if (size != 4) { 883 omap_badwidth_write32(opaque, addr, value); 884 return; 885 } 886 887 switch (addr) { 888 case 0x00: /* FUNC_MUX_CTRL_0 */ 889 diff = s->func_mux_ctrl[addr >> 2] ^ value; 890 s->func_mux_ctrl[addr >> 2] = value; 891 omap_pin_funcmux0_update(s, diff, value); 892 return; 893 894 case 0x04: /* FUNC_MUX_CTRL_1 */ 895 diff = s->func_mux_ctrl[addr >> 2] ^ value; 896 s->func_mux_ctrl[addr >> 2] = value; 897 omap_pin_funcmux1_update(s, diff, value); 898 return; 899 900 case 0x08: /* FUNC_MUX_CTRL_2 */ 901 s->func_mux_ctrl[addr >> 2] = value; 902 return; 903 904 case 0x0c: /* COMP_MODE_CTRL_0 */ 905 s->comp_mode_ctrl[0] = value; 906 s->compat1509 = (value != 0x0000eaef); 907 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]); 908 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]); 909 return; 910 911 case 0x10: /* FUNC_MUX_CTRL_3 */ 912 case 0x14: /* FUNC_MUX_CTRL_4 */ 913 case 0x18: /* FUNC_MUX_CTRL_5 */ 914 case 0x1c: /* FUNC_MUX_CTRL_6 */ 915 case 0x20: /* FUNC_MUX_CTRL_7 */ 916 case 0x24: /* FUNC_MUX_CTRL_8 */ 917 case 0x28: /* FUNC_MUX_CTRL_9 */ 918 case 0x2c: /* FUNC_MUX_CTRL_A */ 919 case 0x30: /* FUNC_MUX_CTRL_B */ 920 case 0x34: /* FUNC_MUX_CTRL_C */ 921 case 0x38: /* FUNC_MUX_CTRL_D */ 922 s->func_mux_ctrl[(addr >> 2) - 1] = value; 923 return; 924 925 case 0x40: /* PULL_DWN_CTRL_0 */ 926 case 0x44: /* PULL_DWN_CTRL_1 */ 927 case 0x48: /* PULL_DWN_CTRL_2 */ 928 case 0x4c: /* PULL_DWN_CTRL_3 */ 929 s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value; 930 return; 931 932 case 0x50: /* GATE_INH_CTRL_0 */ 933 s->gate_inh_ctrl[0] = value; 934 return; 935 936 case 0x60: /* VOLTAGE_CTRL_0 */ 937 s->voltage_ctrl[0] = value; 938 return; 939 940 case 0x70: /* TEST_DBG_CTRL_0 */ 941 s->test_dbg_ctrl[0] = value; 942 return; 943 944 case 0x80: /* MOD_CONF_CTRL_0 */ 945 diff = s->mod_conf_ctrl[0] ^ value; 946 s->mod_conf_ctrl[0] = value; 947 omap_pin_modconf1_update(s, diff, value); 948 return; 949 950 default: 951 OMAP_BAD_REG(addr); 952 } 953 } 954 955 static const MemoryRegionOps omap_pin_cfg_ops = { 956 .read = omap_pin_cfg_read, 957 .write = omap_pin_cfg_write, 958 .endianness = DEVICE_NATIVE_ENDIAN, 959 }; 960 961 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu) 962 { 963 /* Start in Compatibility Mode. */ 964 mpu->compat1509 = 1; 965 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0); 966 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0); 967 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0); 968 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl)); 969 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl)); 970 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl)); 971 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl)); 972 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl)); 973 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl)); 974 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl)); 975 } 976 977 static void omap_pin_cfg_init(MemoryRegion *system_memory, 978 hwaddr base, 979 struct omap_mpu_state_s *mpu) 980 { 981 memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu, 982 "omap-pin-cfg", 0x800); 983 memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem); 984 omap_pin_cfg_reset(mpu); 985 } 986 987 /* Device Identification, Die Identification */ 988 static uint64_t omap_id_read(void *opaque, hwaddr addr, 989 unsigned size) 990 { 991 struct omap_mpu_state_s *s = opaque; 992 993 if (size != 4) { 994 return omap_badwidth_read32(opaque, addr); 995 } 996 997 switch (addr) { 998 case 0xfffe1800: /* DIE_ID_LSB */ 999 return 0xc9581f0e; 1000 case 0xfffe1804: /* DIE_ID_MSB */ 1001 return 0xa8858bfa; 1002 1003 case 0xfffe2000: /* PRODUCT_ID_LSB */ 1004 return 0x00aaaafc; 1005 case 0xfffe2004: /* PRODUCT_ID_MSB */ 1006 return 0xcafeb574; 1007 1008 case 0xfffed400: /* JTAG_ID_LSB */ 1009 switch (s->mpu_model) { 1010 case omap310: 1011 return 0x03310315; 1012 case omap1510: 1013 return 0x03310115; 1014 default: 1015 hw_error("%s: bad mpu model\n", __func__); 1016 } 1017 break; 1018 1019 case 0xfffed404: /* JTAG_ID_MSB */ 1020 switch (s->mpu_model) { 1021 case omap310: 1022 return 0xfb57402f; 1023 case omap1510: 1024 return 0xfb47002f; 1025 default: 1026 hw_error("%s: bad mpu model\n", __func__); 1027 } 1028 break; 1029 } 1030 1031 OMAP_BAD_REG(addr); 1032 return 0; 1033 } 1034 1035 static void omap_id_write(void *opaque, hwaddr addr, 1036 uint64_t value, unsigned size) 1037 { 1038 if (size != 4) { 1039 omap_badwidth_write32(opaque, addr, value); 1040 return; 1041 } 1042 1043 OMAP_BAD_REG(addr); 1044 } 1045 1046 static const MemoryRegionOps omap_id_ops = { 1047 .read = omap_id_read, 1048 .write = omap_id_write, 1049 .endianness = DEVICE_NATIVE_ENDIAN, 1050 }; 1051 1052 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu) 1053 { 1054 memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu, 1055 "omap-id", 0x100000000ULL); 1056 memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem, 1057 0xfffe1800, 0x800); 1058 memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18); 1059 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem, 1060 0xfffed400, 0x100); 1061 memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4); 1062 if (!cpu_is_omap15xx(mpu)) { 1063 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20", 1064 &mpu->id_iomem, 0xfffe2000, 0x800); 1065 memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20); 1066 } 1067 } 1068 1069 /* MPUI Control (Dummy) */ 1070 static uint64_t omap_mpui_read(void *opaque, hwaddr addr, 1071 unsigned size) 1072 { 1073 struct omap_mpu_state_s *s = opaque; 1074 1075 if (size != 4) { 1076 return omap_badwidth_read32(opaque, addr); 1077 } 1078 1079 switch (addr) { 1080 case 0x00: /* CTRL */ 1081 return s->mpui_ctrl; 1082 case 0x04: /* DEBUG_ADDR */ 1083 return 0x01ffffff; 1084 case 0x08: /* DEBUG_DATA */ 1085 return 0xffffffff; 1086 case 0x0c: /* DEBUG_FLAG */ 1087 return 0x00000800; 1088 case 0x10: /* STATUS */ 1089 return 0x00000000; 1090 1091 /* Not in OMAP310 */ 1092 case 0x14: /* DSP_STATUS */ 1093 case 0x18: /* DSP_BOOT_CONFIG */ 1094 return 0x00000000; 1095 case 0x1c: /* DSP_MPUI_CONFIG */ 1096 return 0x0000ffff; 1097 } 1098 1099 OMAP_BAD_REG(addr); 1100 return 0; 1101 } 1102 1103 static void omap_mpui_write(void *opaque, hwaddr addr, 1104 uint64_t value, unsigned size) 1105 { 1106 struct omap_mpu_state_s *s = opaque; 1107 1108 if (size != 4) { 1109 omap_badwidth_write32(opaque, addr, value); 1110 return; 1111 } 1112 1113 switch (addr) { 1114 case 0x00: /* CTRL */ 1115 s->mpui_ctrl = value & 0x007fffff; 1116 break; 1117 1118 case 0x04: /* DEBUG_ADDR */ 1119 case 0x08: /* DEBUG_DATA */ 1120 case 0x0c: /* DEBUG_FLAG */ 1121 case 0x10: /* STATUS */ 1122 /* Not in OMAP310 */ 1123 case 0x14: /* DSP_STATUS */ 1124 OMAP_RO_REG(addr); 1125 break; 1126 case 0x18: /* DSP_BOOT_CONFIG */ 1127 case 0x1c: /* DSP_MPUI_CONFIG */ 1128 break; 1129 1130 default: 1131 OMAP_BAD_REG(addr); 1132 } 1133 } 1134 1135 static const MemoryRegionOps omap_mpui_ops = { 1136 .read = omap_mpui_read, 1137 .write = omap_mpui_write, 1138 .endianness = DEVICE_NATIVE_ENDIAN, 1139 }; 1140 1141 static void omap_mpui_reset(struct omap_mpu_state_s *s) 1142 { 1143 s->mpui_ctrl = 0x0003ff1b; 1144 } 1145 1146 static void omap_mpui_init(MemoryRegion *memory, hwaddr base, 1147 struct omap_mpu_state_s *mpu) 1148 { 1149 memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu, 1150 "omap-mpui", 0x100); 1151 memory_region_add_subregion(memory, base, &mpu->mpui_iomem); 1152 1153 omap_mpui_reset(mpu); 1154 } 1155 1156 /* TIPB Bridges */ 1157 struct omap_tipb_bridge_s { 1158 qemu_irq abort; 1159 MemoryRegion iomem; 1160 1161 int width_intr; 1162 uint16_t control; 1163 uint16_t alloc; 1164 uint16_t buffer; 1165 uint16_t enh_control; 1166 }; 1167 1168 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr, 1169 unsigned size) 1170 { 1171 struct omap_tipb_bridge_s *s = opaque; 1172 1173 if (size < 2) { 1174 return omap_badwidth_read16(opaque, addr); 1175 } 1176 1177 switch (addr) { 1178 case 0x00: /* TIPB_CNTL */ 1179 return s->control; 1180 case 0x04: /* TIPB_BUS_ALLOC */ 1181 return s->alloc; 1182 case 0x08: /* MPU_TIPB_CNTL */ 1183 return s->buffer; 1184 case 0x0c: /* ENHANCED_TIPB_CNTL */ 1185 return s->enh_control; 1186 case 0x10: /* ADDRESS_DBG */ 1187 case 0x14: /* DATA_DEBUG_LOW */ 1188 case 0x18: /* DATA_DEBUG_HIGH */ 1189 return 0xffff; 1190 case 0x1c: /* DEBUG_CNTR_SIG */ 1191 return 0x00f8; 1192 } 1193 1194 OMAP_BAD_REG(addr); 1195 return 0; 1196 } 1197 1198 static void omap_tipb_bridge_write(void *opaque, hwaddr addr, 1199 uint64_t value, unsigned size) 1200 { 1201 struct omap_tipb_bridge_s *s = opaque; 1202 1203 if (size < 2) { 1204 omap_badwidth_write16(opaque, addr, value); 1205 return; 1206 } 1207 1208 switch (addr) { 1209 case 0x00: /* TIPB_CNTL */ 1210 s->control = value & 0xffff; 1211 break; 1212 1213 case 0x04: /* TIPB_BUS_ALLOC */ 1214 s->alloc = value & 0x003f; 1215 break; 1216 1217 case 0x08: /* MPU_TIPB_CNTL */ 1218 s->buffer = value & 0x0003; 1219 break; 1220 1221 case 0x0c: /* ENHANCED_TIPB_CNTL */ 1222 s->width_intr = !(value & 2); 1223 s->enh_control = value & 0x000f; 1224 break; 1225 1226 case 0x10: /* ADDRESS_DBG */ 1227 case 0x14: /* DATA_DEBUG_LOW */ 1228 case 0x18: /* DATA_DEBUG_HIGH */ 1229 case 0x1c: /* DEBUG_CNTR_SIG */ 1230 OMAP_RO_REG(addr); 1231 break; 1232 1233 default: 1234 OMAP_BAD_REG(addr); 1235 } 1236 } 1237 1238 static const MemoryRegionOps omap_tipb_bridge_ops = { 1239 .read = omap_tipb_bridge_read, 1240 .write = omap_tipb_bridge_write, 1241 .endianness = DEVICE_NATIVE_ENDIAN, 1242 }; 1243 1244 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s) 1245 { 1246 s->control = 0xffff; 1247 s->alloc = 0x0009; 1248 s->buffer = 0x0000; 1249 s->enh_control = 0x000f; 1250 } 1251 1252 static struct omap_tipb_bridge_s *omap_tipb_bridge_init( 1253 MemoryRegion *memory, hwaddr base, 1254 qemu_irq abort_irq, omap_clk clk) 1255 { 1256 struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1); 1257 1258 s->abort = abort_irq; 1259 omap_tipb_bridge_reset(s); 1260 1261 memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s, 1262 "omap-tipb-bridge", 0x100); 1263 memory_region_add_subregion(memory, base, &s->iomem); 1264 1265 return s; 1266 } 1267 1268 /* Dummy Traffic Controller's Memory Interface */ 1269 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr, 1270 unsigned size) 1271 { 1272 struct omap_mpu_state_s *s = opaque; 1273 uint32_t ret; 1274 1275 if (size != 4) { 1276 return omap_badwidth_read32(opaque, addr); 1277 } 1278 1279 switch (addr) { 1280 case 0x00: /* IMIF_PRIO */ 1281 case 0x04: /* EMIFS_PRIO */ 1282 case 0x08: /* EMIFF_PRIO */ 1283 case 0x0c: /* EMIFS_CONFIG */ 1284 case 0x10: /* EMIFS_CS0_CONFIG */ 1285 case 0x14: /* EMIFS_CS1_CONFIG */ 1286 case 0x18: /* EMIFS_CS2_CONFIG */ 1287 case 0x1c: /* EMIFS_CS3_CONFIG */ 1288 case 0x24: /* EMIFF_MRS */ 1289 case 0x28: /* TIMEOUT1 */ 1290 case 0x2c: /* TIMEOUT2 */ 1291 case 0x30: /* TIMEOUT3 */ 1292 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */ 1293 case 0x40: /* EMIFS_CFG_DYN_WAIT */ 1294 return s->tcmi_regs[addr >> 2]; 1295 1296 case 0x20: /* EMIFF_SDRAM_CONFIG */ 1297 ret = s->tcmi_regs[addr >> 2]; 1298 s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */ 1299 /* XXX: We can try using the VGA_DIRTY flag for this */ 1300 return ret; 1301 } 1302 1303 OMAP_BAD_REG(addr); 1304 return 0; 1305 } 1306 1307 static void omap_tcmi_write(void *opaque, hwaddr addr, 1308 uint64_t value, unsigned size) 1309 { 1310 struct omap_mpu_state_s *s = opaque; 1311 1312 if (size != 4) { 1313 omap_badwidth_write32(opaque, addr, value); 1314 return; 1315 } 1316 1317 switch (addr) { 1318 case 0x00: /* IMIF_PRIO */ 1319 case 0x04: /* EMIFS_PRIO */ 1320 case 0x08: /* EMIFF_PRIO */ 1321 case 0x10: /* EMIFS_CS0_CONFIG */ 1322 case 0x14: /* EMIFS_CS1_CONFIG */ 1323 case 0x18: /* EMIFS_CS2_CONFIG */ 1324 case 0x1c: /* EMIFS_CS3_CONFIG */ 1325 case 0x20: /* EMIFF_SDRAM_CONFIG */ 1326 case 0x24: /* EMIFF_MRS */ 1327 case 0x28: /* TIMEOUT1 */ 1328 case 0x2c: /* TIMEOUT2 */ 1329 case 0x30: /* TIMEOUT3 */ 1330 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */ 1331 case 0x40: /* EMIFS_CFG_DYN_WAIT */ 1332 s->tcmi_regs[addr >> 2] = value; 1333 break; 1334 case 0x0c: /* EMIFS_CONFIG */ 1335 s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4); 1336 break; 1337 1338 default: 1339 OMAP_BAD_REG(addr); 1340 } 1341 } 1342 1343 static const MemoryRegionOps omap_tcmi_ops = { 1344 .read = omap_tcmi_read, 1345 .write = omap_tcmi_write, 1346 .endianness = DEVICE_NATIVE_ENDIAN, 1347 }; 1348 1349 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu) 1350 { 1351 mpu->tcmi_regs[0x00 >> 2] = 0x00000000; 1352 mpu->tcmi_regs[0x04 >> 2] = 0x00000000; 1353 mpu->tcmi_regs[0x08 >> 2] = 0x00000000; 1354 mpu->tcmi_regs[0x0c >> 2] = 0x00000010; 1355 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb; 1356 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb; 1357 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb; 1358 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb; 1359 mpu->tcmi_regs[0x20 >> 2] = 0x00618800; 1360 mpu->tcmi_regs[0x24 >> 2] = 0x00000037; 1361 mpu->tcmi_regs[0x28 >> 2] = 0x00000000; 1362 mpu->tcmi_regs[0x2c >> 2] = 0x00000000; 1363 mpu->tcmi_regs[0x30 >> 2] = 0x00000000; 1364 mpu->tcmi_regs[0x3c >> 2] = 0x00000003; 1365 mpu->tcmi_regs[0x40 >> 2] = 0x00000000; 1366 } 1367 1368 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base, 1369 struct omap_mpu_state_s *mpu) 1370 { 1371 memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu, 1372 "omap-tcmi", 0x100); 1373 memory_region_add_subregion(memory, base, &mpu->tcmi_iomem); 1374 omap_tcmi_reset(mpu); 1375 } 1376 1377 /* Digital phase-locked loops control */ 1378 struct dpll_ctl_s { 1379 MemoryRegion iomem; 1380 uint16_t mode; 1381 omap_clk dpll; 1382 }; 1383 1384 static uint64_t omap_dpll_read(void *opaque, hwaddr addr, 1385 unsigned size) 1386 { 1387 struct dpll_ctl_s *s = opaque; 1388 1389 if (size != 2) { 1390 return omap_badwidth_read16(opaque, addr); 1391 } 1392 1393 if (addr == 0x00) /* CTL_REG */ 1394 return s->mode; 1395 1396 OMAP_BAD_REG(addr); 1397 return 0; 1398 } 1399 1400 static void omap_dpll_write(void *opaque, hwaddr addr, 1401 uint64_t value, unsigned size) 1402 { 1403 struct dpll_ctl_s *s = opaque; 1404 uint16_t diff; 1405 static const int bypass_div[4] = { 1, 2, 4, 4 }; 1406 int div, mult; 1407 1408 if (size != 2) { 1409 omap_badwidth_write16(opaque, addr, value); 1410 return; 1411 } 1412 1413 if (addr == 0x00) { /* CTL_REG */ 1414 /* See omap_ulpd_pm_write() too */ 1415 diff = s->mode & value; 1416 s->mode = value & 0x2fff; 1417 if (diff & (0x3ff << 2)) { 1418 if (value & (1 << 4)) { /* PLL_ENABLE */ 1419 div = ((value >> 5) & 3) + 1; /* PLL_DIV */ 1420 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */ 1421 } else { 1422 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */ 1423 mult = 1; 1424 } 1425 omap_clk_setrate(s->dpll, div, mult); 1426 } 1427 1428 /* Enter the desired mode. */ 1429 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1); 1430 1431 /* Act as if the lock is restored. */ 1432 s->mode |= 2; 1433 } else { 1434 OMAP_BAD_REG(addr); 1435 } 1436 } 1437 1438 static const MemoryRegionOps omap_dpll_ops = { 1439 .read = omap_dpll_read, 1440 .write = omap_dpll_write, 1441 .endianness = DEVICE_NATIVE_ENDIAN, 1442 }; 1443 1444 static void omap_dpll_reset(struct dpll_ctl_s *s) 1445 { 1446 s->mode = 0x2002; 1447 omap_clk_setrate(s->dpll, 1, 1); 1448 } 1449 1450 static struct dpll_ctl_s *omap_dpll_init(MemoryRegion *memory, 1451 hwaddr base, omap_clk clk) 1452 { 1453 struct dpll_ctl_s *s = g_malloc0(sizeof(*s)); 1454 memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100); 1455 1456 s->dpll = clk; 1457 omap_dpll_reset(s); 1458 1459 memory_region_add_subregion(memory, base, &s->iomem); 1460 return s; 1461 } 1462 1463 /* MPU Clock/Reset/Power Mode Control */ 1464 static uint64_t omap_clkm_read(void *opaque, hwaddr addr, 1465 unsigned size) 1466 { 1467 struct omap_mpu_state_s *s = opaque; 1468 1469 if (size != 2) { 1470 return omap_badwidth_read16(opaque, addr); 1471 } 1472 1473 switch (addr) { 1474 case 0x00: /* ARM_CKCTL */ 1475 return s->clkm.arm_ckctl; 1476 1477 case 0x04: /* ARM_IDLECT1 */ 1478 return s->clkm.arm_idlect1; 1479 1480 case 0x08: /* ARM_IDLECT2 */ 1481 return s->clkm.arm_idlect2; 1482 1483 case 0x0c: /* ARM_EWUPCT */ 1484 return s->clkm.arm_ewupct; 1485 1486 case 0x10: /* ARM_RSTCT1 */ 1487 return s->clkm.arm_rstct1; 1488 1489 case 0x14: /* ARM_RSTCT2 */ 1490 return s->clkm.arm_rstct2; 1491 1492 case 0x18: /* ARM_SYSST */ 1493 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start; 1494 1495 case 0x1c: /* ARM_CKOUT1 */ 1496 return s->clkm.arm_ckout1; 1497 1498 case 0x20: /* ARM_CKOUT2 */ 1499 break; 1500 } 1501 1502 OMAP_BAD_REG(addr); 1503 return 0; 1504 } 1505 1506 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s, 1507 uint16_t diff, uint16_t value) 1508 { 1509 omap_clk clk; 1510 1511 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */ 1512 if (value & (1 << 14)) 1513 /* Reserved */; 1514 else { 1515 clk = omap_findclk(s, "arminth_ck"); 1516 omap_clk_reparent(clk, omap_findclk(s, "tc_ck")); 1517 } 1518 } 1519 if (diff & (1 << 12)) { /* ARM_TIMXO */ 1520 clk = omap_findclk(s, "armtim_ck"); 1521 if (value & (1 << 12)) 1522 omap_clk_reparent(clk, omap_findclk(s, "clkin")); 1523 else 1524 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1")); 1525 } 1526 /* XXX: en_dspck */ 1527 if (diff & (3 << 10)) { /* DSPMMUDIV */ 1528 clk = omap_findclk(s, "dspmmu_ck"); 1529 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1); 1530 } 1531 if (diff & (3 << 8)) { /* TCDIV */ 1532 clk = omap_findclk(s, "tc_ck"); 1533 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1); 1534 } 1535 if (diff & (3 << 6)) { /* DSPDIV */ 1536 clk = omap_findclk(s, "dsp_ck"); 1537 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1); 1538 } 1539 if (diff & (3 << 4)) { /* ARMDIV */ 1540 clk = omap_findclk(s, "arm_ck"); 1541 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1); 1542 } 1543 if (diff & (3 << 2)) { /* LCDDIV */ 1544 clk = omap_findclk(s, "lcd_ck"); 1545 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1); 1546 } 1547 if (diff & (3 << 0)) { /* PERDIV */ 1548 clk = omap_findclk(s, "armper_ck"); 1549 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1); 1550 } 1551 } 1552 1553 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s, 1554 uint16_t diff, uint16_t value) 1555 { 1556 omap_clk clk; 1557 1558 if (value & (1 << 11)) { /* SETARM_IDLE */ 1559 cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT); 1560 } 1561 if (!(value & (1 << 10))) { /* WKUP_MODE */ 1562 /* XXX: disable wakeup from IRQ */ 1563 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 1564 } 1565 1566 #define SET_CANIDLE(clock, bit) \ 1567 if (diff & (1 << bit)) { \ 1568 clk = omap_findclk(s, clock); \ 1569 omap_clk_canidle(clk, (value >> bit) & 1); \ 1570 } 1571 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */ 1572 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */ 1573 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */ 1574 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */ 1575 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */ 1576 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */ 1577 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */ 1578 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */ 1579 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */ 1580 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */ 1581 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */ 1582 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */ 1583 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */ 1584 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */ 1585 } 1586 1587 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s, 1588 uint16_t diff, uint16_t value) 1589 { 1590 omap_clk clk; 1591 1592 #define SET_ONOFF(clock, bit) \ 1593 if (diff & (1 << bit)) { \ 1594 clk = omap_findclk(s, clock); \ 1595 omap_clk_onoff(clk, (value >> bit) & 1); \ 1596 } 1597 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */ 1598 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */ 1599 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */ 1600 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */ 1601 SET_ONOFF("lb_ck", 4) /* EN_LBCK */ 1602 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */ 1603 SET_ONOFF("mpui_ck", 6) /* EN_APICK */ 1604 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */ 1605 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */ 1606 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */ 1607 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */ 1608 } 1609 1610 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s, 1611 uint16_t diff, uint16_t value) 1612 { 1613 omap_clk clk; 1614 1615 if (diff & (3 << 4)) { /* TCLKOUT */ 1616 clk = omap_findclk(s, "tclk_out"); 1617 switch ((value >> 4) & 3) { 1618 case 1: 1619 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3")); 1620 omap_clk_onoff(clk, 1); 1621 break; 1622 case 2: 1623 omap_clk_reparent(clk, omap_findclk(s, "tc_ck")); 1624 omap_clk_onoff(clk, 1); 1625 break; 1626 default: 1627 omap_clk_onoff(clk, 0); 1628 } 1629 } 1630 if (diff & (3 << 2)) { /* DCLKOUT */ 1631 clk = omap_findclk(s, "dclk_out"); 1632 switch ((value >> 2) & 3) { 1633 case 0: 1634 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck")); 1635 break; 1636 case 1: 1637 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2")); 1638 break; 1639 case 2: 1640 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck")); 1641 break; 1642 case 3: 1643 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14")); 1644 break; 1645 } 1646 } 1647 if (diff & (3 << 0)) { /* ACLKOUT */ 1648 clk = omap_findclk(s, "aclk_out"); 1649 switch ((value >> 0) & 3) { 1650 case 1: 1651 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1")); 1652 omap_clk_onoff(clk, 1); 1653 break; 1654 case 2: 1655 omap_clk_reparent(clk, omap_findclk(s, "arm_ck")); 1656 omap_clk_onoff(clk, 1); 1657 break; 1658 case 3: 1659 