xref: /openbmc/qemu/hw/arm/omap1.c (revision bcad45de6a0b5bf10a274872d2e45da3403232da)
1 /*
2  * TI OMAP processors emulation.
3  *
4  * Copyright (C) 2006-2008 Andrzej Zaborowski  <balrog@zabor.org>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 or
9  * (at your option) version 3 of the License.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License along
17  * with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qapi/error.h"
22 #include "qemu-common.h"
23 #include "cpu.h"
24 #include "hw/boards.h"
25 #include "hw/hw.h"
26 #include "hw/arm/arm.h"
27 #include "hw/arm/omap.h"
28 #include "sysemu/sysemu.h"
29 #include "hw/arm/soc_dma.h"
30 #include "sysemu/block-backend.h"
31 #include "sysemu/blockdev.h"
32 #include "qemu/range.h"
33 #include "hw/sysbus.h"
34 #include "qemu/cutils.h"
35 #include "qemu/bcd.h"
36 
37 /* Should signal the TCMI/GPMC */
38 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
39 {
40     uint8_t ret;
41 
42     OMAP_8B_REG(addr);
43     cpu_physical_memory_read(addr, &ret, 1);
44     return ret;
45 }
46 
47 void omap_badwidth_write8(void *opaque, hwaddr addr,
48                 uint32_t value)
49 {
50     uint8_t val8 = value;
51 
52     OMAP_8B_REG(addr);
53     cpu_physical_memory_write(addr, &val8, 1);
54 }
55 
56 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
57 {
58     uint16_t ret;
59 
60     OMAP_16B_REG(addr);
61     cpu_physical_memory_read(addr, &ret, 2);
62     return ret;
63 }
64 
65 void omap_badwidth_write16(void *opaque, hwaddr addr,
66                 uint32_t value)
67 {
68     uint16_t val16 = value;
69 
70     OMAP_16B_REG(addr);
71     cpu_physical_memory_write(addr, &val16, 2);
72 }
73 
74 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
75 {
76     uint32_t ret;
77 
78     OMAP_32B_REG(addr);
79     cpu_physical_memory_read(addr, &ret, 4);
80     return ret;
81 }
82 
83 void omap_badwidth_write32(void *opaque, hwaddr addr,
84                 uint32_t value)
85 {
86     OMAP_32B_REG(addr);
87     cpu_physical_memory_write(addr, &value, 4);
88 }
89 
90 /* MPU OS timers */
91 struct omap_mpu_timer_s {
92     MemoryRegion iomem;
93     qemu_irq irq;
94     omap_clk clk;
95     uint32_t val;
96     int64_t time;
97     QEMUTimer *timer;
98     QEMUBH *tick;
99     int64_t rate;
100     int it_ena;
101 
102     int enable;
103     int ptv;
104     int ar;
105     int st;
106     uint32_t reset_val;
107 };
108 
109 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
110 {
111     uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
112 
113     if (timer->st && timer->enable && timer->rate)
114         return timer->val - muldiv64(distance >> (timer->ptv + 1),
115                                      timer->rate, NANOSECONDS_PER_SECOND);
116     else
117         return timer->val;
118 }
119 
120 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
121 {
122     timer->val = omap_timer_read(timer);
123     timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
124 }
125 
126 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
127 {
128     int64_t expires;
129 
130     if (timer->enable && timer->st && timer->rate) {
131         timer->val = timer->reset_val;	/* Should skip this on clk enable */
132         expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
133                            NANOSECONDS_PER_SECOND, timer->rate);
134 
135         /* If timer expiry would be sooner than in about 1 ms and
136          * auto-reload isn't set, then fire immediately.  This is a hack
137          * to make systems like PalmOS run in acceptable time.  PalmOS
138          * sets the interval to a very low value and polls the status bit
139          * in a busy loop when it wants to sleep just a couple of CPU
140          * ticks.  */
141         if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
142             timer_mod(timer->timer, timer->time + expires);
143         } else {
144             qemu_bh_schedule(timer->tick);
145         }
146     } else
147         timer_del(timer->timer);
148 }
149 
150 static void omap_timer_fire(void *opaque)
151 {
152     struct omap_mpu_timer_s *timer = opaque;
153 
154     if (!timer->ar) {
155         timer->val = 0;
156         timer->st = 0;
157     }
158 
159     if (timer->it_ena)
160         /* Edge-triggered irq */
161         qemu_irq_pulse(timer->irq);
162 }
163 
164 static void omap_timer_tick(void *opaque)
165 {
166     struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
167 
168     omap_timer_sync(timer);
169     omap_timer_fire(timer);
170     omap_timer_update(timer);
171 }
172 
173 static void omap_timer_clk_update(void *opaque, int line, int on)
174 {
175     struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
176 
177     omap_timer_sync(timer);
178     timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
179     omap_timer_update(timer);
180 }
181 
182 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
183 {
184     omap_clk_adduser(timer->clk,
185                     qemu_allocate_irq(omap_timer_clk_update, timer, 0));
186     timer->rate = omap_clk_getrate(timer->clk);
187 }
188 
189 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
190                                     unsigned size)
191 {
192     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
193 
194     if (size != 4) {
195         return omap_badwidth_read32(opaque, addr);
196     }
197 
198     switch (addr) {
199     case 0x00:	/* CNTL_TIMER */
200         return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
201 
202     case 0x04:	/* LOAD_TIM */
203         break;
204 
205     case 0x08:	/* READ_TIM */
206         return omap_timer_read(s);
207     }
208 
209     OMAP_BAD_REG(addr);
210     return 0;
211 }
212 
213 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
214                                  uint64_t value, unsigned size)
215 {
216     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
217 
218     if (size != 4) {
219         omap_badwidth_write32(opaque, addr, value);
220         return;
221     }
222 
223     switch (addr) {
224     case 0x00:	/* CNTL_TIMER */
225         omap_timer_sync(s);
226         s->enable = (value >> 5) & 1;
227         s->ptv = (value >> 2) & 7;
228         s->ar = (value >> 1) & 1;
229         s->st = value & 1;
230         omap_timer_update(s);
231         return;
232 
233     case 0x04:	/* LOAD_TIM */
234         s->reset_val = value;
235         return;
236 
237     case 0x08:	/* READ_TIM */
238         OMAP_RO_REG(addr);
239         break;
240 
241     default:
242         OMAP_BAD_REG(addr);
243     }
244 }
245 
246 static const MemoryRegionOps omap_mpu_timer_ops = {
247     .read = omap_mpu_timer_read,
248     .write = omap_mpu_timer_write,
249     .endianness = DEVICE_LITTLE_ENDIAN,
250 };
251 
252 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
253 {
254     timer_del(s->timer);
255     s->enable = 0;
256     s->reset_val = 31337;
257     s->val = 0;
258     s->ptv = 0;
259     s->ar = 0;
260     s->st = 0;
261     s->it_ena = 1;
262 }
263 
264 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
265                 hwaddr base,
266                 qemu_irq irq, omap_clk clk)
267 {
268     struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
269 
270     s->irq = irq;
271     s->clk = clk;
272     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
273     s->tick = qemu_bh_new(omap_timer_fire, s);
274     omap_mpu_timer_reset(s);
275     omap_timer_clk_setup(s);
276 
277     memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
278                           "omap-mpu-timer", 0x100);
279 
280     memory_region_add_subregion(system_memory, base, &s->iomem);
281 
282     return s;
283 }
284 
285 /* Watchdog timer */
286 struct omap_watchdog_timer_s {
287     struct omap_mpu_timer_s timer;
288     MemoryRegion iomem;
289     uint8_t last_wr;
290     int mode;
291     int free;
292     int reset;
293 };
294 
295 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
296                                    unsigned size)
297 {
298     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
299 
300     if (size != 2) {
301         return omap_badwidth_read16(opaque, addr);
302     }
303 
304     switch (addr) {
305     case 0x00:	/* CNTL_TIMER */
306         return (s->timer.ptv << 9) | (s->timer.ar << 8) |
307                 (s->timer.st << 7) | (s->free << 1);
308 
309     case 0x04:	/* READ_TIMER */
310         return omap_timer_read(&s->timer);
311 
312     case 0x08:	/* TIMER_MODE */
313         return s->mode << 15;
314     }
315 
316     OMAP_BAD_REG(addr);
317     return 0;
318 }
319 
320 static void omap_wd_timer_write(void *opaque, hwaddr addr,
321                                 uint64_t value, unsigned size)
322 {
323     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
324 
325     if (size != 2) {
326         omap_badwidth_write16(opaque, addr, value);
327         return;
328     }
329 
330     switch (addr) {
331     case 0x00:	/* CNTL_TIMER */
332         omap_timer_sync(&s->timer);
333         s->timer.ptv = (value >> 9) & 7;
334         s->timer.ar = (value >> 8) & 1;
335         s->timer.st = (value >> 7) & 1;
336         s->free = (value >> 1) & 1;
337         omap_timer_update(&s->timer);
338         break;
339 
340     case 0x04:	/* LOAD_TIMER */
341         s->timer.reset_val = value & 0xffff;
342         break;
343 
344     case 0x08:	/* TIMER_MODE */
345         if (!s->mode && ((value >> 15) & 1))
346             omap_clk_get(s->timer.clk);
347         s->mode |= (value >> 15) & 1;
348         if (s->last_wr == 0xf5) {
349             if ((value & 0xff) == 0xa0) {
350                 if (s->mode) {
351                     s->mode = 0;
352                     omap_clk_put(s->timer.clk);
353                 }
354             } else {
355                 /* XXX: on T|E hardware somehow this has no effect,
356                  * on Zire 71 it works as specified.  */
357                 s->reset = 1;
358                 qemu_system_reset_request();
359             }
360         }
361         s->last_wr = value & 0xff;
362         break;
363 
364     default:
365         OMAP_BAD_REG(addr);
366     }
367 }
368 
369 static const MemoryRegionOps omap_wd_timer_ops = {
370     .read = omap_wd_timer_read,
371     .write = omap_wd_timer_write,
372     .endianness = DEVICE_NATIVE_ENDIAN,
373 };
374 
375 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
376 {
377     timer_del(s->timer.timer);
378     if (!s->mode)
379         omap_clk_get(s->timer.clk);
380     s->mode = 1;
381     s->free = 1;
382     s->reset = 0;
383     s->timer.enable = 1;
384     s->timer.it_ena = 1;
385     s->timer.reset_val = 0xffff;
386     s->timer.val = 0;
387     s->timer.st = 0;
388     s->timer.ptv = 0;
389     s->timer.ar = 0;
390     omap_timer_update(&s->timer);
391 }
392 
393 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
394                 hwaddr base,
395                 qemu_irq irq, omap_clk clk)
396 {
397     struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
398 
399     s->timer.irq = irq;
400     s->timer.clk = clk;
401     s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
402     omap_wd_timer_reset(s);
403     omap_timer_clk_setup(&s->timer);
404 
405     memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
406                           "omap-wd-timer", 0x100);
407     memory_region_add_subregion(memory, base, &s->iomem);
408 
409     return s;
410 }
411 
412 /* 32-kHz timer */
413 struct omap_32khz_timer_s {
414     struct omap_mpu_timer_s timer;
415     MemoryRegion iomem;
416 };
417 
418 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
419                                    unsigned size)
420 {
421     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
422     int offset = addr & OMAP_MPUI_REG_MASK;
423 
424     if (size != 4) {
425         return omap_badwidth_read32(opaque, addr);
426     }
427 
428     switch (offset) {
429     case 0x00:	/* TVR */
430         return s->timer.reset_val;
431 
432     case 0x04:	/* TCR */
433         return omap_timer_read(&s->timer);
434 
435     case 0x08:	/* CR */
436         return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
437 
438     default:
439         break;
440     }
441     OMAP_BAD_REG(addr);
442     return 0;
443 }
444 
445 static void omap_os_timer_write(void *opaque, hwaddr addr,
446                                 uint64_t value, unsigned size)
447 {
448     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
449     int offset = addr & OMAP_MPUI_REG_MASK;
450 
451     if (size != 4) {
452         omap_badwidth_write32(opaque, addr, value);
453         return;
454     }
455 
456     switch (offset) {
457     case 0x00:	/* TVR */
458         s->timer.reset_val = value & 0x00ffffff;
459         break;
460 
461     case 0x04:	/* TCR */
462         OMAP_RO_REG(addr);
463         break;
464 
465     case 0x08:	/* CR */
466         s->timer.ar = (value >> 3) & 1;
467         s->timer.it_ena = (value >> 2) & 1;
468         if (s->timer.st != (value & 1) || (value & 2)) {
469             omap_timer_sync(&s->timer);
470             s->timer.enable = value & 1;
471             s->timer.st = value & 1;
472             omap_timer_update(&s->timer);
473         }
474         break;
475 
476     default:
477         OMAP_BAD_REG(addr);
478     }
479 }
480 
481 static const MemoryRegionOps omap_os_timer_ops = {
482     .read = omap_os_timer_read,
483     .write = omap_os_timer_write,
484     .endianness = DEVICE_NATIVE_ENDIAN,
485 };
486 
487 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
488 {
489     timer_del(s->timer.timer);
490     s->timer.enable = 0;
491     s->timer.it_ena = 0;
492     s->timer.reset_val = 0x00ffffff;
493     s->timer.val = 0;
494     s->timer.st = 0;
495     s->timer.ptv = 0;
496     s->timer.ar = 1;
497 }
498 
499 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
500                 hwaddr base,
501                 qemu_irq irq, omap_clk clk)
502 {
503     struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
504 
505     s->timer.irq = irq;
506     s->timer.clk = clk;
507     s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
508     omap_os_timer_reset(s);
509     omap_timer_clk_setup(&s->timer);
510 
511     memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
512                           "omap-os-timer", 0x800);
513     memory_region_add_subregion(memory, base, &s->iomem);
514 
515     return s;
516 }
517 
518 /* Ultra Low-Power Device Module */
519 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
520                                   unsigned size)
521 {
522     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
523     uint16_t ret;
524 
525     if (size != 2) {
526         return omap_badwidth_read16(opaque, addr);
527     }
528 
529     switch (addr) {
530     case 0x14:	/* IT_STATUS */
531         ret = s->ulpd_pm_regs[addr >> 2];
532         s->ulpd_pm_regs[addr >> 2] = 0;
533         qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
534         return ret;
535 
536     case 0x18:	/* Reserved */
537     case 0x1c:	/* Reserved */
538     case 0x20:	/* Reserved */
539     case 0x28:	/* Reserved */
540     case 0x2c:	/* Reserved */
541         OMAP_BAD_REG(addr);
542         /* fall through */
543     case 0x00:	/* COUNTER_32_LSB */
544     case 0x04:	/* COUNTER_32_MSB */
545     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
546     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
547     case 0x10:	/* GAUGING_CTRL */
548     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
549     case 0x30:	/* CLOCK_CTRL */
550     case 0x34:	/* SOFT_REQ */
551     case 0x38:	/* COUNTER_32_FIQ */
552     case 0x3c:	/* DPLL_CTRL */
553     case 0x40:	/* STATUS_REQ */
554         /* XXX: check clk::usecount state for every clock */
555     case 0x48:	/* LOCL_TIME */
556     case 0x4c:	/* APLL_CTRL */
557     case 0x50:	/* POWER_CTRL */
558         return s->ulpd_pm_regs[addr >> 2];
559     }
560 
561     OMAP_BAD_REG(addr);
562     return 0;
563 }
564 
565 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
566                 uint16_t diff, uint16_t value)
567 {
568     if (diff & (1 << 4))				/* USB_MCLK_EN */
569         omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
570     if (diff & (1 << 5))				/* DIS_USB_PVCI_CLK */
571         omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
572 }
573 
574 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
575                 uint16_t diff, uint16_t value)
576 {
577     if (diff & (1 << 0))				/* SOFT_DPLL_REQ */
578         omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
579     if (diff & (1 << 1))				/* SOFT_COM_REQ */
580         omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
581     if (diff & (1 << 2))				/* SOFT_SDW_REQ */
582         omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
583     if (diff & (1 << 3))				/* SOFT_USB_REQ */
