xref: /openbmc/qemu/hw/arm/omap1.c (revision bc09e061)
1 /*
2  * TI OMAP processors emulation.
3  *
4  * Copyright (C) 2006-2008 Andrzej Zaborowski  <balrog@zabor.org>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 or
9  * (at your option) version 3 of the License.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License along
17  * with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "hw/boards.h"
21 #include "hw/hw.h"
22 #include "hw/arm/arm.h"
23 #include "hw/arm/omap.h"
24 #include "sysemu/sysemu.h"
25 #include "hw/arm/soc_dma.h"
26 #include "sysemu/block-backend.h"
27 #include "sysemu/blockdev.h"
28 #include "qemu/range.h"
29 #include "hw/sysbus.h"
30 
31 /* Should signal the TCMI/GPMC */
32 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
33 {
34     uint8_t ret;
35 
36     OMAP_8B_REG(addr);
37     cpu_physical_memory_read(addr, &ret, 1);
38     return ret;
39 }
40 
41 void omap_badwidth_write8(void *opaque, hwaddr addr,
42                 uint32_t value)
43 {
44     uint8_t val8 = value;
45 
46     OMAP_8B_REG(addr);
47     cpu_physical_memory_write(addr, &val8, 1);
48 }
49 
50 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
51 {
52     uint16_t ret;
53 
54     OMAP_16B_REG(addr);
55     cpu_physical_memory_read(addr, &ret, 2);
56     return ret;
57 }
58 
59 void omap_badwidth_write16(void *opaque, hwaddr addr,
60                 uint32_t value)
61 {
62     uint16_t val16 = value;
63 
64     OMAP_16B_REG(addr);
65     cpu_physical_memory_write(addr, &val16, 2);
66 }
67 
68 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
69 {
70     uint32_t ret;
71 
72     OMAP_32B_REG(addr);
73     cpu_physical_memory_read(addr, &ret, 4);
74     return ret;
75 }
76 
77 void omap_badwidth_write32(void *opaque, hwaddr addr,
78                 uint32_t value)
79 {
80     OMAP_32B_REG(addr);
81     cpu_physical_memory_write(addr, &value, 4);
82 }
83 
84 /* MPU OS timers */
85 struct omap_mpu_timer_s {
86     MemoryRegion iomem;
87     qemu_irq irq;
88     omap_clk clk;
89     uint32_t val;
90     int64_t time;
91     QEMUTimer *timer;
92     QEMUBH *tick;
93     int64_t rate;
94     int it_ena;
95 
96     int enable;
97     int ptv;
98     int ar;
99     int st;
100     uint32_t reset_val;
101 };
102 
103 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
104 {
105     uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
106 
107     if (timer->st && timer->enable && timer->rate)
108         return timer->val - muldiv64(distance >> (timer->ptv + 1),
109                                      timer->rate, get_ticks_per_sec());
110     else
111         return timer->val;
112 }
113 
114 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
115 {
116     timer->val = omap_timer_read(timer);
117     timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
118 }
119 
120 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
121 {
122     int64_t expires;
123 
124     if (timer->enable && timer->st && timer->rate) {
125         timer->val = timer->reset_val;	/* Should skip this on clk enable */
126         expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
127                            get_ticks_per_sec(), timer->rate);
128 
129         /* If timer expiry would be sooner than in about 1 ms and
130          * auto-reload isn't set, then fire immediately.  This is a hack
131          * to make systems like PalmOS run in acceptable time.  PalmOS
132          * sets the interval to a very low value and polls the status bit
133          * in a busy loop when it wants to sleep just a couple of CPU
134          * ticks.  */
135         if (expires > (get_ticks_per_sec() >> 10) || timer->ar)
136             timer_mod(timer->timer, timer->time + expires);
137         else
138             qemu_bh_schedule(timer->tick);
139     } else
140         timer_del(timer->timer);
141 }
142 
143 static void omap_timer_fire(void *opaque)
144 {
145     struct omap_mpu_timer_s *timer = opaque;
146 
147     if (!timer->ar) {
148         timer->val = 0;
149         timer->st = 0;
150     }
151 
152     if (timer->it_ena)
153         /* Edge-triggered irq */
154         qemu_irq_pulse(timer->irq);
155 }
156 
157 static void omap_timer_tick(void *opaque)
158 {
159     struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
160 
161     omap_timer_sync(timer);
162     omap_timer_fire(timer);
163     omap_timer_update(timer);
164 }
165 
166 static void omap_timer_clk_update(void *opaque, int line, int on)
167 {
168     struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
169 
170     omap_timer_sync(timer);
171     timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
172     omap_timer_update(timer);
173 }
174 
175 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
176 {
177     omap_clk_adduser(timer->clk,
178                     qemu_allocate_irq(omap_timer_clk_update, timer, 0));
179     timer->rate = omap_clk_getrate(timer->clk);
180 }
181 
182 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
183                                     unsigned size)
184 {
185     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
186 
187     if (size != 4) {
188         return omap_badwidth_read32(opaque, addr);
189     }
190 
191     switch (addr) {
192     case 0x00:	/* CNTL_TIMER */
193         return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
194 
195     case 0x04:	/* LOAD_TIM */
196         break;
197 
198     case 0x08:	/* READ_TIM */
199         return omap_timer_read(s);
200     }
201 
202     OMAP_BAD_REG(addr);
203     return 0;
204 }
205 
206 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
207                                  uint64_t value, unsigned size)
208 {
209     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
210 
211     if (size != 4) {
212         omap_badwidth_write32(opaque, addr, value);
213         return;
214     }
215 
216     switch (addr) {
217     case 0x00:	/* CNTL_TIMER */
218         omap_timer_sync(s);
219         s->enable = (value >> 5) & 1;
220         s->ptv = (value >> 2) & 7;
221         s->ar = (value >> 1) & 1;
222         s->st = value & 1;
223         omap_timer_update(s);
224         return;
225 
226     case 0x04:	/* LOAD_TIM */
227         s->reset_val = value;
228         return;
229 
230     case 0x08:	/* READ_TIM */
231         OMAP_RO_REG(addr);
232         break;
233 
234     default:
235         OMAP_BAD_REG(addr);
236     }
237 }
238 
239 static const MemoryRegionOps omap_mpu_timer_ops = {
240     .read = omap_mpu_timer_read,
241     .write = omap_mpu_timer_write,
242     .endianness = DEVICE_LITTLE_ENDIAN,
243 };
244 
245 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
246 {
247     timer_del(s->timer);
248     s->enable = 0;
249     s->reset_val = 31337;
250     s->val = 0;
251     s->ptv = 0;
252     s->ar = 0;
253     s->st = 0;
254     s->it_ena = 1;
255 }
256 
257 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
258                 hwaddr base,
259                 qemu_irq irq, omap_clk clk)
260 {
261     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
262             g_malloc0(sizeof(struct omap_mpu_timer_s));
263 
264     s->irq = irq;
265     s->clk = clk;
266     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
267     s->tick = qemu_bh_new(omap_timer_fire, s);
268     omap_mpu_timer_reset(s);
269     omap_timer_clk_setup(s);
270 
271     memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
272                           "omap-mpu-timer", 0x100);
273 
274     memory_region_add_subregion(system_memory, base, &s->iomem);
275 
276     return s;
277 }
278 
279 /* Watchdog timer */
280 struct omap_watchdog_timer_s {
281     struct omap_mpu_timer_s timer;
282     MemoryRegion iomem;
283     uint8_t last_wr;
284     int mode;
285     int free;
286     int reset;
287 };
288 
289 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
290                                    unsigned size)
291 {
292     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
293 
294     if (size != 2) {
295         return omap_badwidth_read16(opaque, addr);
296     }
297 
298     switch (addr) {
299     case 0x00:	/* CNTL_TIMER */
300         return (s->timer.ptv << 9) | (s->timer.ar << 8) |
301                 (s->timer.st << 7) | (s->free << 1);
302 
303     case 0x04:	/* READ_TIMER */
304         return omap_timer_read(&s->timer);
305 
306     case 0x08:	/* TIMER_MODE */
307         return s->mode << 15;
308     }
309 
310     OMAP_BAD_REG(addr);
311     return 0;
312 }
313 
314 static void omap_wd_timer_write(void *opaque, hwaddr addr,
315                                 uint64_t value, unsigned size)
316 {
317     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
318 
319     if (size != 2) {
320         omap_badwidth_write16(opaque, addr, value);
321         return;
322     }
323 
324     switch (addr) {
325     case 0x00:	/* CNTL_TIMER */
326         omap_timer_sync(&s->timer);
327         s->timer.ptv = (value >> 9) & 7;
328         s->timer.ar = (value >> 8) & 1;
329         s->timer.st = (value >> 7) & 1;
330         s->free = (value >> 1) & 1;
331         omap_timer_update(&s->timer);
332         break;
333 
334     case 0x04:	/* LOAD_TIMER */
335         s->timer.reset_val = value & 0xffff;
336         break;
337 
338     case 0x08:	/* TIMER_MODE */
339         if (!s->mode && ((value >> 15) & 1))
340             omap_clk_get(s->timer.clk);
341         s->mode |= (value >> 15) & 1;
342         if (s->last_wr == 0xf5) {
343             if ((value & 0xff) == 0xa0) {
344                 if (s->mode) {
345                     s->mode = 0;
346                     omap_clk_put(s->timer.clk);
347                 }
348             } else {
349                 /* XXX: on T|E hardware somehow this has no effect,
350                  * on Zire 71 it works as specified.  */
351                 s->reset = 1;
352                 qemu_system_reset_request();
353             }
354         }
355         s->last_wr = value & 0xff;
356         break;
357 
358     default:
359         OMAP_BAD_REG(addr);
360     }
361 }
362 
363 static const MemoryRegionOps omap_wd_timer_ops = {
364     .read = omap_wd_timer_read,
365     .write = omap_wd_timer_write,
366     .endianness = DEVICE_NATIVE_ENDIAN,
367 };
368 
369 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
370 {
371     timer_del(s->timer.timer);
372     if (!s->mode)
373         omap_clk_get(s->timer.clk);
374     s->mode = 1;
375     s->free = 1;
376     s->reset = 0;
377     s->timer.enable = 1;
378     s->timer.it_ena = 1;
379     s->timer.reset_val = 0xffff;
380     s->timer.val = 0;
381     s->timer.st = 0;
382     s->timer.ptv = 0;
383     s->timer.ar = 0;
384     omap_timer_update(&s->timer);
385 }
386 
387 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
388                 hwaddr base,
389                 qemu_irq irq, omap_clk clk)
390 {
391     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
392             g_malloc0(sizeof(struct omap_watchdog_timer_s));
393 
394     s->timer.irq = irq;
395     s->timer.clk = clk;
396     s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
397     omap_wd_timer_reset(s);
398     omap_timer_clk_setup(&s->timer);
399 
400     memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
401                           "omap-wd-timer", 0x100);
402     memory_region_add_subregion(memory, base, &s->iomem);
403 
404     return s;
405 }
406 
407 /* 32-kHz timer */
408 struct omap_32khz_timer_s {
409     struct omap_mpu_timer_s timer;
410     MemoryRegion iomem;
411 };
412 
413 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
414                                    unsigned size)
415 {
416     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
417     int offset = addr & OMAP_MPUI_REG_MASK;
418 
419     if (size != 4) {
420         return omap_badwidth_read32(opaque, addr);
421     }
422 
423     switch (offset) {
424     case 0x00:	/* TVR */
425         return s->timer.reset_val;
426 
427     case 0x04:	/* TCR */
428         return omap_timer_read(&s->timer);
429 
430     case 0x08:	/* CR */
431         return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
432 
433     default:
434         break;
435     }
436     OMAP_BAD_REG(addr);
437     return 0;
438 }
439 
440 static void omap_os_timer_write(void *opaque, hwaddr addr,
441                                 uint64_t value, unsigned size)
442 {
443     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
444     int offset = addr & OMAP_MPUI_REG_MASK;
445 
446     if (size != 4) {
447         omap_badwidth_write32(opaque, addr, value);
448         return;
449     }
450 
451     switch (offset) {
452     case 0x00:	/* TVR */
453         s->timer.reset_val = value & 0x00ffffff;
454         break;
455 
456     case 0x04:	/* TCR */
457         OMAP_RO_REG(addr);
458         break;
459 
460     case 0x08:	/* CR */
461         s->timer.ar = (value >> 3) & 1;
462         s->timer.it_ena = (value >> 2) & 1;
463         if (s->timer.st != (value & 1) || (value & 2)) {
464             omap_timer_sync(&s->timer);
465             s->timer.enable = value & 1;
466             s->timer.st = value & 1;
467             omap_timer_update(&s->timer);
468         }
469         break;
470 
471     default:
472         OMAP_BAD_REG(addr);
473     }
474 }
475 
476 static const MemoryRegionOps omap_os_timer_ops = {
477     .read = omap_os_timer_read,
478     .write = omap_os_timer_write,
479     .endianness = DEVICE_NATIVE_ENDIAN,
480 };
481 
482 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
483 {
484     timer_del(s->timer.timer);
485     s->timer.enable = 0;
486     s->timer.it_ena = 0;
487     s->timer.reset_val = 0x00ffffff;
488     s->timer.val = 0;
489     s->timer.st = 0;
490     s->timer.ptv = 0;
491     s->timer.ar = 1;
492 }
493 
494 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
495                 hwaddr base,
496                 qemu_irq irq, omap_clk clk)
497 {
498     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
499             g_malloc0(sizeof(struct omap_32khz_timer_s));