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14")); 1660 omap_clk_onoff(clk, 1); 1661 break; 1662 default: 1663 omap_clk_onoff(clk, 0); 1664 } 1665 } 1666 } 1667 1668 static void omap_clkm_write(void *opaque, hwaddr addr, 1669 uint64_t value, unsigned size) 1670 { 1671 struct omap_mpu_state_s *s = opaque; 1672 uint16_t diff; 1673 omap_clk clk; 1674 static const char *clkschemename[8] = { 1675 "fully synchronous", "fully asynchronous", "synchronous scalable", 1676 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4", 1677 }; 1678 1679 if (size != 2) { 1680 omap_badwidth_write16(opaque, addr, value); 1681 return; 1682 } 1683 1684 switch (addr) { 1685 case 0x00: /* ARM_CKCTL */ 1686 diff = s->clkm.arm_ckctl ^ value; 1687 s->clkm.arm_ckctl = value & 0x7fff; 1688 omap_clkm_ckctl_update(s, diff, value); 1689 return; 1690 1691 case 0x04: /* ARM_IDLECT1 */ 1692 diff = s->clkm.arm_idlect1 ^ value; 1693 s->clkm.arm_idlect1 = value & 0x0fff; 1694 omap_clkm_idlect1_update(s, diff, value); 1695 return; 1696 1697 case 0x08: /* ARM_IDLECT2 */ 1698 diff = s->clkm.arm_idlect2 ^ value; 1699 s->clkm.arm_idlect2 = value & 0x07ff; 1700 omap_clkm_idlect2_update(s, diff, value); 1701 return; 1702 1703 case 0x0c: /* ARM_EWUPCT */ 1704 s->clkm.arm_ewupct = value & 0x003f; 1705 return; 1706 1707 case 0x10: /* ARM_RSTCT1 */ 1708 diff = s->clkm.arm_rstct1 ^ value; 1709 s->clkm.arm_rstct1 = value & 0x0007; 1710 if (value & 9) { 1711 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 1712 s->clkm.cold_start = 0xa; 1713 } 1714 if (diff & ~value & 4) { /* DSP_RST */ 1715 omap_mpui_reset(s); 1716 omap_tipb_bridge_reset(s->private_tipb); 1717 omap_tipb_bridge_reset(s->public_tipb); 1718 } 1719 if (diff & 2) { /* DSP_EN */ 1720 clk = omap_findclk(s, "dsp_ck"); 1721 omap_clk_canidle(clk, (~value >> 1) & 1); 1722 } 1723 return; 1724 1725 case 0x14: /* ARM_RSTCT2 */ 1726 s->clkm.arm_rstct2 = value & 0x0001; 1727 return; 1728 1729 case 0x18: /* ARM_SYSST */ 1730 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) { 1731 s->clkm.clocking_scheme = (value >> 11) & 7; 1732 printf("%s: clocking scheme set to %s\n", __func__, 1733 clkschemename[s->clkm.clocking_scheme]); 1734 } 1735 s->clkm.cold_start &= value & 0x3f; 1736 return; 1737 1738 case 0x1c: /* ARM_CKOUT1 */ 1739 diff = s->clkm.arm_ckout1 ^ value; 1740 s->clkm.arm_ckout1 = value & 0x003f; 1741 omap_clkm_ckout1_update(s, diff, value); 1742 return; 1743 1744 case 0x20: /* ARM_CKOUT2 */ 1745 default: 1746 OMAP_BAD_REG(addr); 1747 } 1748 } 1749 1750 static const MemoryRegionOps omap_clkm_ops = { 1751 .read = omap_clkm_read, 1752 .write = omap_clkm_write, 1753 .endianness = DEVICE_NATIVE_ENDIAN, 1754 }; 1755 1756 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr, 1757 unsigned size) 1758 { 1759 struct omap_mpu_state_s *s = opaque; 1760 CPUState *cpu = CPU(s->cpu); 1761 1762 if (size != 2) { 1763 return omap_badwidth_read16(opaque, addr); 1764 } 1765 1766 switch (addr) { 1767 case 0x04: /* DSP_IDLECT1 */ 1768 return s->clkm.dsp_idlect1; 1769 1770 case 0x08: /* DSP_IDLECT2 */ 1771 return s->clkm.dsp_idlect2; 1772 1773 case 0x14: /* DSP_RSTCT2 */ 1774 return s->clkm.dsp_rstct2; 1775 1776 case 0x18: /* DSP_SYSST */ 1777 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start | 1778 (cpu->halted << 6); /* Quite useless... */ 1779 } 1780 1781 OMAP_BAD_REG(addr); 1782 return 0; 1783 } 1784 1785 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s, 1786 uint16_t diff, uint16_t value) 1787 { 1788 omap_clk clk; 1789 1790 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */ 1791 } 1792 1793 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s, 1794 uint16_t diff, uint16_t value) 1795 { 1796 omap_clk clk; 1797 1798 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */ 1799 } 1800 1801 static void omap_clkdsp_write(void *opaque, hwaddr addr, 1802 uint64_t value, unsigned size) 1803 { 1804 struct omap_mpu_state_s *s = opaque; 1805 uint16_t diff; 1806 1807 if (size != 2) { 1808 omap_badwidth_write16(opaque, addr, value); 1809 return; 1810 } 1811 1812 switch (addr) { 1813 case 0x04: /* DSP_IDLECT1 */ 1814 diff = s->clkm.dsp_idlect1 ^ value; 1815 s->clkm.dsp_idlect1 = value & 0x01f7; 1816 omap_clkdsp_idlect1_update(s, diff, value); 1817 break; 1818 1819 case 0x08: /* DSP_IDLECT2 */ 1820 s->clkm.dsp_idlect2 = value & 0x0037; 1821 diff = s->clkm.dsp_idlect1 ^ value; 1822 omap_clkdsp_idlect2_update(s, diff, value); 1823 break; 1824 1825 case 0x14: /* DSP_RSTCT2 */ 1826 s->clkm.dsp_rstct2 = value & 0x0001; 1827 break; 1828 1829 case 0x18: /* DSP_SYSST */ 1830 s->clkm.cold_start &= value & 0x3f; 1831 break; 1832 1833 default: 1834 OMAP_BAD_REG(addr); 1835 } 1836 } 1837 1838 static const MemoryRegionOps omap_clkdsp_ops = { 1839 .read = omap_clkdsp_read, 1840 .write = omap_clkdsp_write, 1841 .endianness = DEVICE_NATIVE_ENDIAN, 1842 }; 1843 1844 static void omap_clkm_reset(struct omap_mpu_state_s *s) 1845 { 1846 if (s->wdt && s->wdt->reset) 1847 s->clkm.cold_start = 0x6; 1848 s->clkm.clocking_scheme = 0; 1849 omap_clkm_ckctl_update(s, ~0, 0x3000); 1850 s->clkm.arm_ckctl = 0x3000; 1851 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400); 1852 s->clkm.arm_idlect1 = 0x0400; 1853 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100); 1854 s->clkm.arm_idlect2 = 0x0100; 1855 s->clkm.arm_ewupct = 0x003f; 1856 s->clkm.arm_rstct1 = 0x0000; 1857 s->clkm.arm_rstct2 = 0x0000; 1858 s->clkm.arm_ckout1 = 0x0015; 1859 s->clkm.dpll1_mode = 0x2002; 1860 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040); 1861 s->clkm.dsp_idlect1 = 0x0040; 1862 omap_clkdsp_idlect2_update(s, ~0, 0x0000); 1863 s->clkm.dsp_idlect2 = 0x0000; 1864 s->clkm.dsp_rstct2 = 0x0000; 1865 } 1866 1867 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base, 1868 hwaddr dsp_base, struct omap_mpu_state_s *s) 1869 { 1870 memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s, 1871 "omap-clkm", 0x100); 1872 memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s, 1873 "omap-clkdsp", 0x1000); 1874 1875 s->clkm.arm_idlect1 = 0x03ff; 1876 s->clkm.arm_idlect2 = 0x0100; 1877 s->clkm.dsp_idlect1 = 0x0002; 1878 omap_clkm_reset(s); 1879 s->clkm.cold_start = 0x3a; 1880 1881 memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem); 1882 memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem); 1883 } 1884 1885 /* MPU I/O */ 1886 struct omap_mpuio_s { 1887 qemu_irq irq; 1888 qemu_irq kbd_irq; 1889 qemu_irq *in; 1890 qemu_irq handler[16]; 1891 qemu_irq wakeup; 1892 MemoryRegion iomem; 1893 1894 uint16_t inputs; 1895 uint16_t outputs; 1896 uint16_t dir; 1897 uint16_t edge; 1898 uint16_t mask; 1899 uint16_t ints; 1900 1901 uint16_t debounce; 1902 uint16_t latch; 1903 uint8_t event; 1904 1905 uint8_t buttons[5]; 1906 uint8_t row_latch; 1907 uint8_t cols; 1908 int kbd_mask; 1909 int clk; 1910 }; 1911 1912 static void omap_mpuio_set(void *opaque, int line, int level) 1913 { 1914 struct omap_mpuio_s *s = opaque; 1915 uint16_t prev = s->inputs; 1916 1917 if (level) 1918 s->inputs |= 1 << line; 1919 else 1920 s->inputs &= ~(1 << line); 1921 1922 if (((1 << line) & s->dir & ~s->mask) && s->clk) { 1923 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) { 1924 s->ints |= 1 << line; 1925 qemu_irq_raise(s->irq); 1926 /* TODO: wakeup */ 1927 } 1928 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */ 1929 (s->event >> 1) == line) /* PIN_SELECT */ 1930 s->latch = s->inputs; 1931 } 1932 } 1933 1934 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s) 1935 { 1936 int i; 1937 uint8_t *row, rows = 0, cols = ~s->cols; 1938 1939 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1) 1940 if (*row & cols) 1941 rows |= i; 1942 1943 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk); 1944 s->row_latch = ~rows; 1945 } 1946 1947 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr, 1948 unsigned size) 1949 { 1950 struct omap_mpuio_s *s = opaque; 1951 int offset = addr & OMAP_MPUI_REG_MASK; 1952 uint16_t ret; 1953 1954 if (size != 2) { 1955 return omap_badwidth_read16(opaque, addr); 1956 } 1957 1958 switch (offset) { 1959 case 0x00: /* INPUT_LATCH */ 1960 return s->inputs; 1961 1962 case 0x04: /* OUTPUT_REG */ 1963 return s->outputs; 1964 1965 case 0x08: /* IO_CNTL */ 1966 return s->dir; 1967 1968 case 0x10: /* KBR_LATCH */ 1969 return s->row_latch; 1970 1971 case 0x14: /* KBC_REG */ 1972 return s->cols; 1973 1974 case 0x18: /* GPIO_EVENT_MODE_REG */ 1975 return s->event; 1976 1977 case 0x1c: /* GPIO_INT_EDGE_REG */ 1978 return s->edge; 1979 1980 case 0x20: /* KBD_INT */ 1981 return (~s->row_latch & 0x1f) && !s->kbd_mask; 1982 1983 case 0x24: /* GPIO_INT */ 1984 ret = s->ints; 1985 s->ints &= s->mask; 1986 if (ret) 1987 qemu_irq_lower(s->irq); 1988 return ret; 1989 1990 case 0x28: /* KBD_MASKIT */ 1991 return s->kbd_mask; 1992 1993 case 0x2c: /* GPIO_MASKIT */ 1994 return s->mask; 1995 1996 case 0x30: /* GPIO_DEBOUNCING_REG */ 1997 return s->debounce; 1998 1999 case 0x34: /* GPIO_LATCH_REG */ 2000 return s->latch; 2001 } 2002 2003 OMAP_BAD_REG(addr); 2004 return 0; 2005 } 2006 2007 static void omap_mpuio_write(void *opaque, hwaddr addr, 2008 uint64_t value, unsigned size) 2009 { 2010 struct omap_mpuio_s *s = opaque; 2011 int offset = addr & OMAP_MPUI_REG_MASK; 2012 uint16_t diff; 2013 int ln; 2014 2015 if (size != 2) { 2016 omap_badwidth_write16(opaque, addr, value); 2017 return; 2018 } 2019 2020 switch (offset) { 2021 case 0x04: /* OUTPUT_REG */ 2022 diff = (s->outputs ^ value) & ~s->dir; 2023 s->outputs = value; 2024 while ((ln = ctz32(diff)) != 32) { 2025 if (s->handler[ln]) 2026 qemu_set_irq(s->handler[ln], (value >> ln) & 1); 2027 diff &= ~(1 << ln); 2028 } 2029 break; 2030 2031 case 0x08: /* IO_CNTL */ 2032 diff = s->outputs & (s->dir ^ value); 2033 s->dir = value; 2034 2035 value = s->outputs & ~s->dir; 2036 while ((ln = ctz32(diff)) != 32) { 2037 if (s->handler[ln]) 2038 qemu_set_irq(s->handler[ln], (value >> ln) & 1); 2039 diff &= ~(1 << ln); 2040 } 2041 break; 2042 2043 case 0x14: /* KBC_REG */ 2044 s->cols = value; 2045 omap_mpuio_kbd_update(s); 2046 break; 2047 2048 case 0x18: /* GPIO_EVENT_MODE_REG */ 2049 s->event = value & 0x1f; 2050 break; 2051 2052 case 0x1c: /* GPIO_INT_EDGE_REG */ 2053 s->edge = value; 2054 break; 2055 2056 case 0x28: /* KBD_MASKIT */ 2057 s->kbd_mask = value & 1; 2058 omap_mpuio_kbd_update(s); 2059 break; 2060 2061 case 0x2c: /* GPIO_MASKIT */ 2062 s->mask = value; 2063 break; 2064 2065 case 0x30: /* GPIO_DEBOUNCING_REG */ 2066 s->debounce = value & 0x1ff; 2067 break; 2068 2069 case 0x00: /* INPUT_LATCH */ 2070 case 0x10: /* KBR_LATCH */ 2071 case 0x20: /* KBD_INT */ 2072 case 0x24: /* GPIO_INT */ 2073 case 0x34: /* GPIO_LATCH_REG */ 2074 OMAP_RO_REG(addr); 2075 return; 2076 2077 default: 2078 OMAP_BAD_REG(addr); 2079 return; 2080 } 2081 } 2082 2083 static const MemoryRegionOps omap_mpuio_ops = { 2084 .read = omap_mpuio_read, 2085 .write = omap_mpuio_write, 2086 .endianness = DEVICE_NATIVE_ENDIAN, 2087 }; 2088 2089 static void omap_mpuio_reset(struct omap_mpuio_s *s) 2090 { 2091 s->inputs = 0; 2092 s->outputs = 0; 2093 s->dir = ~0; 2094 s->event = 0; 2095 