584         omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
585 }
586 
587 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
588                                uint64_t value, unsigned size)
589 {
590     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
591     int64_t now, ticks;
592     int div, mult;
593     static const int bypass_div[4] = { 1, 2, 4, 4 };
594     uint16_t diff;
595 
596     if (size != 2) {
597         omap_badwidth_write16(opaque, addr, value);
598         return;
599     }
600 
601     switch (addr) {
602     case 0x00:	/* COUNTER_32_LSB */
603     case 0x04:	/* COUNTER_32_MSB */
604     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
605     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
606     case 0x14:	/* IT_STATUS */
607     case 0x40:	/* STATUS_REQ */
608         OMAP_RO_REG(addr);
609         break;
610 
611     case 0x10:	/* GAUGING_CTRL */
612         /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
613         if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
614             now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
615 
616             if (value & 1)
617                 s->ulpd_gauge_start = now;
618             else {
619                 now -= s->ulpd_gauge_start;
620 
621                 /* 32-kHz ticks */
622                 ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
623                 s->ulpd_pm_regs[0x00 >> 2] = (ticks >>  0) & 0xffff;
624                 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
625                 if (ticks >> 32)	/* OVERFLOW_32K */
626                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
627 
628                 /* High frequency ticks */
629                 ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
630                 s->ulpd_pm_regs[0x08 >> 2] = (ticks >>  0) & 0xffff;
631                 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
632                 if (ticks >> 32)	/* OVERFLOW_HI_FREQ */
633                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
634 
635                 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0;	/* IT_GAUGING */
636                 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
637             }
638         }
639         s->ulpd_pm_regs[addr >> 2] = value;
640         break;
641 
642     case 0x18:	/* Reserved */
643     case 0x1c:	/* Reserved */
644     case 0x20:	/* Reserved */
645     case 0x28:	/* Reserved */
646     case 0x2c:	/* Reserved */
647         OMAP_BAD_REG(addr);
648         /* fall through */
649     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
650     case 0x38:	/* COUNTER_32_FIQ */
651     case 0x48:	/* LOCL_TIME */
652     case 0x50:	/* POWER_CTRL */
653         s->ulpd_pm_regs[addr >> 2] = value;
654         break;
655 
656     case 0x30:	/* CLOCK_CTRL */
657         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
658         s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
659         omap_ulpd_clk_update(s, diff, value);
660         break;
661 
662     case 0x34:	/* SOFT_REQ */
663         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
664         s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
665         omap_ulpd_req_update(s, diff, value);
666         break;
667 
668     case 0x3c:	/* DPLL_CTRL */
669         /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
670          * omitted altogether, probably a typo.  */
671         /* This register has identical semantics with DPLL(1:3) control
672          * registers, see omap_dpll_write() */
673         diff = s->ulpd_pm_regs[addr >> 2] & value;
674         s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
675         if (diff & (0x3ff << 2)) {
676             if (value & (1 << 4)) {			/* PLL_ENABLE */
677                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
678                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
679             } else {
680                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
681                 mult = 1;
682             }
683             omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
684         }
685 
686         /* Enter the desired mode.  */
687         s->ulpd_pm_regs[addr >> 2] =
688                 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
689                 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
690 
691         /* Act as if the lock is restored.  */
692         s->ulpd_pm_regs[addr >> 2] |= 2;
693         break;
694 
695     case 0x4c:	/* APLL_CTRL */
696         diff = s->ulpd_pm_regs[addr >> 2] & value;
697         s->ulpd_pm_regs[addr >> 2] = value & 0xf;
698         if (diff & (1 << 0))				/* APLL_NDPLL_SWITCH */
699             omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
700                                     (value & (1 << 0)) ? "apll" : "dpll4"));
701         break;
702 
703     default:
704         OMAP_BAD_REG(addr);
705     }
706 }
707 
708 static const MemoryRegionOps omap_ulpd_pm_ops = {
709     .read = omap_ulpd_pm_read,
710     .write = omap_ulpd_pm_write,
711     .endianness = DEVICE_NATIVE_ENDIAN,
712 };
713 
714 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
715 {
716     mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
717     mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
718     mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
719     mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
720     mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
721     mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
722     mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
723     mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
724     mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
725     mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
726     mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
727     omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
728     mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
729     omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
730     mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
731     mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
732     mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
733     mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
734     mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
735     mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
736     mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
737     omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
738     omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
739 }
740 
741 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
742                 hwaddr base,
743                 struct omap_mpu_state_s *mpu)
744 {
745     memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
746                           "omap-ulpd-pm", 0x800);
747     memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
748     omap_ulpd_pm_reset(mpu);
749 }
750 
751 /* OMAP Pin Configuration */
752 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
753                                   unsigned size)
754 {
755     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
756 
757     if (size != 4) {
758         return omap_badwidth_read32(opaque, addr);
759     }
760 
761     switch (addr) {
762     case 0x00:	/* FUNC_MUX_CTRL_0 */
763     case 0x04:	/* FUNC_MUX_CTRL_1 */
764     case 0x08:	/* FUNC_MUX_CTRL_2 */
765         return s->func_mux_ctrl[addr >> 2];
766 
767     case 0x0c:	/* COMP_MODE_CTRL_0 */
768         return s->comp_mode_ctrl[0];
769 
770     case 0x10:	/* FUNC_MUX_CTRL_3 */
771     case 0x14:	/* FUNC_MUX_CTRL_4 */
772     case 0x18:	/* FUNC_MUX_CTRL_5 */
773     case 0x1c:	/* FUNC_MUX_CTRL_6 */
774     case 0x20:	/* FUNC_MUX_CTRL_7 */
775     case 0x24:	/* FUNC_MUX_CTRL_8 */
776     case 0x28:	/* FUNC_MUX_CTRL_9 */
777     case 0x2c:	/* FUNC_MUX_CTRL_A */
778     case 0x30:	/* FUNC_MUX_CTRL_B */
779     case 0x34:	/* FUNC_MUX_CTRL_C */
780     case 0x38:	/* FUNC_MUX_CTRL_D */
781         return s->func_mux_ctrl[(addr >> 2) - 1];
782 
783     case 0x40:	/* PULL_DWN_CTRL_0 */
784     case 0x44:	/* PULL_DWN_CTRL_1 */
785     case 0x48:	/* PULL_DWN_CTRL_2 */
786     case 0x4c:	/* PULL_DWN_CTRL_3 */
787         return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
788 
789     case 0x50:	/* GATE_INH_CTRL_0 */
790         return s->gate_inh_ctrl[0];
791 
792     case 0x60:	/* VOLTAGE_CTRL_0 */
793         return s->voltage_ctrl[0];
794 
795     case 0x70:	/* TEST_DBG_CTRL_0 */
796         return s->test_dbg_ctrl[0];
797 
798     case 0x80:	/* MOD_CONF_CTRL_0 */
799         return s->mod_conf_ctrl[0];
800     }
801 
802     OMAP_BAD_REG(addr);
803     return 0;
804 }
805 
806 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
807                 uint32_t diff, uint32_t value)
808 {
809     if (s->compat1509) {
810         if (diff & (1 << 9))			/* BLUETOOTH */
811             omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
812                             (~value >> 9) & 1);
813         if (diff & (1 << 7))			/* USB.CLKO */
814             omap_clk_onoff(omap_findclk(s, "usb.clko"),
815                             (value >> 7) & 1);
816     }
817 }
818 
819 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
820                 uint32_t diff, uint32_t value)
821 {
822     if (s->compat1509) {
823         if (diff & (1U << 31)) {
824             /* MCBSP3_CLK_HIZ_DI */
825             omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
826         }
827         if (diff & (1 << 1)) {
828             /* CLK32K */
829             omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
830         }
831     }
832 }
833 
834 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
835                 uint32_t diff, uint32_t value)
836 {
837     if (diff & (1U << 31)) {
838         /* CONF_MOD_UART3_CLK_MODE_R */
839         omap_clk_reparent(omap_findclk(s, "uart3_ck"),
840                           omap_findclk(s, ((value >> 31) & 1) ?
841                                        "ck_48m" : "armper_ck"));
842     }
843     if (diff & (1 << 30))			/* CONF_MOD_UART2_CLK_MODE_R */
844          omap_clk_reparent(omap_findclk(s, "uart2_ck"),
845                          omap_findclk(s, ((value >> 30) & 1) ?
846                                  "ck_48m" : "armper_ck"));
847     if (diff & (1 << 29))			/* CONF_MOD_UART1_CLK_MODE_R */
848          omap_clk_reparent(omap_findclk(s, "uart1_ck"),
849                          omap_findclk(s, ((value >> 29) & 1) ?
850                                  "ck_48m" : "armper_ck"));
851     if (diff & (1 << 23))			/* CONF_MOD_MMC_SD_CLK_REQ_R */
852          omap_clk_reparent(omap_findclk(s, "mmc_ck"),
853                          omap_findclk(s, ((value >> 23) & 1) ?
854                                  "ck_48m" : "armper_ck"));
855     if (diff & (1 << 12))			/* CONF_MOD_COM_MCLK_12_48_S */
856          omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
857                          omap_findclk(s, ((value >> 12) & 1) ?
858                                  "ck_48m" : "armper_ck"));
859     if (diff & (1 << 9))			/* CONF_MOD_USB_HOST_HHC_UHO */
860          omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
861 }
862 
863 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
864                                uint64_t value, unsigned size)
865 {
866     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
867     uint32_t diff;
868 
869     if (size != 4) {
870         omap_badwidth_write32(opaque, addr, value);
871         return;
872     }
873 
874     switch (addr) {
875     case 0x00:	/* FUNC_MUX_CTRL_0 */
876         diff = s->func_mux_ctrl[addr >> 2] ^ value;
877         s->func_mux_ctrl[addr >> 2] = value;
878         omap_pin_funcmux0_update(s, diff, value);
879         return;
880 
881     case 0x04:	/* FUNC_MUX_CTRL_1 */
882         diff = s->func_mux_ctrl[addr >> 2] ^ value;
883         s->func_mux_ctrl[addr >> 2] = value;
884         omap_pin_funcmux1_update(s, diff, value);
885         return;
886 
887     case 0x08:	/* FUNC_MUX_CTRL_2 */
888         s->func_mux_ctrl[addr >> 2] = value;
889         return;
890 
891     case 0x0c:	/* COMP_MODE_CTRL_0 */
892         s->comp_mode_ctrl[0] = value;
893         s->compat1509 = (value != 0x0000eaef);
894         omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
895         omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
896         return;
897 
898     case 0x10:	/* FUNC_MUX_CTRL_3 */
899     case 0x14:	/* FUNC_MUX_CTRL_4 */
900     case 0x18:	/* FUNC_MUX_CTRL_5 */
901     case 0x1c:	/* FUNC_MUX_CTRL_6 */
902     case 0x20:	/* FUNC_MUX_CTRL_7 */
903     case 0x24:	/* FUNC_MUX_CTRL_8 */
904     case 0x28:	/* FUNC_MUX_CTRL_9 */
905     case 0x2c:	/* FUNC_MUX_CTRL_A */
906     case 0x30:	/* FUNC_MUX_CTRL_B */
907     case 0x34:	/* FUNC_MUX_CTRL_C */
908     case 0x38:	/* FUNC_MUX_CTRL_D */
909         s->func_mux_ctrl[(addr >> 2) - 1] = value;
910         return;
911 
912     case 0x40:	/* PULL_DWN_CTRL_0 */
913     case 0x44:	/* PULL_DWN_CTRL_1 */
914     case 0x48:	/* PULL_DWN_CTRL_2 */
915     case 0x4c:	/* PULL_DWN_CTRL_3 */
916         s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
917         return;
918 
919     case 0x50:	/* GATE_INH_CTRL_0 */
920         s->gate_inh_ctrl[0] = value;
921         return;
922 
923     case 0x60:	/* VOLTAGE_CTRL_0 */
924         s->voltage_ctrl[0] = value;
925         return;
926 
927     case 0x70:	/* TEST_DBG_CTRL_0 */
928         s->test_dbg_ctrl[0] = value;
929         return;
930 
931     case 0x80:	/* MOD_CONF_CTRL_0 */
932         diff = s->mod_conf_ctrl[0] ^ value;
933         s->mod_conf_ctrl[0] = value;
934         omap_pin_modconf1_update(s, diff, value);
935         return;
936 
937     default:
938         OMAP_BAD_REG(addr);
939     }
940 }
941 
942 static const MemoryRegionOps omap_pin_cfg_ops = {
943     .read = omap_pin_cfg_read,
944     .write = omap_pin_cfg_write,
945     .endianness = DEVICE_NATIVE_ENDIAN,
946 };
947 
948 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
949 {
950     /* Start in Compatibility Mode.  */
951     mpu->compat1509 = 1;
952     omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
953     omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
954     omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
955     memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
956     memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
957     memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
958     memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
959     memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
960     memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
961     memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
962 }
963 
964 static void omap_pin_cfg_init(MemoryRegion *system_memory,
965                 hwaddr base,
966                 struct omap_mpu_state_s *mpu)
967 {
968     memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
969                           "omap-pin-cfg", 0x800);
970     memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
971     omap_pin_cfg_reset(mpu);
972 }
973 
974 /* Device Identification, Die Identification */
975 static uint64_t omap_id_read(void *opaque, hwaddr addr,
976                              unsigned size)
977 {
978     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
979 
980     if (size != 4) {
981         return omap_badwidth_read32(opaque, addr);
982     }
983 
984     switch (addr) {
985     case 0xfffe1800:	/* DIE_ID_LSB */
986         return 0xc9581f0e;
987     case 0xfffe1804:	/* DIE_ID_MSB */
988         return 0xa8858bfa;
989 
990     case 0xfffe2000:	/* PRODUCT_ID_LSB */
991         return 0x00aaaafc;
992     case 0xfffe2004:	/* PRODUCT_ID_MSB */
993         return 0xcafeb574;
994 
995     case 0xfffed400:	/* JTAG_ID_LSB */
996         switch (s->mpu_model) {
997         case omap310:
998             return 0x03310315;
999         case omap1510:
1000             return 0x03310115;
1001         default:
1002             hw_error("%s: bad mpu model\n", __FUNCTION__);
1003         }
1004         break;
1005 
1006     case 0xfffed404:	/* JTAG_ID_MSB */
1007         switch (s->mpu_model) {
1008         case omap310:
1009             return 0xfb57402f;
1010         case omap1510:
1011             return 0xfb47002f;
1012         default:
1013             hw_error("%s: bad mpu model\n", __FUNCTION__);
1014         }
1015         break;
1016     }
1017 
1018     OMAP_BAD_REG(addr);
1019     return 0;
1020 }
1021 
1022 static void omap_id_write(void *opaque, hwaddr addr,
1023                           uint64_t value, unsigned size)
1024 {
1025     if (size != 4) {
1026         omap_badwidth_write32(opaque, addr, value);
1027         return;
1028     }
1029 
1030     OMAP_BAD_REG(addr);