500 
501     s->timer.irq = irq;
502     s->timer.clk = clk;
503     s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
504     omap_os_timer_reset(s);
505     omap_timer_clk_setup(&s->timer);
506 
507     memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
508                           "omap-os-timer", 0x800);
509     memory_region_add_subregion(memory, base, &s->iomem);
510 
511     return s;
512 }
513 
514 /* Ultra Low-Power Device Module */
515 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
516                                   unsigned size)
517 {
518     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
519     uint16_t ret;
520 
521     if (size != 2) {
522         return omap_badwidth_read16(opaque, addr);
523     }
524 
525     switch (addr) {
526     case 0x14:	/* IT_STATUS */
527         ret = s->ulpd_pm_regs[addr >> 2];
528         s->ulpd_pm_regs[addr >> 2] = 0;
529         qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
530         return ret;
531 
532     case 0x18:	/* Reserved */
533     case 0x1c:	/* Reserved */
534     case 0x20:	/* Reserved */
535     case 0x28:	/* Reserved */
536     case 0x2c:	/* Reserved */
537         OMAP_BAD_REG(addr);
538         /* fall through */
539     case 0x00:	/* COUNTER_32_LSB */
540     case 0x04:	/* COUNTER_32_MSB */
541     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
542     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
543     case 0x10:	/* GAUGING_CTRL */
544     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
545     case 0x30:	/* CLOCK_CTRL */
546     case 0x34:	/* SOFT_REQ */
547     case 0x38:	/* COUNTER_32_FIQ */
548     case 0x3c:	/* DPLL_CTRL */
549     case 0x40:	/* STATUS_REQ */
550         /* XXX: check clk::usecount state for every clock */
551     case 0x48:	/* LOCL_TIME */
552     case 0x4c:	/* APLL_CTRL */
553     case 0x50:	/* POWER_CTRL */
554         return s->ulpd_pm_regs[addr >> 2];
555     }
556 
557     OMAP_BAD_REG(addr);
558     return 0;
559 }
560 
561 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
562                 uint16_t diff, uint16_t value)
563 {
564     if (diff & (1 << 4))				/* USB_MCLK_EN */
565         omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
566     if (diff & (1 << 5))				/* DIS_USB_PVCI_CLK */
567         omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
568 }
569 
570 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
571                 uint16_t diff, uint16_t value)
572 {
573     if (diff & (1 << 0))				/* SOFT_DPLL_REQ */
574         omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
575     if (diff & (1 << 1))				/* SOFT_COM_REQ */
576         omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
577     if (diff & (1 << 2))				/* SOFT_SDW_REQ */
578         omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
579     if (diff & (1 << 3))				/* SOFT_USB_REQ */
580         omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
581 }
582 
583 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
584                                uint64_t value, unsigned size)
585 {
586     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
587     int64_t now, ticks;
588     int div, mult;
589     static const int bypass_div[4] = { 1, 2, 4, 4 };
590     uint16_t diff;
591 
592     if (size != 2) {
593         omap_badwidth_write16(opaque, addr, value);
594         return;
595     }
596 
597     switch (addr) {
598     case 0x00:	/* COUNTER_32_LSB */
599     case 0x04:	/* COUNTER_32_MSB */
600     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
601     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
602     case 0x14:	/* IT_STATUS */
603     case 0x40:	/* STATUS_REQ */
604         OMAP_RO_REG(addr);
605         break;
606 
607     case 0x10:	/* GAUGING_CTRL */
608         /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
609         if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
610             now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
611 
612             if (value & 1)
613                 s->ulpd_gauge_start = now;
614             else {
615                 now -= s->ulpd_gauge_start;
616 
617                 /* 32-kHz ticks */
618                 ticks = muldiv64(now, 32768, get_ticks_per_sec());
619                 s->ulpd_pm_regs[0x00 >> 2] = (ticks >>  0) & 0xffff;
620                 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
621                 if (ticks >> 32)	/* OVERFLOW_32K */
622                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
623 
624                 /* High frequency ticks */
625                 ticks = muldiv64(now, 12000000, get_ticks_per_sec());
626                 s->ulpd_pm_regs[0x08 >> 2] = (ticks >>  0) & 0xffff;
627                 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
628                 if (ticks >> 32)	/* OVERFLOW_HI_FREQ */
629                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
630 
631                 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0;	/* IT_GAUGING */
632                 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
633             }
634         }
635         s->ulpd_pm_regs[addr >> 2] = value;
636         break;
637 
638     case 0x18:	/* Reserved */
639     case 0x1c:	/* Reserved */
640     case 0x20:	/* Reserved */
641     case 0x28:	/* Reserved */
642     case 0x2c:	/* Reserved */
643         OMAP_BAD_REG(addr);
644         /* fall through */
645     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
646     case 0x38:	/* COUNTER_32_FIQ */
647     case 0x48:	/* LOCL_TIME */
648     case 0x50:	/* POWER_CTRL */
649         s->ulpd_pm_regs[addr >> 2] = value;
650         break;
651 
652     case 0x30:	/* CLOCK_CTRL */
653         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
654         s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
655         omap_ulpd_clk_update(s, diff, value);
656         break;
657 
658     case 0x34:	/* SOFT_REQ */
659         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
660         s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
661         omap_ulpd_req_update(s, diff, value);
662         break;
663 
664     case 0x3c:	/* DPLL_CTRL */
665         /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
666          * omitted altogether, probably a typo.  */
667         /* This register has identical semantics with DPLL(1:3) control
668          * registers, see omap_dpll_write() */
669         diff = s->ulpd_pm_regs[addr >> 2] & value;
670         s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
671         if (diff & (0x3ff << 2)) {
672             if (value & (1 << 4)) {			/* PLL_ENABLE */
673                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
674                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
675             } else {
676                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
677                 mult = 1;
678             }
679             omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
680         }
681 
682         /* Enter the desired mode.  */
683         s->ulpd_pm_regs[addr >> 2] =
684                 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
685                 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
686 
687         /* Act as if the lock is restored.  */
688         s->ulpd_pm_regs[addr >> 2] |= 2;
689         break;
690 
691     case 0x4c:	/* APLL_CTRL */
692         diff = s->ulpd_pm_regs[addr >> 2] & value;
693         s->ulpd_pm_regs[addr >> 2] = value & 0xf;
694         if (diff & (1 << 0))				/* APLL_NDPLL_SWITCH */
695             omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
696                                     (value & (1 << 0)) ? "apll" : "dpll4"));
697         break;
698 
699     default:
700         OMAP_BAD_REG(addr);
701     }
702 }
703 
704 static const MemoryRegionOps omap_ulpd_pm_ops = {
705     .read = omap_ulpd_pm_read,
706     .write = omap_ulpd_pm_write,
707     .endianness = DEVICE_NATIVE_ENDIAN,
708 };
709 
710 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
711 {
712     mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
713     mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
714     mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
715     mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
716     mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
717     mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
718     mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
719     mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
720     mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
721     mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
722     mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
723     omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
724     mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
725     omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
726     mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
727     mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
728     mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
729     mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
730     mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
731     mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
732     mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
733     omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
734     omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
735 }
736 
737 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
738                 hwaddr base,
739                 struct omap_mpu_state_s *mpu)
740 {
741     memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
742                           "omap-ulpd-pm", 0x800);
743     memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
744     omap_ulpd_pm_reset(mpu);
745 }
746 
747 /* OMAP Pin Configuration */
748 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
749                                   unsigned size)
750 {
751     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
752 
753     if (size != 4) {
754         return omap_badwidth_read32(opaque, addr);
755     }
756 
757     switch (addr) {
758     case 0x00:	/* FUNC_MUX_CTRL_0 */
759     case 0x04:	/* FUNC_MUX_CTRL_1 */
760     case 0x08:	/* FUNC_MUX_CTRL_2 */
761         return s->func_mux_ctrl[addr >> 2];
762 
763     case 0x0c:	/* COMP_MODE_CTRL_0 */
764         return s->comp_mode_ctrl[0];
765 
766     case 0x10:	/* FUNC_MUX_CTRL_3 */
767     case 0x14:	/* FUNC_MUX_CTRL_4 */
768     case 0x18:	/* FUNC_MUX_CTRL_5 */
769     case 0x1c:	/* FUNC_MUX_CTRL_6 */
770     case 0x20:	/* FUNC_MUX_CTRL_7 */
771     case 0x24:	/* FUNC_MUX_CTRL_8 */
772     case 0x28:	/* FUNC_MUX_CTRL_9 */
773     case 0x2c:	/* FUNC_MUX_CTRL_A */
774     case 0x30:	/* FUNC_MUX_CTRL_B */
775     case 0x34:	/* FUNC_MUX_CTRL_C */
776     case 0x38:	/* FUNC_MUX_CTRL_D */
777         return s->func_mux_ctrl[(addr >> 2) - 1];
778 
779     case 0x40:	/* PULL_DWN_CTRL_0 */
780     case 0x44:	/* PULL_DWN_CTRL_1 */
781     case 0x48:	/* PULL_DWN_CTRL_2 */
782     case 0x4c:	/* PULL_DWN_CTRL_3 */
783         return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
784 
785     case 0x50:	/* GATE_INH_CTRL_0 */
786         return s->gate_inh_ctrl[0];
787 
788     case 0x60:	/* VOLTAGE_CTRL_0 */
789         return s->voltage_ctrl[0];
790 
791     case 0x70:	/* TEST_DBG_CTRL_0 */
792         return s->test_dbg_ctrl[0];
793 
794     case 0x80:	/* MOD_CONF_CTRL_0 */
795         return s->mod_conf_ctrl[0];
796     }
797 
798     OMAP_BAD_REG(addr);
799     return 0;
800 }
801 
802 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
803                 uint32_t diff, uint32_t value)
804 {
805     if (s->compat1509) {
806         if (diff & (1 << 9))			/* BLUETOOTH */
807             omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
808                             (~value >> 9) & 1);
809         if (diff & (1 << 7))			/* USB.CLKO */
810             omap_clk_onoff(omap_findclk(s, "usb.clko"),
811                             (value >> 7) & 1);
812     }
813 }
814 
815 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
816                 uint32_t diff, uint32_t value)
817 {
818     if (s->compat1509) {
819         if (diff & (1U << 31)) {
820             /* MCBSP3_CLK_HIZ_DI */
821             omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
822         }
823         if (diff & (1 << 1)) {
824             /* CLK32K */
825             omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
826         }
827     }
828 }
829 
830 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
831                 uint32_t diff, uint32_t value)
832 {
833     if (diff & (1U << 31)) {
834         /* CONF_MOD_UART3_CLK_MODE_R */
835         omap_clk_reparent(omap_findclk(s, "uart3_ck"),
836                           omap_findclk(s, ((value >> 31) & 1) ?
837                                        "ck_48m" : "armper_ck"));
838     }
839     if (diff & (1 << 30))			/* CONF_MOD_UART2_CLK_MODE_R */
840          omap_clk_reparent(omap_findclk(s, "uart2_ck"),
841                          omap_findclk(s, ((value >> 30) & 1) ?
842                                  "ck_48m" : "armper_ck"));
843     if (diff & (1 << 29))			/* CONF_MOD_UART1_CLK_MODE_R */
844          omap_clk_reparent(omap_findclk(s, "uart1_ck"),
845                          omap_findclk(s, ((value >> 29) & 1) ?
846                                  "ck_48m" : "armper_ck"));
847     if (diff & (1 << 23))			/* CONF_MOD_MMC_SD_CLK_REQ_R */
848          omap_clk_reparent(omap_findclk(s, "mmc_ck"),
849                          omap_findclk(s, ((value >> 23) & 1) ?
850                                  "ck_48m" : "armper_ck"));
851     if (diff & (1 << 12))			/* CONF_MOD_COM_MCLK_12_48_S */
852          omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
853                          omap_findclk(s, ((value >> 12) & 1) ?