s->edge = 0; 2096 s->kbd_mask = 0; 2097 s->mask = 0; 2098 s->debounce = 0; 2099 s->latch = 0; 2100 s->ints = 0; 2101 s->row_latch = 0x1f; 2102 s->clk = 1; 2103 } 2104 2105 static void omap_mpuio_onoff(void *opaque, int line, int on) 2106 { 2107 struct omap_mpuio_s *s = opaque; 2108 2109 s->clk = on; 2110 if (on) 2111 omap_mpuio_kbd_update(s); 2112 } 2113 2114 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory, 2115 hwaddr base, 2116 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup, 2117 omap_clk clk) 2118 { 2119 struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1); 2120 2121 s->irq = gpio_int; 2122 s->kbd_irq = kbd_int; 2123 s->wakeup = wakeup; 2124 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16); 2125 omap_mpuio_reset(s); 2126 2127 memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s, 2128 "omap-mpuio", 0x800); 2129 memory_region_add_subregion(memory, base, &s->iomem); 2130 2131 omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0)); 2132 2133 return s; 2134 } 2135 2136 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s) 2137 { 2138 return s->in; 2139 } 2140 2141 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler) 2142 { 2143 if (line >= 16 || line < 0) 2144 hw_error("%s: No GPIO line %i\n", __func__, line); 2145 s->handler[line] = handler; 2146 } 2147 2148 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down) 2149 { 2150 if (row >= 5 || row < 0) 2151 hw_error("%s: No key %i-%i\n", __func__, col, row); 2152 2153 if (down) 2154 s->buttons[row] |= 1 << col; 2155 else 2156 s->buttons[row] &= ~(1 << col); 2157 2158 omap_mpuio_kbd_update(s); 2159 } 2160 2161 /* MicroWire Interface */ 2162 struct omap_uwire_s { 2163 MemoryRegion iomem; 2164 qemu_irq txirq; 2165 qemu_irq rxirq; 2166 qemu_irq txdrq; 2167 2168 uint16_t txbuf; 2169 uint16_t rxbuf; 2170 uint16_t control; 2171 uint16_t setup[5]; 2172 2173 uWireSlave *chip[4]; 2174 }; 2175 2176 static void omap_uwire_transfer_start(struct omap_uwire_s *s) 2177 { 2178 int chipselect = (s->control >> 10) & 3; /* INDEX */ 2179 uWireSlave *slave = s->chip[chipselect]; 2180 2181 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */ 2182 if (s->control & (1 << 12)) /* CS_CMD */ 2183 if (slave && slave->send) 2184 slave->send(slave->opaque, 2185 s->txbuf >> (16 - ((s->control >> 5) & 0x1f))); 2186 s->control &= ~(1 << 14); /* CSRB */ 2187 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or 2188 * a DRQ. When is the level IRQ supposed to be reset? */ 2189 } 2190 2191 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */ 2192 if (s->control & (1 << 12)) /* CS_CMD */ 2193 if (slave && slave->receive) 2194 s->rxbuf = slave->receive(slave->opaque); 2195 s->control |= 1 << 15; /* RDRB */ 2196 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or 2197 * a DRQ. When is the level IRQ supposed to be reset? */ 2198 } 2199 } 2200 2201 static uint64_t omap_uwire_read(void *opaque, hwaddr addr, unsigned size) 2202 { 2203 struct omap_uwire_s *s = opaque; 2204 int offset = addr & OMAP_MPUI_REG_MASK; 2205 2206 if (size != 2) { 2207 return omap_badwidth_read16(opaque, addr); 2208 } 2209 2210 switch (offset) { 2211 case 0x00: /* RDR */ 2212 s->control &= ~(1 << 15); /* RDRB */ 2213 return s->rxbuf; 2214 2215 case 0x04: /* CSR */ 2216 return s->control; 2217 2218 case 0x08: /* SR1 */ 2219 return s->setup[0]; 2220 case 0x0c: /* SR2 */ 2221 return s->setup[1]; 2222 case 0x10: /* SR3 */ 2223 return s->setup[2]; 2224 case 0x14: /* SR4 */ 2225 return s->setup[3]; 2226 case 0x18: /* SR5 */ 2227 return s->setup[4]; 2228 } 2229 2230 OMAP_BAD_REG(addr); 2231 return 0; 2232 } 2233 2234 static void omap_uwire_write(void *opaque, hwaddr addr, 2235 uint64_t value, unsigned size) 2236 { 2237 struct omap_uwire_s *s = opaque; 2238 int offset = addr & OMAP_MPUI_REG_MASK; 2239 2240 if (size != 2) { 2241 omap_badwidth_write16(opaque, addr, value); 2242 return; 2243 } 2244 2245 switch (offset) { 2246 case 0x00: /* TDR */ 2247 s->txbuf = value; /* TD */ 2248 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */ 2249 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */ 2250 (s->control & (1 << 12)))) { /* CS_CMD */ 2251 s->control |= 1 << 14; /* CSRB */ 2252 omap_uwire_transfer_start(s); 2253 } 2254 break; 2255 2256 case 0x04: /* CSR */ 2257 s->control = value & 0x1fff; 2258 if (value & (1 << 13)) /* START */ 2259 omap_uwire_transfer_start(s); 2260 break; 2261 2262 case 0x08: /* SR1 */ 2263 s->setup[0] = value & 0x003f; 2264 break; 2265 2266 case 0x0c: /* SR2 */ 2267 s->setup[1] = value & 0x0fc0; 2268 break; 2269 2270 case 0x10: /* SR3 */ 2271 s->setup[2] = value & 0x0003; 2272 break; 2273 2274 case 0x14: /* SR4 */ 2275 s->setup[3] = value & 0x0001; 2276 break; 2277 2278 case 0x18: /* SR5 */ 2279 s->setup[4] = value & 0x000f; 2280 break; 2281 2282 default: 2283 OMAP_BAD_REG(addr); 2284 return; 2285 } 2286 } 2287 2288 static const MemoryRegionOps omap_uwire_ops = { 2289 .read = omap_uwire_read, 2290 .write = omap_uwire_write, 2291 .endianness = DEVICE_NATIVE_ENDIAN, 2292 }; 2293 2294 static void omap_uwire_reset(struct omap_uwire_s *s) 2295 { 2296 s->control = 0; 2297 s->setup[0] = 0; 2298 s->setup[1] = 0; 2299 s->setup[2] = 0; 2300 s->setup[3] = 0; 2301 s->setup[4] = 0; 2302 } 2303 2304 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory, 2305 hwaddr base, 2306 qemu_irq txirq, qemu_irq rxirq, 2307 qemu_irq dma, 2308 omap_clk clk) 2309 { 2310 struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1); 2311 2312 s->txirq = txirq; 2313 s->rxirq = rxirq; 2314 s->txdrq = dma; 2315 omap_uwire_reset(s); 2316 2317 memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800); 2318 memory_region_add_subregion(system_memory, base, &s->iomem); 2319 2320 return s; 2321 } 2322 2323 void omap_uwire_attach(struct omap_uwire_s *s, 2324 uWireSlave *slave, int chipselect) 2325 { 2326 if (chipselect < 0 || chipselect > 3) { 2327 error_report("%s: Bad chipselect %i", __func__, chipselect); 2328 exit(-1); 2329 } 2330 2331 s->chip[chipselect] = slave; 2332 } 2333 2334 /* Pseudonoise Pulse-Width Light Modulator */ 2335 struct omap_pwl_s { 2336 MemoryRegion iomem; 2337 uint8_t output; 2338 uint8_t level; 2339 uint8_t enable; 2340 int clk; 2341 }; 2342 2343 static void omap_pwl_update(struct omap_pwl_s *s) 2344 { 2345 int output = (s->clk && s->enable) ? s->level : 0; 2346 2347 if (output != s->output) { 2348 s->output = output; 2349 printf("%s: Backlight now at %i/256\n", __func__, output); 2350 } 2351 } 2352 2353 static uint64_t omap_pwl_read(void *opaque, hwaddr addr, unsigned size) 2354 { 2355 struct omap_pwl_s *s = opaque; 2356 int offset = addr & OMAP_MPUI_REG_MASK; 2357 2358 if (size != 1) { 2359 return omap_badwidth_read8(opaque, addr); 2360 } 2361 2362 switch (offset) { 2363 case 0x00: /* PWL_LEVEL */ 2364 return s->level; 2365 case 0x04: /* PWL_CTRL */ 2366 return s->enable; 2367 } 2368 OMAP_BAD_REG(addr); 2369 return 0; 2370 } 2371 2372 static void omap_pwl_write(void *opaque, hwaddr addr, 2373 uint64_t value, unsigned size) 2374 { 2375 struct omap_pwl_s *s = opaque; 2376 int offset = addr & OMAP_MPUI_REG_MASK; 2377 2378 if (size != 1) { 2379 omap_badwidth_write8(opaque, addr, value); 2380 return; 2381 } 2382 2383 switch (offset) { 2384 case 0x00: /* PWL_LEVEL */ 2385 s->level = value; 2386 omap_pwl_update(s); 2387 break; 2388 case 0x04: /* PWL_CTRL */ 2389 s->enable = value & 1; 2390 omap_pwl_update(s); 2391 break; 2392 default: 2393 OMAP_BAD_REG(addr); 2394 return; 2395 } 2396 } 2397 2398 static const MemoryRegionOps omap_pwl_ops = { 2399 .read = omap_pwl_read, 2400 .write = omap_pwl_write, 2401 .endianness = DEVICE_NATIVE_ENDIAN, 2402 }; 2403 2404 static void omap_pwl_reset(struct omap_pwl_s *s) 2405 { 2406 s->output = 0; 2407 s->level = 0; 2408 s->enable = 0; 2409 s->clk = 1; 2410 omap_pwl_update(s); 2411 } 2412 2413 static void omap_pwl_clk_update(void *opaque, int line, int on) 2414 { 2415 struct omap_pwl_s *s = opaque; 2416 2417 s->clk = on; 2418 omap_pwl_update(s); 2419 } 2420 2421 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory, 2422 hwaddr base, 2423 omap_clk clk) 2424 { 2425 struct omap_pwl_s *s = g_malloc0(sizeof(*s)); 2426 2427 omap_pwl_reset(s); 2428 2429 memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s, 2430 "omap-pwl", 0x800); 2431 memory_region_add_subregion(system_memory, base, &s->iomem); 2432 2433 omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0)); 2434 return s; 2435 } 2436 2437 /* Pulse-Width Tone module */ 2438 struct omap_pwt_s { 2439 MemoryRegion iomem; 2440 uint8_t frc; 2441 uint8_t vrc; 2442 uint8_t gcr; 2443 omap_clk clk; 2444 }; 2445 2446 static uint64_t omap_pwt_read(void *opaque, hwaddr addr, unsigned size) 2447 { 2448 struct omap_pwt_s *s = opaque; 2449 int offset = addr & OMAP_MPUI_REG_MASK; 2450 2451 if (size != 1) { 2452 return omap_badwidth_read8(opaque, addr); 2453 } 2454 2455 switch (offset) { 2456 case 0x00: /* FRC */ 2457 return s->frc; 2458 case 0x04: /* VCR */ 2459 return s->vrc; 2460 case 0x08: /* GCR */ 2461 return s->gcr; 2462 } 2463 OMAP_BAD_REG(addr); 2464 return 0; 2465 } 2466 2467 static void omap_pwt_write(void *opaque, hwaddr addr, 2468 uint64_t value, unsigned size) 2469 { 2470 struct omap_pwt_s *s = opaque; 2471 int offset = addr & OMAP_MPUI_REG_MASK; 2472 2473 if (size != 1) { 2474 omap_badwidth_write8(opaque, addr, value); 2475 return; 2476 } 2477 2478 switch (offset) { 2479 case 0x00: /* FRC */ 2480 s->frc = value & 0x3f; 2481 break; 2482 case 0x04: /* VRC */ 2483 if ((value ^ s->vrc) & 1) { 2484 if (value & 1) 2485 printf("%s: %iHz buzz on\n", __func__, (int) 2486 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */ 2487 ((omap_clk_getrate(s->clk) >> 3) / 2488 /* Pre-multiplexer divider */ 2489 ((s->gcr & 2) ? 1 : 154) / 2490 /* Octave multiplexer */ 2491 (2 << (value & 3)) * 2492 /* 101/107 divider */ 2493 ((value & (1 << 2)) ? 101 : 107) * 2494 /* 49/55 divider */ 2495 ((value & (1 << 3)) ? 49 : 55) * 2496 /* 50/63 divider */ 2497 ((value & (1 << 4)) ? 50 : 63) * 2498 /* 80/127 divider */ 2499 ((value & (1 << 5)) ? 80 : 127) / 2500 (107 * 55 * 63 * 127))); 2501 else 2502 printf("%s: silence!