1031 }
1032 
1033 static const MemoryRegionOps omap_id_ops = {
1034     .read = omap_id_read,
1035     .write = omap_id_write,
1036     .endianness = DEVICE_NATIVE_ENDIAN,
1037 };
1038 
1039 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1040 {
1041     memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1042                           "omap-id", 0x100000000ULL);
1043     memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1044                              0xfffe1800, 0x800);
1045     memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1046     memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1047                              0xfffed400, 0x100);
1048     memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1049     if (!cpu_is_omap15xx(mpu)) {
1050         memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1051                                  &mpu->id_iomem, 0xfffe2000, 0x800);
1052         memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1053     }
1054 }
1055 
1056 /* MPUI Control (Dummy) */
1057 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1058                                unsigned size)
1059 {
1060     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1061 
1062     if (size != 4) {
1063         return omap_badwidth_read32(opaque, addr);
1064     }
1065 
1066     switch (addr) {
1067     case 0x00:	/* CTRL */
1068         return s->mpui_ctrl;
1069     case 0x04:	/* DEBUG_ADDR */
1070         return 0x01ffffff;
1071     case 0x08:	/* DEBUG_DATA */
1072         return 0xffffffff;
1073     case 0x0c:	/* DEBUG_FLAG */
1074         return 0x00000800;
1075     case 0x10:	/* STATUS */
1076         return 0x00000000;
1077 
1078     /* Not in OMAP310 */
1079     case 0x14:	/* DSP_STATUS */
1080     case 0x18:	/* DSP_BOOT_CONFIG */
1081         return 0x00000000;
1082     case 0x1c:	/* DSP_MPUI_CONFIG */
1083         return 0x0000ffff;
1084     }
1085 
1086     OMAP_BAD_REG(addr);
1087     return 0;
1088 }
1089 
1090 static void omap_mpui_write(void *opaque, hwaddr addr,
1091                             uint64_t value, unsigned size)
1092 {
1093     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1094 
1095     if (size != 4) {
1096         omap_badwidth_write32(opaque, addr, value);
1097         return;
1098     }
1099 
1100     switch (addr) {
1101     case 0x00:	/* CTRL */
1102         s->mpui_ctrl = value & 0x007fffff;
1103         break;
1104 
1105     case 0x04:	/* DEBUG_ADDR */
1106     case 0x08:	/* DEBUG_DATA */
1107     case 0x0c:	/* DEBUG_FLAG */
1108     case 0x10:	/* STATUS */
1109     /* Not in OMAP310 */
1110     case 0x14:	/* DSP_STATUS */
1111         OMAP_RO_REG(addr);
1112         break;
1113     case 0x18:	/* DSP_BOOT_CONFIG */
1114     case 0x1c:	/* DSP_MPUI_CONFIG */
1115         break;
1116 
1117     default:
1118         OMAP_BAD_REG(addr);
1119     }
1120 }
1121 
1122 static const MemoryRegionOps omap_mpui_ops = {
1123     .read = omap_mpui_read,
1124     .write = omap_mpui_write,
1125     .endianness = DEVICE_NATIVE_ENDIAN,
1126 };
1127 
1128 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1129 {
1130     s->mpui_ctrl = 0x0003ff1b;
1131 }
1132 
1133 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1134                 struct omap_mpu_state_s *mpu)
1135 {
1136     memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1137                           "omap-mpui", 0x100);
1138     memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1139 
1140     omap_mpui_reset(mpu);
1141 }
1142 
1143 /* TIPB Bridges */
1144 struct omap_tipb_bridge_s {
1145     qemu_irq abort;
1146     MemoryRegion iomem;
1147 
1148     int width_intr;
1149     uint16_t control;
1150     uint16_t alloc;
1151     uint16_t buffer;
1152     uint16_t enh_control;
1153 };
1154 
1155 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1156                                       unsigned size)
1157 {
1158     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1159 
1160     if (size < 2) {
1161         return omap_badwidth_read16(opaque, addr);
1162     }
1163 
1164     switch (addr) {
1165     case 0x00:	/* TIPB_CNTL */
1166         return s->control;
1167     case 0x04:	/* TIPB_BUS_ALLOC */
1168         return s->alloc;
1169     case 0x08:	/* MPU_TIPB_CNTL */
1170         return s->buffer;
1171     case 0x0c:	/* ENHANCED_TIPB_CNTL */
1172         return s->enh_control;
1173     case 0x10:	/* ADDRESS_DBG */
1174     case 0x14:	/* DATA_DEBUG_LOW */
1175     case 0x18:	/* DATA_DEBUG_HIGH */
1176         return 0xffff;
1177     case 0x1c:	/* DEBUG_CNTR_SIG */
1178         return 0x00f8;
1179     }
1180 
1181     OMAP_BAD_REG(addr);
1182     return 0;
1183 }
1184 
1185 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1186                                    uint64_t value, unsigned size)
1187 {
1188     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1189 
1190     if (size < 2) {
1191         omap_badwidth_write16(opaque, addr, value);
1192         return;
1193     }
1194 
1195     switch (addr) {
1196     case 0x00:	/* TIPB_CNTL */
1197         s->control = value & 0xffff;
1198         break;
1199 
1200     case 0x04:	/* TIPB_BUS_ALLOC */
1201         s->alloc = value & 0x003f;
1202         break;
1203 
1204     case 0x08:	/* MPU_TIPB_CNTL */
1205         s->buffer = value & 0x0003;
1206         break;
1207 
1208     case 0x0c:	/* ENHANCED_TIPB_CNTL */
1209         s->width_intr = !(value & 2);
1210         s->enh_control = value & 0x000f;
1211         break;
1212 
1213     case 0x10:	/* ADDRESS_DBG */
1214     case 0x14:	/* DATA_DEBUG_LOW */
1215     case 0x18:	/* DATA_DEBUG_HIGH */
1216     case 0x1c:	/* DEBUG_CNTR_SIG */
1217         OMAP_RO_REG(addr);
1218         break;
1219 
1220     default:
1221         OMAP_BAD_REG(addr);
1222     }
1223 }
1224 
1225 static const MemoryRegionOps omap_tipb_bridge_ops = {
1226     .read = omap_tipb_bridge_read,
1227     .write = omap_tipb_bridge_write,
1228     .endianness = DEVICE_NATIVE_ENDIAN,
1229 };
1230 
1231 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1232 {
1233     s->control = 0xffff;
1234     s->alloc = 0x0009;
1235     s->buffer = 0x0000;
1236     s->enh_control = 0x000f;
1237 }
1238 
1239 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1240     MemoryRegion *memory, hwaddr base,
1241     qemu_irq abort_irq, omap_clk clk)
1242 {
1243     struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1244 
1245     s->abort = abort_irq;
1246     omap_tipb_bridge_reset(s);
1247 
1248     memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1249                           "omap-tipb-bridge", 0x100);
1250     memory_region_add_subregion(memory, base, &s->iomem);
1251 
1252     return s;
1253 }
1254 
1255 /* Dummy Traffic Controller's Memory Interface */
1256 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1257                                unsigned size)
1258 {
1259     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1260     uint32_t ret;
1261 
1262     if (size != 4) {
1263         return omap_badwidth_read32(opaque, addr);
1264     }
1265 
1266     switch (addr) {
1267     case 0x00:	/* IMIF_PRIO */
1268     case 0x04:	/* EMIFS_PRIO */
1269     case 0x08:	/* EMIFF_PRIO */
1270     case 0x0c:	/* EMIFS_CONFIG */
1271     case 0x10:	/* EMIFS_CS0_CONFIG */
1272     case 0x14:	/* EMIFS_CS1_CONFIG */
1273     case 0x18:	/* EMIFS_CS2_CONFIG */
1274     case 0x1c:	/* EMIFS_CS3_CONFIG */
1275     case 0x24:	/* EMIFF_MRS */
1276     case 0x28:	/* TIMEOUT1 */
1277     case 0x2c:	/* TIMEOUT2 */
1278     case 0x30:	/* TIMEOUT3 */
1279     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
1280     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
1281         return s->tcmi_regs[addr >> 2];
1282 
1283     case 0x20:	/* EMIFF_SDRAM_CONFIG */
1284         ret = s->tcmi_regs[addr >> 2];
1285         s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1286         /* XXX: We can try using the VGA_DIRTY flag for this */
1287         return ret;
1288     }
1289 
1290     OMAP_BAD_REG(addr);
1291     return 0;
1292 }
1293 
1294 static void omap_tcmi_write(void *opaque, hwaddr addr,
1295                             uint64_t value, unsigned size)
1296 {
1297     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1298 
1299     if (size != 4) {
1300         omap_badwidth_write32(opaque, addr, value);
1301         return;
1302     }
1303 
1304     switch (addr) {
1305     case 0x00:	/* IMIF_PRIO */
1306     case 0x04:	/* EMIFS_PRIO */
1307     case 0x08:	/* EMIFF_PRIO */
1308     case 0x10:	/* EMIFS_CS0_CONFIG */
1309     case 0x14:	/* EMIFS_CS1_CONFIG */
1310     case 0x18:	/* EMIFS_CS2_CONFIG */
1311     case 0x1c:	/* EMIFS_CS3_CONFIG */
1312     case 0x20:	/* EMIFF_SDRAM_CONFIG */
1313     case 0x24:	/* EMIFF_MRS */
1314     case 0x28:	/* TIMEOUT1 */
1315     case 0x2c:	/* TIMEOUT2 */
1316     case 0x30:	/* TIMEOUT3 */
1317     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
1318     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
1319         s->tcmi_regs[addr >> 2] = value;
1320         break;
1321     case 0x0c:	/* EMIFS_CONFIG */
1322         s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1323         break;
1324 
1325     default:
1326         OMAP_BAD_REG(addr);
1327     }
1328 }
1329 
1330 static const MemoryRegionOps omap_tcmi_ops = {
1331     .read = omap_tcmi_read,
1332     .write = omap_tcmi_write,
1333     .endianness = DEVICE_NATIVE_ENDIAN,
1334 };
1335 
1336 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1337 {
1338     mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1339     mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1340     mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1341     mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1342     mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1343     mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1344     mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1345     mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1346     mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1347     mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1348     mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1349     mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1350     mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1351     mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1352     mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1353 }
1354 
1355 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1356                 struct omap_mpu_state_s *mpu)
1357 {
1358     memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1359                           "omap-tcmi", 0x100);
1360     memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1361     omap_tcmi_reset(mpu);
1362 }
1363 
1364 /* Digital phase-locked loops control */
1365 struct dpll_ctl_s {
1366     MemoryRegion iomem;
1367     uint16_t mode;
1368     omap_clk dpll;
1369 };
1370 
1371 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1372                                unsigned size)
1373 {
1374     struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1375 
1376     if (size != 2) {
1377         return omap_badwidth_read16(opaque, addr);
1378     }
1379 
1380     if (addr == 0x00)	/* CTL_REG */
1381         return s->mode;
1382 
1383     OMAP_BAD_REG(addr);
1384     return 0;
1385 }
1386 
1387 static void omap_dpll_write(void *opaque, hwaddr addr,
1388                             uint64_t value, unsigned size)
1389 {
1390     struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1391     uint16_t diff;
1392     static const int bypass_div[4] = { 1, 2, 4, 4 };
1393     int div, mult;
1394 
1395     if (size != 2) {
1396         omap_badwidth_write16(opaque, addr, value);
1397         return;
1398     }
1399 
1400     if (addr == 0x00) {	/* CTL_REG */
1401         /* See omap_ulpd_pm_write() too */
1402         diff = s->mode & value;
1403         s->mode = value & 0x2fff;
1404         if (diff & (0x3ff << 2)) {
1405             if (value & (1 << 4)) {			/* PLL_ENABLE */
1406                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
1407                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
1408             } else {
1409                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
1410                 mult = 1;
1411             }
1412             omap_clk_setrate(s->dpll, div, mult);
1413         }
1414 
1415         /* Enter the desired mode.  */
1416         s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1417 
1418         /* Act as if the lock is restored.  */
1419         s->mode |= 2;
1420     } else {
1421         OMAP_BAD_REG(addr);
1422     }
1423 }
1424 
1425 static const MemoryRegionOps omap_dpll_ops = {
1426     .read = omap_dpll_read,
1427     .write = omap_dpll_write,
1428     .endianness = DEVICE_NATIVE_ENDIAN,
1429 };
1430 
1431 static void omap_dpll_reset(struct dpll_ctl_s *s)
1432 {
1433     s->mode = 0x2002;
1434     omap_clk_setrate(s->dpll, 1, 1);
1435 }
1436 
1437 static struct dpll_ctl_s  *omap_dpll_init(MemoryRegion *memory,
1438                            hwaddr base, omap_clk clk)
1439 {
1440     struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1441     memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1442 
1443     s->dpll = clk;
1444     omap_dpll_reset(s);
1445 
1446     memory_region_add_subregion(memory, base, &s->iomem);
1447     return s;
1448 }
1449 
1450 /* MPU Clock/Reset/Power Mode Control */
1451 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1452                                unsigned size)
1453 {
1454     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1455 
1456     if (size != 2) {
1457         return omap_badwidth_read16(opaque, addr);
1458     }
1459 
1460     switch (addr) {
1461     case 0x00:	/* ARM_CKCTL */
1462         return s->clkm.arm_ckctl;
1463 
1464     case 0x04:	/* ARM_IDLECT1 */
1465         return s->clkm.arm_idlect1;
1466 
1467     case 0x08:	/* ARM_IDLECT2 */
1468         return s->clkm.arm_idlect2;
1469 
1470     case 0x0c:	/* ARM_EWUPCT */
1471         return s->clkm.arm_ewupct;
1472 
1473     case 0x10:	/* ARM_RSTCT1 */
1474         return s->clkm.arm_rstct1;
1475 
1476     case 0x14:	/* ARM_RSTCT2 */
1477         return s->clkm.arm_rstct2;
1478 
1479     case 0x18:	/* ARM_SYSST */
1480         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1481 
1482     case 0x1c:	/* ARM_CKOUT1 */
1483         return s->clkm.arm_ckout1;
1484 
1485     case 0x20:	/* ARM_CKOUT2 */
1486         break;
1487     }
1488 
1489     OMAP_BAD_REG(addr);
1490     return 0;
1491 }
1492 
1493 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1494                 uint16_t diff, uint16_t value)
1495 {
1496     omap_clk clk;
1497 
1498     if (diff & (1 << 14)) {				/* ARM_INTHCK_SEL */
1499         if (value & (1 << 14))
1500             /* Reserved */;
1501         else {
1502             clk = omap_findclk(s, "arminth_ck");
1503             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1504         }
1505     }
1506     if (diff & (1 << 12)) {				/* ARM_TIMXO */
1507         clk = omap_findclk(s, "armtim_ck");
1508         if (value & (1 << 12))
1509             omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1510         else
1511             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1512     }
1513     /* XXX: en_dspck */
1514     if (diff & (3 << 10)) {				/* DSPMMUDIV */
1515         clk = omap_findclk(s, "dspmmu_ck");
1516         omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1517     }
1518     if (diff & (3 << 8)) {				/* TCDIV */
1519         clk = omap_findclk(s, "tc_ck");
1520         omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1521     }
1522     if (diff & (3 << 6)) {				/* DSPDIV */
1523         clk = omap_findclk(s, "dsp_ck");
1524         omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1525     }
1526     if (diff & (3 << 4)) {				/* ARMDIV */
1527         clk = omap_findclk(s, "arm_ck");
1528         omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1529     }
1530     if (diff & (3 << 2)) {				/* LCDDIV */
1531         clk = omap_findclk(s, "lcd_ck");
1532         omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1533     }
1534     if (diff & (3 << 0)) {				/* PERDIV */
1535         clk = omap_findclk(s, "armper_ck");
1536         omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1537     }
1538 }
1539 
1540 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1541                 uint16_t diff, uint16_t value)
1542 {
1543     omap_clk clk;
1544 
1545     if (value & (1 << 11)) {                            /* SETARM_IDLE */
1546         cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1547     }
1548     if (!(value & (1 << 10)))				/* WKUP_MODE */
1549         qemu_system_shutdown_request();	/* XXX: disable wakeup from IRQ */
1550 
1551 #define SET_CANIDLE(clock, bit)				\