854                                  "ck_48m" : "armper_ck"));
855     if (diff & (1 << 9))			/* CONF_MOD_USB_HOST_HHC_UHO */
856          omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
857 }
858 
859 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
860                                uint64_t value, unsigned size)
861 {
862     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
863     uint32_t diff;
864 
865     if (size != 4) {
866         omap_badwidth_write32(opaque, addr, value);
867         return;
868     }
869 
870     switch (addr) {
871     case 0x00:	/* FUNC_MUX_CTRL_0 */
872         diff = s->func_mux_ctrl[addr >> 2] ^ value;
873         s->func_mux_ctrl[addr >> 2] = value;
874         omap_pin_funcmux0_update(s, diff, value);
875         return;
876 
877     case 0x04:	/* FUNC_MUX_CTRL_1 */
878         diff = s->func_mux_ctrl[addr >> 2] ^ value;
879         s->func_mux_ctrl[addr >> 2] = value;
880         omap_pin_funcmux1_update(s, diff, value);
881         return;
882 
883     case 0x08:	/* FUNC_MUX_CTRL_2 */
884         s->func_mux_ctrl[addr >> 2] = value;
885         return;
886 
887     case 0x0c:	/* COMP_MODE_CTRL_0 */
888         s->comp_mode_ctrl[0] = value;
889         s->compat1509 = (value != 0x0000eaef);
890         omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
891         omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
892         return;
893 
894     case 0x10:	/* FUNC_MUX_CTRL_3 */
895     case 0x14:	/* FUNC_MUX_CTRL_4 */
896     case 0x18:	/* FUNC_MUX_CTRL_5 */
897     case 0x1c:	/* FUNC_MUX_CTRL_6 */
898     case 0x20:	/* FUNC_MUX_CTRL_7 */
899     case 0x24:	/* FUNC_MUX_CTRL_8 */
900     case 0x28:	/* FUNC_MUX_CTRL_9 */
901     case 0x2c:	/* FUNC_MUX_CTRL_A */
902     case 0x30:	/* FUNC_MUX_CTRL_B */
903     case 0x34:	/* FUNC_MUX_CTRL_C */
904     case 0x38:	/* FUNC_MUX_CTRL_D */
905         s->func_mux_ctrl[(addr >> 2) - 1] = value;
906         return;
907 
908     case 0x40:	/* PULL_DWN_CTRL_0 */
909     case 0x44:	/* PULL_DWN_CTRL_1 */
910     case 0x48:	/* PULL_DWN_CTRL_2 */
911     case 0x4c:	/* PULL_DWN_CTRL_3 */
912         s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
913         return;
914 
915     case 0x50:	/* GATE_INH_CTRL_0 */
916         s->gate_inh_ctrl[0] = value;
917         return;
918 
919     case 0x60:	/* VOLTAGE_CTRL_0 */
920         s->voltage_ctrl[0] = value;
921         return;
922 
923     case 0x70:	/* TEST_DBG_CTRL_0 */
924         s->test_dbg_ctrl[0] = value;
925         return;
926 
927     case 0x80:	/* MOD_CONF_CTRL_0 */
928         diff = s->mod_conf_ctrl[0] ^ value;
929         s->mod_conf_ctrl[0] = value;
930         omap_pin_modconf1_update(s, diff, value);
931         return;
932 
933     default:
934         OMAP_BAD_REG(addr);
935     }
936 }
937 
938 static const MemoryRegionOps omap_pin_cfg_ops = {
939     .read = omap_pin_cfg_read,
940     .write = omap_pin_cfg_write,
941     .endianness = DEVICE_NATIVE_ENDIAN,
942 };
943 
944 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
945 {
946     /* Start in Compatibility Mode.  */
947     mpu->compat1509 = 1;
948     omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
949     omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
950     omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
951     memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
952     memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
953     memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
954     memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
955     memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
956     memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
957     memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
958 }
959 
960 static void omap_pin_cfg_init(MemoryRegion *system_memory,
961                 hwaddr base,
962                 struct omap_mpu_state_s *mpu)
963 {
964     memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
965                           "omap-pin-cfg", 0x800);
966     memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
967     omap_pin_cfg_reset(mpu);
968 }
969 
970 /* Device Identification, Die Identification */
971 static uint64_t omap_id_read(void *opaque, hwaddr addr,
972                              unsigned size)
973 {
974     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
975 
976     if (size != 4) {
977         return omap_badwidth_read32(opaque, addr);
978     }
979 
980     switch (addr) {
981     case 0xfffe1800:	/* DIE_ID_LSB */
982         return 0xc9581f0e;
983     case 0xfffe1804:	/* DIE_ID_MSB */
984         return 0xa8858bfa;
985 
986     case 0xfffe2000:	/* PRODUCT_ID_LSB */
987         return 0x00aaaafc;
988     case 0xfffe2004:	/* PRODUCT_ID_MSB */
989         return 0xcafeb574;
990 
991     case 0xfffed400:	/* JTAG_ID_LSB */
992         switch (s->mpu_model) {
993         case omap310:
994             return 0x03310315;
995         case omap1510:
996             return 0x03310115;
997         default:
998             hw_error("%s: bad mpu model\n", __FUNCTION__);
999         }
1000         break;
1001 
1002     case 0xfffed404:	/* JTAG_ID_MSB */
1003         switch (s->mpu_model) {
1004         case omap310:
1005             return 0xfb57402f;
1006         case omap1510:
1007             return 0xfb47002f;
1008         default:
1009             hw_error("%s: bad mpu model\n", __FUNCTION__);
1010         }
1011         break;
1012     }
1013 
1014     OMAP_BAD_REG(addr);
1015     return 0;
1016 }
1017 
1018 static void omap_id_write(void *opaque, hwaddr addr,
1019                           uint64_t value, unsigned size)
1020 {
1021     if (size != 4) {
1022         omap_badwidth_write32(opaque, addr, value);
1023         return;
1024     }
1025 
1026     OMAP_BAD_REG(addr);
1027 }
1028 
1029 static const MemoryRegionOps omap_id_ops = {
1030     .read = omap_id_read,
1031     .write = omap_id_write,
1032     .endianness = DEVICE_NATIVE_ENDIAN,
1033 };
1034 
1035 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1036 {
1037     memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1038                           "omap-id", 0x100000000ULL);
1039     memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1040                              0xfffe1800, 0x800);
1041     memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1042     memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1043                              0xfffed400, 0x100);
1044     memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1045     if (!cpu_is_omap15xx(mpu)) {
1046         memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1047                                  &mpu->id_iomem, 0xfffe2000, 0x800);
1048         memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1049     }
1050 }
1051 
1052 /* MPUI Control (Dummy) */
1053 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1054                                unsigned size)
1055 {
1056     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1057 
1058     if (size != 4) {
1059         return omap_badwidth_read32(opaque, addr);
1060     }
1061 
1062     switch (addr) {
1063     case 0x00:	/* CTRL */
1064         return s->mpui_ctrl;
1065     case 0x04:	/* DEBUG_ADDR */
1066         return 0x01ffffff;
1067     case 0x08:	/* DEBUG_DATA */
1068         return 0xffffffff;
1069     case 0x0c:	/* DEBUG_FLAG */
1070         return 0x00000800;
1071     case 0x10:	/* STATUS */
1072         return 0x00000000;
1073 
1074     /* Not in OMAP310 */
1075     case 0x14:	/* DSP_STATUS */
1076     case 0x18:	/* DSP_BOOT_CONFIG */
1077         return 0x00000000;
1078     case 0x1c:	/* DSP_MPUI_CONFIG */
1079         return 0x0000ffff;
1080     }
1081 
1082     OMAP_BAD_REG(addr);
1083     return 0;
1084 }
1085 
1086 static void omap_mpui_write(void *opaque, hwaddr addr,
1087                             uint64_t value, unsigned size)
1088 {
1089     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1090 
1091     if (size != 4) {
1092         omap_badwidth_write32(opaque, addr, value);
1093         return;
1094     }
1095 
1096     switch (addr) {
1097     case 0x00:	/* CTRL */
1098         s->mpui_ctrl = value & 0x007fffff;
1099         break;
1100 
1101     case 0x04:	/* DEBUG_ADDR */
1102     case 0x08:	/* DEBUG_DATA */
1103     case 0x0c:	/* DEBUG_FLAG */
1104     case 0x10:	/* STATUS */
1105     /* Not in OMAP310 */
1106     case 0x14:	/* DSP_STATUS */
1107         OMAP_RO_REG(addr);
1108         break;
1109     case 0x18:	/* DSP_BOOT_CONFIG */
1110     case 0x1c:	/* DSP_MPUI_CONFIG */
1111         break;
1112 
1113     default:
1114         OMAP_BAD_REG(addr);
1115     }
1116 }
1117 
1118 static const MemoryRegionOps omap_mpui_ops = {
1119     .read = omap_mpui_read,
1120     .write = omap_mpui_write,
1121     .endianness = DEVICE_NATIVE_ENDIAN,
1122 };
1123 
1124 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1125 {
1126     s->mpui_ctrl = 0x0003ff1b;
1127 }
1128 
1129 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1130                 struct omap_mpu_state_s *mpu)
1131 {
1132     memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1133                           "omap-mpui", 0x100);
1134     memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1135 
1136     omap_mpui_reset(mpu);
1137 }
1138 
1139 /* TIPB Bridges */
1140 struct omap_tipb_bridge_s {
1141     qemu_irq abort;
1142     MemoryRegion iomem;
1143 
1144     int width_intr;
1145     uint16_t control;
1146     uint16_t alloc;
1147     uint16_t buffer;
1148     uint16_t enh_control;
1149 };
1150 
1151 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1152                                       unsigned size)
1153 {
1154     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1155 
1156     if (size < 2) {
1157         return omap_badwidth_read16(opaque, addr);
1158     }
1159 
1160     switch (addr) {
1161     case 0x00:	/* TIPB_CNTL */
1162         return s->control;
1163     case 0x04:	/* TIPB_BUS_ALLOC */
1164         return s->alloc;
1165     case 0x08:	/* MPU_TIPB_CNTL */
1166         return s->buffer;
1167     case 0x0c:	/* ENHANCED_TIPB_CNTL */
1168         return s->enh_control;
1169     case 0x10:	/* ADDRESS_DBG */
1170     case 0x14:	/* DATA_DEBUG_LOW */
1171     case 0x18:	/* DATA_DEBUG_HIGH */
1172         return 0xffff;
1173     case 0x1c:	/* DEBUG_CNTR_SIG */
1174         return 0x00f8;
1175     }
1176 
1177     OMAP_BAD_REG(addr);
1178     return 0;
1179 }
1180 
1181 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1182                                    uint64_t value, unsigned size)
1183 {
1184     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1185 
1186     if (size < 2) {
1187         omap_badwidth_write16(opaque, addr, value);
1188         return;
1189     }
1190 
1191     switch (addr) {
1192     case 0x00:	/* TIPB_CNTL */
1193         s->control = value & 0xffff;
1194         break;
1195 
1196     case 0x04:	/* TIPB_BUS_ALLOC */
1197         s->alloc = value & 0x003f;
1198         break;
1199 
1200     case 0x08:	/* MPU_TIPB_CNTL */
1201         s->buffer = value & 0x0003;
1202         break;
1203 
1204     case 0x0c:	/* ENHANCED_TIPB_CNTL */
1205         s->width_intr = !(value & 2);
1206         s->enh_control = value & 0x000f;
1207         break;
1208 
1209     case 0x10:	/* ADDRESS_DBG */
1210     case 0x14:	/* DATA_DEBUG_LOW */
1211     case 0x18:	/* DATA_DEBUG_HIGH */
1212     case 0x1c:	/* DEBUG_CNTR_SIG */
1213         OMAP_RO_REG(addr);
1214         break;
1215 
1216     default:
1217         OMAP_BAD_REG(addr);
1218     }
1219 }
1220 
1221 static const MemoryRegionOps omap_tipb_bridge_ops = {
1222     .read = omap_tipb_bridge_read,
1223     .write = omap_tipb_bridge_write,
1224     .endianness = DEVICE_NATIVE_ENDIAN,
1225 };
1226 
1227 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1228 {
1229     s->control = 0xffff;
1230     s->alloc = 0x0009;
1231     s->buffer = 0x0000;
1232     s->enh_control = 0x000f;
1233 }
1234 
1235 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1236     MemoryRegion *memory, hwaddr base,
1237     qemu_irq abort_irq, omap_clk clk)
1238 {
1239     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
1240             g_malloc0(sizeof(struct omap_tipb_bridge_s));
1241 
1242     s->abort = abort_irq;
1243     omap_tipb_bridge_reset(s);
1244 
1245     memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1246                           "omap-tipb-bridge", 0x100);
1247     memory_region_add_subregion(memory, base, &s->iomem);
1248 
1249     return s;
1250 }
1251 
1252 /* Dummy Traffic Controller's Memory Interface */
1253 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1254                                unsigned size)
1255 {
1256     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1257     uint32_t ret;
1258 
1259     if (size != 4) {
1260         return omap_badwidth_read32(opaque, addr);
1261     }
1262 
1263     switch (addr) {
1264     case 0x00:	/* IMIF_PRIO */
1265     case 0x04:	/* EMIFS_PRIO */
1266     case 0x08:	/* EMIFF_PRIO */