\n", __func__); 2503 } 2504 s->vrc = value & 0x7f; 2505 break; 2506 case 0x08: /* GCR */ 2507 s->gcr = value & 3; 2508 break; 2509 default: 2510 OMAP_BAD_REG(addr); 2511 return; 2512 } 2513 } 2514 2515 static const MemoryRegionOps omap_pwt_ops = { 2516 .read =omap_pwt_read, 2517 .write = omap_pwt_write, 2518 .endianness = DEVICE_NATIVE_ENDIAN, 2519 }; 2520 2521 static void omap_pwt_reset(struct omap_pwt_s *s) 2522 { 2523 s->frc = 0; 2524 s->vrc = 0; 2525 s->gcr = 0; 2526 } 2527 2528 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory, 2529 hwaddr base, 2530 omap_clk clk) 2531 { 2532 struct omap_pwt_s *s = g_malloc0(sizeof(*s)); 2533 s->clk = clk; 2534 omap_pwt_reset(s); 2535 2536 memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s, 2537 "omap-pwt", 0x800); 2538 memory_region_add_subregion(system_memory, base, &s->iomem); 2539 return s; 2540 } 2541 2542 /* Real-time Clock module */ 2543 struct omap_rtc_s { 2544 MemoryRegion iomem; 2545 qemu_irq irq; 2546 qemu_irq alarm; 2547 QEMUTimer *clk; 2548 2549 uint8_t interrupts; 2550 uint8_t status; 2551 int16_t comp_reg; 2552 int running; 2553 int pm_am; 2554 int auto_comp; 2555 int round; 2556 struct tm alarm_tm; 2557 time_t alarm_ti; 2558 2559 struct tm current_tm; 2560 time_t ti; 2561 uint64_t tick; 2562 }; 2563 2564 static void omap_rtc_interrupts_update(struct omap_rtc_s *s) 2565 { 2566 /* s->alarm is level-triggered */ 2567 qemu_set_irq(s->alarm, (s->status >> 6) & 1); 2568 } 2569 2570 static void omap_rtc_alarm_update(struct omap_rtc_s *s) 2571 { 2572 s->alarm_ti = mktimegm(&s->alarm_tm); 2573 if (s->alarm_ti == -1) 2574 printf("%s: conversion failed\n", __func__); 2575 } 2576 2577 static uint64_t omap_rtc_read(void *opaque, hwaddr addr, unsigned size) 2578 { 2579 struct omap_rtc_s *s = opaque; 2580 int offset = addr & OMAP_MPUI_REG_MASK; 2581 uint8_t i; 2582 2583 if (size != 1) { 2584 return omap_badwidth_read8(opaque, addr); 2585 } 2586 2587 switch (offset) { 2588 case 0x00: /* SECONDS_REG */ 2589 return to_bcd(s->current_tm.tm_sec); 2590 2591 case 0x04: /* MINUTES_REG */ 2592 return to_bcd(s->current_tm.tm_min); 2593 2594 case 0x08: /* HOURS_REG */ 2595 if (s->pm_am) 2596 return ((s->current_tm.tm_hour > 11) << 7) | 2597 to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1); 2598 else 2599 return to_bcd(s->current_tm.tm_hour); 2600 2601 case 0x0c: /* DAYS_REG */ 2602 return to_bcd(s->current_tm.tm_mday); 2603 2604 case 0x10: /* MONTHS_REG */ 2605 return to_bcd(s->current_tm.tm_mon + 1); 2606 2607 case 0x14: /* YEARS_REG */ 2608 return to_bcd(s->current_tm.tm_year % 100); 2609 2610 case 0x18: /* WEEK_REG */ 2611 return s->current_tm.tm_wday; 2612 2613 case 0x20: /* ALARM_SECONDS_REG */ 2614 return to_bcd(s->alarm_tm.tm_sec); 2615 2616 case 0x24: /* ALARM_MINUTES_REG */ 2617 return to_bcd(s->alarm_tm.tm_min); 2618 2619 case 0x28: /* ALARM_HOURS_REG */ 2620 if (s->pm_am) 2621 return ((s->alarm_tm.tm_hour > 11) << 7) | 2622 to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1); 2623 else 2624 return to_bcd(s->alarm_tm.tm_hour); 2625 2626 case 0x2c: /* ALARM_DAYS_REG */ 2627 return to_bcd(s->alarm_tm.tm_mday); 2628 2629 case 0x30: /* ALARM_MONTHS_REG */ 2630 return to_bcd(s->alarm_tm.tm_mon + 1); 2631 2632 case 0x34: /* ALARM_YEARS_REG */ 2633 return to_bcd(s->alarm_tm.tm_year % 100); 2634 2635 case 0x40: /* RTC_CTRL_REG */ 2636 return (s->pm_am << 3) | (s->auto_comp << 2) | 2637 (s->round << 1) | s->running; 2638 2639 case 0x44: /* RTC_STATUS_REG */ 2640 i = s->status; 2641 s->status &= ~0x3d; 2642 return i; 2643 2644 case 0x48: /* RTC_INTERRUPTS_REG */ 2645 return s->interrupts; 2646 2647 case 0x4c: /* RTC_COMP_LSB_REG */ 2648 return ((uint16_t) s->comp_reg) & 0xff; 2649 2650 case 0x50: /* RTC_COMP_MSB_REG */ 2651 return ((uint16_t) s->comp_reg) >> 8; 2652 } 2653 2654 OMAP_BAD_REG(addr); 2655 return 0; 2656 } 2657 2658 static void omap_rtc_write(void *opaque, hwaddr addr, 2659 uint64_t value, unsigned size) 2660 { 2661 struct omap_rtc_s *s = opaque; 2662 int offset = addr & OMAP_MPUI_REG_MASK; 2663 struct tm new_tm; 2664 time_t ti[2]; 2665 2666 if (size != 1) { 2667 omap_badwidth_write8(opaque, addr, value); 2668 return; 2669 } 2670 2671 switch (offset) { 2672 case 0x00: /* SECONDS_REG */ 2673 #ifdef ALMDEBUG 2674 printf("RTC SEC_REG <-- %02x\n", value); 2675 #endif 2676 s->ti -= s->current_tm.tm_sec; 2677 s->ti += from_bcd(value); 2678 return; 2679 2680 case 0x04: /* MINUTES_REG */ 2681 #ifdef ALMDEBUG 2682 printf("RTC MIN_REG <-- %02x\n", value); 2683 #endif 2684 s->ti -= s->current_tm.tm_min * 60; 2685 s->ti += from_bcd(value) * 60; 2686 return; 2687 2688 case 0x08: /* HOURS_REG */ 2689 #ifdef ALMDEBUG 2690 printf("RTC HRS_REG <-- %02x\n", value); 2691 #endif 2692 s->ti -= s->current_tm.tm_hour * 3600; 2693 if (s->pm_am) { 2694 s->ti += (from_bcd(value & 0x3f) & 12) * 3600; 2695 s->ti += ((value >> 7) & 1) * 43200; 2696 } else 2697 s->ti += from_bcd(value & 0x3f) * 3600; 2698 return; 2699 2700 case 0x0c: /* DAYS_REG */ 2701 #ifdef ALMDEBUG 2702 printf("RTC DAY_REG <-- %02x\n", value); 2703 #endif 2704 s->ti -= s->current_tm.tm_mday * 86400; 2705 s->ti += from_bcd(value) * 86400; 2706 return; 2707 2708 case 0x10: /* MONTHS_REG */ 2709 #ifdef ALMDEBUG 2710 printf("RTC MTH_REG <-- %02x\n", value); 2711 #endif 2712 memcpy(&new_tm, &s->current_tm, sizeof(new_tm)); 2713 new_tm.tm_mon = from_bcd(value); 2714 ti[0] = mktimegm(&s->current_tm); 2715 ti[1] = mktimegm(&new_tm); 2716 2717 if (ti[0] != -1 && ti[1] != -1) { 2718 s->ti -= ti[0]; 2719 s->ti += ti[1]; 2720 } else { 2721 /* A less accurate version */ 2722 s->ti -= s->current_tm.tm_mon * 2592000; 2723 s->ti += from_bcd(value) * 2592000; 2724 } 2725 return; 2726 2727 case 0x14: /* YEARS_REG */ 2728 #ifdef ALMDEBUG 2729 printf("RTC YRS_REG <-- %02x\n", value); 2730 #endif 2731 memcpy(&new_tm, &s->current_tm, sizeof(new_tm)); 2732 new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100); 2733 ti[0] = mktimegm(&s->current_tm); 2734 ti[1] = mktimegm(&new_tm); 2735 2736 if (ti[0] != -1 && ti[1] != -1) { 2737 s->ti -= ti[0]; 2738 s->ti += ti[1]; 2739 } else { 2740 /* A less accurate version */ 2741 s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000; 2742 s->ti += (time_t)from_bcd(value) * 31536000; 2743 } 2744 return; 2745 2746 case 0x18: /* WEEK_REG */ 2747 return; /* Ignored */ 2748 2749 case 0x20: /* ALARM_SECONDS_REG */ 2750 #ifdef ALMDEBUG 2751 printf("ALM SEC_REG <-- %02x\n", value); 2752 #endif 2753 s->alarm_tm.tm_sec = from_bcd(value); 2754 omap_rtc_alarm_update(s); 2755 return; 2756 2757 case 0x24: /* ALARM_MINUTES_REG */ 2758 #ifdef ALMDEBUG 2759 printf("ALM MIN_REG <-- %02x\n", value); 2760 #endif 2761 s->alarm_tm.tm_min = from_bcd(value); 2762 omap_rtc_alarm_update(s); 2763 return; 2764 2765 case 0x28: /* ALARM_HOURS_REG */ 2766 #ifdef ALMDEBUG 2767 printf("ALM HRS_REG <-- %02x\n", value); 2768 #endif 2769 if (s->pm_am) 2770 s->alarm_tm.tm_hour = 2771 ((from_bcd(value & 0x3f)) % 12) + 2772 ((value >> 7) & 1) * 12; 2773 else 2774 s->alarm_tm.tm_hour = from_bcd(value); 2775 omap_rtc_alarm_update(s); 2776 return; 2777 2778 case 0x2c: /* ALARM_DAYS_REG */ 2779 #ifdef ALMDEBUG 2780 printf("ALM DAY_REG <-- %02x\n", value); 2781 #endif 2782 s->alarm_tm.tm_mday = from_bcd(value); 2783 omap_rtc_alarm_update(s); 2784 return; 2785 2786 case 0x30: /* ALARM_MONTHS_REG */ 2787 #ifdef ALMDEBUG 2788 printf("ALM MON_REG <-- %02x\n", value); 2789 #endif 2790 s->alarm_tm.tm_mon = from_bcd(value); 2791 omap_rtc_alarm_update(s); 2792 return; 2793 2794 case 0x34: /* ALARM_YEARS_REG */ 2795 #ifdef ALMDEBUG 2796 printf("ALM YRS_REG <-- %02x\n", value); 2797 #endif 2798 s->alarm_tm.tm_year = from_bcd(value); 2799 omap_rtc_alarm_update(s); 2800 return; 2801 2802 case 0x40: /* RTC_CTRL_REG */ 2803 #ifdef ALMDEBUG 2804 printf("RTC CONTROL <-- %02x\n", value); 2805 #endif 2806 s->pm_am = (value >> 3) & 1; 2807 s->auto_comp = (value >> 2) & 1; 2808 s->round = (value >> 1) & 1; 2809 s->running = value & 1; 2810 s->status &= 0xfd; 2811 s->status |= s->running << 1; 2812 return; 2813 2814 case 0x44: /* RTC_STATUS_REG */ 2815 #ifdef ALMDEBUG 2816 printf("RTC STATUSL <-- %02x\n", value); 2817 #endif 2818 s->status &= ~((value & 0xc0) ^ 0x80); 2819 omap_rtc_interrupts_update(s); 2820 return; 2821 2822 case 0x48: /* RTC_INTERRUPTS_REG */ 2823 #ifdef ALMDEBUG 2824 printf("RTC INTRS <-- %02x\n", value); 2825 #endif 2826 s->interrupts = value; 2827 return; 2828 2829 case 0x4c: /* RTC_COMP_LSB_REG */ 2830 #ifdef ALMDEBUG 2831 printf("RTC COMPLSB <-- %02x\n", value); 2832 #endif 2833 s->comp_reg &= 0xff00; 2834 s->comp_reg |= 0x00ff & value; 2835 return; 2836 2837 case 0x50: /* RTC_COMP_MSB_REG */ 2838 #ifdef ALMDEBUG 2839 printf("RTC COMPMSB <-- %02x\n", value); 2840 #endif 2841 s->comp_reg &= 0x00ff; 2842 s->comp_reg |= 0xff00 & (value << 8); 2843 return; 2844 2845 default: 2846 OMAP_BAD_REG(addr); 2847 return; 2848 } 2849 } 2850 2851 static const MemoryRegionOps omap_rtc_ops = { 2852 .read = omap_rtc_read, 2853 .write = omap_rtc_write, 2854 .endianness = DEVICE_NATIVE_ENDIAN, 2855 }; 2856 2857 static void omap_rtc_tick(void *opaque) 2858 { 2859 struct omap_rtc_s *s = opaque; 2860 2861 if (s->round) { 2862 /* Round to nearest full minute. */ 2863 if (s->current_tm.tm_sec < 30) 2864 s->ti -= s->current_tm.tm_sec; 2865 else 2866 s->ti += 60 - s->current_tm.tm_sec; 2867 2868 s->round = 0; 2869 } 2870 2871 localtime_r(&s->ti, &s->current_tm); 2872 2873 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) { 2874 s->status |= 0x40; 2875 omap_rtc_interrupts_update(s); 2876 } 2877 2878 if (s->interrupts & 0x04) 2879 switch (s->interrupts & 3) { 2880 case 0: 2881 s->status |= 0x04; 2882 qemu_irq_pulse(s->irq); 2883 break; 2884 case 1: 2885 if (s->current_tm.tm_sec) 2886 break; 2887 s->status |= 0x08; 2888 qemu_irq_pulse(s->irq); 2889 break; 2890 case 2: 2891 if (s->current_tm.tm_sec || s->current_tm.tm_min) 2892 break; 2893 s->status |= 0x10; 2894 qemu_irq_pulse(s->irq); 2895 break; 2896 case 3: 2897 if (s->current_tm.tm_sec || 2898 s->current_tm.tm_min || s->current_tm.tm_hour) 2899 break; 2900 s->status |= 0x20; 2901 qemu_irq_pulse(s->irq); 2902 break; 2903 } 2904 2905 /* Move on */ 2906 if (s->running) 2907 s->ti ++; 2908 s->tick += 1000; 2909 2910 /* 2911 * Every full hour add a rough approximation of the compensation 2912 * register to the 32kHz Timer (which drives the RTC) value. 2913 */ 2914 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min) 2915 s->tick += s->comp_reg * 1000 / 32768; 2916 2917 timer_mod(s->clk, s->tick); 2918 } 2919 2920 static void omap_rtc_reset(struct omap_rtc_s *s) 2921 { 2922 struct tm tm; 2923 2924 s->interrupts = 0; 2925 s->comp_reg = 0; 2926 s->running = 0; 2927 s->pm_am = 0; 2928 s->auto_comp = 0; 2929 s->round = 0; 2930 s->tick = qemu_clock_get_ms(rtc_clock); 2931 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm)); 2932 s->alarm_tm.tm_mday = 0x01; 2933 s->status = 1 << 7; 2934 qemu_get_timedate(&tm, 0); 2935 s->ti = mktimegm(&tm); 2936 2937 omap_rtc_alarm_update(s); 2938 omap_rtc_tick(s); 2939 } 2940 2941 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory, 2942 hwaddr base, 2943 qemu_irq timerirq, qemu_irq alarmirq, 2944 omap_clk clk) 2945 { 2946 struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1); 2947 2948 s->irq = timerirq; 2949 s->alarm = alarmirq; 2950 s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s); 2951 2952 omap_rtc_reset(s); 2953 2954 memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s, 2955 "omap-rtc", 0x800); 2956 memory_region_add_subregion(system_memory, base, &s->iomem); 2957 2958 return s; 2959 } 2960 2961 /* Multi-channel Buffered Serial Port interfaces */ 2962 struct omap_mcbsp_s { 2963 MemoryRegion iomem; 2964 qemu_irq txirq; 2965 qemu_irq rxirq; 2966 qemu_irq txdrq; 2967 qemu_irq rxdrq; 2968 2969 uint16_t spcr[2]; 2970 uint16_t rcr[2]; 2971 uint16_t xcr[2]; 2972 uint16_t srgr[2]; 2973 uint16_t mcr[2]; 2974 uint16_t pcr; 2975 uint16_t rcer[8]; 2976 uint16_t xcer[8]; 2977 int tx_rate; 2978 int rx_rate; 2979 int tx_req; 2980 int rx_req; 2981 