1552     if (diff & (1 << bit)) {				\
1553         clk = omap_findclk(s, clock);			\
1554         omap_clk_canidle(clk, (value >> bit) & 1);	\
1555     }
1556     SET_CANIDLE("mpuwd_ck", 0)				/* IDLWDT_ARM */
1557     SET_CANIDLE("armxor_ck", 1)				/* IDLXORP_ARM */
1558     SET_CANIDLE("mpuper_ck", 2)				/* IDLPER_ARM */
1559     SET_CANIDLE("lcd_ck", 3)				/* IDLLCD_ARM */
1560     SET_CANIDLE("lb_ck", 4)				/* IDLLB_ARM */
1561     SET_CANIDLE("hsab_ck", 5)				/* IDLHSAB_ARM */
1562     SET_CANIDLE("tipb_ck", 6)				/* IDLIF_ARM */
1563     SET_CANIDLE("dma_ck", 6)				/* IDLIF_ARM */
1564     SET_CANIDLE("tc_ck", 6)				/* IDLIF_ARM */
1565     SET_CANIDLE("dpll1", 7)				/* IDLDPLL_ARM */
1566     SET_CANIDLE("dpll2", 7)				/* IDLDPLL_ARM */
1567     SET_CANIDLE("dpll3", 7)				/* IDLDPLL_ARM */
1568     SET_CANIDLE("mpui_ck", 8)				/* IDLAPI_ARM */
1569     SET_CANIDLE("armtim_ck", 9)				/* IDLTIM_ARM */
1570 }
1571 
1572 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1573                 uint16_t diff, uint16_t value)
1574 {
1575     omap_clk clk;
1576 
1577 #define SET_ONOFF(clock, bit)				\
1578     if (diff & (1 << bit)) {				\
1579         clk = omap_findclk(s, clock);			\
1580         omap_clk_onoff(clk, (value >> bit) & 1);	\
1581     }
1582     SET_ONOFF("mpuwd_ck", 0)				/* EN_WDTCK */
1583     SET_ONOFF("armxor_ck", 1)				/* EN_XORPCK */
1584     SET_ONOFF("mpuper_ck", 2)				/* EN_PERCK */
1585     SET_ONOFF("lcd_ck", 3)				/* EN_LCDCK */
1586     SET_ONOFF("lb_ck", 4)				/* EN_LBCK */
1587     SET_ONOFF("hsab_ck", 5)				/* EN_HSABCK */
1588     SET_ONOFF("mpui_ck", 6)				/* EN_APICK */
1589     SET_ONOFF("armtim_ck", 7)				/* EN_TIMCK */
1590     SET_CANIDLE("dma_ck", 8)				/* DMACK_REQ */
1591     SET_ONOFF("arm_gpio_ck", 9)				/* EN_GPIOCK */
1592     SET_ONOFF("lbfree_ck", 10)				/* EN_LBFREECK */
1593 }
1594 
1595 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1596                 uint16_t diff, uint16_t value)
1597 {
1598     omap_clk clk;
1599 
1600     if (diff & (3 << 4)) {				/* TCLKOUT */
1601         clk = omap_findclk(s, "tclk_out");
1602         switch ((value >> 4) & 3) {
1603         case 1:
1604             omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1605             omap_clk_onoff(clk, 1);
1606             break;
1607         case 2:
1608             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1609             omap_clk_onoff(clk, 1);
1610             break;
1611         default:
1612             omap_clk_onoff(clk, 0);
1613         }
1614     }
1615     if (diff & (3 << 2)) {				/* DCLKOUT */
1616         clk = omap_findclk(s, "dclk_out");
1617         switch ((value >> 2) & 3) {
1618         case 0:
1619             omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1620             break;
1621         case 1:
1622             omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1623             break;
1624         case 2:
1625             omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1626             break;
1627         case 3:
1628             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1629             break;
1630         }
1631     }
1632     if (diff & (3 << 0)) {				/* ACLKOUT */
1633         clk = omap_findclk(s, "aclk_out");
1634         switch ((value >> 0) & 3) {
1635         case 1:
1636             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1637             omap_clk_onoff(clk, 1);
1638             break;
1639         case 2:
1640             omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1641             omap_clk_onoff(clk, 1);
1642             break;
1643         case 3:
1644             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1645             omap_clk_onoff(clk, 1);
1646             break;
1647         default:
1648             omap_clk_onoff(clk, 0);
1649         }
1650     }
1651 }
1652 
1653 static void omap_clkm_write(void *opaque, hwaddr addr,
1654                             uint64_t value, unsigned size)
1655 {
1656     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1657     uint16_t diff;
1658     omap_clk clk;
1659     static const char *clkschemename[8] = {
1660         "fully synchronous", "fully asynchronous", "synchronous scalable",
1661         "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1662     };
1663 
1664     if (size != 2) {
1665         omap_badwidth_write16(opaque, addr, value);
1666         return;
1667     }
1668 
1669     switch (addr) {
1670     case 0x00:	/* ARM_CKCTL */
1671         diff = s->clkm.arm_ckctl ^ value;
1672         s->clkm.arm_ckctl = value & 0x7fff;
1673         omap_clkm_ckctl_update(s, diff, value);
1674         return;
1675 
1676     case 0x04:	/* ARM_IDLECT1 */
1677         diff = s->clkm.arm_idlect1 ^ value;
1678         s->clkm.arm_idlect1 = value & 0x0fff;
1679         omap_clkm_idlect1_update(s, diff, value);
1680         return;
1681 
1682     case 0x08:	/* ARM_IDLECT2 */
1683         diff = s->clkm.arm_idlect2 ^ value;
1684         s->clkm.arm_idlect2 = value & 0x07ff;
1685         omap_clkm_idlect2_update(s, diff, value);
1686         return;
1687 
1688     case 0x0c:	/* ARM_EWUPCT */
1689         s->clkm.arm_ewupct = value & 0x003f;
1690         return;
1691 
1692     case 0x10:	/* ARM_RSTCT1 */
1693         diff = s->clkm.arm_rstct1 ^ value;
1694         s->clkm.arm_rstct1 = value & 0x0007;
1695         if (value & 9) {
1696             qemu_system_reset_request();
1697             s->clkm.cold_start = 0xa;
1698         }
1699         if (diff & ~value & 4) {				/* DSP_RST */
1700             omap_mpui_reset(s);
1701             omap_tipb_bridge_reset(s->private_tipb);
1702             omap_tipb_bridge_reset(s->public_tipb);
1703         }
1704         if (diff & 2) {						/* DSP_EN */
1705             clk = omap_findclk(s, "dsp_ck");
1706             omap_clk_canidle(clk, (~value >> 1) & 1);
1707         }
1708         return;
1709 
1710     case 0x14:	/* ARM_RSTCT2 */
1711         s->clkm.arm_rstct2 = value & 0x0001;
1712         return;
1713 
1714     case 0x18:	/* ARM_SYSST */
1715         if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1716             s->clkm.clocking_scheme = (value >> 11) & 7;
1717             printf("%s: clocking scheme set to %s\n", __FUNCTION__,
1718                             clkschemename[s->clkm.clocking_scheme]);
1719         }
1720         s->clkm.cold_start &= value & 0x3f;
1721         return;
1722 
1723     case 0x1c:	/* ARM_CKOUT1 */
1724         diff = s->clkm.arm_ckout1 ^ value;
1725         s->clkm.arm_ckout1 = value & 0x003f;
1726         omap_clkm_ckout1_update(s, diff, value);
1727         return;
1728 
1729     case 0x20:	/* ARM_CKOUT2 */
1730     default:
1731         OMAP_BAD_REG(addr);
1732     }
1733 }
1734 
1735 static const MemoryRegionOps omap_clkm_ops = {
1736     .read = omap_clkm_read,
1737     .write = omap_clkm_write,
1738     .endianness = DEVICE_NATIVE_ENDIAN,
1739 };
1740 
1741 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1742                                  unsigned size)
1743 {
1744     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1745     CPUState *cpu = CPU(s->cpu);
1746 
1747     if (size != 2) {
1748         return omap_badwidth_read16(opaque, addr);
1749     }
1750 
1751     switch (addr) {
1752     case 0x04:	/* DSP_IDLECT1 */
1753         return s->clkm.dsp_idlect1;
1754 
1755     case 0x08:	/* DSP_IDLECT2 */
1756         return s->clkm.dsp_idlect2;
1757 
1758     case 0x14:	/* DSP_RSTCT2 */
1759         return s->clkm.dsp_rstct2;
1760 
1761     case 0x18:	/* DSP_SYSST */
1762         cpu = CPU(s->cpu);
1763         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1764                 (cpu->halted << 6);      /* Quite useless... */
1765     }
1766 
1767     OMAP_BAD_REG(addr);
1768     return 0;
1769 }
1770 
1771 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1772                 uint16_t diff, uint16_t value)
1773 {
1774     omap_clk clk;
1775 
1776     SET_CANIDLE("dspxor_ck", 1);			/* IDLXORP_DSP */
1777 }
1778 
1779 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1780                 uint16_t diff, uint16_t value)
1781 {
1782     omap_clk clk;
1783 
1784     SET_ONOFF("dspxor_ck", 1);				/* EN_XORPCK */
1785 }
1786 
1787 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1788                               uint64_t value, unsigned size)
1789 {
1790     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1791     uint16_t diff;
1792 
1793     if (size != 2) {
1794         omap_badwidth_write16(opaque, addr, value);
1795         return;
1796     }
1797 
1798     switch (addr) {
1799     case 0x04:	/* DSP_IDLECT1 */
1800         diff = s->clkm.dsp_idlect1 ^ value;
1801         s->clkm.dsp_idlect1 = value & 0x01f7;
1802         omap_clkdsp_idlect1_update(s, diff, value);
1803         break;
1804 
1805     case 0x08:	/* DSP_IDLECT2 */
1806         s->clkm.dsp_idlect2 = value & 0x0037;
1807         diff = s->clkm.dsp_idlect1 ^ value;
1808         omap_clkdsp_idlect2_update(s, diff, value);
1809         break;
1810 
1811     case 0x14:	/* DSP_RSTCT2 */
1812         s->clkm.dsp_rstct2 = value & 0x0001;
1813         break;
1814 
1815     case 0x18:	/* DSP_SYSST */
1816         s->clkm.cold_start &= value & 0x3f;
1817         break;
1818 
1819     default:
1820         OMAP_BAD_REG(addr);
1821     }
1822 }
1823 
1824 static const MemoryRegionOps omap_clkdsp_ops = {
1825     .read = omap_clkdsp_read,
1826     .write = omap_clkdsp_write,
1827     .endianness = DEVICE_NATIVE_ENDIAN,
1828 };
1829 
1830 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1831 {
1832     if (s->wdt && s->wdt->reset)
1833         s->clkm.cold_start = 0x6;
1834     s->clkm.clocking_scheme = 0;
1835     omap_clkm_ckctl_update(s, ~0, 0x3000);
1836     s->clkm.arm_ckctl = 0x3000;
1837     omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1838     s->clkm.arm_idlect1 = 0x0400;
1839     omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1840     s->clkm.arm_idlect2 = 0x0100;
1841     s->clkm.arm_ewupct = 0x003f;
1842     s->clkm.arm_rstct1 = 0x0000;
1843     s->clkm.arm_rstct2 = 0x0000;
1844     s->clkm.arm_ckout1 = 0x0015;
1845     s->clkm.dpll1_mode = 0x2002;
1846     omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1847     s->clkm.dsp_idlect1 = 0x0040;
1848     omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1849     s->clkm.dsp_idlect2 = 0x0000;
1850     s->clkm.dsp_rstct2 = 0x0000;
1851 }
1852 
1853 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1854                 hwaddr dsp_base, struct omap_mpu_state_s *s)
1855 {
1856     memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1857                           "omap-clkm", 0x100);
1858     memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1859                           "omap-clkdsp", 0x1000);
1860 
1861     s->clkm.arm_idlect1 = 0x03ff;
1862     s->clkm.arm_idlect2 = 0x0100;
1863     s->clkm.dsp_idlect1 = 0x0002;
1864     omap_clkm_reset(s);
1865     s->clkm.cold_start = 0x3a;
1866 
1867     memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1868     memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1869 }
1870 
1871 /* MPU I/O */
1872 struct omap_mpuio_s {
1873     qemu_irq irq;
1874     qemu_irq kbd_irq;
1875     qemu_irq *in;
1876     qemu_irq handler[16];
1877     qemu_irq wakeup;
1878     MemoryRegion iomem;
1879 
1880     uint16_t inputs;
1881     uint16_t outputs;
1882     uint16_t dir;
1883     uint16_t edge;
1884     uint16_t mask;
1885     uint16_t ints;
1886 
1887     uint16_t debounce;
1888     uint16_t latch;
1889     uint8_t event;
1890 
1891     uint8_t buttons[5];
1892     uint8_t row_latch;
1893     uint8_t cols;
1894     int kbd_mask;
1895     int clk;
1896 };
1897 
1898 static void omap_mpuio_set(void *opaque, int line, int level)
1899 {
1900     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1901     uint16_t prev = s->inputs;
1902 
1903     if (level)
1904         s->inputs |= 1 << line;
1905     else
1906         s->inputs &= ~(1 << line);
1907 
1908     if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1909         if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1910             s->ints |= 1 << line;
1911             qemu_irq_raise(s->irq);
1912             /* TODO: wakeup */
1913         }
1914         if ((s->event & (1 << 0)) &&		/* SET_GPIO_EVENT_MODE */
1915                 (s->event >> 1) == line)	/* PIN_SELECT */
1916             s->latch = s->inputs;
1917     }
1918 }
1919 
1920 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1921 {
1922     int i;
1923     uint8_t *row, rows = 0, cols = ~s->cols;
1924 
1925     for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1926         if (*row & cols)
1927             rows |= i;
1928 
1929     qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1930     s->row_latch = ~rows;
1931 }
1932 
1933 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1934                                 unsigned size)
1935 {
1936     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1937     int offset = addr & OMAP_MPUI_REG_MASK;
1938     uint16_t ret;
1939 
1940     if (size != 2) {
1941         return omap_badwidth_read16(opaque, addr);
1942     }
1943 
1944     switch (offset) {
1945     case 0x00:	/* INPUT_LATCH */
1946         return s->inputs;
1947 
1948     case 0x04:	/* OUTPUT_REG */
1949         return s->outputs;
1950 
1951     case 0x08:	/* IO_CNTL */
1952         return s->dir;
1953 
1954     case 0x10:	/* KBR_LATCH */
1955         return s->row_latch;
1956 
1957     case 0x14:	/* KBC_REG */
1958         return s->cols;
1959 
1960     case 0x18:	/* GPIO_EVENT_MODE_REG */
1961         return s->event;
1962 
1963     case 0x1c:	/* GPIO_INT_EDGE_REG */
1964         return s->edge;
1965 
1966     case 0x20:	/* KBD_INT */
1967         return (~s->row_latch & 0x1f) && !s->kbd_mask;
1968 
1969     case 0x24:	/* GPIO_INT */
1970         ret = s->ints;
1971         s->ints &= s->mask;
1972         if (ret)
1973             qemu_irq_lower(s->irq);
1974         return ret;
1975 
1976     case 0x28:	/* KBD_MASKIT */
1977         return s->kbd_mask;
1978 
1979     case 0x2c:	/* GPIO_MASKIT */
1980         return s->mask;
1981 
1982     case 0x30:	/* GPIO_DEBOUNCING_REG */
1983         return s->debounce;
1984 
1985     case 0x34:	/* GPIO_LATCH_REG */
1986         return s->latch;
1987     }
1988 
1989     OMAP_BAD_REG(addr);
1990     return 0;
1991 }
1992 
1993 static void omap_mpuio_write(void *opaque, hwaddr addr,
1994                              uint64_t value, unsigned size)
1995 {
1996     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1997     int offset = addr & OMAP_MPUI_REG_MASK;
1998     uint16_t diff;
1999     int ln;
2000 
2001     if (size != 2) {
2002         omap_badwidth_write16(opaque, addr, value);
2003         return;
2004     }
2005 
2006     switch (offset) {
2007     case 0x04:	/* OUTPUT_REG */
2008         diff = (s->outputs ^ value) & ~s->dir;
2009         s->outputs = value;
2010         while ((ln = ctz32(diff)) != 32) {
2011             if (s->handler[ln])
2012                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2013             diff &= ~(1 << ln);
2014         }
2015         break;
2016 
2017     case 0x08:	/* IO_CNTL */
2018         diff = s->outputs & (s->dir ^ value);
2019         s->dir = value;
2020 
2021         value = s->outputs & ~s->dir;
2022         while ((ln = ctz32(diff)) != 32) {
2023             if (s->handler[ln])
2024                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2025             diff &= ~(1 << ln);
2026         }
2027         break;
2028 
2029     case 0x14:	/* KBC_REG */
2030         s->cols = value;
2031         omap_mpuio_kbd_update(s);
2032         break;
2033 
2034     case 0x18:	/* GPIO_EVENT_MODE_REG */
2035         s->event = value & 0x1f;
2036         break;
2037 
2038     case 0x1c:	/* GPIO_INT_EDGE_REG */
2039         s->edge = value;
2040         break;
2041 
2042     case 0x28:	/* KBD_MASKIT */
2043         s->kbd_mask = value & 1;
2044         omap_mpuio_kbd_update(s);
2045         break;
2046 
2047     case 0x2c:	/* GPIO_MASKIT */
2048         s->mask = value;
2049         break;
2050 
2051     case 0x30:	/* GPIO_DEBOUNCING_REG */
2052         s->debounce = value & 0x1ff;
2053         break;
2054 
2055     case 0x00:	/* INPUT_LATCH */
2056     case 0x10:	/* KBR_LATCH */
2057     case 0x20:	/* KBD_INT */
2058     case 0x24:	/* GPIO_INT */
2059     case 0x34:	/* GPIO_LATCH_REG */
2060         OMAP_RO_REG(addr);
2061         return;
2062 
2063     default:
2064         OMAP_BAD_REG(addr);
2065         return;
2066     }
2067 }
2068 
2069 static const MemoryRegionOps omap_mpuio_ops  = {
2070     .read = omap_mpuio_read,
2071     .write = omap_mpuio_write,
2072     .endianness = DEVICE_NATIVE_ENDIAN,
2073 };
2074 
2075 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2076 {
2077     s->inputs = 0;
2078     s->outputs = 0;