1267     case 0x0c:	/* EMIFS_CONFIG */
1268     case 0x10:	/* EMIFS_CS0_CONFIG */
1269     case 0x14:	/* EMIFS_CS1_CONFIG */
1270     case 0x18:	/* EMIFS_CS2_CONFIG */
1271     case 0x1c:	/* EMIFS_CS3_CONFIG */
1272     case 0x24:	/* EMIFF_MRS */
1273     case 0x28:	/* TIMEOUT1 */
1274     case 0x2c:	/* TIMEOUT2 */
1275     case 0x30:	/* TIMEOUT3 */
1276     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
1277     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
1278         return s->tcmi_regs[addr >> 2];
1279 
1280     case 0x20:	/* EMIFF_SDRAM_CONFIG */
1281         ret = s->tcmi_regs[addr >> 2];
1282         s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1283         /* XXX: We can try using the VGA_DIRTY flag for this */
1284         return ret;
1285     }
1286 
1287     OMAP_BAD_REG(addr);
1288     return 0;
1289 }
1290 
1291 static void omap_tcmi_write(void *opaque, hwaddr addr,
1292                             uint64_t value, unsigned size)
1293 {
1294     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1295 
1296     if (size != 4) {
1297         omap_badwidth_write32(opaque, addr, value);
1298         return;
1299     }
1300 
1301     switch (addr) {
1302     case 0x00:	/* IMIF_PRIO */
1303     case 0x04:	/* EMIFS_PRIO */
1304     case 0x08:	/* EMIFF_PRIO */
1305     case 0x10:	/* EMIFS_CS0_CONFIG */
1306     case 0x14:	/* EMIFS_CS1_CONFIG */
1307     case 0x18:	/* EMIFS_CS2_CONFIG */
1308     case 0x1c:	/* EMIFS_CS3_CONFIG */
1309     case 0x20:	/* EMIFF_SDRAM_CONFIG */
1310     case 0x24:	/* EMIFF_MRS */
1311     case 0x28:	/* TIMEOUT1 */
1312     case 0x2c:	/* TIMEOUT2 */
1313     case 0x30:	/* TIMEOUT3 */
1314     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
1315     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
1316         s->tcmi_regs[addr >> 2] = value;
1317         break;
1318     case 0x0c:	/* EMIFS_CONFIG */
1319         s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1320         break;
1321 
1322     default:
1323         OMAP_BAD_REG(addr);
1324     }
1325 }
1326 
1327 static const MemoryRegionOps omap_tcmi_ops = {
1328     .read = omap_tcmi_read,
1329     .write = omap_tcmi_write,
1330     .endianness = DEVICE_NATIVE_ENDIAN,
1331 };
1332 
1333 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1334 {
1335     mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1336     mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1337     mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1338     mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1339     mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1340     mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1341     mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1342     mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1343     mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1344     mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1345     mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1346     mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1347     mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1348     mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1349     mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1350 }
1351 
1352 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1353                 struct omap_mpu_state_s *mpu)
1354 {
1355     memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1356                           "omap-tcmi", 0x100);
1357     memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1358     omap_tcmi_reset(mpu);
1359 }
1360 
1361 /* Digital phase-locked loops control */
1362 struct dpll_ctl_s {
1363     MemoryRegion iomem;
1364     uint16_t mode;
1365     omap_clk dpll;
1366 };
1367 
1368 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1369                                unsigned size)
1370 {
1371     struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1372 
1373     if (size != 2) {
1374         return omap_badwidth_read16(opaque, addr);
1375     }
1376 
1377     if (addr == 0x00)	/* CTL_REG */
1378         return s->mode;
1379 
1380     OMAP_BAD_REG(addr);
1381     return 0;
1382 }
1383 
1384 static void omap_dpll_write(void *opaque, hwaddr addr,
1385                             uint64_t value, unsigned size)
1386 {
1387     struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1388     uint16_t diff;
1389     static const int bypass_div[4] = { 1, 2, 4, 4 };
1390     int div, mult;
1391 
1392     if (size != 2) {
1393         omap_badwidth_write16(opaque, addr, value);
1394         return;
1395     }
1396 
1397     if (addr == 0x00) {	/* CTL_REG */
1398         /* See omap_ulpd_pm_write() too */
1399         diff = s->mode & value;
1400         s->mode = value & 0x2fff;
1401         if (diff & (0x3ff << 2)) {
1402             if (value & (1 << 4)) {			/* PLL_ENABLE */
1403                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
1404                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
1405             } else {
1406                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
1407                 mult = 1;
1408             }
1409             omap_clk_setrate(s->dpll, div, mult);
1410         }
1411 
1412         /* Enter the desired mode.  */
1413         s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1414 
1415         /* Act as if the lock is restored.  */
1416         s->mode |= 2;
1417     } else {
1418         OMAP_BAD_REG(addr);
1419     }
1420 }
1421 
1422 static const MemoryRegionOps omap_dpll_ops = {
1423     .read = omap_dpll_read,
1424     .write = omap_dpll_write,
1425     .endianness = DEVICE_NATIVE_ENDIAN,
1426 };
1427 
1428 static void omap_dpll_reset(struct dpll_ctl_s *s)
1429 {
1430     s->mode = 0x2002;
1431     omap_clk_setrate(s->dpll, 1, 1);
1432 }
1433 
1434 static struct dpll_ctl_s  *omap_dpll_init(MemoryRegion *memory,
1435                            hwaddr base, omap_clk clk)
1436 {
1437     struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1438     memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1439 
1440     s->dpll = clk;
1441     omap_dpll_reset(s);
1442 
1443     memory_region_add_subregion(memory, base, &s->iomem);
1444     return s;
1445 }
1446 
1447 /* MPU Clock/Reset/Power Mode Control */
1448 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1449                                unsigned size)
1450 {
1451     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1452 
1453     if (size != 2) {
1454         return omap_badwidth_read16(opaque, addr);
1455     }
1456 
1457     switch (addr) {
1458     case 0x00:	/* ARM_CKCTL */
1459         return s->clkm.arm_ckctl;
1460 
1461     case 0x04:	/* ARM_IDLECT1 */
1462         return s->clkm.arm_idlect1;
1463 
1464     case 0x08:	/* ARM_IDLECT2 */
1465         return s->clkm.arm_idlect2;
1466 
1467     case 0x0c:	/* ARM_EWUPCT */
1468         return s->clkm.arm_ewupct;
1469 
1470     case 0x10:	/* ARM_RSTCT1 */
1471         return s->clkm.arm_rstct1;
1472 
1473     case 0x14:	/* ARM_RSTCT2 */
1474         return s->clkm.arm_rstct2;
1475 
1476     case 0x18:	/* ARM_SYSST */
1477         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1478 
1479     case 0x1c:	/* ARM_CKOUT1 */
1480         return s->clkm.arm_ckout1;
1481 
1482     case 0x20:	/* ARM_CKOUT2 */
1483         break;
1484     }
1485 
1486     OMAP_BAD_REG(addr);
1487     return 0;
1488 }
1489 
1490 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1491                 uint16_t diff, uint16_t value)
1492 {
1493     omap_clk clk;
1494 
1495     if (diff & (1 << 14)) {				/* ARM_INTHCK_SEL */
1496         if (value & (1 << 14))
1497             /* Reserved */;
1498         else {
1499             clk = omap_findclk(s, "arminth_ck");
1500             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1501         }
1502     }
1503     if (diff & (1 << 12)) {				/* ARM_TIMXO */
1504         clk = omap_findclk(s, "armtim_ck");
1505         if (value & (1 << 12))
1506             omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1507         else
1508             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1509     }
1510     /* XXX: en_dspck */
1511     if (diff & (3 << 10)) {				/* DSPMMUDIV */
1512         clk = omap_findclk(s, "dspmmu_ck");
1513         omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1514     }
1515     if (diff & (3 << 8)) {				/* TCDIV */
1516         clk = omap_findclk(s, "tc_ck");
1517         omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1518     }
1519     if (diff & (3 << 6)) {				/* DSPDIV */
1520         clk = omap_findclk(s, "dsp_ck");
1521         omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1522     }
1523     if (diff & (3 << 4)) {				/* ARMDIV */
1524         clk = omap_findclk(s, "arm_ck");
1525         omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1526     }
1527     if (diff & (3 << 2)) {				/* LCDDIV */
1528         clk = omap_findclk(s, "lcd_ck");
1529         omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1530     }
1531     if (diff & (3 << 0)) {				/* PERDIV */
1532         clk = omap_findclk(s, "armper_ck");
1533         omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1534     }
1535 }
1536 
1537 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1538                 uint16_t diff, uint16_t value)
1539 {
1540     omap_clk clk;
1541 
1542     if (value & (1 << 11)) {                            /* SETARM_IDLE */
1543         cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1544     }
1545     if (!(value & (1 << 10)))				/* WKUP_MODE */
1546         qemu_system_shutdown_request();	/* XXX: disable wakeup from IRQ */
1547 
1548 #define SET_CANIDLE(clock, bit)				\
1549     if (diff & (1 << bit)) {				\
1550         clk = omap_findclk(s, clock);			\
1551         omap_clk_canidle(clk, (value >> bit) & 1);	\
1552     }
1553     SET_CANIDLE("mpuwd_ck", 0)				/* IDLWDT_ARM */
1554     SET_CANIDLE("armxor_ck", 1)				/* IDLXORP_ARM */
1555     SET_CANIDLE("mpuper_ck", 2)				/* IDLPER_ARM */
1556     SET_CANIDLE("lcd_ck", 3)				/* IDLLCD_ARM */
1557     SET_CANIDLE("lb_ck", 4)				/* IDLLB_ARM */
1558     SET_CANIDLE("hsab_ck", 5)				/* IDLHSAB_ARM */
1559     SET_CANIDLE("tipb_ck", 6)				/* IDLIF_ARM */
1560     SET_CANIDLE("dma_ck", 6)				/* IDLIF_ARM */
1561     SET_CANIDLE("tc_ck", 6)				/* IDLIF_ARM */
1562     SET_CANIDLE("dpll1", 7)				/* IDLDPLL_ARM */
1563     SET_CANIDLE("dpll2", 7)				/* IDLDPLL_ARM */
1564     SET_CANIDLE("dpll3", 7)				/* IDLDPLL_ARM */
1565     SET_CANIDLE("mpui_ck", 8)				/* IDLAPI_ARM */
1566     SET_CANIDLE("armtim_ck", 9)				/* IDLTIM_ARM */
1567 }
1568 
1569 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1570                 uint16_t diff, uint16_t value)
1571 {
1572     omap_clk clk;
1573 
1574 #define SET_ONOFF(clock, bit)				\
1575     if (diff & (1 << bit)) {				\
1576         clk = omap_findclk(s, clock);			\
1577         omap_clk_onoff(clk, (value >> bit) & 1);	\
1578     }
1579     SET_ONOFF("mpuwd_ck", 0)				/* EN_WDTCK */
1580     SET_ONOFF("armxor_ck", 1)				/* EN_XORPCK */
1581     SET_ONOFF("mpuper_ck", 2)				/* EN_PERCK */
1582     SET_ONOFF("lcd_ck", 3)				/* EN_LCDCK */
1583     SET_ONOFF("lb_ck", 4)				/* EN_LBCK */
1584     SET_ONOFF("hsab_ck", 5)				/* EN_HSABCK */
1585     SET_ONOFF("mpui_ck", 6)				/* EN_APICK */
1586     SET_ONOFF("armtim_ck", 7)				/* EN_TIMCK */
1587     SET_CANIDLE("dma_ck", 8)				/* DMACK_REQ */
1588     SET_ONOFF("arm_gpio_ck", 9)				/* EN_GPIOCK */
1589     SET_ONOFF("lbfree_ck", 10)				/* EN_LBFREECK */
1590 }
1591 
1592 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1593                 uint16_t diff, uint16_t value)
1594 {
1595     omap_clk clk;
1596 
1597     if (diff & (3 << 4)) {				/* TCLKOUT */
1598         clk = omap_findclk(s, "tclk_out");
1599         switch ((value >> 4) & 3) {
1600         case 1:
1601             omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1602             omap_clk_onoff(clk, 1);
1603             break;
1604         case 2:
1605             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1606             omap_clk_onoff(clk, 1);
1607             break;
1608         default:
1609             omap_clk_onoff(clk, 0);
1610         }
1611     }
1612     if (diff & (3 << 2)) {				/* DCLKOUT */
1613         clk = omap_findclk(s, "dclk_out");
1614         switch ((value >> 2) & 3) {
1615         case 0:
1616             omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1617             break;
1618         case 1:
1619             omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1620             break;
1621         case 2:
1622             omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1623             break;
1624         case 3:
1625             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1626             break;
1627         }
1628     }
1629     if (diff & (3 << 0)) {				/* ACLKOUT */
1630         clk = omap_findclk(s, "aclk_out");
1631         switch ((value >> 0) & 3) {