2982 I2SCodec *codec; 2983 QEMUTimer *source_timer; 2984 QEMUTimer *sink_timer; 2985 }; 2986 2987 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s) 2988 { 2989 int irq; 2990 2991 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */ 2992 case 0: 2993 irq = (s->spcr[0] >> 1) & 1; /* RRDY */ 2994 break; 2995 case 3: 2996 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */ 2997 break; 2998 default: 2999 irq = 0; 3000 break; 3001 } 3002 3003 if (irq) 3004 qemu_irq_pulse(s->rxirq); 3005 3006 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */ 3007 case 0: 3008 irq = (s->spcr[1] >> 1) & 1; /* XRDY */ 3009 break; 3010 case 3: 3011 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */ 3012 break; 3013 default: 3014 irq = 0; 3015 break; 3016 } 3017 3018 if (irq) 3019 qemu_irq_pulse(s->txirq); 3020 } 3021 3022 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s) 3023 { 3024 if ((s->spcr[0] >> 1) & 1) /* RRDY */ 3025 s->spcr[0] |= 1 << 2; /* RFULL */ 3026 s->spcr[0] |= 1 << 1; /* RRDY */ 3027 qemu_irq_raise(s->rxdrq); 3028 omap_mcbsp_intr_update(s); 3029 } 3030 3031 static void omap_mcbsp_source_tick(void *opaque) 3032 { 3033 struct omap_mcbsp_s *s = opaque; 3034 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 }; 3035 3036 if (!s->rx_rate) 3037 return; 3038 if (s->rx_req) 3039 printf("%s: Rx FIFO overrun\n", __func__); 3040 3041 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7]; 3042 3043 omap_mcbsp_rx_newdata(s); 3044 timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 3045 NANOSECONDS_PER_SECOND); 3046 } 3047 3048 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s) 3049 { 3050 if (!s->codec || !s->codec->rts) 3051 omap_mcbsp_source_tick(s); 3052 else if (s->codec->in.len) { 3053 s->rx_req = s->codec->in.len; 3054 omap_mcbsp_rx_newdata(s); 3055 } 3056 } 3057 3058 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s) 3059 { 3060 timer_del(s->source_timer); 3061 } 3062 3063 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s) 3064 { 3065 s->spcr[0] &= ~(1 << 1); /* RRDY */ 3066 qemu_irq_lower(s->rxdrq); 3067 omap_mcbsp_intr_update(s); 3068 } 3069 3070 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s) 3071 { 3072 s->spcr[1] |= 1 << 1; /* XRDY */ 3073 qemu_irq_raise(s->txdrq); 3074 omap_mcbsp_intr_update(s); 3075 } 3076 3077 static void omap_mcbsp_sink_tick(void *opaque) 3078 { 3079 struct omap_mcbsp_s *s = opaque; 3080 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 }; 3081 3082 if (!s->tx_rate) 3083 return; 3084 if (s->tx_req) 3085 printf("%s: Tx FIFO underrun\n", __func__); 3086 3087 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7]; 3088 3089 omap_mcbsp_tx_newdata(s); 3090 timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 3091 NANOSECONDS_PER_SECOND); 3092 } 3093 3094 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s) 3095 { 3096 if (!s->codec || !s->codec->cts) 3097 omap_mcbsp_sink_tick(s); 3098 else if (s->codec->out.size) { 3099 s->tx_req = s->codec->out.size; 3100 omap_mcbsp_tx_newdata(s); 3101 } 3102 } 3103 3104 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s) 3105 { 3106 s->spcr[1] &= ~(1 << 1); /* XRDY */ 3107 qemu_irq_lower(s->txdrq); 3108 omap_mcbsp_intr_update(s); 3109 if (s->codec && s->codec->cts) 3110 s->codec->tx_swallow(s->codec->opaque); 3111 } 3112 3113 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s) 3114 { 3115 s->tx_req = 0; 3116 omap_mcbsp_tx_done(s); 3117 timer_del(s->sink_timer); 3118 } 3119 3120 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s) 3121 { 3122 int prev_rx_rate, prev_tx_rate; 3123 int rx_rate = 0, tx_rate = 0; 3124 int cpu_rate = 1500000; /* XXX */ 3125 3126 /* TODO: check CLKSTP bit */ 3127 if (s->spcr[1] & (1 << 6)) { /* GRST */ 3128 if (s->spcr[0] & (1 << 0)) { /* RRST */ 3129 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */ 3130 (s->pcr & (1 << 8))) { /* CLKRM */ 3131 if (~s->pcr & (1 << 7)) /* SCLKME */ 3132 rx_rate = cpu_rate / 3133 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */ 3134 } else 3135 if (s->codec) 3136 rx_rate = s->codec->rx_rate; 3137 } 3138 3139 if (s->spcr[1] & (1 << 0)) { /* XRST */ 3140 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */ 3141 (s->pcr & (1 << 9))) { /* CLKXM */ 3142 if (~s->pcr & (1 << 7)) /* SCLKME */ 3143 tx_rate = cpu_rate / 3144 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */ 3145 } else 3146 if (s->codec) 3147 tx_rate = s->codec->tx_rate; 3148 } 3149 } 3150 prev_tx_rate = s->tx_rate; 3151 prev_rx_rate = s->rx_rate; 3152 s->tx_rate = tx_rate; 3153 s->rx_rate = rx_rate; 3154 3155 if (s->codec) 3156 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate); 3157 3158 if (!prev_tx_rate && tx_rate) 3159 omap_mcbsp_tx_start(s); 3160 else if (s->tx_rate && !tx_rate) 3161 omap_mcbsp_tx_stop(s); 3162 3163 if (!prev_rx_rate && rx_rate) 3164 omap_mcbsp_rx_start(s); 3165 else if (prev_tx_rate && !tx_rate) 3166 omap_mcbsp_rx_stop(s); 3167 } 3168 3169 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr, 3170 unsigned size) 3171 { 3172 struct omap_mcbsp_s *s = opaque; 3173 int offset = addr & OMAP_MPUI_REG_MASK; 3174 uint16_t ret; 3175 3176 if (size != 2) { 3177 return omap_badwidth_read16(opaque, addr); 3178 } 3179 3180 switch (offset) { 3181 case 0x00: /* DRR2 */ 3182 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */ 3183 return 0x0000; 3184 /* Fall through. */ 3185 case 0x02: /* DRR1 */ 3186 if (s->rx_req < 2) { 3187 printf("%s: Rx FIFO underrun\n", __func__); 3188 omap_mcbsp_rx_done(s); 3189 } else { 3190 s->tx_req -= 2; 3191 if (s->codec && s->codec->in.len >= 2) { 3192 ret = s->codec->in.fifo[s->codec->in.start ++] << 8; 3193 ret |= s->codec->in.fifo[s->codec->in.start ++]; 3194 s->codec->in.len -= 2; 3195 } else 3196 ret = 0x0000; 3197 if (!s->tx_req) 3198 omap_mcbsp_rx_done(s); 3199 return ret; 3200 } 3201 return 0x0000; 3202 3203 case 0x04: /* DXR2 */ 3204 case 0x06: /* DXR1 */ 3205 return 0x0000; 3206 3207 case 0x08: /* SPCR2 */ 3208 return s->spcr[1]; 3209 case 0x0a: /* SPCR1 */ 3210 return s->spcr[0]; 3211 case 0x0c: /* RCR2 */ 3212 return s->rcr[1]; 3213 case 0x0e: /* RCR1 */ 3214 return s->rcr[0]; 3215 case 0x10: /* XCR2 */ 3216 return s->xcr[1]; 3217 case 0x12: /* XCR1 */ 3218 return s->xcr[0]; 3219 case 0x14: /* SRGR2 */ 3220 return s->srgr[1]; 3221 case 0x16: /* SRGR1 */ 3222 return s->srgr[0]; 3223 case 0x18: /* MCR2 */ 3224 return s->mcr[1]; 3225 case 0x1a: /* MCR1 */ 3226 return s->mcr[0]; 3227 case 0x1c: /* RCERA */ 3228 return s->rcer[0]; 3229 case 0x1e: /* RCERB */ 3230 return s->rcer[1]; 3231 case 0x20: /* XCERA */ 3232 return s->xcer[0]; 3233 case 0x22: /* XCERB */ 3234 return s->xcer[1]; 3235 case 0x24: /* PCR0 */ 3236 return s->pcr; 3237 case 0x26: /* RCERC */ 3238 return s->rcer[2]; 3239 case 0x28: /* RCERD */ 3240 return s->rcer[3]; 3241 case 0x2a: /* XCERC */ 3242 return s->xcer[2]; 3243 case 0x2c: /* XCERD */ 3244 return s->xcer[3]; 3245 case 0x2e: /* RCERE */ 3246 return s->rcer[4]; 3247 case 0x30: /* RCERF */ 3248 return s->rcer[5]; 3249 case 0x32: /* XCERE */ 3250 return s->xcer[4]; 3251 case 0x34: /* XCERF */ 3252 return s->xcer[5]; 3253 case 0x36: /* RCERG */ 3254 return s->rcer[6]; 3255 case 0x38: /* RCERH */ 3256 return s->rcer[7]; 3257 case 0x3a: /* XCERG */ 3258 return s->xcer[6]; 3259 case 0x3c: /* XCERH */ 3260 return s->xcer[7]; 3261 } 3262 3263 OMAP_BAD_REG(addr); 3264 return 0; 3265 } 3266 3267 static void omap_mcbsp_writeh(void *opaque, hwaddr addr, 3268 uint32_t value) 3269 { 3270 struct omap_mcbsp_s *s = opaque; 3271 int offset = addr & OMAP_MPUI_REG_MASK; 3272 3273 switch (offset) { 3274 case 0x00: /* DRR2 */ 3275 case 0x02: /* DRR1 */ 3276 OMAP_RO_REG(addr); 3277 return; 3278 3279 case 0x04: /* DXR2 */ 3280 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */ 3281 return; 3282 /* Fall through. */ 3283 case 0x06: /* DXR1 */ 3284 if (s->tx_req > 1) { 3285 s->tx_req -= 2; 3286 if (s->codec && s->codec->cts) { 3287 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff; 3288 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff; 3289 } 3290 if (s->tx_req < 2) 3291 omap_mcbsp_tx_done(s); 3292 } else 3293 printf("%s: Tx FIFO overrun\n", __func__); 3294 return; 3295 3296 case 0x08: /* SPCR2 */ 3297 s->spcr[1] &= 0x0002; 3298 s->spcr[1] |= 0x03f9 & value; 3299 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */ 3300 if (~value & 1) /* XRST */ 3301 s->spcr[1] &= ~6; 3302 omap_mcbsp_req_update(s); 3303 return; 3304 case 0x0a: /* SPCR1 */ 3305 s->spcr[0] &= 0x0006; 3306 s->spcr[0] |= 0xf8f9 & value; 3307 if (value & (1 << 15)) /* DLB */ 3308 printf("%s: Digital Loopback mode enable attempt\n", __func__); 3309 if (~value & 1) { /* RRST */ 3310 s->spcr[0] &= ~6; 3311 s->rx_req = 0; 3312 omap_mcbsp_rx_done(s); 3313 } 3314 omap_mcbsp_req_update(s); 3315 return; 3316 3317 case 0x0c: /* RCR2 */ 3318 s->rcr[1] = value & 0xffff; 3319 return; 3320 case 0x0e: /* RCR1 */ 3321 s->rcr[0] = value & 0x7fe0; 3322 return; 3323 case 0x10: /* XCR2 */ 3324 s->xcr[1] = value & 0xffff; 3325 return; 3326 case 0x12: /* XCR1 */ 3327 s->xcr[0] = value & 0x7fe0; 3328 return; 3329 case 0x14: /* SRGR2 */ 3330 s->srgr[1] = value & 0xffff; 3331 omap_mcbsp_req_update(s); 3332 return; 3333 case 0x16: /* SRGR1 */ 3334 s->srgr[0] = value & 0xffff; 3335 omap_mcbsp_req_update(s); 3336 return; 3337 case 0x18: /* MCR2 */ 3338 s->mcr[1] = value & 0x03e3; 3339 if (value & 3) /* XMCM */ 3340 printf("%s: Tx channel selection mode enable attempt\n", __func__); 3341 return; 3342 case 0x1a: /* MCR1 */ 3343 s->mcr[0] = value & 0x03e1; 3344 if (value & 1) /* RMCM */ 3345 printf("%s: Rx channel selection mode enable attempt\n", __func__); 3346 return; 3347 case 0x1c: /* RCERA */ 3348 s->rcer[0] = value & 0xffff; 3349 return; 3350 case 0x1e: /* RCERB */ 3351 s->rcer[1] = value & 0xffff; 3352 return; 3353 case 0x20: /* XCERA */ 3354 s->xcer[0] = value & 0xffff; 3355 return; 3356 case 0x22: /* XCERB */ 3357 s->xcer[1] = value & 0xffff; 3358 return; 3359 case 0x24: /* PCR0 */ 3360 s->pcr = value & 0x7faf; 3361 return; 3362 case 0x26: /* RCERC */ 3363 s->rcer[2] = value & 0xffff; 3364 return; 3365 case 0x28: /* RCERD */ 3366 s->rcer[3] = value & 0xffff; 3367 return; 3368 case 0x2a: /* XCERC */ 3369 s->xcer[2] = value & 0xffff; 3370 return; 3371 case 0x2c: /* XCERD */ 3372 s->xcer[3] = value & 0xffff; 3373 return; 3374 case 0x2e: /* RCERE */ 3375 s->rcer[4] = value & 0xffff; 3376 return; 3377 case 0x30: /* RCERF */ 3378 s->rcer[5] = value & 0xffff; 3379 return; 3380 case 0x32: /* XCERE */ 3381 s->xcer[4] = value & 0xffff; 3382 return; 3383 case 0x34: /* XCERF */ 3384 s->xcer[5] = value & 0xffff; 3385 return; 3386 case 0x36: /* RCERG */ 3387 s->rcer[6] = value & 0xffff; 3388 return; 3389 case 0x38: /* RCERH */ 3390 s->rcer[7] = value & 0xffff; 3391 return; 3392 case 0x3a: /* XCERG */ 3393 s->xcer[6] = value & 0xffff; 3394 return; 3395 case 0x3c: /* XCERH */ 3396 s->xcer[7] = value & 0xffff; 3397 return; 3398 } 3399 3400 OMAP_BAD_REG(addr); 3401 } 3402 3403 static void omap_mcbsp_writew(void *opaque, hwaddr addr, 3404 uint32_t value) 3405 { 3406 struct omap_mcbsp_s *s = opaque; 3407 int offset = addr & OMAP_MPUI_REG_MASK; 3408 3409 if (offset == 0x04) { /* DXR */ 3410 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */ 3411 return; 3412 if (s->tx_req > 3) { 3413 s->tx_req -= 4; 3414 if (s->codec && s->codec->cts) { 3415 s->codec->out.fifo[s->codec->out.len ++] = 3416 (value >> 24) & 0xff; 3417 s->codec->out.fifo[s->codec->out.len ++] = 3418 (value >> 16) & 0xff; 3419 s->codec->out.fifo[s->codec->out.len ++] = 3420 (value >> 8) & 0xff; 3421 s->codec->out.fifo[s->codec->out.len ++] = 3422 (value >> 0) & 0xff; 3423 } 3424 if (s->tx_req < 4) 3425 omap_mcbsp_tx_done(s); 3426 } else 3427 printf("%s: Tx FIFO overrun\n", __func__); 3428 return; 3429 } 3430 3431 omap_badwidth_write16(opaque, addr, value); 3432 } 3433 3434 static void omap_mcbsp_write(void *opaque, hwaddr addr, 3435 uint64_t value, unsigned size) 3436 { 3437 switch (size) { 3438 case 2: 3439 omap_mcbsp_writeh(opaque, addr, value); 3440 break; 3441 case 4: 3442 omap_mcbsp_writew(opaque, addr, value); 3443 break; 3444 default: 3445 omap_badwidth_write16(opaque, addr, value); 3446 } 3447 } 3448 3449 static const MemoryRegionOps omap_mcbsp_ops = { 3450 .read = omap_mcbsp_read, 3451 .write = omap_mcbsp_write, 3452 .endianness = DEVICE_NATIVE_ENDIAN, 3453 }; 3454 3455 static void omap_mcbsp_reset(struct omap_mcbsp_s *s) 3456 { 3457 memset(&s->spcr, 0, sizeof(s->spcr)); 3458 memset(&s->rcr, 0, sizeof(s->rcr)); 3459 memset(&s->xcr, 0, sizeof(s->xcr)); 3460 s->srgr[0] = 0x0001; 3461 s->srgr[1] = 0x2000; 3462 memset(&s->mcr, 0, sizeof(s->mcr)); 3463 memset(&s->pcr, 0, sizeof(s->pcr)); 3464 memset(&s->rcer, 0, sizeof(s->rcer)); 3465 memset(&s->xcer, 0, sizeof(s->xcer)); 3466 s->tx_req = 0; 3467 s->rx_req = 0; 3468 s->tx_rate = 0; 3469 s->rx_rate = 0; 3470 timer_del(s->source_timer); 3471 timer_del(s->sink_timer); 3472 } 3473 3474 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory, 3475 hwaddr base, 3476 qemu_irq txirq, qemu_irq rxirq, 3477 qemu_irq *dma, omap_clk clk) 3478 { 3479 struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1); 3480 3481 s->txirq = txirq; 3482 s->rxirq = rxirq; 3483 s->txdrq = dma[0]; 3484 s->rxdrq = dma[1]; 3485 s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s); 3486 s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s); 3487 omap_mcbsp_reset(s); 3488 3489 memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800); 3490 memory_region_add_subregion(system_memory, base, &s->iomem); 3491 3492 return s; 3493 } 3494 3495 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level) 3496 { 3497 struct omap_mcbsp_s *s = opaque; 3498 3499 if (s->rx_rate) { 3500 s->rx_req = s->codec->in.len; 3501 omap_mcbsp_rx_newdata(s); 3502 } 3503 } 3504 3505 static void omap_mcbsp_i2s_start(void *opaque, int line, int level) 3506 { 3507 struct omap_mcbsp_s *s = opaque; 3508 3509 if (s->tx_rate) { 3510 s->tx_req = s->codec->out.size; 3511 omap_mcbsp_tx_newdata(s); 3512 } 3513 } 3514 3515 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave) 3516 { 3517 s->codec = slave; 3518 slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0); 3519 slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0); 3520 } 3521 3522 /* LED Pulse Generators */ 3523 struct omap_lpg_s { 3524 MemoryRegion iomem; 3525 QEMUTimer *tm; 3526 3527 uint8_t control; 3528 uint8_t power; 3529 int64_t on; 3530 int64_t period; 3531 int clk; 3532 int cycle; 3533 }; 3534 3535 static void omap_lpg_tick(void *opaque) 3536 { 3537 struct omap_lpg_s *s = opaque; 3538 3539 if (s->cycle) 3540 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on); 3541 else 3542 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on); 3543 3544 s->cycle = !s->cycle; 3545 printf("%s: LED is %s\n", __func__, s->cycle ? "on" : "off"); 3546 } 3547 3548 static void omap_lpg_update(struct omap_lpg_s *s) 3549 { 3550 int64_t on, period = 1, ticks = 1000; 3551 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 }; 3552 3553 if (~s->control & (1 << 6)) /* LPGRES */ 3554 on = 0; 3555 else if (s->control & (1 << 7)) /* PERM_ON */ 3556 on = period; 3557 else { 3558 period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */ 3559 256 / 32); 3560 on = (s->clk && s->power) ? muldiv64(ticks, 3561 per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */ 3562 } 3563 3564 timer_del(s->tm); 3565 if (on == period && s->on < s->period) 3566 printf("%s: LED is on\n", __func__); 3567 else if (on == 0 && s->on) 3568 printf("%s: LED is off\n", __func__); 3569 else if (on && (on != s->on || period != s->period)) { 3570 s->cycle = 0; 3571 s->on = on; 3572 s->period = period; 3573 omap_lpg_tick(s); 3574 return; 3575 } 3576 3577 s->on = on; 3578 s->period = period; 3579 } 3580 3581 static void omap_lpg_reset(struct omap_lpg_s *s) 3582 { 3583 s->control = 0x00; 3584 s->power = 0x00; 3585 s->clk = 1; 3586 omap_lpg_update(s); 3587 } 3588 3589 static uint64_t omap_lpg_read(void *opaque, hwaddr addr, unsigned size) 3590 { 3591 struct omap_lpg_s *s = opaque; 3592 int offset = addr & OMAP_MPUI_REG_MASK; 3593 3594 if (size != 1) { 3595 return omap_badwidth_read8(opaque, addr); 3596 } 3597 3598 switch (offset) { 3599 case 0x00: /* LCR */ 3600 return s->control; 3601 3602 case 0x04: /* PMR */ 3603 return s->power; 3604 } 3605 3606 OMAP_BAD_REG(addr); 3607 return 0; 3608 } 3609 3610 static void omap_lpg_write(void *opaque, hwaddr addr, 3611 uint64_t value, unsigned size) 3612 { 3613 struct omap_lpg_s *s = opaque; 3614 int offset = addr & OMAP_MPUI_REG_MASK; 3615 3616 if (size != 1) { 3617 omap_badwidth_write8(opaque, addr, value); 3618 return; 3619 } 3620 3621 switch (offset) { 3622 case 0x00: /* LCR */ 3623 if (~value & (1 << 6)) /* LPGRES */ 3624 omap_lpg_reset(s); 3625 s->control = value & 0xff; 3626 omap_lpg_update(s); 3627 return; 3628 3629 case 0x04: /* PMR */ 3630 s->power = value & 0x01; 3631 omap_lpg_update(s); 3632 return; 3633 3634 default: 3635 OMAP_BAD_REG(addr); 3636 return; 3637 } 3638 } 3639 3640 static const MemoryRegionOps omap_lpg_ops = { 3641 .read = omap_lpg_read, 3642 .write = omap_lpg_write, 3643 .endianness = DEVICE_NATIVE_ENDIAN, 3644 }; 3645 3646 static void omap_lpg_clk_update(void *opaque, int line, int on) 3647 { 3648 struct omap_lpg_s *s = opaque; 3649 3650 s->clk = on; 3651 omap_lpg_update(s); 3652 } 3653 3654 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory, 3655 hwaddr base, omap_clk clk) 3656 { 3657 struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1); 3658 3659 s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s); 3660 3661 omap_lpg_reset(s); 3662 3663 memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800); 3664 memory_region_add_subregion(system_memory, base, &s->iomem); 3665 3666 omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0)); 3667 3668 return s; 3669 } 3670 3671 /* MPUI Peripheral Bridge configuration */ 3672 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr, 3673 unsigned size) 3674 { 3675 if (size != 2) { 3676 return omap_badwidth_read16(opaque, addr); 3677 } 3678 3679 if (addr == OMAP_MPUI_BASE) /* CMR */ 3680 return 0xfe4d; 3681 3682 OMAP_BAD_REG(addr); 3683 return 0; 3684 } 3685 3686 static void omap_mpui_io_write(void *opaque, hwaddr addr, 3687 uint64_t value, unsigned size) 3688 { 3689 /* FIXME: infinite loop */ 3690 omap_badwidth_write16(opaque, addr, value); 3691 } 3692 3693 static const MemoryRegionOps omap_mpui_io_ops = { 3694 .read = omap_mpui_io_read, 3695 .write = omap_mpui_io_write, 3696 .endianness = DEVICE_NATIVE_ENDIAN, 3697 }; 3698 3699 static void omap_setup_mpui_io(MemoryRegion *system_memory, 3700 struct omap_mpu_state_s *mpu) 3701 { 3702 memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu, 3703 "omap-mpui-io", 0x7fff); 3704 memory_region_add_subregion(system_memory, OMAP_MPUI_BASE, 3705 &mpu->mpui_io_iomem); 3706 } 3707 3708 /* General chip reset */ 3709 static void omap1_mpu_reset(void *opaque) 3710 { 3711 struct omap_mpu_state_s *mpu = opaque; 3712 3713 omap_dma_reset(mpu->dma); 3714 omap_mpu_timer_reset(mpu->timer[0]); 3715 omap_mpu_timer_reset(mpu->timer[1]); 3716 omap_mpu_timer_reset(mpu->timer[2]); 3717 omap_wd_timer_reset(mpu->wdt); 3718 omap_os_timer_reset(mpu->os_timer); 3719 omap_lcdc_reset(mpu->lcd); 3720 omap_ulpd_pm_reset(mpu); 3721 omap_pin_cfg_reset(mpu); 3722 omap_mpui_reset(mpu); 3723 omap_tipb_bridge_reset(mpu->private_tipb); 3724 omap_tipb_bridge_reset(mpu->public_tipb); 3725 omap_dpll_reset(mpu->dpll[0]); 3726 omap_dpll_reset(mpu->dpll[1]); 3727 omap_dpll_reset(mpu->dpll[2]); 3728 omap_uart_reset(mpu->uart[0]); 3729 omap_uart_reset(mpu->uart[1]); 3730 omap_uart_reset(mpu->uart[2]); 3731 omap_mmc_reset(mpu->mmc); 3732 omap_mpuio_reset(mpu->mpuio); 3733 omap_uwire_reset(mpu->microwire); 3734 omap_pwl_reset(mpu->pwl); 3735 omap_pwt_reset(mpu->pwt); 3736 omap_rtc_reset(mpu->rtc); 3737 omap_mcbsp_reset(mpu->mcbsp1); 3738 omap_mcbsp_reset(mpu->mcbsp2); 3739 omap_mcbsp_reset(mpu->mcbsp3); 3740 omap_lpg_reset(mpu->led[0]); 3741 omap_lpg_reset(mpu->led[1]); 3742 omap_clkm_reset(mpu); 3743 cpu_reset(CPU(mpu->cpu)); 3744 } 3745 3746 static const struct omap_map_s { 3747 hwaddr phys_dsp; 3748 hwaddr phys_mpu; 3749 uint32_t size; 3750 const char *name; 3751 } omap15xx_dsp_mm[] = { 3752 /* Strobe 0 */ 3753 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */ 3754 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */ 3755 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */ 3756 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */ 3757 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */ 3758 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */ 3759 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */ 3760 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */ 3761 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */ 3762 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */ 3763 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */ 3764 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */ 3765 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */ 3766 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */ 3767 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */ 3768 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */ 3769 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */ 3770 /* Strobe 1 */ 3771 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */ 3772 3773 { 0 } 3774 }; 3775 3776 static void omap_setup_dsp_mapping(MemoryRegion *system_memory, 3777 const struct omap_map_s *map) 3778 { 3779 MemoryRegion *io; 3780 3781 for (; map->phys_dsp; map ++) { 3782 io = g_new(MemoryRegion, 1); 3783 memory_region_init_alias(io, NULL, map->name, 3784 system_memory, map->phys_mpu, map->size); 3785 memory_region_add_subregion(system_memory, map->phys_dsp, io); 3786 } 3787 } 3788 3789 void omap_mpu_wakeup(void *opaque, int irq, int req) 3790 { 3791 struct omap_mpu_state_s *mpu = opaque; 3792 CPUState *cpu = CPU(mpu->cpu); 3793 3794 if (cpu->halted) { 3795 cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB); 3796 } 3797 } 3798 3799 static const struct dma_irq_map omap1_dma_irq_map[] = { 3800 { 0, OMAP_INT_DMA_CH0_6 }, 3801 { 