2079     s->dir = ~0;
2080     s->event = 0;
2081     s->edge = 0;
2082     s->kbd_mask = 0;
2083     s->mask = 0;
2084     s->debounce = 0;
2085     s->latch = 0;
2086     s->ints = 0;
2087     s->row_latch = 0x1f;
2088     s->clk = 1;
2089 }
2090 
2091 static void omap_mpuio_onoff(void *opaque, int line, int on)
2092 {
2093     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2094 
2095     s->clk = on;
2096     if (on)
2097         omap_mpuio_kbd_update(s);
2098 }
2099 
2100 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2101                 hwaddr base,
2102                 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2103                 omap_clk clk)
2104 {
2105     struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2106 
2107     s->irq = gpio_int;
2108     s->kbd_irq = kbd_int;
2109     s->wakeup = wakeup;
2110     s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2111     omap_mpuio_reset(s);
2112 
2113     memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2114                           "omap-mpuio", 0x800);
2115     memory_region_add_subregion(memory, base, &s->iomem);
2116 
2117     omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2118 
2119     return s;
2120 }
2121 
2122 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2123 {
2124     return s->in;
2125 }
2126 
2127 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2128 {
2129     if (line >= 16 || line < 0)
2130         hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
2131     s->handler[line] = handler;
2132 }
2133 
2134 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2135 {
2136     if (row >= 5 || row < 0)
2137         hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
2138 
2139     if (down)
2140         s->buttons[row] |= 1 << col;
2141     else
2142         s->buttons[row] &= ~(1 << col);
2143 
2144     omap_mpuio_kbd_update(s);
2145 }
2146 
2147 /* MicroWire Interface */
2148 struct omap_uwire_s {
2149     MemoryRegion iomem;
2150     qemu_irq txirq;
2151     qemu_irq rxirq;
2152     qemu_irq txdrq;
2153 
2154     uint16_t txbuf;
2155     uint16_t rxbuf;
2156     uint16_t control;
2157     uint16_t setup[5];
2158 
2159     uWireSlave *chip[4];
2160 };
2161 
2162 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2163 {
2164     int chipselect = (s->control >> 10) & 3;		/* INDEX */
2165     uWireSlave *slave = s->chip[chipselect];
2166 
2167     if ((s->control >> 5) & 0x1f) {			/* NB_BITS_WR */
2168         if (s->control & (1 << 12))			/* CS_CMD */
2169             if (slave && slave->send)
2170                 slave->send(slave->opaque,
2171                                 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2172         s->control &= ~(1 << 14);			/* CSRB */
2173         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2174          * a DRQ.  When is the level IRQ supposed to be reset?  */
2175     }
2176 
2177     if ((s->control >> 0) & 0x1f) {			/* NB_BITS_RD */
2178         if (s->control & (1 << 12))			/* CS_CMD */
2179             if (slave && slave->receive)
2180                 s->rxbuf = slave->receive(slave->opaque);
2181         s->control |= 1 << 15;				/* RDRB */
2182         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2183          * a DRQ.  When is the level IRQ supposed to be reset?  */
2184     }
2185 }
2186 
2187 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2188                                 unsigned size)
2189 {
2190     struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2191     int offset = addr & OMAP_MPUI_REG_MASK;
2192 
2193     if (size != 2) {
2194         return omap_badwidth_read16(opaque, addr);
2195     }
2196 
2197     switch (offset) {
2198     case 0x00:	/* RDR */
2199         s->control &= ~(1 << 15);			/* RDRB */
2200         return s->rxbuf;
2201 
2202     case 0x04:	/* CSR */
2203         return s->control;
2204 
2205     case 0x08:	/* SR1 */
2206         return s->setup[0];
2207     case 0x0c:	/* SR2 */
2208         return s->setup[1];
2209     case 0x10:	/* SR3 */
2210         return s->setup[2];
2211     case 0x14:	/* SR4 */
2212         return s->setup[3];
2213     case 0x18:	/* SR5 */
2214         return s->setup[4];
2215     }
2216 
2217     OMAP_BAD_REG(addr);
2218     return 0;
2219 }
2220 
2221 static void omap_uwire_write(void *opaque, hwaddr addr,
2222                              uint64_t value, unsigned size)
2223 {
2224     struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2225     int offset = addr & OMAP_MPUI_REG_MASK;
2226 
2227     if (size != 2) {
2228         omap_badwidth_write16(opaque, addr, value);
2229         return;
2230     }
2231 
2232     switch (offset) {
2233     case 0x00:	/* TDR */
2234         s->txbuf = value;				/* TD */
2235         if ((s->setup[4] & (1 << 2)) &&			/* AUTO_TX_EN */
2236                         ((s->setup[4] & (1 << 3)) ||	/* CS_TOGGLE_TX_EN */
2237                          (s->control & (1 << 12)))) {	/* CS_CMD */
2238             s->control |= 1 << 14;			/* CSRB */
2239             omap_uwire_transfer_start(s);
2240         }
2241         break;
2242 
2243     case 0x04:	/* CSR */
2244         s->control = value & 0x1fff;
2245         if (value & (1 << 13))				/* START */
2246             omap_uwire_transfer_start(s);
2247         break;
2248 
2249     case 0x08:	/* SR1 */
2250         s->setup[0] = value & 0x003f;
2251         break;
2252 
2253     case 0x0c:	/* SR2 */
2254         s->setup[1] = value & 0x0fc0;
2255         break;
2256 
2257     case 0x10:	/* SR3 */
2258         s->setup[2] = value & 0x0003;
2259         break;
2260 
2261     case 0x14:	/* SR4 */
2262         s->setup[3] = value & 0x0001;
2263         break;
2264 
2265     case 0x18:	/* SR5 */
2266         s->setup[4] = value & 0x000f;
2267         break;
2268 
2269     default:
2270         OMAP_BAD_REG(addr);
2271         return;
2272     }
2273 }
2274 
2275 static const MemoryRegionOps omap_uwire_ops = {
2276     .read = omap_uwire_read,
2277     .write = omap_uwire_write,
2278     .endianness = DEVICE_NATIVE_ENDIAN,
2279 };
2280 
2281 static void omap_uwire_reset(struct omap_uwire_s *s)
2282 {
2283     s->control = 0;
2284     s->setup[0] = 0;
2285     s->setup[1] = 0;
2286     s->setup[2] = 0;
2287     s->setup[3] = 0;
2288     s->setup[4] = 0;
2289 }
2290 
2291 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2292                                             hwaddr base,
2293                                             qemu_irq txirq, qemu_irq rxirq,
2294                                             qemu_irq dma,
2295                                             omap_clk clk)
2296 {
2297     struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2298 
2299     s->txirq = txirq;
2300     s->rxirq = rxirq;
2301     s->txdrq = dma;
2302     omap_uwire_reset(s);
2303 
2304     memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2305     memory_region_add_subregion(system_memory, base, &s->iomem);
2306 
2307     return s;
2308 }
2309 
2310 void omap_uwire_attach(struct omap_uwire_s *s,
2311                 uWireSlave *slave, int chipselect)
2312 {
2313     if (chipselect < 0 || chipselect > 3) {
2314         fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
2315         exit(-1);
2316     }
2317 
2318     s->chip[chipselect] = slave;
2319 }
2320 
2321 /* Pseudonoise Pulse-Width Light Modulator */
2322 struct omap_pwl_s {
2323     MemoryRegion iomem;
2324     uint8_t output;
2325     uint8_t level;
2326     uint8_t enable;
2327     int clk;
2328 };
2329 
2330 static void omap_pwl_update(struct omap_pwl_s *s)
2331 {
2332     int output = (s->clk && s->enable) ? s->level : 0;
2333 
2334     if (output != s->output) {
2335         s->output = output;
2336         printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
2337     }
2338 }
2339 
2340 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2341                               unsigned size)
2342 {
2343     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2344     int offset = addr & OMAP_MPUI_REG_MASK;
2345 
2346     if (size != 1) {
2347         return omap_badwidth_read8(opaque, addr);
2348     }
2349 
2350     switch (offset) {
2351     case 0x00:	/* PWL_LEVEL */
2352         return s->level;
2353     case 0x04:	/* PWL_CTRL */
2354         return s->enable;
2355     }
2356     OMAP_BAD_REG(addr);
2357     return 0;
2358 }
2359 
2360 static void omap_pwl_write(void *opaque, hwaddr addr,
2361                            uint64_t value, unsigned size)
2362 {
2363     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2364     int offset = addr & OMAP_MPUI_REG_MASK;
2365 
2366     if (size != 1) {
2367         omap_badwidth_write8(opaque, addr, value);
2368         return;
2369     }
2370 
2371     switch (offset) {
2372     case 0x00:	/* PWL_LEVEL */
2373         s->level = value;
2374         omap_pwl_update(s);
2375         break;
2376     case 0x04:	/* PWL_CTRL */
2377         s->enable = value & 1;
2378         omap_pwl_update(s);
2379         break;
2380     default:
2381         OMAP_BAD_REG(addr);
2382         return;
2383     }
2384 }
2385 
2386 static const MemoryRegionOps omap_pwl_ops = {
2387     .read = omap_pwl_read,
2388     .write = omap_pwl_write,
2389     .endianness = DEVICE_NATIVE_ENDIAN,
2390 };
2391 
2392 static void omap_pwl_reset(struct omap_pwl_s *s)
2393 {
2394     s->output = 0;
2395     s->level = 0;
2396     s->enable = 0;
2397     s->clk = 1;
2398     omap_pwl_update(s);
2399 }
2400 
2401 static void omap_pwl_clk_update(void *opaque, int line, int on)
2402 {
2403     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2404 
2405     s->clk = on;
2406     omap_pwl_update(s);
2407 }
2408 
2409 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2410                                         hwaddr base,
2411                                         omap_clk clk)
2412 {
2413     struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2414 
2415     omap_pwl_reset(s);
2416 
2417     memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2418                           "omap-pwl", 0x800);
2419     memory_region_add_subregion(system_memory, base, &s->iomem);
2420 
2421     omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2422     return s;
2423 }
2424 
2425 /* Pulse-Width Tone module */
2426 struct omap_pwt_s {
2427     MemoryRegion iomem;
2428     uint8_t frc;
2429     uint8_t vrc;
2430     uint8_t gcr;
2431     omap_clk clk;
2432 };
2433 
2434 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2435                               unsigned size)
2436 {
2437     struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2438     int offset = addr & OMAP_MPUI_REG_MASK;
2439 
2440     if (size != 1) {
2441         return omap_badwidth_read8(opaque, addr);
2442     }
2443 
2444     switch (offset) {
2445     case 0x00:	/* FRC */
2446         return s->frc;
2447     case 0x04:	/* VCR */
2448         return s->vrc;
2449     case 0x08:	/* GCR */
2450         return s->gcr;
2451     }
2452     OMAP_BAD_REG(addr);
2453     return 0;
2454 }
2455 
2456 static void omap_pwt_write(void *opaque, hwaddr addr,
2457                            uint64_t value, unsigned size)
2458 {
2459     struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2460     int offset = addr & OMAP_MPUI_REG_MASK;
2461 
2462     if (size != 1) {
2463         omap_badwidth_write8(opaque, addr, value);
2464         return;
2465     }
2466 
2467     switch (offset) {
2468     case 0x00:	/* FRC */
2469         s->frc = value & 0x3f;
2470         break;
2471     case 0x04:	/* VRC */
2472         if ((value ^ s->vrc) & 1) {
2473             if (value & 1)
2474                 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
2475                                 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2476                                 ((omap_clk_getrate(s->clk) >> 3) /
2477                                  /* Pre-multiplexer divider */
2478                                  ((s->gcr & 2) ? 1 : 154) /
2479                                  /* Octave multiplexer */
2480                                  (2 << (value & 3)) *
2481                                  /* 101/107 divider */
2482                                  ((value & (1 << 2)) ? 101 : 107) *
2483                                  /*  49/55 divider */
2484                                  ((value & (1 << 3)) ?  49 : 55) *
2485                                  /*  50/63 divider */
2486                                  ((value & (1 << 4)) ?  50 : 63) *
2487                                  /*  80/127 divider */
2488                                  ((value & (1 << 5)) ?  80 : 127) /
2489                                  (107 * 55 * 63 * 127)));
2490             else
2491                 printf("%s: silence!\n", __FUNCTION__);
2492         }
2493         s->vrc = value & 0x7f;
2494         break;
2495     case 0x08:	/* GCR */
2496         s->gcr = value & 3;
2497         break;
2498     default:
2499         OMAP_BAD_REG(addr);
2500         return;
2501     }
2502 }
2503 
2504 static const MemoryRegionOps omap_pwt_ops = {
2505     .read =omap_pwt_read,
2506     .write = omap_pwt_write,
2507     .endianness = DEVICE_NATIVE_ENDIAN,
2508 };
2509 
2510 static void omap_pwt_reset(struct omap_pwt_s *s)
2511 {
2512     s->frc = 0;
2513     s->vrc = 0;
2514     s->gcr = 0;
2515 }
2516 
2517 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2518                                         hwaddr base,
2519                                         omap_clk clk)
2520 {
2521     struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2522     s->clk = clk;
2523     omap_pwt_reset(s);
2524 
2525     memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2526                           "omap-pwt", 0x800);
2527     memory_region_add_subregion(system_memory, base, &s->iomem);
2528     return s;
2529 }
2530 
2531 /* Real-time Clock module */
2532 struct omap_rtc_s {
2533     MemoryRegion iomem;
2534     qemu_irq irq;
2535     qemu_irq alarm;
2536     QEMUTimer *clk;
2537 
2538     uint8_t interrupts;
2539     uint8_t status;
2540     int16_t comp_reg;
2541     int running;
2542     int pm_am;
2543     int auto_comp;
2544     int round;
2545     struct tm alarm_tm;
2546     time_t alarm_ti;
2547 
2548     struct tm current_tm;
2549     time_t ti;
2550     uint64_t tick;
2551 };
2552 
2553 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2554 {
2555     /* s->alarm is level-triggered */
2556     qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2557 }
2558 
2559 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2560 {
2561     s->alarm_ti = mktimegm(&s->alarm_tm);
2562     if (s->alarm_ti == -1)
2563         printf("%s: conversion failed\n", __FUNCTION__);
2564 }
2565 
2566 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2567                               unsigned size)
2568 {
2569     struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2570     int offset = addr & OMAP_MPUI_REG_MASK;
2571     uint8_t i;
2572 
2573     if (size != 1) {
2574         return omap_badwidth_read8(opaque, addr);
2575     }
2576 
2577     switch (offset) {
2578     case 0x00:	/* SECONDS_REG */
2579         return to_bcd(s->current_tm.tm_sec);
2580 
2581     case 0x04:	/* MINUTES_REG */
2582         return to_bcd(s->current_tm.tm_min);
2583 
2584     case 0x08:	/* HOURS_REG */
2585         if (s->pm_am)
2586             return ((s->current_tm.tm_hour > 11) << 7) |
2587                     to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2588         else
2589             return to_bcd(s->current_tm.tm_hour);
2590 
2591     case 0x0c:	/* DAYS_REG */
2592         return to_bcd(s->current_tm.tm_mday);
2593 
2594     case 0x10:	/* MONTHS_REG */
2595         return to_bcd(s->current_tm.tm_mon + 1);
2596 
2597     case 0x14:	/* YEARS_REG */
2598         return to_bcd(s->current_tm.tm_year % 100);
2599 
2600     case 0x18:	/* WEEK_REG */
2601         return s->current_tm.tm_wday;
2602 
2603     case 0x20:	/* ALARM_SECONDS_REG */
2604         return to_bcd(s->alarm_tm.tm_sec);
2605 
2606     case 0x24:	/* ALARM_MINUTES_REG */
2607         return to_bcd(s->alarm_tm.tm_min);
2608 
2609     case 0x28:	/* ALARM_HOURS_REG */
2610         if (s->pm_am)
2611             return ((s->alarm_tm.tm_hour > 11) << 7) |
2612                     to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2613         else
2614             return to_bcd(s->alarm_tm.tm_hour);
2615 
2616     case 0x2c:	/* ALARM_DAYS_REG */
2617         return to_bcd(s->alarm_tm.tm_mday);
2618 
2619     case 0x30:	/* ALARM_MONTHS_REG */
2620         return to_bcd(s->alarm_tm.tm_mon + 1);
2621 
2622     case 0x34:	/* ALARM_YEARS_REG */
2623         return to_bcd(s->alarm_tm.tm_year % 100);
2624 
2625     case 0x40:	/* RTC_CTRL_REG */
2626         return (s->pm_am << 3) | (s->auto_comp << 2) |
2627                 (s->round << 1) | s->running;
2628 
2629     case 0x44:	/* RTC_STATUS_REG */