1632         case 1:
1633             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1634             omap_clk_onoff(clk, 1);
1635             break;
1636         case 2:
1637             omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1638             omap_clk_onoff(clk, 1);
1639             break;
1640         case 3:
1641             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1642             omap_clk_onoff(clk, 1);
1643             break;
1644         default:
1645             omap_clk_onoff(clk, 0);
1646         }
1647     }
1648 }
1649 
1650 static void omap_clkm_write(void *opaque, hwaddr addr,
1651                             uint64_t value, unsigned size)
1652 {
1653     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1654     uint16_t diff;
1655     omap_clk clk;
1656     static const char *clkschemename[8] = {
1657         "fully synchronous", "fully asynchronous", "synchronous scalable",
1658         "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1659     };
1660 
1661     if (size != 2) {
1662         omap_badwidth_write16(opaque, addr, value);
1663         return;
1664     }
1665 
1666     switch (addr) {
1667     case 0x00:	/* ARM_CKCTL */
1668         diff = s->clkm.arm_ckctl ^ value;
1669         s->clkm.arm_ckctl = value & 0x7fff;
1670         omap_clkm_ckctl_update(s, diff, value);
1671         return;
1672 
1673     case 0x04:	/* ARM_IDLECT1 */
1674         diff = s->clkm.arm_idlect1 ^ value;
1675         s->clkm.arm_idlect1 = value & 0x0fff;
1676         omap_clkm_idlect1_update(s, diff, value);
1677         return;
1678 
1679     case 0x08:	/* ARM_IDLECT2 */
1680         diff = s->clkm.arm_idlect2 ^ value;
1681         s->clkm.arm_idlect2 = value & 0x07ff;
1682         omap_clkm_idlect2_update(s, diff, value);
1683         return;
1684 
1685     case 0x0c:	/* ARM_EWUPCT */
1686         s->clkm.arm_ewupct = value & 0x003f;
1687         return;
1688 
1689     case 0x10:	/* ARM_RSTCT1 */
1690         diff = s->clkm.arm_rstct1 ^ value;
1691         s->clkm.arm_rstct1 = value & 0x0007;
1692         if (value & 9) {
1693             qemu_system_reset_request();
1694             s->clkm.cold_start = 0xa;
1695         }
1696         if (diff & ~value & 4) {				/* DSP_RST */
1697             omap_mpui_reset(s);
1698             omap_tipb_bridge_reset(s->private_tipb);
1699             omap_tipb_bridge_reset(s->public_tipb);
1700         }
1701         if (diff & 2) {						/* DSP_EN */
1702             clk = omap_findclk(s, "dsp_ck");
1703             omap_clk_canidle(clk, (~value >> 1) & 1);
1704         }
1705         return;
1706 
1707     case 0x14:	/* ARM_RSTCT2 */
1708         s->clkm.arm_rstct2 = value & 0x0001;
1709         return;
1710 
1711     case 0x18:	/* ARM_SYSST */
1712         if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1713             s->clkm.clocking_scheme = (value >> 11) & 7;
1714             printf("%s: clocking scheme set to %s\n", __FUNCTION__,
1715                             clkschemename[s->clkm.clocking_scheme]);
1716         }
1717         s->clkm.cold_start &= value & 0x3f;
1718         return;
1719 
1720     case 0x1c:	/* ARM_CKOUT1 */
1721         diff = s->clkm.arm_ckout1 ^ value;
1722         s->clkm.arm_ckout1 = value & 0x003f;
1723         omap_clkm_ckout1_update(s, diff, value);
1724         return;
1725 
1726     case 0x20:	/* ARM_CKOUT2 */
1727     default:
1728         OMAP_BAD_REG(addr);
1729     }
1730 }
1731 
1732 static const MemoryRegionOps omap_clkm_ops = {
1733     .read = omap_clkm_read,
1734     .write = omap_clkm_write,
1735     .endianness = DEVICE_NATIVE_ENDIAN,
1736 };
1737 
1738 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1739                                  unsigned size)
1740 {
1741     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1742     CPUState *cpu = CPU(s->cpu);
1743 
1744     if (size != 2) {
1745         return omap_badwidth_read16(opaque, addr);
1746     }
1747 
1748     switch (addr) {
1749     case 0x04:	/* DSP_IDLECT1 */
1750         return s->clkm.dsp_idlect1;
1751 
1752     case 0x08:	/* DSP_IDLECT2 */
1753         return s->clkm.dsp_idlect2;
1754 
1755     case 0x14:	/* DSP_RSTCT2 */
1756         return s->clkm.dsp_rstct2;
1757 
1758     case 0x18:	/* DSP_SYSST */
1759         cpu = CPU(s->cpu);
1760         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1761                 (cpu->halted << 6);      /* Quite useless... */
1762     }
1763 
1764     OMAP_BAD_REG(addr);
1765     return 0;
1766 }
1767 
1768 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1769                 uint16_t diff, uint16_t value)
1770 {
1771     omap_clk clk;
1772 
1773     SET_CANIDLE("dspxor_ck", 1);			/* IDLXORP_DSP */
1774 }
1775 
1776 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1777                 uint16_t diff, uint16_t value)
1778 {
1779     omap_clk clk;
1780 
1781     SET_ONOFF("dspxor_ck", 1);				/* EN_XORPCK */
1782 }
1783 
1784 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1785                               uint64_t value, unsigned size)
1786 {
1787     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1788     uint16_t diff;
1789 
1790     if (size != 2) {
1791         omap_badwidth_write16(opaque, addr, value);
1792         return;
1793     }
1794 
1795     switch (addr) {
1796     case 0x04:	/* DSP_IDLECT1 */
1797         diff = s->clkm.dsp_idlect1 ^ value;
1798         s->clkm.dsp_idlect1 = value & 0x01f7;
1799         omap_clkdsp_idlect1_update(s, diff, value);
1800         break;
1801 
1802     case 0x08:	/* DSP_IDLECT2 */
1803         s->clkm.dsp_idlect2 = value & 0x0037;
1804         diff = s->clkm.dsp_idlect1 ^ value;
1805         omap_clkdsp_idlect2_update(s, diff, value);
1806         break;
1807 
1808     case 0x14:	/* DSP_RSTCT2 */
1809         s->clkm.dsp_rstct2 = value & 0x0001;
1810         break;
1811 
1812     case 0x18:	/* DSP_SYSST */
1813         s->clkm.cold_start &= value & 0x3f;
1814         break;
1815 
1816     default:
1817         OMAP_BAD_REG(addr);
1818     }
1819 }
1820 
1821 static const MemoryRegionOps omap_clkdsp_ops = {
1822     .read = omap_clkdsp_read,
1823     .write = omap_clkdsp_write,
1824     .endianness = DEVICE_NATIVE_ENDIAN,
1825 };
1826 
1827 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1828 {
1829     if (s->wdt && s->wdt->reset)
1830         s->clkm.cold_start = 0x6;
1831     s->clkm.clocking_scheme = 0;
1832     omap_clkm_ckctl_update(s, ~0, 0x3000);
1833     s->clkm.arm_ckctl = 0x3000;
1834     omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1835     s->clkm.arm_idlect1 = 0x0400;
1836     omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1837     s->clkm.arm_idlect2 = 0x0100;
1838     s->clkm.arm_ewupct = 0x003f;
1839     s->clkm.arm_rstct1 = 0x0000;
1840     s->clkm.arm_rstct2 = 0x0000;
1841     s->clkm.arm_ckout1 = 0x0015;
1842     s->clkm.dpll1_mode = 0x2002;
1843     omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1844     s->clkm.dsp_idlect1 = 0x0040;
1845     omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1846     s->clkm.dsp_idlect2 = 0x0000;
1847     s->clkm.dsp_rstct2 = 0x0000;
1848 }
1849 
1850 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1851                 hwaddr dsp_base, struct omap_mpu_state_s *s)
1852 {
1853     memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1854                           "omap-clkm", 0x100);
1855     memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1856                           "omap-clkdsp", 0x1000);
1857 
1858     s->clkm.arm_idlect1 = 0x03ff;
1859     s->clkm.arm_idlect2 = 0x0100;
1860     s->clkm.dsp_idlect1 = 0x0002;
1861     omap_clkm_reset(s);
1862     s->clkm.cold_start = 0x3a;
1863 
1864     memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1865     memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1866 }
1867 
1868 /* MPU I/O */
1869 struct omap_mpuio_s {
1870     qemu_irq irq;
1871     qemu_irq kbd_irq;
1872     qemu_irq *in;
1873     qemu_irq handler[16];
1874     qemu_irq wakeup;
1875     MemoryRegion iomem;
1876 
1877     uint16_t inputs;
1878     uint16_t outputs;
1879     uint16_t dir;
1880     uint16_t edge;
1881     uint16_t mask;
1882     uint16_t ints;
1883 
1884     uint16_t debounce;
1885     uint16_t latch;
1886     uint8_t event;
1887 
1888     uint8_t buttons[5];
1889     uint8_t row_latch;
1890     uint8_t cols;
1891     int kbd_mask;
1892     int clk;
1893 };
1894 
1895 static void omap_mpuio_set(void *opaque, int line, int level)
1896 {
1897     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1898     uint16_t prev = s->inputs;
1899 
1900     if (level)
1901         s->inputs |= 1 << line;
1902     else
1903         s->inputs &= ~(1 << line);
1904 
1905     if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1906         if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1907             s->ints |= 1 << line;
1908             qemu_irq_raise(s->irq);
1909             /* TODO: wakeup */
1910         }
1911         if ((s->event & (1 << 0)) &&		/* SET_GPIO_EVENT_MODE */
1912                 (s->event >> 1) == line)	/* PIN_SELECT */
1913             s->latch = s->inputs;
1914     }
1915 }
1916 
1917 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1918 {
1919     int i;
1920     uint8_t *row, rows = 0, cols = ~s->cols;
1921 
1922     for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1923         if (*row & cols)
1924             rows |= i;
1925 
1926     qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1927     s->row_latch = ~rows;
1928 }
1929 
1930 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1931                                 unsigned size)
1932 {
1933     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1934     int offset = addr & OMAP_MPUI_REG_MASK;
1935     uint16_t ret;
1936 
1937     if (size != 2) {
1938         return omap_badwidth_read16(opaque, addr);
1939     }
1940 
1941     switch (offset) {
1942     case 0x00:	/* INPUT_LATCH */
1943         return s->inputs;
1944 
1945     case 0x04:	/* OUTPUT_REG */
1946         return s->outputs;
1947 
1948     case 0x08:	/* IO_CNTL */
1949         return s->dir;
1950 
1951     case 0x10:	/* KBR_LATCH */
1952         return s->row_latch;
1953 
1954     case 0x14:	/* KBC_REG */
1955         return s->cols;
1956 
1957     case 0x18:	/* GPIO_EVENT_MODE_REG */
1958         return s->event;
1959 
1960     case 0x1c:	/* GPIO_INT_EDGE_REG */
1961         return s->edge;
1962 
1963     case 0x20:	/* KBD_INT */
1964         return (~s->row_latch & 0x1f) && !s->kbd_mask;
1965 
1966     case 0x24:	/* GPIO_INT */
1967         ret = s->ints;
1968         s->ints &= s->mask;
1969         if (ret)
1970             qemu_irq_lower(s->irq);
1971         return ret;
1972 
1973     case 0x28:	/* KBD_MASKIT */
1974         return s->kbd_mask;
1975 
1976     case 0x2c:	/* GPIO_MASKIT */
1977         return s->mask;
1978 
1979     case 0x30:	/* GPIO_DEBOUNCING_REG */
1980         return s->debounce;
1981 
1982     case 0x34:	/* GPIO_LATCH_REG */
1983         return s->latch;
1984     }
1985 
1986     OMAP_BAD_REG(addr);
1987     return 0;
1988 }
1989 
1990 static void omap_mpuio_write(void *opaque, hwaddr addr,
1991                              uint64_t value, unsigned size)
1992 {
1993     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1994     int offset = addr & OMAP_MPUI_REG_MASK;
1995     uint16_t diff;
1996     int ln;
1997 
1998     if (size != 2) {
1999         omap_badwidth_write16(opaque, addr, value);
2000         return;
2001     }
2002 
2003     switch (offset) {
2004     case 0x04:	/* OUTPUT_REG */
2005         diff = (s->outputs ^ value) & ~s->dir;
2006         s->outputs = value;
2007         while ((ln = ffs(diff))) {
2008             ln --;
2009             if (s->handler[ln])
2010                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2011             diff &= ~(1 << ln);
2012         }
2013         break;
2014 
2015     case 0x08:	/* IO_CNTL */
2016         diff = s->outputs & (s->dir ^ value);
2017         s->dir = value;
2018 
2019         value = s->outputs & ~s->dir;
2020         while ((ln = ffs(diff))) {
2021             ln --;
2022             if (s->handler[ln])
2023                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2024             diff &= ~(1 << ln);
2025         }
2026         break;
2027 
2028     case 0x14:	/* KBC_REG */
2029         s->cols = value;
2030         omap_mpuio_kbd_update(s);
2031         break;
2032 
2033     case 0x18:	/* GPIO_EVENT_MODE_REG */
2034         s->event = value & 0x1f;
2035         break;
2036 
2037     case 0x1c:	/* GPIO_INT_EDGE_REG */
2038         s->edge = value;
2039         break;
2040 
2041     case 0x28:	/* KBD_MASKIT */
2042         s->kbd_mask = value & 1;
2043         omap_mpuio_kbd_update(s);
2044         break;
2045 
2046     case 0x2c:	/* GPIO_MASKIT */
2047         s->mask = value;
2048         break;
2049 
2050     case 0x30:	/* GPIO_DEBOUNCING_REG */
2051         s->debounce = value & 0x1ff;
2052         break;
2053 
2054     case 0x00:	/* INPUT_LATCH */