0, OMAP_INT_DMA_CH1_7 }, 3802 { 0, OMAP_INT_DMA_CH2_8 }, 3803 { 0, OMAP_INT_DMA_CH3 }, 3804 { 0, OMAP_INT_DMA_CH4 }, 3805 { 0, OMAP_INT_DMA_CH5 }, 3806 { 1, OMAP_INT_1610_DMA_CH6 }, 3807 { 1, OMAP_INT_1610_DMA_CH7 }, 3808 { 1, OMAP_INT_1610_DMA_CH8 }, 3809 { 1, OMAP_INT_1610_DMA_CH9 }, 3810 { 1, OMAP_INT_1610_DMA_CH10 }, 3811 { 1, OMAP_INT_1610_DMA_CH11 }, 3812 { 1, OMAP_INT_1610_DMA_CH12 }, 3813 { 1, OMAP_INT_1610_DMA_CH13 }, 3814 { 1, OMAP_INT_1610_DMA_CH14 }, 3815 { 1, OMAP_INT_1610_DMA_CH15 } 3816 }; 3817 3818 /* DMA ports for OMAP1 */ 3819 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s, 3820 hwaddr addr) 3821 { 3822 return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr); 3823 } 3824 3825 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s, 3826 hwaddr addr) 3827 { 3828 return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE, 3829 addr); 3830 } 3831 3832 static int omap_validate_imif_addr(struct omap_mpu_state_s *s, 3833 hwaddr addr) 3834 { 3835 return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr); 3836 } 3837 3838 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s, 3839 hwaddr addr) 3840 { 3841 return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr); 3842 } 3843 3844 static int omap_validate_local_addr(struct omap_mpu_state_s *s, 3845 hwaddr addr) 3846 { 3847 return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr); 3848 } 3849 3850 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s, 3851 hwaddr addr) 3852 { 3853 return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr); 3854 } 3855 3856 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *dram, 3857 const char *cpu_type) 3858 { 3859 int i; 3860 struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1); 3861 qemu_irq dma_irqs[6]; 3862 DriveInfo *dinfo; 3863 SysBusDevice *busdev; 3864 MemoryRegion *system_memory = get_system_memory(); 3865 3866 /* Core */ 3867 s->mpu_model = omap310; 3868 s->cpu = ARM_CPU(cpu_create(cpu_type)); 3869 s->sdram_size = memory_region_size(dram); 3870 s->sram_size = OMAP15XX_SRAM_SIZE; 3871 3872 s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0); 3873 3874 /* Clocks */ 3875 omap_clk_init(s); 3876 3877 /* Memory-mapped stuff */ 3878 memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size, 3879 &error_fatal); 3880 memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram); 3881 3882 omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s); 3883 3884 s->ih[0] = qdev_new("omap-intc"); 3885 qdev_prop_set_uint32(s->ih[0], "size", 0x100); 3886 omap_intc_set_iclk(OMAP_INTC(s->ih[0]), omap_findclk(s, "arminth_ck")); 3887 busdev = SYS_BUS_DEVICE(s->ih[0]); 3888 sysbus_realize_and_unref(busdev, &error_fatal); 3889 sysbus_connect_irq(busdev, 0, 3890 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ)); 3891 sysbus_connect_irq(busdev, 1, 3892 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ)); 3893 sysbus_mmio_map(busdev, 0, 0xfffecb00); 3894 s->ih[1] = qdev_new("omap-intc"); 3895 qdev_prop_set_uint32(s->ih[1], "size", 0x800); 3896 omap_intc_set_iclk(OMAP_INTC(s->ih[1]), omap_findclk(s, "arminth_ck")); 3897 busdev = SYS_BUS_DEVICE(s->ih[1]); 3898 sysbus_realize_and_unref(busdev, &error_fatal); 3899 sysbus_connect_irq(busdev, 0, 3900 qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ)); 3901 /* The second interrupt controller's FIQ output is not wired up */ 3902 sysbus_mmio_map(busdev, 0, 0xfffe0000); 3903 3904 for (i = 0; i < 6; i++) { 3905 dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih], 3906 omap1_dma_irq_map[i].intr); 3907 } 3908 s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory, 3909 qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD), 3910 s, omap_findclk(s, "dma_ck"), omap_dma_3_1); 3911 3912 s->port[emiff ].addr_valid = omap_validate_emiff_addr; 3913 s->port[emifs ].addr_valid = omap_validate_emifs_addr; 3914 s->port[imif ].addr_valid = omap_validate_imif_addr; 3915 s->port[tipb ].addr_valid = omap_validate_tipb_addr; 3916 s->port[local ].addr_valid = omap_validate_local_addr; 3917 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr; 3918 3919 /* Register SDRAM and SRAM DMA ports for fast transfers. */ 3920 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(dram), 3921 OMAP_EMIFF_BASE, s->sdram_size); 3922 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram), 3923 OMAP_IMIF_BASE, s->sram_size); 3924 3925 s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500, 3926 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1), 3927 omap_findclk(s, "mputim_ck")); 3928 s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600, 3929 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2), 3930 omap_findclk(s, "mputim_ck")); 3931 s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700, 3932 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3), 3933 omap_findclk(s, "mputim_ck")); 3934 3935 s->wdt = omap_wd_timer_init(system_memory, 0xfffec800, 3936 qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER), 3937 omap_findclk(s, "armwdt_ck")); 3938 3939 s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000, 3940 qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER), 3941 omap_findclk(s, "clk32-kHz")); 3942 3943 s->lcd = omap_lcdc_init(system_memory, 0xfffec000, 3944 qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL), 3945 omap_dma_get_lcdch(s->dma), 3946 omap_findclk(s, "lcd_ck")); 3947 3948 omap_ulpd_pm_init(system_memory, 0xfffe0800, s); 3949 omap_pin_cfg_init(system_memory, 0xfffe1000, s); 3950 omap_id_init(system_memory, s); 3951 3952 omap_mpui_init(system_memory, 0xfffec900, s); 3953 3954 s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00, 3955 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV), 3956 omap_findclk(s, "tipb_ck")); 3957 s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300, 3958 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB), 3959 omap_findclk(s, "tipb_ck")); 3960 3961 omap_tcmi_init(system_memory, 0xfffecc00, s); 3962 3963 s->uart[0] = omap_uart_init(0xfffb0000, 3964 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1), 3965 omap_findclk(s, "uart1_ck"), 3966 omap_findclk(s, "uart1_ck"), 3967 s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX], 3968 "uart1", 3969 serial_hd(0)); 3970 s->uart[1] = omap_uart_init(0xfffb0800, 3971 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2), 3972 omap_findclk(s, "uart2_ck"), 3973 omap_findclk(s, "uart2_ck"), 3974 s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX], 3975 "uart2", 3976 serial_hd(0) ? serial_hd(1) : NULL); 3977 s->uart[2] = omap_uart_init(0xfffb9800, 3978 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3), 3979 omap_findclk(s, "uart3_ck"), 3980 omap_findclk(s, "uart3_ck"), 3981 s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX], 3982 "uart3", 3983 serial_hd(0) && serial_hd(1) ? serial_hd(2) : NULL); 3984 3985 s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00, 3986 omap_findclk(s, "dpll1")); 3987 s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000, 3988 omap_findclk(s, "dpll2")); 3989 s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100, 3990 omap_findclk(s, "dpll3")); 3991 3992 dinfo = drive_get(IF_SD, 0, 0); 3993 if (!dinfo && !qtest_enabled()) { 3994 warn_report("missing SecureDigital device"); 3995 } 3996 s->mmc = omap_mmc_init(0xfffb7800, system_memory, 3997 dinfo ? blk_by_legacy_dinfo(dinfo) : NULL, 3998 qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN), 3999 &s->drq[OMAP_DMA_MMC_TX], 4000 omap_findclk(s, "mmc_ck")); 4001 4002 s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000, 4003 qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD), 4004 qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO), 4005 s->wakeup, omap_findclk(s, "clk32-kHz")); 4006 4007 s->gpio = qdev_new("omap-gpio"); 4008 qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model); 4009 omap_gpio_set_clk(OMAP1_GPIO(s->gpio), omap_findclk(s, "arm_gpio_ck")); 4010 sysbus_realize_and_unref(SYS_BUS_DEVICE(s->gpio), &error_fatal); 4011 sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0, 4012 qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1)); 4013 sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000); 4014 4015 s->microwire = omap_uwire_init(system_memory, 0xfffb3000, 4016 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX), 4017 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX), 4018 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck")); 4019 4020 s->pwl = omap_pwl_init(system_memory, 0xfffb5800, 4021 omap_findclk(s, "armxor_ck")); 4022 s->pwt = omap_pwt_init(system_memory, 0xfffb6000, 4023 omap_findclk(s, "armxor_ck")); 4024 4025 s->i2c[0] = qdev_new("omap_i2c"); 4026 qdev_prop_set_uint8(s->i2c[0], "revision", 0x11); 4027 omap_i2c_set_fclk(OMAP_I2C(s->i2c[0]), omap_findclk(s, "mpuper_ck")); 4028 busdev = SYS_BUS_DEVICE(s->i2c[0]); 4029 sysbus_realize_and_unref(busdev, &error_fatal); 4030 sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C)); 4031 sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]); 4032 sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]); 4033 sysbus_mmio_map(busdev, 0, 0xfffb3800); 4034 4035 s->rtc = omap_rtc_init(system_memory, 0xfffb4800, 4036 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER), 4037 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM), 4038 omap_findclk(s, "clk32-kHz")); 4039 4040 s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800, 4041 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX), 4042 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX), 4043 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck")); 4044 s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000, 4045 qdev_get_gpio_in(s->ih[0], 4046 OMAP_INT_310_McBSP2_TX), 4047 qdev_get_gpio_in(s->ih[0], 4048 OMAP_INT_310_McBSP2_RX), 4049 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck")); 4050 s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000, 4051 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX), 4052 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX), 4053 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck")); 4054 4055 s->led[0] = omap_lpg_init(system_memory, 4056 0xfffbd000, omap_findclk(s, "clk32-kHz")); 4057 s->led[1] = omap_lpg_init(system_memory, 4058 0xfffbd800, omap_findclk(s, "clk32-kHz")); 4059 4060 /* Register mappings not currently implemented: 4061 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310) 4062 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310) 4063 * USB W2FC fffb4000 - fffb47ff 4064 * Camera Interface fffb6800 - fffb6fff 4065 * USB Host fffba000 - fffba7ff 4066 * FAC fffba800 - fffbafff 4067 * HDQ/1-Wire fffbc000 - fffbc7ff 4068 * TIPB switches fffbc800 - fffbcfff 4069 * Mailbox fffcf000 - fffcf7ff 4070 * Local bus IF fffec100 - fffec1ff 4071 * Local bus MMU fffec200 - fffec2ff 4072 * DSP MMU fffed200 - fffed2ff 4073 */ 4074 4075 omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm); 4076 omap_setup_mpui_io(system_memory, s); 4077 4078 qemu_register_reset(omap1_mpu_reset, s); 4079 4080 return s; 4081 } 4082