2630         i = s->status;
2631         s->status &= ~0x3d;
2632         return i;
2633 
2634     case 0x48:	/* RTC_INTERRUPTS_REG */
2635         return s->interrupts;
2636 
2637     case 0x4c:	/* RTC_COMP_LSB_REG */
2638         return ((uint16_t) s->comp_reg) & 0xff;
2639 
2640     case 0x50:	/* RTC_COMP_MSB_REG */
2641         return ((uint16_t) s->comp_reg) >> 8;
2642     }
2643 
2644     OMAP_BAD_REG(addr);
2645     return 0;
2646 }
2647 
2648 static void omap_rtc_write(void *opaque, hwaddr addr,
2649                            uint64_t value, unsigned size)
2650 {
2651     struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2652     int offset = addr & OMAP_MPUI_REG_MASK;
2653     struct tm new_tm;
2654     time_t ti[2];
2655 
2656     if (size != 1) {
2657         omap_badwidth_write8(opaque, addr, value);
2658         return;
2659     }
2660 
2661     switch (offset) {
2662     case 0x00:	/* SECONDS_REG */
2663 #ifdef ALMDEBUG
2664         printf("RTC SEC_REG <-- %02x\n", value);
2665 #endif
2666         s->ti -= s->current_tm.tm_sec;
2667         s->ti += from_bcd(value);
2668         return;
2669 
2670     case 0x04:	/* MINUTES_REG */
2671 #ifdef ALMDEBUG
2672         printf("RTC MIN_REG <-- %02x\n", value);
2673 #endif
2674         s->ti -= s->current_tm.tm_min * 60;
2675         s->ti += from_bcd(value) * 60;
2676         return;
2677 
2678     case 0x08:	/* HOURS_REG */
2679 #ifdef ALMDEBUG
2680         printf("RTC HRS_REG <-- %02x\n", value);
2681 #endif
2682         s->ti -= s->current_tm.tm_hour * 3600;
2683         if (s->pm_am) {
2684             s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2685             s->ti += ((value >> 7) & 1) * 43200;
2686         } else
2687             s->ti += from_bcd(value & 0x3f) * 3600;
2688         return;
2689 
2690     case 0x0c:	/* DAYS_REG */
2691 #ifdef ALMDEBUG
2692         printf("RTC DAY_REG <-- %02x\n", value);
2693 #endif
2694         s->ti -= s->current_tm.tm_mday * 86400;
2695         s->ti += from_bcd(value) * 86400;
2696         return;
2697 
2698     case 0x10:	/* MONTHS_REG */
2699 #ifdef ALMDEBUG
2700         printf("RTC MTH_REG <-- %02x\n", value);
2701 #endif
2702         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2703         new_tm.tm_mon = from_bcd(value);
2704         ti[0] = mktimegm(&s->current_tm);
2705         ti[1] = mktimegm(&new_tm);
2706 
2707         if (ti[0] != -1 && ti[1] != -1) {
2708             s->ti -= ti[0];
2709             s->ti += ti[1];
2710         } else {
2711             /* A less accurate version */
2712             s->ti -= s->current_tm.tm_mon * 2592000;
2713             s->ti += from_bcd(value) * 2592000;
2714         }
2715         return;
2716 
2717     case 0x14:	/* YEARS_REG */
2718 #ifdef ALMDEBUG
2719         printf("RTC YRS_REG <-- %02x\n", value);
2720 #endif
2721         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2722         new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2723         ti[0] = mktimegm(&s->current_tm);
2724         ti[1] = mktimegm(&new_tm);
2725 
2726         if (ti[0] != -1 && ti[1] != -1) {
2727             s->ti -= ti[0];
2728             s->ti += ti[1];
2729         } else {
2730             /* A less accurate version */
2731             s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2732             s->ti += (time_t)from_bcd(value) * 31536000;
2733         }
2734         return;
2735 
2736     case 0x18:	/* WEEK_REG */
2737         return;	/* Ignored */
2738 
2739     case 0x20:	/* ALARM_SECONDS_REG */
2740 #ifdef ALMDEBUG
2741         printf("ALM SEC_REG <-- %02x\n", value);
2742 #endif
2743         s->alarm_tm.tm_sec = from_bcd(value);
2744         omap_rtc_alarm_update(s);
2745         return;
2746 
2747     case 0x24:	/* ALARM_MINUTES_REG */
2748 #ifdef ALMDEBUG
2749         printf("ALM MIN_REG <-- %02x\n", value);
2750 #endif
2751         s->alarm_tm.tm_min = from_bcd(value);
2752         omap_rtc_alarm_update(s);
2753         return;
2754 
2755     case 0x28:	/* ALARM_HOURS_REG */
2756 #ifdef ALMDEBUG
2757         printf("ALM HRS_REG <-- %02x\n", value);
2758 #endif
2759         if (s->pm_am)
2760             s->alarm_tm.tm_hour =
2761                     ((from_bcd(value & 0x3f)) % 12) +
2762                     ((value >> 7) & 1) * 12;
2763         else
2764             s->alarm_tm.tm_hour = from_bcd(value);
2765         omap_rtc_alarm_update(s);
2766         return;
2767 
2768     case 0x2c:	/* ALARM_DAYS_REG */
2769 #ifdef ALMDEBUG
2770         printf("ALM DAY_REG <-- %02x\n", value);
2771 #endif
2772         s->alarm_tm.tm_mday = from_bcd(value);
2773         omap_rtc_alarm_update(s);
2774         return;
2775 
2776     case 0x30:	/* ALARM_MONTHS_REG */
2777 #ifdef ALMDEBUG
2778         printf("ALM MON_REG <-- %02x\n", value);
2779 #endif
2780         s->alarm_tm.tm_mon = from_bcd(value);
2781         omap_rtc_alarm_update(s);
2782         return;
2783 
2784     case 0x34:	/* ALARM_YEARS_REG */
2785 #ifdef ALMDEBUG
2786         printf("ALM YRS_REG <-- %02x\n", value);
2787 #endif
2788         s->alarm_tm.tm_year = from_bcd(value);
2789         omap_rtc_alarm_update(s);
2790         return;
2791 
2792     case 0x40:	/* RTC_CTRL_REG */
2793 #ifdef ALMDEBUG
2794         printf("RTC CONTROL <-- %02x\n", value);
2795 #endif
2796         s->pm_am = (value >> 3) & 1;
2797         s->auto_comp = (value >> 2) & 1;
2798         s->round = (value >> 1) & 1;
2799         s->running = value & 1;
2800         s->status &= 0xfd;
2801         s->status |= s->running << 1;
2802         return;
2803 
2804     case 0x44:	/* RTC_STATUS_REG */
2805 #ifdef ALMDEBUG
2806         printf("RTC STATUSL <-- %02x\n", value);
2807 #endif
2808         s->status &= ~((value & 0xc0) ^ 0x80);
2809         omap_rtc_interrupts_update(s);
2810         return;
2811 
2812     case 0x48:	/* RTC_INTERRUPTS_REG */
2813 #ifdef ALMDEBUG
2814         printf("RTC INTRS <-- %02x\n", value);
2815 #endif
2816         s->interrupts = value;
2817         return;
2818 
2819     case 0x4c:	/* RTC_COMP_LSB_REG */
2820 #ifdef ALMDEBUG
2821         printf("RTC COMPLSB <-- %02x\n", value);
2822 #endif
2823         s->comp_reg &= 0xff00;
2824         s->comp_reg |= 0x00ff & value;
2825         return;
2826 
2827     case 0x50:	/* RTC_COMP_MSB_REG */
2828 #ifdef ALMDEBUG
2829         printf("RTC COMPMSB <-- %02x\n", value);
2830 #endif
2831         s->comp_reg &= 0x00ff;
2832         s->comp_reg |= 0xff00 & (value << 8);
2833         return;
2834 
2835     default:
2836         OMAP_BAD_REG(addr);
2837         return;
2838     }
2839 }
2840 
2841 static const MemoryRegionOps omap_rtc_ops = {
2842     .read = omap_rtc_read,
2843     .write = omap_rtc_write,
2844     .endianness = DEVICE_NATIVE_ENDIAN,
2845 };
2846 
2847 static void omap_rtc_tick(void *opaque)
2848 {
2849     struct omap_rtc_s *s = opaque;
2850 
2851     if (s->round) {
2852         /* Round to nearest full minute.  */
2853         if (s->current_tm.tm_sec < 30)
2854             s->ti -= s->current_tm.tm_sec;
2855         else
2856             s->ti += 60 - s->current_tm.tm_sec;
2857 
2858         s->round = 0;
2859     }
2860 
2861     localtime_r(&s->ti, &s->current_tm);
2862 
2863     if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2864         s->status |= 0x40;
2865         omap_rtc_interrupts_update(s);
2866     }
2867 
2868     if (s->interrupts & 0x04)
2869         switch (s->interrupts & 3) {
2870         case 0:
2871             s->status |= 0x04;
2872             qemu_irq_pulse(s->irq);
2873             break;
2874         case 1:
2875             if (s->current_tm.tm_sec)
2876                 break;
2877             s->status |= 0x08;
2878             qemu_irq_pulse(s->irq);
2879             break;
2880         case 2:
2881             if (s->current_tm.tm_sec || s->current_tm.tm_min)
2882                 break;
2883             s->status |= 0x10;
2884             qemu_irq_pulse(s->irq);
2885             break;
2886         case 3:
2887             if (s->current_tm.tm_sec ||
2888                             s->current_tm.tm_min || s->current_tm.tm_hour)
2889                 break;
2890             s->status |= 0x20;
2891             qemu_irq_pulse(s->irq);
2892             break;
2893         }
2894 
2895     /* Move on */
2896     if (s->running)
2897         s->ti ++;
2898     s->tick += 1000;
2899 
2900     /*
2901      * Every full hour add a rough approximation of the compensation
2902      * register to the 32kHz Timer (which drives the RTC) value.
2903      */
2904     if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2905         s->tick += s->comp_reg * 1000 / 32768;
2906 
2907     timer_mod(s->clk, s->tick);
2908 }
2909 
2910 static void omap_rtc_reset(struct omap_rtc_s *s)
2911 {
2912     struct tm tm;
2913 
2914     s->interrupts = 0;
2915     s->comp_reg = 0;
2916     s->running = 0;
2917     s->pm_am = 0;
2918     s->auto_comp = 0;
2919     s->round = 0;
2920     s->tick = qemu_clock_get_ms(rtc_clock);
2921     memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2922     s->alarm_tm.tm_mday = 0x01;
2923     s->status = 1 << 7;
2924     qemu_get_timedate(&tm, 0);
2925     s->ti = mktimegm(&tm);
2926 
2927     omap_rtc_alarm_update(s);
2928     omap_rtc_tick(s);
2929 }
2930 
2931 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2932                                         hwaddr base,
2933                                         qemu_irq timerirq, qemu_irq alarmirq,
2934                                         omap_clk clk)
2935 {
2936     struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2937 
2938     s->irq = timerirq;
2939     s->alarm = alarmirq;
2940     s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2941 
2942     omap_rtc_reset(s);
2943 
2944     memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2945                           "omap-rtc", 0x800);
2946     memory_region_add_subregion(system_memory, base, &s->iomem);
2947 
2948     return s;
2949 }
2950 
2951 /* Multi-channel Buffered Serial Port interfaces */
2952 struct omap_mcbsp_s {
2953     MemoryRegion iomem;
2954     qemu_irq txirq;
2955     qemu_irq rxirq;
2956     qemu_irq txdrq;
2957     qemu_irq rxdrq;
2958 
2959     uint16_t spcr[2];
2960     uint16_t rcr[2];
2961     uint16_t xcr[2];
2962     uint16_t srgr[2];
2963     uint16_t mcr[2];
2964     uint16_t pcr;
2965     uint16_t rcer[8];
2966     uint16_t xcer[8];
2967     int tx_rate;
2968     int rx_rate;
2969     int tx_req;
2970     int rx_req;
2971 
2972     I2SCodec *codec;
2973     QEMUTimer *source_timer;
2974     QEMUTimer *sink_timer;
2975 };
2976 
2977 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2978 {
2979     int irq;
2980 
2981     switch ((s->spcr[0] >> 4) & 3) {			/* RINTM */
2982     case 0:
2983         irq = (s->spcr[0] >> 1) & 1;			/* RRDY */
2984         break;
2985     case 3:
2986         irq = (s->spcr[0] >> 3) & 1;			/* RSYNCERR */
2987         break;
2988     default:
2989         irq = 0;
2990         break;
2991     }
2992 
2993     if (irq)
2994         qemu_irq_pulse(s->rxirq);
2995 
2996     switch ((s->spcr[1] >> 4) & 3) {			/* XINTM */
2997     case 0:
2998         irq = (s->spcr[1] >> 1) & 1;			/* XRDY */
2999         break;
3000     case 3:
3001         irq = (s->spcr[1] >> 3) & 1;			/* XSYNCERR */
3002         break;
3003     default:
3004         irq = 0;
3005         break;
3006     }
3007 
3008     if (irq)
3009         qemu_irq_pulse(s->txirq);
3010 }
3011 
3012 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3013 {
3014     if ((s->spcr[0] >> 1) & 1)				/* RRDY */
3015         s->spcr[0] |= 1 << 2;				/* RFULL */
3016     s->spcr[0] |= 1 << 1;				/* RRDY */
3017     qemu_irq_raise(s->rxdrq);
3018     omap_mcbsp_intr_update(s);
3019 }
3020 
3021 static void omap_mcbsp_source_tick(void *opaque)
3022 {
3023     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3024     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3025 
3026     if (!s->rx_rate)
3027         return;
3028     if (s->rx_req)
3029         printf("%s: Rx FIFO overrun\n", __FUNCTION__);
3030 
3031     s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3032 
3033     omap_mcbsp_rx_newdata(s);
3034     timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3035                    NANOSECONDS_PER_SECOND);
3036 }
3037 
3038 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3039 {
3040     if (!s->codec || !s->codec->rts)
3041         omap_mcbsp_source_tick(s);
3042     else if (s->codec->in.len) {
3043         s->rx_req = s->codec->in.len;
3044         omap_mcbsp_rx_newdata(s);
3045     }
3046 }
3047 
3048 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3049 {
3050     timer_del(s->source_timer);
3051 }
3052 
3053 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3054 {
3055     s->spcr[0] &= ~(1 << 1);				/* RRDY */
3056     qemu_irq_lower(s->rxdrq);
3057     omap_mcbsp_intr_update(s);
3058 }
3059 
3060 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3061 {
3062     s->spcr[1] |= 1 << 1;				/* XRDY */
3063     qemu_irq_raise(s->txdrq);
3064     omap_mcbsp_intr_update(s);
3065 }
3066 
3067 static void omap_mcbsp_sink_tick(void *opaque)
3068 {
3069     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3070     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3071 
3072     if (!s->tx_rate)
3073         return;
3074     if (s->tx_req)
3075         printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3076 
3077     s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3078 
3079     omap_mcbsp_tx_newdata(s);
3080     timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3081                    NANOSECONDS_PER_SECOND);
3082 }
3083 
3084 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3085 {
3086     if (!s->codec || !s->codec->cts)
3087         omap_mcbsp_sink_tick(s);
3088     else if (s->codec->out.size) {
3089         s->tx_req = s->codec->out.size;
3090         omap_mcbsp_tx_newdata(s);
3091     }
3092 }
3093 
3094 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3095 {
3096     s->spcr[1] &= ~(1 << 1);				/* XRDY */
3097     qemu_irq_lower(s->txdrq);
3098     omap_mcbsp_intr_update(s);
3099     if (s->codec && s->codec->cts)
3100         s->codec->tx_swallow(s->codec->opaque);
3101 }
3102 
3103 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3104 {
3105     s->tx_req = 0;
3106     omap_mcbsp_tx_done(s);
3107     timer_del(s->sink_timer);
3108 }
3109 
3110 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3111 {
3112     int prev_rx_rate, prev_tx_rate;
3113     int rx_rate = 0, tx_rate = 0;
3114     int cpu_rate = 1500000;	/* XXX */
3115 
3116     /* TODO: check CLKSTP bit */
3117     if (s->spcr[1] & (1 << 6)) {			/* GRST */
3118         if (s->spcr[0] & (1 << 0)) {			/* RRST */
3119             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
3120                             (s->pcr & (1 << 8))) {	/* CLKRM */
3121                 if (~s->pcr & (1 << 7))			/* SCLKME */
3122                     rx_rate = cpu_rate /
3123                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
3124             } else
3125                 if (s->codec)
3126                     rx_rate = s->codec->rx_rate;
3127         }
3128 
3129         if (s->spcr[1] & (1 << 0)) {			/* XRST */
3130             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
3131                             (s->pcr & (1 << 9))) {	/* CLKXM */
3132                 if (~s->pcr & (1 << 7))			/* SCLKME */
3133                     tx_rate = cpu_rate /
3134                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
3135             } else
3136                 if (s->codec)
3137                     tx_rate = s->codec->tx_rate;
3138         }
3139     }
3140     prev_tx_rate = s->tx_rate;
3141     prev_rx_rate = s->rx_rate;
3142     s->tx_rate = tx_rate;
3143     s->rx_rate = rx_rate;
3144 
3145     if (s->codec)
3146         s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3147 
3148     if (!prev_tx_rate && tx_rate)
3149         omap_mcbsp_tx_start(s);
3150     else if (s->tx_rate && !tx_rate)
3151         omap_mcbsp_tx_stop(s);
3152 
3153     if (!prev_rx_rate && rx_rate)
3154         omap_mcbsp_rx_start(s);
3155     else if (prev_tx_rate && !tx_rate)
3156         omap_mcbsp_rx_stop(s);
3157 }
3158 
3159 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3160                                 unsigned size)
3161 {
3162     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3163     int offset = addr & OMAP_MPUI_REG_MASK;
3164     uint16_t ret;
3165 
3166     if (size != 2) {
3167         return omap_badwidth_read16(opaque, addr);
3168     }
3169 
3170     switch (offset) {
3171     case 0x00:	/* DRR2 */
3172         if (((s->rcr[0] >> 5) & 7) < 3)			/* RWDLEN1 */
3173             return 0x0000;
3174         /* Fall through.  */
3175     case 0x02:	/* DRR1 */
3176         if (s->rx_req < 2) {
3177             printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3178             omap_mcbsp_rx_done(s);