2055     case 0x10:	/* KBR_LATCH */
2056     case 0x20:	/* KBD_INT */
2057     case 0x24:	/* GPIO_INT */
2058     case 0x34:	/* GPIO_LATCH_REG */
2059         OMAP_RO_REG(addr);
2060         return;
2061 
2062     default:
2063         OMAP_BAD_REG(addr);
2064         return;
2065     }
2066 }
2067 
2068 static const MemoryRegionOps omap_mpuio_ops  = {
2069     .read = omap_mpuio_read,
2070     .write = omap_mpuio_write,
2071     .endianness = DEVICE_NATIVE_ENDIAN,
2072 };
2073 
2074 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2075 {
2076     s->inputs = 0;
2077     s->outputs = 0;
2078     s->dir = ~0;
2079     s->event = 0;
2080     s->edge = 0;
2081     s->kbd_mask = 0;
2082     s->mask = 0;
2083     s->debounce = 0;
2084     s->latch = 0;
2085     s->ints = 0;
2086     s->row_latch = 0x1f;
2087     s->clk = 1;
2088 }
2089 
2090 static void omap_mpuio_onoff(void *opaque, int line, int on)
2091 {
2092     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2093 
2094     s->clk = on;
2095     if (on)
2096         omap_mpuio_kbd_update(s);
2097 }
2098 
2099 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2100                 hwaddr base,
2101                 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2102                 omap_clk clk)
2103 {
2104     struct omap_mpuio_s *s = (struct omap_mpuio_s *)
2105             g_malloc0(sizeof(struct omap_mpuio_s));
2106 
2107     s->irq = gpio_int;
2108     s->kbd_irq = kbd_int;
2109     s->wakeup = wakeup;
2110     s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2111     omap_mpuio_reset(s);
2112 
2113     memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2114                           "omap-mpuio", 0x800);
2115     memory_region_add_subregion(memory, base, &s->iomem);
2116 
2117     omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2118 
2119     return s;
2120 }
2121 
2122 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2123 {
2124     return s->in;
2125 }
2126 
2127 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2128 {
2129     if (line >= 16 || line < 0)
2130         hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
2131     s->handler[line] = handler;
2132 }
2133 
2134 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2135 {
2136     if (row >= 5 || row < 0)
2137         hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
2138 
2139     if (down)
2140         s->buttons[row] |= 1 << col;
2141     else
2142         s->buttons[row] &= ~(1 << col);
2143 
2144     omap_mpuio_kbd_update(s);
2145 }
2146 
2147 /* MicroWire Interface */
2148 struct omap_uwire_s {
2149     MemoryRegion iomem;
2150     qemu_irq txirq;
2151     qemu_irq rxirq;
2152     qemu_irq txdrq;
2153 
2154     uint16_t txbuf;
2155     uint16_t rxbuf;
2156     uint16_t control;
2157     uint16_t setup[5];
2158 
2159     uWireSlave *chip[4];
2160 };
2161 
2162 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2163 {
2164     int chipselect = (s->control >> 10) & 3;		/* INDEX */
2165     uWireSlave *slave = s->chip[chipselect];
2166 
2167     if ((s->control >> 5) & 0x1f) {			/* NB_BITS_WR */
2168         if (s->control & (1 << 12))			/* CS_CMD */
2169             if (slave && slave->send)
2170                 slave->send(slave->opaque,
2171                                 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2172         s->control &= ~(1 << 14);			/* CSRB */
2173         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2174          * a DRQ.  When is the level IRQ supposed to be reset?  */
2175     }
2176 
2177     if ((s->control >> 0) & 0x1f) {			/* NB_BITS_RD */
2178         if (s->control & (1 << 12))			/* CS_CMD */
2179             if (slave && slave->receive)
2180                 s->rxbuf = slave->receive(slave->opaque);
2181         s->control |= 1 << 15;				/* RDRB */
2182         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2183          * a DRQ.  When is the level IRQ supposed to be reset?  */
2184     }
2185 }
2186 
2187 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2188                                 unsigned size)
2189 {
2190     struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2191     int offset = addr & OMAP_MPUI_REG_MASK;
2192 
2193     if (size != 2) {
2194         return omap_badwidth_read16(opaque, addr);
2195     }
2196 
2197     switch (offset) {
2198     case 0x00:	/* RDR */
2199         s->control &= ~(1 << 15);			/* RDRB */
2200         return s->rxbuf;
2201 
2202     case 0x04:	/* CSR */
2203         return s->control;
2204 
2205     case 0x08:	/* SR1 */
2206         return s->setup[0];
2207     case 0x0c:	/* SR2 */
2208         return s->setup[1];
2209     case 0x10:	/* SR3 */
2210         return s->setup[2];
2211     case 0x14:	/* SR4 */
2212         return s->setup[3];
2213     case 0x18:	/* SR5 */
2214         return s->setup[4];
2215     }
2216 
2217     OMAP_BAD_REG(addr);
2218     return 0;
2219 }
2220 
2221 static void omap_uwire_write(void *opaque, hwaddr addr,
2222                              uint64_t value, unsigned size)
2223 {
2224     struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2225     int offset = addr & OMAP_MPUI_REG_MASK;
2226 
2227     if (size != 2) {
2228         omap_badwidth_write16(opaque, addr, value);
2229         return;
2230     }
2231 
2232     switch (offset) {
2233     case 0x00:	/* TDR */
2234         s->txbuf = value;				/* TD */
2235         if ((s->setup[4] & (1 << 2)) &&			/* AUTO_TX_EN */
2236                         ((s->setup[4] & (1 << 3)) ||	/* CS_TOGGLE_TX_EN */
2237                          (s->control & (1 << 12)))) {	/* CS_CMD */
2238             s->control |= 1 << 14;			/* CSRB */
2239             omap_uwire_transfer_start(s);
2240         }
2241         break;
2242 
2243     case 0x04:	/* CSR */
2244         s->control = value & 0x1fff;
2245         if (value & (1 << 13))				/* START */
2246             omap_uwire_transfer_start(s);
2247         break;
2248 
2249     case 0x08:	/* SR1 */
2250         s->setup[0] = value & 0x003f;
2251         break;
2252 
2253     case 0x0c:	/* SR2 */
2254         s->setup[1] = value & 0x0fc0;
2255         break;
2256 
2257     case 0x10:	/* SR3 */
2258         s->setup[2] = value & 0x0003;
2259         break;
2260 
2261     case 0x14:	/* SR4 */
2262         s->setup[3] = value & 0x0001;
2263         break;
2264 
2265     case 0x18:	/* SR5 */
2266         s->setup[4] = value & 0x000f;
2267         break;
2268 
2269     default:
2270         OMAP_BAD_REG(addr);
2271         return;
2272     }
2273 }
2274 
2275 static const MemoryRegionOps omap_uwire_ops = {
2276     .read = omap_uwire_read,
2277     .write = omap_uwire_write,
2278     .endianness = DEVICE_NATIVE_ENDIAN,
2279 };
2280 
2281 static void omap_uwire_reset(struct omap_uwire_s *s)
2282 {
2283     s->control = 0;
2284     s->setup[0] = 0;
2285     s->setup[1] = 0;
2286     s->setup[2] = 0;
2287     s->setup[3] = 0;
2288     s->setup[4] = 0;
2289 }
2290 
2291 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2292                                             hwaddr base,
2293                                             qemu_irq txirq, qemu_irq rxirq,
2294                                             qemu_irq dma,
2295                                             omap_clk clk)
2296 {
2297     struct omap_uwire_s *s = (struct omap_uwire_s *)
2298             g_malloc0(sizeof(struct omap_uwire_s));
2299 
2300     s->txirq = txirq;
2301     s->rxirq = rxirq;
2302     s->txdrq = dma;
2303     omap_uwire_reset(s);
2304 
2305     memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2306     memory_region_add_subregion(system_memory, base, &s->iomem);
2307 
2308     return s;
2309 }
2310 
2311 void omap_uwire_attach(struct omap_uwire_s *s,
2312                 uWireSlave *slave, int chipselect)
2313 {
2314     if (chipselect < 0 || chipselect > 3) {
2315         fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
2316         exit(-1);
2317     }
2318 
2319     s->chip[chipselect] = slave;
2320 }
2321 
2322 /* Pseudonoise Pulse-Width Light Modulator */
2323 struct omap_pwl_s {
2324     MemoryRegion iomem;
2325     uint8_t output;
2326     uint8_t level;
2327     uint8_t enable;
2328     int clk;
2329 };
2330 
2331 static void omap_pwl_update(struct omap_pwl_s *s)
2332 {
2333     int output = (s->clk && s->enable) ? s->level : 0;
2334 
2335     if (output != s->output) {
2336         s->output = output;
2337         printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
2338     }
2339 }
2340 
2341 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2342                               unsigned size)
2343 {
2344     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2345     int offset = addr & OMAP_MPUI_REG_MASK;
2346 
2347     if (size != 1) {
2348         return omap_badwidth_read8(opaque, addr);
2349     }
2350 
2351     switch (offset) {
2352     case 0x00:	/* PWL_LEVEL */
2353         return s->level;
2354     case 0x04:	/* PWL_CTRL */
2355         return s->enable;
2356     }
2357     OMAP_BAD_REG(addr);
2358     return 0;
2359 }
2360 
2361 static void omap_pwl_write(void *opaque, hwaddr addr,
2362                            uint64_t value, unsigned size)
2363 {
2364     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2365     int offset = addr & OMAP_MPUI_REG_MASK;
2366 
2367     if (size != 1) {
2368         omap_badwidth_write8(opaque, addr, value);
2369         return;
2370     }
2371 
2372     switch (offset) {
2373     case 0x00:	/* PWL_LEVEL */
2374         s->level = value;
2375         omap_pwl_update(s);
2376         break;
2377     case 0x04:	/* PWL_CTRL */
2378         s->enable = value & 1;
2379         omap_pwl_update(s);
2380         break;
2381     default:
2382         OMAP_BAD_REG(addr);
2383         return;
2384     }
2385 }
2386 
2387 static const MemoryRegionOps omap_pwl_ops = {
2388     .read = omap_pwl_read,
2389     .write = omap_pwl_write,
2390     .endianness = DEVICE_NATIVE_ENDIAN,
2391 };
2392 
2393 static void omap_pwl_reset(struct omap_pwl_s *s)
2394 {
2395     s->output = 0;
2396     s->level = 0;
2397     s->enable = 0;
2398     s->clk = 1;
2399     omap_pwl_update(s);
2400 }
2401 
2402 static void omap_pwl_clk_update(void *opaque, int line, int on)
2403 {
2404     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2405 
2406     s->clk = on;
2407     omap_pwl_update(s);
2408 }
2409 
2410 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2411                                         hwaddr base,
2412                                         omap_clk clk)
2413 {
2414     struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2415 
2416     omap_pwl_reset(s);
2417 
2418     memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2419                           "omap-pwl", 0x800);
2420     memory_region_add_subregion(system_memory, base, &s->iomem);
2421 
2422     omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2423     return s;
2424 }
2425 
2426 /* Pulse-Width Tone module */
2427 struct omap_pwt_s {
2428     MemoryRegion iomem;
2429     uint8_t frc;
2430     uint8_t vrc;
2431     uint8_t gcr;
2432     omap_clk clk;
2433 };
2434 
2435 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2436                               unsigned size)
2437 {
2438     struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2439     int offset = addr & OMAP_MPUI_REG_MASK;
2440 
2441     if (size != 1) {
2442         return omap_badwidth_read8(opaque, addr);
2443     }
2444 
2445     switch (offset) {
2446     case 0x00:	/* FRC */
2447         return s->frc;
2448     case 0x04:	/* VCR */
2449         return s->vrc;
2450     case 0x08:	/* GCR */
2451         return s->gcr;
2452     }
2453     OMAP_BAD_REG(addr);
2454     return 0;
2455 }
2456 
2457 static void omap_pwt_write(void *opaque, hwaddr addr,
2458                            uint64_t value, unsigned size)
2459 {
2460     struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2461     int offset = addr & OMAP_MPUI_REG_MASK;
2462 
2463     if (size != 1) {
2464         omap_badwidth_write8(opaque, addr, value);
2465         return;
2466     }
2467 
2468     switch (offset) {
2469     case 0x00:	/* FRC */
2470         s->frc = value & 0x3f;
2471         break;
2472     case 0x04:	/* VRC */
2473         if ((value ^ s->vrc) & 1) {
2474             if (value & 1)
2475                 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
2476                                 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2477                                 ((omap_clk_getrate(s->clk) >> 3) /
2478                                  /* Pre-multiplexer divider */
2479                                  ((s->gcr & 2) ? 1 : 154) /
2480                                  /* Octave multiplexer */
2481                                  (2 << (value & 3)) *
2482                                  /* 101/107 divider */
2483                                  ((value & (1 << 2)) ? 101 : 107) *
2484                                  /*  49/55 divider */
2485                                  ((value & (1 << 3)) ?  49 : 55) *