3179         } else {
3180             s->tx_req -= 2;
3181             if (s->codec && s->codec->in.len >= 2) {
3182                 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3183                 ret |= s->codec->in.fifo[s->codec->in.start ++];
3184                 s->codec->in.len -= 2;
3185             } else
3186                 ret = 0x0000;
3187             if (!s->tx_req)
3188                 omap_mcbsp_rx_done(s);
3189             return ret;
3190         }
3191         return 0x0000;
3192 
3193     case 0x04:	/* DXR2 */
3194     case 0x06:	/* DXR1 */
3195         return 0x0000;
3196 
3197     case 0x08:	/* SPCR2 */
3198         return s->spcr[1];
3199     case 0x0a:	/* SPCR1 */
3200         return s->spcr[0];
3201     case 0x0c:	/* RCR2 */
3202         return s->rcr[1];
3203     case 0x0e:	/* RCR1 */
3204         return s->rcr[0];
3205     case 0x10:	/* XCR2 */
3206         return s->xcr[1];
3207     case 0x12:	/* XCR1 */
3208         return s->xcr[0];
3209     case 0x14:	/* SRGR2 */
3210         return s->srgr[1];
3211     case 0x16:	/* SRGR1 */
3212         return s->srgr[0];
3213     case 0x18:	/* MCR2 */
3214         return s->mcr[1];
3215     case 0x1a:	/* MCR1 */
3216         return s->mcr[0];
3217     case 0x1c:	/* RCERA */
3218         return s->rcer[0];
3219     case 0x1e:	/* RCERB */
3220         return s->rcer[1];
3221     case 0x20:	/* XCERA */
3222         return s->xcer[0];
3223     case 0x22:	/* XCERB */
3224         return s->xcer[1];
3225     case 0x24:	/* PCR0 */
3226         return s->pcr;
3227     case 0x26:	/* RCERC */
3228         return s->rcer[2];
3229     case 0x28:	/* RCERD */
3230         return s->rcer[3];
3231     case 0x2a:	/* XCERC */
3232         return s->xcer[2];
3233     case 0x2c:	/* XCERD */
3234         return s->xcer[3];
3235     case 0x2e:	/* RCERE */
3236         return s->rcer[4];
3237     case 0x30:	/* RCERF */
3238         return s->rcer[5];
3239     case 0x32:	/* XCERE */
3240         return s->xcer[4];
3241     case 0x34:	/* XCERF */
3242         return s->xcer[5];
3243     case 0x36:	/* RCERG */
3244         return s->rcer[6];
3245     case 0x38:	/* RCERH */
3246         return s->rcer[7];
3247     case 0x3a:	/* XCERG */
3248         return s->xcer[6];
3249     case 0x3c:	/* XCERH */
3250         return s->xcer[7];
3251     }
3252 
3253     OMAP_BAD_REG(addr);
3254     return 0;
3255 }
3256 
3257 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3258                 uint32_t value)
3259 {
3260     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3261     int offset = addr & OMAP_MPUI_REG_MASK;
3262 
3263     switch (offset) {
3264     case 0x00:	/* DRR2 */
3265     case 0x02:	/* DRR1 */
3266         OMAP_RO_REG(addr);
3267         return;
3268 
3269     case 0x04:	/* DXR2 */
3270         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
3271             return;
3272         /* Fall through.  */
3273     case 0x06:	/* DXR1 */
3274         if (s->tx_req > 1) {
3275             s->tx_req -= 2;
3276             if (s->codec && s->codec->cts) {
3277                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3278                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3279             }
3280             if (s->tx_req < 2)
3281                 omap_mcbsp_tx_done(s);
3282         } else
3283             printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3284         return;
3285 
3286     case 0x08:	/* SPCR2 */
3287         s->spcr[1] &= 0x0002;
3288         s->spcr[1] |= 0x03f9 & value;
3289         s->spcr[1] |= 0x0004 & (value << 2);		/* XEMPTY := XRST */
3290         if (~value & 1)					/* XRST */
3291             s->spcr[1] &= ~6;
3292         omap_mcbsp_req_update(s);
3293         return;
3294     case 0x0a:	/* SPCR1 */
3295         s->spcr[0] &= 0x0006;
3296         s->spcr[0] |= 0xf8f9 & value;
3297         if (value & (1 << 15))				/* DLB */
3298             printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
3299         if (~value & 1) {				/* RRST */
3300             s->spcr[0] &= ~6;
3301             s->rx_req = 0;
3302             omap_mcbsp_rx_done(s);
3303         }
3304         omap_mcbsp_req_update(s);
3305         return;
3306 
3307     case 0x0c:	/* RCR2 */
3308         s->rcr[1] = value & 0xffff;
3309         return;
3310     case 0x0e:	/* RCR1 */
3311         s->rcr[0] = value & 0x7fe0;
3312         return;
3313     case 0x10:	/* XCR2 */
3314         s->xcr[1] = value & 0xffff;
3315         return;
3316     case 0x12:	/* XCR1 */
3317         s->xcr[0] = value & 0x7fe0;
3318         return;
3319     case 0x14:	/* SRGR2 */
3320         s->srgr[1] = value & 0xffff;
3321         omap_mcbsp_req_update(s);
3322         return;
3323     case 0x16:	/* SRGR1 */
3324         s->srgr[0] = value & 0xffff;
3325         omap_mcbsp_req_update(s);
3326         return;
3327     case 0x18:	/* MCR2 */
3328         s->mcr[1] = value & 0x03e3;
3329         if (value & 3)					/* XMCM */
3330             printf("%s: Tx channel selection mode enable attempt\n",
3331                             __FUNCTION__);
3332         return;
3333     case 0x1a:	/* MCR1 */
3334         s->mcr[0] = value & 0x03e1;
3335         if (value & 1)					/* RMCM */
3336             printf("%s: Rx channel selection mode enable attempt\n",
3337                             __FUNCTION__);
3338         return;
3339     case 0x1c:	/* RCERA */
3340         s->rcer[0] = value & 0xffff;
3341         return;
3342     case 0x1e:	/* RCERB */
3343         s->rcer[1] = value & 0xffff;
3344         return;
3345     case 0x20:	/* XCERA */
3346         s->xcer[0] = value & 0xffff;
3347         return;
3348     case 0x22:	/* XCERB */
3349         s->xcer[1] = value & 0xffff;
3350         return;
3351     case 0x24:	/* PCR0 */
3352         s->pcr = value & 0x7faf;
3353         return;
3354     case 0x26:	/* RCERC */
3355         s->rcer[2] = value & 0xffff;
3356         return;
3357     case 0x28:	/* RCERD */
3358         s->rcer[3] = value & 0xffff;
3359         return;
3360     case 0x2a:	/* XCERC */
3361         s->xcer[2] = value & 0xffff;
3362         return;
3363     case 0x2c:	/* XCERD */
3364         s->xcer[3] = value & 0xffff;
3365         return;
3366     case 0x2e:	/* RCERE */
3367         s->rcer[4] = value & 0xffff;
3368         return;
3369     case 0x30:	/* RCERF */
3370         s->rcer[5] = value & 0xffff;
3371         return;
3372     case 0x32:	/* XCERE */
3373         s->xcer[4] = value & 0xffff;
3374         return;
3375     case 0x34:	/* XCERF */
3376         s->xcer[5] = value & 0xffff;
3377         return;
3378     case 0x36:	/* RCERG */
3379         s->rcer[6] = value & 0xffff;
3380         return;
3381     case 0x38:	/* RCERH */
3382         s->rcer[7] = value & 0xffff;
3383         return;
3384     case 0x3a:	/* XCERG */
3385         s->xcer[6] = value & 0xffff;
3386         return;
3387     case 0x3c:	/* XCERH */
3388         s->xcer[7] = value & 0xffff;
3389         return;
3390     }
3391 
3392     OMAP_BAD_REG(addr);
3393 }
3394 
3395 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3396                 uint32_t value)
3397 {
3398     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3399     int offset = addr & OMAP_MPUI_REG_MASK;
3400 
3401     if (offset == 0x04) {				/* DXR */
3402         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
3403             return;
3404         if (s->tx_req > 3) {
3405             s->tx_req -= 4;
3406             if (s->codec && s->codec->cts) {
3407                 s->codec->out.fifo[s->codec->out.len ++] =
3408                         (value >> 24) & 0xff;
3409                 s->codec->out.fifo[s->codec->out.len ++] =
3410                         (value >> 16) & 0xff;
3411                 s->codec->out.fifo[s->codec->out.len ++] =
3412                         (value >> 8) & 0xff;
3413                 s->codec->out.fifo[s->codec->out.len ++] =
3414                         (value >> 0) & 0xff;
3415             }
3416             if (s->tx_req < 4)
3417                 omap_mcbsp_tx_done(s);
3418         } else
3419             printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3420         return;
3421     }
3422 
3423     omap_badwidth_write16(opaque, addr, value);
3424 }
3425 
3426 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3427                              uint64_t value, unsigned size)
3428 {
3429     switch (size) {
3430     case 2:
3431         omap_mcbsp_writeh(opaque, addr, value);
3432         break;
3433     case 4:
3434         omap_mcbsp_writew(opaque, addr, value);
3435         break;
3436     default:
3437         omap_badwidth_write16(opaque, addr, value);
3438     }
3439 }
3440 
3441 static const MemoryRegionOps omap_mcbsp_ops = {
3442     .read = omap_mcbsp_read,
3443     .write = omap_mcbsp_write,
3444     .endianness = DEVICE_NATIVE_ENDIAN,
3445 };
3446 
3447 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3448 {
3449     memset(&s->spcr, 0, sizeof(s->spcr));
3450     memset(&s->rcr, 0, sizeof(s->rcr));
3451     memset(&s->xcr, 0, sizeof(s->xcr));
3452     s->srgr[0] = 0x0001;
3453     s->srgr[1] = 0x2000;
3454     memset(&s->mcr, 0, sizeof(s->mcr));
3455     memset(&s->pcr, 0, sizeof(s->pcr));
3456     memset(&s->rcer, 0, sizeof(s->rcer));
3457     memset(&s->xcer, 0, sizeof(s->xcer));
3458     s->tx_req = 0;
3459     s->rx_req = 0;
3460     s->tx_rate = 0;
3461     s->rx_rate = 0;
3462     timer_del(s->source_timer);
3463     timer_del(s->sink_timer);
3464 }
3465 
3466 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3467                                             hwaddr base,
3468                                             qemu_irq txirq, qemu_irq rxirq,
3469                                             qemu_irq *dma, omap_clk clk)
3470 {
3471     struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
3472 
3473     s->txirq = txirq;
3474     s->rxirq = rxirq;
3475     s->txdrq = dma[0];
3476     s->rxdrq = dma[1];
3477     s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3478     s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3479     omap_mcbsp_reset(s);
3480 
3481     memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3482     memory_region_add_subregion(system_memory, base, &s->iomem);
3483 
3484     return s;
3485 }
3486 
3487 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3488 {
3489     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3490 
3491     if (s->rx_rate) {
3492         s->rx_req = s->codec->in.len;
3493         omap_mcbsp_rx_newdata(s);
3494     }
3495 }
3496 
3497 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3498 {
3499     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3500 
3501     if (s->tx_rate) {
3502         s->tx_req = s->codec->out.size;
3503         omap_mcbsp_tx_newdata(s);
3504     }
3505 }
3506 
3507 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3508 {
3509     s->codec = slave;
3510     slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3511     slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3512 }
3513 
3514 /* LED Pulse Generators */
3515 struct omap_lpg_s {
3516     MemoryRegion iomem;
3517     QEMUTimer *tm;
3518 
3519     uint8_t control;
3520     uint8_t power;
3521     int64_t on;
3522     int64_t period;
3523     int clk;
3524     int cycle;
3525 };
3526 
3527 static void omap_lpg_tick(void *opaque)
3528 {
3529     struct omap_lpg_s *s = opaque;
3530 
3531     if (s->cycle)
3532         timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3533     else
3534         timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3535 
3536     s->cycle = !s->cycle;
3537     printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
3538 }
3539 
3540 static void omap_lpg_update(struct omap_lpg_s *s)
3541 {
3542     int64_t on, period = 1, ticks = 1000;
3543     static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3544 
3545     if (~s->control & (1 << 6))					/* LPGRES */
3546         on = 0;
3547     else if (s->control & (1 << 7))				/* PERM_ON */
3548         on = period;
3549     else {
3550         period = muldiv64(ticks, per[s->control & 7],		/* PERCTRL */
3551                         256 / 32);
3552         on = (s->clk && s->power) ? muldiv64(ticks,
3553                         per[(s->control >> 3) & 7], 256) : 0;	/* ONCTRL */
3554     }
3555 
3556     timer_del(s->tm);
3557     if (on == period && s->on < s->period)
3558         printf("%s: LED is on\n", __FUNCTION__);
3559     else if (on == 0 && s->on)
3560         printf("%s: LED is off\n", __FUNCTION__);
3561     else if (on && (on != s->on || period != s->period)) {
3562         s->cycle = 0;
3563         s->on = on;
3564         s->period = period;
3565         omap_lpg_tick(s);
3566         return;
3567     }
3568 
3569     s->on = on;
3570     s->period = period;
3571 }
3572 
3573 static void omap_lpg_reset(struct omap_lpg_s *s)
3574 {
3575     s->control = 0x00;
3576     s->power = 0x00;
3577     s->clk = 1;
3578     omap_lpg_update(s);
3579 }
3580 
3581 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3582                               unsigned size)
3583 {
3584     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3585     int offset = addr & OMAP_MPUI_REG_MASK;
3586 
3587     if (size != 1) {
3588         return omap_badwidth_read8(opaque, addr);
3589     }
3590 
3591     switch (offset) {
3592     case 0x00:	/* LCR */
3593         return s->control;
3594 
3595     case 0x04:	/* PMR */
3596         return s->power;
3597     }
3598 
3599     OMAP_BAD_REG(addr);
3600     return 0;
3601 }
3602 
3603 static void omap_lpg_write(void *opaque, hwaddr addr,
3604                            uint64_t value, unsigned size)
3605 {
3606     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3607     int offset = addr & OMAP_MPUI_REG_MASK;
3608 
3609     if (size != 1) {
3610         omap_badwidth_write8(opaque, addr, value);
3611         return;
3612     }
3613 
3614     switch (offset) {
3615     case 0x00:	/* LCR */
3616         if (~value & (1 << 6))					/* LPGRES */
3617             omap_lpg_reset(s);
3618         s->control = value & 0xff;
3619         omap_lpg_update(s);
3620         return;
3621 
3622     case 0x04:	/* PMR */
3623         s->power = value & 0x01;
3624         omap_lpg_update(s);
3625         return;
3626 
3627     default:
3628         OMAP_BAD_REG(addr);
3629         return;
3630     }
3631 }
3632 
3633 static const MemoryRegionOps omap_lpg_ops = {
3634     .read = omap_lpg_read,
3635     .write = omap_lpg_write,
3636     .endianness = DEVICE_NATIVE_ENDIAN,
3637 };
3638 
3639 static void omap_lpg_clk_update(void *opaque, int line, int on)
3640 {
3641     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3642 
3643     s->clk = on;
3644     omap_lpg_update(s);
3645 }
3646 
3647 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3648                                         hwaddr base, omap_clk clk)
3649 {
3650     struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
3651 
3652     s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3653 
3654     omap_lpg_reset(s);
3655 
3656     memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3657     memory_region_add_subregion(system_memory, base, &s->iomem);
3658 
3659     omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3660 
3661     return s;
3662 }
3663 
3664 /* MPUI Peripheral Bridge configuration */
3665 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3666                                   unsigned size)
3667 {
3668     if (size != 2) {
3669         return omap_badwidth_read16(opaque, addr);
3670     }
3671 
3672     if (addr == OMAP_MPUI_BASE)	/* CMR */
3673         return 0xfe4d;
3674 
3675     OMAP_BAD_REG(addr);
3676     return 0;
3677 }
3678 
3679 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3680                                uint64_t value, unsigned size)
3681 {
3682     /* FIXME: infinite loop */
3683     omap_badwidth_write16(opaque, addr, value);
3684 }
3685 
3686 static const MemoryRegionOps omap_mpui_io_ops = {
3687     .read = omap_mpui_io_read,
3688     .write = omap_mpui_io_write,
3689     .endianness = DEVICE_NATIVE_ENDIAN,
3690 };
3691 
3692 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3693                                struct omap_mpu_state_s *mpu)
3694 {
3695     memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3696                           "omap-mpui-io", 0x7fff);
3697     memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3698                                 &mpu->mpui_io_iomem);
3699 }
3700 
3701 /* General chip reset */
3702 static void omap1_mpu_reset(void *opaque)
3703 {
3704     struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3705 
3706     omap_dma_reset(mpu->dma);
3707     omap_mpu_timer_reset(mpu->timer[0]);
3708     omap_mpu_timer_reset(mpu->timer[1]);
3709     omap_mpu_timer_reset(mpu->timer[2]);
3710     omap_wd_timer_reset(mpu->wdt);
3711     omap_os_timer_reset(mpu->os_timer);
3712     omap_lcdc_reset(mpu->lcd);
3713     omap_ulpd_pm_reset(mpu);
3714     omap_pin_cfg_reset(mpu);
3715     omap_mpui_reset(mpu);
3716     omap_tipb_bridge_reset(mpu->private_tipb);
3717     omap_tipb_bridge_reset(mpu->public_tipb);
3718     omap_dpll_reset(mpu->dpll[0]);
3719     omap_dpll_reset(mpu->dpll[1]);
3720     omap_dpll_reset(mpu->dpll[2]);
3721     omap_uart_reset(mpu->uart[0]);
3722     omap_uart_reset(mpu->uart[1]);
3723     omap_uart_reset(mpu->uart[2]);
3724     omap_mmc_reset(mpu->mmc);
3725     omap_mpuio_reset(mpu->mpuio);
3726     omap_uwire_reset(mpu->microwire);
3727     omap_pwl_reset(mpu->pwl);
3728     omap_pwt_reset(mpu->pwt);
3729     omap_rtc_reset(mpu->rtc);
3730     omap_mcbsp_reset(mpu->mcbsp1);
3731     omap_mcbsp_reset(mpu->mcbsp2);
3732     omap_mcbsp_reset(mpu->mcbsp3);
3733     omap_lpg_reset(mpu->led[0]);
3734     omap_lpg_reset(mpu->led[1]);
3735     omap_clkm_reset(mpu);
3736     cpu_reset(CPU(mpu->cpu));
3737 }
3738 
3739 static const struct omap_map_s {
3740     hwaddr phys_dsp;
3741     hwaddr phys_mpu;
3742     uint32_t size;
3743     const char *name;
3744 } omap15xx_dsp_mm[] = {
3745     /* Strobe 0 */
3746     { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" },		/* CS0 */
3747     { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" },		/* CS1 */
3748     { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" },		/* CS3 */
3749     { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" },	/* CS4 */
3750     { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" },	/* CS5 */
3751     { 0xe1013000, 0xfffb3000, 0x800, "uWire" },			/* CS6 */
3752     { 0xe1013800, 0xfffb3800, 0x800, "I^2C" },			/* CS7 */
3753     { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" },		/* CS8 */
3754     { 0xe1014800, 0xfffb4800, 0x800, "RTC" },			/* CS9 */
3755     { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" },			/* CS10 */
3756     { 0xe1015800, 0xfffb5800, 0x800, "PWL" },			/* CS11 */
3757     { 0xe1016000, 0xfffb6000, 0x800, "PWT" },			/* CS12 */
3758     { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" },		/* CS14 */
3759     { 0xe1017800, 0xfffb7800, 0x800, "MMC" },			/* CS15 */
3760     { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" },		/* CS18 */
3761     { 0xe1019800, 0xfffb9800, 0x800, "UART3" },			/* CS19 */
3762     { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" },		/* CS25 */
3763     /* Strobe 1 */
3764     { 0xe101e000, 0xfffce000, 0x800, "GPIOs" },			/* CS28 */
3765 
3766     { 0 }
3767 };
3768 
3769 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3770                                    const struct omap_map_s *map)
3771 {
3772     MemoryRegion *io;
3773 
3774     for (; map->phys_dsp; map ++) {
3775         io = g_new(MemoryRegion, 1);
3776         memory_region_init_alias(io, NULL, map->name,
3777                                  system_memory, map->phys_mpu, map->size);
3778         memory_region_add_subregion(system_memory, map->phys_dsp, io);
3779     }
3780 }
3781 
3782 void omap_mpu_wakeup(void *opaque, int irq, int req)
3783 {
3784     struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3785     CPUState *cpu = CPU(mpu->cpu);
3786 
3787     if (cpu->halted) {
3788         cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3789     }
3790 }
3791 
3792 static const struct dma_irq_map omap1_dma_irq_map[] = {
3793     { 0, OMAP_INT_DMA_CH0_6 },
3794     { 0, OMAP_INT_DMA_CH1_7 },
3795     { 0, OMAP_INT_DMA_CH2_8 },
3796     { 0, OMAP_INT_DMA_CH3 },
3797     { 0, OMAP_INT_DMA_CH4 },
3798     { 0, OMAP_INT_DMA_CH5 },
3799     { 1, OMAP_INT_1610_DMA_CH6 },
3800     { 1, OMAP_INT_1610_DMA_CH7 },
3801     { 1, OMAP_INT_1610_DMA_CH8 },
3802     { 1, OMAP_INT_1610_DMA_CH9 },
3803     { 1, OMAP_INT_1610_DMA_CH10 },
3804     { 1, OMAP_INT_1610_DMA_CH11 },
3805     { 1, OMAP_INT_1610_DMA_CH12 },
3806     { 1, OMAP_INT_1610_DMA_CH13 },
3807     { 1, OMAP_INT_1610_DMA_CH14 },
3808     { 1, OMAP_INT_1610_DMA_CH15 }
3809 };
3810 
3811 /* DMA ports for OMAP1 */
3812 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3813                 hwaddr addr)
3814 {
3815     return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3816 }
3817 
3818 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3819                 hwaddr addr)
3820 {
3821     return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3822                              addr);
3823 }
3824 
3825 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3826                 hwaddr addr)
3827 {
3828     return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3829 }
3830 
3831 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3832                 hwaddr addr)
3833 {
3834     return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3835 }
3836 
3837 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3838                 hwaddr addr)
3839 {
3840     return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3841 }
3842 
3843 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3844                 hwaddr addr)
3845 {
3846     return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3847 }
3848 
3849 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3850                 unsigned long sdram_size,
3851                 const char *core)
3852 {
3853     int i;
3854     struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
3855     qemu_irq dma_irqs[6];
3856     DriveInfo *dinfo;
3857     SysBusDevice *busdev;
3858 
3859     if (!core)
3860         core = "ti925t";
3861 
3862     /* Core */
3863     s->mpu_model = omap310;
3864     s->cpu = cpu_arm_init(core);
3865     if (s->cpu == NULL) {
3866         fprintf(stderr, "Unable to find CPU definition\n");
3867         exit(1);
3868     }
3869     s->sdram_size = sdram_size;
3870     s->sram_size = OMAP15XX_SRAM_SIZE;
3871 
3872     s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3873 
3874     /* Clocks */
3875     omap_clk_init(s);
3876 
3877     /* Memory-mapped stuff */
3878     memory_region_allocate_system_memory(&s->emiff_ram, NULL, "omap1.dram",
3879                                          s->sdram_size);
3880     memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3881     memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3882                            &error_fatal);
3883     vmstate_register_ram_global(&s->imif_ram);
3884     memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3885 
3886     omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3887 
3888     s->ih[0] = qdev_create(NULL, "omap-intc");
3889     qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3890     qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3891     qdev_init_nofail(s->ih[0]);
3892     busdev = SYS_BUS_DEVICE(s->ih[0]);
3893     sysbus_connect_irq(busdev, 0,
3894                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3895     sysbus_connect_irq(busdev, 1,
3896                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3897     sysbus_mmio_map(busdev, 0, 0xfffecb00);
3898     s->ih[1] = qdev_create(NULL, "omap-intc");
3899     qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3900     qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3901     qdev_init_nofail(s->ih[1]);
3902     busdev = SYS_BUS_DEVICE(s->ih[1]);
3903     sysbus_connect_irq(busdev, 0,
3904                        qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3905     /* The second interrupt controller's FIQ output is not wired up */
3906     sysbus_mmio_map(busdev, 0, 0xfffe0000);
3907 
3908     for (i = 0; i < 6; i++) {
3909         dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3910                                        omap1_dma_irq_map[i].intr);
3911     }
3912     s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3913                            qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3914                            s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3915 
3916     s->port[emiff    ].addr_valid = omap_validate_emiff_addr;
3917     s->port[emifs    ].addr_valid = omap_validate_emifs_addr;
3918     s->port[imif     ].addr_valid = omap_validate_imif_addr;
3919     s->port[tipb     ].addr_valid = omap_validate_tipb_addr;
3920     s->port[local    ].addr_valid = omap_validate_local_addr;
3921     s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3922 
3923     /* Register SDRAM and SRAM DMA ports for fast transfers.  */
3924     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3925                          OMAP_EMIFF_BASE, s->sdram_size);
3926     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3927                          OMAP_IMIF_BASE, s->sram_size);
3928 
3929     s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3930                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3931                     omap_findclk(s, "mputim_ck"));
3932     s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3933                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3934                     omap_findclk(s, "mputim_ck"));
3935     s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3936                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3937                     omap_findclk(s, "mputim_ck"));
3938 
3939     s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3940                     qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3941                     omap_findclk(s, "armwdt_ck"));
3942 
3943     s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3944                     qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3945                     omap_findclk(s, "clk32-kHz"));
3946 
3947     s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3948                             qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3949                             omap_dma_get_lcdch(s->dma),
3950                             omap_findclk(s, "lcd_ck"));
3951 
3952     omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3953     omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3954     omap_id_init(system_memory, s);
3955 
3956     omap_mpui_init(system_memory, 0xfffec900, s);
3957 
3958     s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3959                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3960                     omap_findclk(s, "tipb_ck"));
3961     s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3962                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3963                     omap_findclk(s, "tipb_ck"));
3964 
3965     omap_tcmi_init(system_memory, 0xfffecc00, s);
3966 
3967     s->uart[0] = omap_uart_init(0xfffb0000,
3968                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3969                     omap_findclk(s, "uart1_ck"),
3970                     omap_findclk(s, "uart1_ck"),
3971                     s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3972                     "uart1",
3973                     serial_hds[0]);
3974     s->uart[1] = omap_uart_init(0xfffb0800,
3975                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3976                     omap_findclk(s, "uart2_ck"),
3977                     omap_findclk(s, "uart2_ck"),
3978                     s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3979                     "uart2",
3980                     serial_hds[0] ? serial_hds[1] : NULL);
3981     s->uart[2] = omap_uart_init(0xfffb9800,
3982                                 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3983                     omap_findclk(s, "uart3_ck"),
3984                     omap_findclk(s, "uart3_ck"),
3985                     s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3986                     "uart3",
3987                     serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
3988 
3989     s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3990                                 omap_findclk(s, "dpll1"));
3991     s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3992                                 omap_findclk(s, "dpll2"));
3993     s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3994                                 omap_findclk(s, "dpll3"));
3995 
3996     dinfo = drive_get(IF_SD, 0, 0);
3997     if (!dinfo) {
3998         fprintf(stderr, "qemu: missing SecureDigital device\n");
3999         exit(1);
4000     }
4001     s->mmc = omap_mmc_init(0xfffb7800, system_memory,
4002                            blk_by_legacy_dinfo(dinfo),
4003                            qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
4004                            &s->drq[OMAP_DMA_MMC_TX],
4005                     omap_findclk(s, "mmc_ck"));
4006 
4007     s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4008                                qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4009                                qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4010                                s->wakeup, omap_findclk(s, "clk32-kHz"));
4011 
4012     s->gpio = qdev_create(NULL, "omap-gpio");
4013     qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4014     qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
4015     qdev_init_nofail(s->gpio);
4016     sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4017                        qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4018     sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4019 
4020     s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4021                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4022                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4023                     s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4024 
4025     s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4026                            omap_findclk(s, "armxor_ck"));
4027     s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4028                            omap_findclk(s, "armxor_ck"));
4029 
4030     s->i2c[0] = qdev_create(NULL, "omap_i2c");
4031     qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4032     qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4033     qdev_init_nofail(s->i2c[0]);
4034     busdev = SYS_BUS_DEVICE(s->i2c[0]);
4035     sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4036     sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4037     sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4038     sysbus_mmio_map(busdev, 0, 0xfffb3800);
4039 
4040     s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4041                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4042                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4043                     omap_findclk(s, "clk32-kHz"));
4044 
4045     s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4046                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4047                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4048                     &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4049     s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4050                                 qdev_get_gpio_in(s->ih[0],
4051                                                  OMAP_INT_310_McBSP2_TX),
4052                                 qdev_get_gpio_in(s->ih[0],
4053                                                  OMAP_INT_310_McBSP2_RX),
4054                     &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4055     s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4056                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4057                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4058                     &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4059 
4060     s->led[0] = omap_lpg_init(system_memory,
4061                               0xfffbd000, omap_findclk(s, "clk32-kHz"));
4062     s->led[1] = omap_lpg_init(system_memory,
4063                               0xfffbd800, omap_findclk(s, "clk32-kHz"));
4064 
4065     /* Register mappings not currenlty implemented:
4066      * MCSI2 Comm	fffb2000 - fffb27ff (not mapped on OMAP310)
4067      * MCSI1 Bluetooth	fffb2800 - fffb2fff (not mapped on OMAP310)
4068      * USB W2FC		fffb4000 - fffb47ff
4069      * Camera Interface	fffb6800 - fffb6fff
4070      * USB Host		fffba000 - fffba7ff
4071      * FAC		fffba800 - fffbafff
4072      * HDQ/1-Wire	fffbc000 - fffbc7ff
4073      * TIPB switches	fffbc800 - fffbcfff
4074      * Mailbox		fffcf000 - fffcf7ff
4075      * Local bus IF	fffec100 - fffec1ff
4076      * Local bus MMU	fffec200 - fffec2ff
4077      * DSP MMU		fffed200 - fffed2ff
4078      */
4079 
4080     omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4081     omap_setup_mpui_io(system_memory, s);
4082 
4083     qemu_register_reset(omap1_mpu_reset, s);
4084 
4085     return s;
4086 }
4087