2486                                  /*  50/63 divider */
2487                                  ((value & (1 << 4)) ?  50 : 63) *
2488                                  /*  80/127 divider */
2489                                  ((value & (1 << 5)) ?  80 : 127) /
2490                                  (107 * 55 * 63 * 127)));
2491             else
2492                 printf("%s: silence!\n", __FUNCTION__);
2493         }
2494         s->vrc = value & 0x7f;
2495         break;
2496     case 0x08:	/* GCR */
2497         s->gcr = value & 3;
2498         break;
2499     default:
2500         OMAP_BAD_REG(addr);
2501         return;
2502     }
2503 }
2504 
2505 static const MemoryRegionOps omap_pwt_ops = {
2506     .read =omap_pwt_read,
2507     .write = omap_pwt_write,
2508     .endianness = DEVICE_NATIVE_ENDIAN,
2509 };
2510 
2511 static void omap_pwt_reset(struct omap_pwt_s *s)
2512 {
2513     s->frc = 0;
2514     s->vrc = 0;
2515     s->gcr = 0;
2516 }
2517 
2518 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2519                                         hwaddr base,
2520                                         omap_clk clk)
2521 {
2522     struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2523     s->clk = clk;
2524     omap_pwt_reset(s);
2525 
2526     memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2527                           "omap-pwt", 0x800);
2528     memory_region_add_subregion(system_memory, base, &s->iomem);
2529     return s;
2530 }
2531 
2532 /* Real-time Clock module */
2533 struct omap_rtc_s {
2534     MemoryRegion iomem;
2535     qemu_irq irq;
2536     qemu_irq alarm;
2537     QEMUTimer *clk;
2538 
2539     uint8_t interrupts;
2540     uint8_t status;
2541     int16_t comp_reg;
2542     int running;
2543     int pm_am;
2544     int auto_comp;
2545     int round;
2546     struct tm alarm_tm;
2547     time_t alarm_ti;
2548 
2549     struct tm current_tm;
2550     time_t ti;
2551     uint64_t tick;
2552 };
2553 
2554 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2555 {
2556     /* s->alarm is level-triggered */
2557     qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2558 }
2559 
2560 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2561 {
2562     s->alarm_ti = mktimegm(&s->alarm_tm);
2563     if (s->alarm_ti == -1)
2564         printf("%s: conversion failed\n", __FUNCTION__);
2565 }
2566 
2567 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2568                               unsigned size)
2569 {
2570     struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2571     int offset = addr & OMAP_MPUI_REG_MASK;
2572     uint8_t i;
2573 
2574     if (size != 1) {
2575         return omap_badwidth_read8(opaque, addr);
2576     }
2577 
2578     switch (offset) {
2579     case 0x00:	/* SECONDS_REG */
2580         return to_bcd(s->current_tm.tm_sec);
2581 
2582     case 0x04:	/* MINUTES_REG */
2583         return to_bcd(s->current_tm.tm_min);
2584 
2585     case 0x08:	/* HOURS_REG */
2586         if (s->pm_am)
2587             return ((s->current_tm.tm_hour > 11) << 7) |
2588                     to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2589         else
2590             return to_bcd(s->current_tm.tm_hour);
2591 
2592     case 0x0c:	/* DAYS_REG */
2593         return to_bcd(s->current_tm.tm_mday);
2594 
2595     case 0x10:	/* MONTHS_REG */
2596         return to_bcd(s->current_tm.tm_mon + 1);
2597 
2598     case 0x14:	/* YEARS_REG */
2599         return to_bcd(s->current_tm.tm_year % 100);
2600 
2601     case 0x18:	/* WEEK_REG */
2602         return s->current_tm.tm_wday;
2603 
2604     case 0x20:	/* ALARM_SECONDS_REG */
2605         return to_bcd(s->alarm_tm.tm_sec);
2606 
2607     case 0x24:	/* ALARM_MINUTES_REG */
2608         return to_bcd(s->alarm_tm.tm_min);
2609 
2610     case 0x28:	/* ALARM_HOURS_REG */
2611         if (s->pm_am)
2612             return ((s->alarm_tm.tm_hour > 11) << 7) |
2613                     to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2614         else
2615             return to_bcd(s->alarm_tm.tm_hour);
2616 
2617     case 0x2c:	/* ALARM_DAYS_REG */
2618         return to_bcd(s->alarm_tm.tm_mday);
2619 
2620     case 0x30:	/* ALARM_MONTHS_REG */
2621         return to_bcd(s->alarm_tm.tm_mon + 1);
2622 
2623     case 0x34:	/* ALARM_YEARS_REG */
2624         return to_bcd(s->alarm_tm.tm_year % 100);
2625 
2626     case 0x40:	/* RTC_CTRL_REG */
2627         return (s->pm_am << 3) | (s->auto_comp << 2) |
2628                 (s->round << 1) | s->running;
2629 
2630     case 0x44:	/* RTC_STATUS_REG */
2631         i = s->status;
2632         s->status &= ~0x3d;
2633         return i;
2634 
2635     case 0x48:	/* RTC_INTERRUPTS_REG */
2636         return s->interrupts;
2637 
2638     case 0x4c:	/* RTC_COMP_LSB_REG */
2639         return ((uint16_t) s->comp_reg) & 0xff;
2640 
2641     case 0x50:	/* RTC_COMP_MSB_REG */
2642         return ((uint16_t) s->comp_reg) >> 8;
2643     }
2644 
2645     OMAP_BAD_REG(addr);
2646     return 0;
2647 }
2648 
2649 static void omap_rtc_write(void *opaque, hwaddr addr,
2650                            uint64_t value, unsigned size)
2651 {
2652     struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2653     int offset = addr & OMAP_MPUI_REG_MASK;
2654     struct tm new_tm;
2655     time_t ti[2];
2656 
2657     if (size != 1) {
2658         omap_badwidth_write8(opaque, addr, value);
2659         return;
2660     }
2661 
2662     switch (offset) {
2663     case 0x00:	/* SECONDS_REG */
2664 #ifdef ALMDEBUG
2665         printf("RTC SEC_REG <-- %02x\n", value);
2666 #endif
2667         s->ti -= s->current_tm.tm_sec;
2668         s->ti += from_bcd(value);
2669         return;
2670 
2671     case 0x04:	/* MINUTES_REG */
2672 #ifdef ALMDEBUG
2673         printf("RTC MIN_REG <-- %02x\n", value);
2674 #endif
2675         s->ti -= s->current_tm.tm_min * 60;
2676         s->ti += from_bcd(value) * 60;
2677         return;
2678 
2679     case 0x08:	/* HOURS_REG */
2680 #ifdef ALMDEBUG
2681         printf("RTC HRS_REG <-- %02x\n", value);
2682 #endif
2683         s->ti -= s->current_tm.tm_hour * 3600;
2684         if (s->pm_am) {
2685             s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2686             s->ti += ((value >> 7) & 1) * 43200;
2687         } else
2688             s->ti += from_bcd(value & 0x3f) * 3600;
2689         return;
2690 
2691     case 0x0c:	/* DAYS_REG */
2692 #ifdef ALMDEBUG
2693         printf("RTC DAY_REG <-- %02x\n", value);
2694 #endif
2695         s->ti -= s->current_tm.tm_mday * 86400;
2696         s->ti += from_bcd(value) * 86400;
2697         return;
2698 
2699     case 0x10:	/* MONTHS_REG */
2700 #ifdef ALMDEBUG
2701         printf("RTC MTH_REG <-- %02x\n", value);
2702 #endif
2703         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2704         new_tm.tm_mon = from_bcd(value);
2705         ti[0] = mktimegm(&s->current_tm);
2706         ti[1] = mktimegm(&new_tm);
2707 
2708         if (ti[0] != -1 && ti[1] != -1) {
2709             s->ti -= ti[0];
2710             s->ti += ti[1];
2711         } else {
2712             /* A less accurate version */
2713             s->ti -= s->current_tm.tm_mon * 2592000;
2714             s->ti += from_bcd(value) * 2592000;
2715         }
2716         return;
2717 
2718     case 0x14:	/* YEARS_REG */
2719 #ifdef ALMDEBUG
2720         printf("RTC YRS_REG <-- %02x\n", value);
2721 #endif
2722         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2723         new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2724         ti[0] = mktimegm(&s->current_tm);
2725         ti[1] = mktimegm(&new_tm);
2726 
2727         if (ti[0] != -1 && ti[1] != -1) {
2728             s->ti -= ti[0];
2729             s->ti += ti[1];
2730         } else {
2731             /* A less accurate version */
2732             s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2733             s->ti += (time_t)from_bcd(value) * 31536000;
2734         }
2735         return;
2736 
2737     case 0x18:	/* WEEK_REG */
2738         return;	/* Ignored */
2739 
2740     case 0x20:	/* ALARM_SECONDS_REG */
2741 #ifdef ALMDEBUG
2742         printf("ALM SEC_REG <-- %02x\n", value);
2743 #endif
2744         s->alarm_tm.tm_sec = from_bcd(value);
2745         omap_rtc_alarm_update(s);
2746         return;
2747 
2748     case 0x24:	/* ALARM_MINUTES_REG */
2749 #ifdef ALMDEBUG
2750         printf("ALM MIN_REG <-- %02x\n", value);
2751 #endif
2752         s->alarm_tm.tm_min = from_bcd(value);
2753         omap_rtc_alarm_update(s);
2754         return;
2755 
2756     case 0x28:	/* ALARM_HOURS_REG */
2757 #ifdef ALMDEBUG
2758         printf("ALM HRS_REG <-- %02x\n", value);
2759 #endif
2760         if (s->pm_am)
2761             s->alarm_tm.tm_hour =
2762                     ((from_bcd(value & 0x3f)) % 12) +
2763                     ((value >> 7) & 1) * 12;
2764         else
2765             s->alarm_tm.tm_hour = from_bcd(value);
2766         omap_rtc_alarm_update(s);
2767         return;
2768 
2769     case 0x2c:	/* ALARM_DAYS_REG */
2770 #ifdef ALMDEBUG
2771         printf("ALM DAY_REG <-- %02x\n", value);
2772 #endif
2773         s->alarm_tm.tm_mday = from_bcd(value);
2774         omap_rtc_alarm_update(s);
2775         return;
2776 
2777     case 0x30:	/* ALARM_MONTHS_REG */
2778 #ifdef ALMDEBUG
2779         printf("ALM MON_REG <-- %02x\n", value);
2780 #endif
2781         s->alarm_tm.tm_mon = from_bcd(value);
2782         omap_rtc_alarm_update(s);
2783         return;
2784 
2785     case 0x34:	/* ALARM_YEARS_REG */
2786 #ifdef ALMDEBUG
2787         printf("ALM YRS_REG <-- %02x\n", value);
2788 #endif
2789         s->alarm_tm.tm_year = from_bcd(value);
2790         omap_rtc_alarm_update(s);
2791         return;
2792 
2793     case 0x40:	/* RTC_CTRL_REG */
2794 #ifdef ALMDEBUG
2795         printf("RTC CONTROL <-- %02x\n", value);
2796 #endif
2797         s->pm_am = (value >> 3) & 1;
2798         s->auto_comp = (value >> 2) & 1;
2799         s->round = (value >> 1) & 1;
2800         s->running = value & 1;
2801         s->status &= 0xfd;
2802         s->status |= s->running << 1;
2803         return;
2804 
2805     case 0x44:	/* RTC_STATUS_REG */
2806 #ifdef ALMDEBUG
2807         printf("RTC STATUSL <-- %02x\n", value);
2808 #endif
2809         s->status &= ~((value & 0xc0) ^ 0x80);
2810         omap_rtc_interrupts_update(s);
2811         return;
2812 
2813     case 0x48:	/* RTC_INTERRUPTS_REG */
2814 #ifdef ALMDEBUG
2815         printf("RTC INTRS <-- %02x\n", value);
2816 #endif
2817         s->interrupts = value;
2818         return;
2819 
2820     case 0x4c:	/* RTC_COMP_LSB_REG */
2821 #ifdef ALMDEBUG
2822         printf("RTC COMPLSB <-- %02x\n", value);
2823 #endif
2824         s->comp_reg &= 0xff00;
2825         s->comp_reg |= 0x00ff & value;
2826         return;
2827 
2828     case 0x50:	/* RTC_COMP_MSB_REG */
2829 #ifdef ALMDEBUG
2830         printf("RTC COMPMSB <-- %02x\n", value);
2831 #endif
2832         s->comp_reg &= 0x00ff;
2833         s->comp_reg |= 0xff00 & (value << 8);
2834         return;
2835 
2836     default:
2837         OMAP_BAD_REG(addr);
2838         return;
2839     }
2840 }
2841 
2842 static const MemoryRegionOps omap_rtc_ops = {
2843     .read = omap_rtc_read,
2844     .write = omap_rtc_write,
2845     .endianness = DEVICE_NATIVE_ENDIAN,
2846 };
2847 
2848 static void omap_rtc_tick(void *opaque)
2849 {
2850     struct omap_rtc_s *s = opaque;
2851 
2852     if (s->round) {
2853         /* Round to nearest full minute.  */
2854         if (s->current_tm.tm_sec < 30)
2855             s->ti -= s->current_tm.tm_sec;
2856         else
2857             s->ti += 60 - s->current_tm.tm_sec;
2858 
2859         s->round = 0;
2860     }
2861 
2862     localtime_r(&s->ti, &s->current_tm);
2863 
2864     if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2865         s->status |= 0x40;
2866         omap_rtc_interrupts_update(s);
2867     }
2868 
2869     if (s->interrupts & 0x04)
2870         switch (s->interrupts & 3) {
2871         case 0:
2872             s->status |= 0x04;
2873             qemu_irq_pulse(s->irq);
2874             break;
2875         case 1:
2876             if (s->current_tm.tm_sec)
2877                 break;
2878             s->status |= 0x08;
2879             qemu_irq_pulse(s->irq);
2880             break;
2881         case 2:
2882             if (s->current_tm.tm_sec || s->current_tm.tm_min)
2883                 break;
2884             s->status |= 0x10;
2885             qemu_irq_pulse(s->irq);
2886             break;
2887         case 3:
2888             if (s->current_tm.tm_sec ||
2889                             s->current_tm.tm_min || s->current_tm.tm_hour)
2890                 break;
2891             s->status |= 0x20;
2892             qemu_irq_pulse(s->irq);
2893             break;
2894         }
2895 
2896     /* Move on */
2897     if (s->running)
2898         s->ti ++;
2899     s->tick += 1000;
2900 
2901     /*
2902      * Every full hour add a rough approximation of the compensation
2903      * register to the 32kHz Timer (which drives the RTC) value.
2904      */
2905     if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2906         s->tick += s->comp_reg * 1000 / 32768;
2907 
2908     timer_mod(s->clk, s->tick);
2909 }
2910 
2911 static void omap_rtc_reset(struct omap_rtc_s *s)
2912 {
2913     struct tm tm;
2914 
2915     s->interrupts = 0;
2916     s->comp_reg = 0;
2917     s->running = 0;
2918     s->pm_am = 0;
2919     s->auto_comp = 0;
2920     s->round = 0;
2921     s->tick = qemu_clock_get_ms(rtc_clock);
2922     memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2923     s->alarm_tm.tm_mday = 0x01;
2924     s->status = 1 << 7;
2925     qemu_get_timedate(&tm, 0);
2926     s->ti = mktimegm(&tm);
2927 
2928     omap_rtc_alarm_update(s);
2929     omap_rtc_tick(s);
2930 }
2931 
2932 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2933                                         hwaddr base,
2934                                         qemu_irq timerirq, qemu_irq alarmirq,
2935                                         omap_clk clk)
2936 {
2937     struct omap_rtc_s *s = (struct omap_rtc_s *)
2938             g_malloc0(sizeof(struct omap_rtc_s));
2939 
2940     s->irq = timerirq;
2941     s->alarm = alarmirq;
2942     s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2943 
2944     omap_rtc_reset(s);
2945 
2946     memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2947                           "omap-rtc", 0x800);
2948     memory_region_add_subregion(system_memory, base, &s->iomem);
2949 
2950     return s;
2951 }
2952 
2953 /* Multi-channel Buffered Serial Port interfaces */
2954 struct omap_mcbsp_s {
2955     MemoryRegion iomem;
2956     qemu_irq txirq;
2957     qemu_irq rxirq;
2958     qemu_irq txdrq;
2959     qemu_irq rxdrq;
2960 
2961     uint16_t spcr[2];
2962     uint16_t rcr[2];
2963     uint16_t xcr[2];
2964     uint16_t srgr[2];
2965     uint16_t mcr[2];
2966     uint16_t pcr;
2967     uint16_t rcer[8];
2968     uint16_t xcer[8];
2969     int tx_rate;
2970     int rx_rate;
2971     int tx_req;
2972     int rx_req;
2973 
2974     I2SCodec *codec;
2975     QEMUTimer *source_timer;
2976     QEMUTimer *sink_timer;
2977 };
2978 
2979 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2980 {
2981     int irq;
2982 
2983     switch ((s->spcr[0] >> 4) & 3) {			/* RINTM */
2984     case 0:
2985         irq = (s->spcr[0] >> 1) & 1;			/* RRDY */
2986         break;
2987     case 3:
2988         irq = (s->spcr[0] >> 3) & 1;			/* RSYNCERR */
2989         break;
2990     default:
2991         irq = 0;
2992         break;
2993     }
2994 
2995     if (irq)
2996         qemu_irq_pulse(s->rxirq);
2997 
2998     switch ((s->spcr[1] >> 4) & 3) {			/* XINTM */
2999     case 0:
3000         irq = (s->spcr[1] >> 1) & 1;			/* XRDY */
3001         break;
3002     case 3:
3003         irq = (s->spcr[1] >> 3) & 1;			/* XSYNCERR */
3004         break;
3005     default:
3006         irq = 0;
3007         break;
3008     }
3009 
3010     if (irq)
3011         qemu_irq_pulse(s->txirq);
3012 }
3013 
3014 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3015 {
3016     if ((s->spcr[0] >> 1) & 1)				/* RRDY */
3017         s->spcr[0] |= 1 << 2;				/* RFULL */
3018     s->spcr[0] |= 1 << 1;				/* RRDY */
3019     qemu_irq_raise(s->rxdrq);
3020     omap_mcbsp_intr_update(s);
3021 }
3022 
3023 static void omap_mcbsp_source_tick(void *opaque)
3024 {
3025     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3026     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3027 
3028     if (!s->rx_rate)
3029         return;
3030     if (s->rx_req)
3031         printf("%s: Rx FIFO overrun\n", __FUNCTION__);
3032 
3033     s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3034 
3035     omap_mcbsp_rx_newdata(s);
3036     timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3037                    get_ticks_per_sec());
3038 }
3039 
3040 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3041 {
3042     if (!s->codec || !s->codec->rts)
3043         omap_mcbsp_source_tick(s);
3044     else if (s->codec->in.len) {
3045         s->rx_req = s->codec->in.len;
3046         omap_mcbsp_rx_newdata(s);
3047     }
3048 }
3049 
3050 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3051 {
3052     timer_del(s->source_timer);
3053 }
3054 
3055 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3056 {
3057     s->spcr[0] &= ~(1 << 1);				/* RRDY */
3058     qemu_irq_lower(s->rxdrq);
3059     omap_mcbsp_intr_update(s);
3060 }
3061 
3062 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3063 {
3064     s->spcr[1] |= 1 << 1;				/* XRDY */
3065     qemu_irq_raise(s->txdrq);
3066     omap_mcbsp_intr_update(s);
3067 }
3068 
3069 static void omap_mcbsp_sink_tick(void *opaque)
3070 {
3071     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3072     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3073 
3074     if (!s->tx_rate)
3075         return;
3076     if (s->tx_req)
3077         printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3078 
3079     s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3080 
3081     omap_mcbsp_tx_newdata(s);
3082     timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3083                    get_ticks_per_sec());
3084 }
3085 
3086 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3087 {
3088     if (!s->codec || !s->codec->cts)
3089         omap_mcbsp_sink_tick(s);
3090     else if (s->codec->out.size) {
3091         s->tx_req = s->codec->out.size;
3092         omap_mcbsp_tx_newdata(s);
3093     }
3094 }
3095 
3096 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3097 {
3098     s->spcr[1] &= ~(1 << 1);				/* XRDY */
3099     qemu_irq_lower(s->txdrq);
3100     omap_mcbsp_intr_update(s);
3101     if (s->codec && s->codec->cts)
3102         s->codec->tx_swallow(s->codec->opaque);
3103 }
3104 
3105 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3106 {
3107     s->tx_req = 0;
3108     omap_mcbsp_tx_done(s);
3109     timer_del(s->sink_timer);
3110 }
3111 
3112 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3113 {
3114     int prev_rx_rate, prev_tx_rate;
3115     int rx_rate = 0, tx_rate = 0;
3116     int cpu_rate = 1500000;	/* XXX */
3117 
3118     /* TODO: check CLKSTP bit */
3119     if (s->spcr[1] & (1 << 6)) {			/* GRST */
3120         if (s->spcr[0] & (1 << 0)) {			/* RRST */
3121             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
3122                             (s->pcr & (1 << 8))) {	/* CLKRM */
3123                 if (~s->pcr & (1 << 7))			/* SCLKME */
3124                     rx_rate = cpu_rate /
3125                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
3126             } else
3127                 if (s->codec)
3128                     rx_rate = s->codec->rx_rate;
3129         }
3130 
3131         if (s->spcr[1] & (1 << 0)) {			/* XRST */
3132             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
3133                             (s->pcr & (1 << 9))) {	/* CLKXM */
3134                 if (~s->pcr & (1 << 7))			/* SCLKME */
3135                     tx_rate = cpu_rate /
3136                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
3137             } else
3138                 if (s->codec)
3139                     tx_rate = s->codec->tx_rate;
3140         }
3141     }
3142     prev_tx_rate = s->tx_rate;
3143     prev_rx_rate = s->rx_rate;
3144     s->tx_rate = tx_rate;
3145     s->rx_rate = rx_rate;
3146 
3147     if (s->codec)
3148         s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3149 
3150     if (!prev_tx_rate && tx_rate)
3151         omap_mcbsp_tx_start(s);
3152     else if (s->tx_rate && !tx_rate)
3153         omap_mcbsp_tx_stop(s);
3154 
3155     if (!prev_rx_rate && rx_rate)
3156         omap_mcbsp_rx_start(s);
3157     else if (prev_tx_rate && !tx_rate)
3158         omap_mcbsp_rx_stop(s);
3159 }
3160 
3161 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3162                                 unsigned size)
3163 {
3164     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3165     int offset = addr & OMAP_MPUI_REG_MASK;
3166     uint16_t ret;
3167 
3168     if (size != 2) {
3169         return omap_badwidth_read16(opaque, addr);
3170     }
3171 
3172     switch (offset) {
3173     case 0x00:	/* DRR2 */
3174         if (((s->rcr[0] >> 5) & 7) < 3)			/* RWDLEN1 */
3175             return 0x0000;
3176         /* Fall through.  */
3177     case 0x02:	/* DRR1 */
3178         if (s->rx_req < 2) {
3179             printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3180             omap_mcbsp_rx_done(s);
3181         } else {
3182             s->tx_req -= 2;
3183             if (s->codec && s->codec->in.len >= 2) {
3184                 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3185                 ret |= s->codec->in.fifo[s->codec->in.start ++];
3186                 s->codec->in.len -= 2;
3187             } else
3188                 ret = 0x0000;
3189             if (!s->tx_req)
3190                 omap_mcbsp_rx_done(s);
3191             return ret;
3192         }
3193         return 0x0000;
3194 
3195     case 0x04:	/* DXR2 */
3196     case 0x06:	/* DXR1 */
3197         return 0x0000;
3198 
3199     case 0x08:	/* SPCR2 */
3200         return s->spcr[1];
3201     case 0x0a:	/* SPCR1 */
3202         return s->spcr[0];
3203     case 0x0c:	/* RCR2 */
3204         return s->rcr[1];
3205     case 0x0e:	/* RCR1 */
3206         return s->rcr[0];
3207     case 0x10:	/* XCR2 */
3208         return s->xcr[1];
3209     case 0x12:	/* XCR1 */
3210         return s->xcr[0];
3211     case 0x14:	/* SRGR2 */
3212         return s->srgr[1];
3213     case 0x16:	/* SRGR1 */
3214         return s->srgr[0];
3215     case 0x18:	/* MCR2 */
3216         return s->mcr[1];
3217     case 0x1a:	/* MCR1 */
3218         return s->mcr[0];
3219     case 0x1c:	/* RCERA */
3220         return s->rcer[0];
3221     case 0x1e:	/* RCERB */
3222         return s->rcer[1];
3223     case 0x20:	/* XCERA */
3224         return s->xcer[0];
3225     case 0x22:	/* XCERB */
3226         return s->xcer[1];
3227     case 0x24:	/* PCR0 */
3228         return s->pcr;
3229     case 0x26:	/* RCERC */
3230         return s->rcer[2];
3231     case 0x28:	/* RCERD */
3232         return s->rcer[3];
3233     case 0x2a:	/* XCERC */
3234         return s->xcer[2];
3235     case 0x2c:	/* XCERD */
3236         return s->xcer[3];
3237     case 0x2e:	/* RCERE */
3238         return s->rcer[4];
3239     case 0x30:	/* RCERF */
3240         return s->rcer[5];
3241     case 0x32:	/* XCERE */
3242         return s->xcer[4];
3243     case 0x34:	/* XCERF */
3244         return s->xcer[5];
3245     case 0x36:	/* RCERG */
3246         return s->rcer[6];
3247     case 0x38:	/* RCERH */
3248         return s->rcer[7];
3249     case 0x3a:	/* XCERG */
3250         return s->xcer[6];
3251     case 0x3c:	/* XCERH */
3252         return s->xcer[7];
3253     }
3254 
3255     OMAP_BAD_REG(addr);
3256     return 0;
3257 }
3258 
3259 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3260                 uint32_t value)
3261 {
3262     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3263     int offset = addr & OMAP_MPUI_REG_MASK;
3264 
3265     switch (offset) {
3266     case 0x00:	/* DRR2 */
3267     case 0x02:	/* DRR1 */
3268         OMAP_RO_REG(addr);
3269         return;
3270 
3271     case 0x04:	/* DXR2 */
3272         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
3273             return;
3274         /* Fall through.  */
3275     case 0x06:	/* DXR1 */
3276         if (s->tx_req > 1) {
3277             s->tx_req -= 2;
3278             if (s->codec && s->codec->cts) {
3279                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3280                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3281             }
3282             if (s->tx_req < 2)
3283                 omap_mcbsp_tx_done(s);
3284         } else
3285             printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3286         return;
3287 
3288     case 0x08:	/* SPCR2 */
3289         s->spcr[1] &= 0x0002;
3290         s->spcr[1] |= 0x03f9 & value;
3291         s->spcr[1] |= 0x0004 & (value << 2);		/* XEMPTY := XRST */
3292         if (~value & 1)					/* XRST */
3293             s->spcr[1] &= ~6;
3294         omap_mcbsp_req_update(s);
3295         return;
3296     case 0x0a:	/* SPCR1 */
3297         s->spcr[0] &= 0x0006;
3298         s->spcr[0] |= 0xf8f9 & value;
3299         if (value & (1 << 15))				/* DLB */
3300             printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
3301         if (~value & 1) {				/* RRST */
3302             s->spcr[0] &= ~6;
3303             s->rx_req = 0;
3304             omap_mcbsp_rx_done(s);
3305         }
3306         omap_mcbsp_req_update(s);
3307         return;
3308 
3309     case 0x0c:	/* RCR2 */
3310         s->rcr[1] = value & 0xffff;
3311         return;
3312     case 0x0e:	/* RCR1 */
3313         s->rcr[0] = value & 0x7fe0;
3314         return;
3315     case 0x10:	/* XCR2 */
3316         s->xcr[1] = value & 0xffff;
3317         return;
3318     case 0x12:	/* XCR1 */
3319         s->xcr[0] = value & 0x7fe0;
3320         return;
3321     case 0x14:	/* SRGR2 */
3322         s->srgr[1] = value & 0xffff;
3323         omap_mcbsp_req_update(s);
3324         return;
3325     case 0x16:	/* SRGR1 */
3326         s->srgr[0] = value & 0xffff;
3327         omap_mcbsp_req_update(s);
3328         return;
3329     case 0x18:	/* MCR2 */
3330         s->mcr[1] = value & 0x03e3;
3331         if (value & 3)					/* XMCM */
3332             printf("%s: Tx channel selection mode enable attempt\n",
3333                             __FUNCTION__);
3334         return;
3335     case 0x1a:	/* MCR1 */
3336         s->mcr[0] = value & 0x03e1;
3337         if (value & 1)					/* RMCM */
3338             printf("%s: Rx channel selection mode enable attempt\n",
3339                             __FUNCTION__);
3340         return;
3341     case 0x1c:	/* RCERA */
3342         s->rcer[0] = value & 0xffff;
3343         return;
3344     case 0x1e:	/* RCERB */
3345         s->rcer[1] = value & 0xffff;
3346         return;
3347     case 0x20:	/* XCERA */
3348         s->xcer[0] = value & 0xffff;
3349         return;
3350     case 0x22:	/* XCERB */
3351         s->xcer[1] = value & 0xffff;
3352         return;
3353     case 0x24:	/* PCR0 */
3354         s->pcr = value & 0x7faf;
3355         return;
3356     case 0x26:	/* RCERC */
3357         s->rcer[2] = value & 0xffff;
3358         return;
3359     case 0x28:	/* RCERD */
3360         s->rcer[3] = value & 0xffff;
3361         return;
3362     case 0x2a:	/* XCERC */
3363         s->xcer[2] = value & 0xffff;
3364         return;
3365     case 0x2c:	/* XCERD */
3366         s->xcer[3] = value & 0xffff;
3367         return;
3368     case 0x2e:	/* RCERE */
3369         s->rcer[4] = value & 0xffff;
3370         return;
3371     case 0x30:	/* RCERF */
3372         s->rcer[5] = value & 0xffff;
3373         return;
3374     case 0x32:	/* XCERE */
3375         s->xcer[4] = value & 0xffff;
3376         return;
3377     case 0x34:	/* XCERF */
3378         s->xcer[5] = value & 0xffff;
3379         return;
3380     case 0x36:	/* RCERG */
3381         s->rcer[6] = value & 0xffff;
3382         return;
3383     case 0x38:	/* RCERH */
3384         s->rcer[7] = value & 0xffff;
3385         return;
3386     case 0x3a:	/* XCERG */
3387         s->xcer[6] = value & 0xffff;
3388         return;
3389     case 0x3c:	/* XCERH */
3390         s->xcer[7] = value & 0xffff;
3391         return;
3392     }
3393 
3394     OMAP_BAD_REG(addr);
3395 }
3396 
3397 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3398                 uint32_t value)
3399 {
3400     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3401     int offset = addr & OMAP_MPUI_REG_MASK;
3402 
3403     if (offset == 0x04) {				/* DXR */
3404         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
3405             return;
3406         if (s->tx_req > 3) {
3407             s->tx_req -= 4;
3408             if (s->codec && s->codec->cts) {
3409                 s->codec->out.fifo[s->codec->out.len ++] =
3410                         (value >> 24) & 0xff;
3411                 s->codec->out.fifo[s->codec->out.len ++] =
3412                         (value >> 16) & 0xff;
3413                 s->codec->out.fifo[s->codec->out.len ++] =
3414                         (value >> 8) & 0xff;
3415                 s->codec->out.fifo[s->codec->out.len ++] =
3416                         (value >> 0) & 0xff;
3417             }
3418             if (s->tx_req < 4)
3419                 omap_mcbsp_tx_done(s);
3420         } else
3421             printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3422         return;
3423     }
3424 
3425     omap_badwidth_write16(opaque, addr, value);
3426 }
3427 
3428 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3429                              uint64_t value, unsigned size)
3430 {
3431     switch (size) {
3432     case 2:
3433         omap_mcbsp_writeh(opaque, addr, value);
3434         break;
3435     case 4:
3436         omap_mcbsp_writew(opaque, addr, value);
3437         break;
3438     default:
3439         omap_badwidth_write16(opaque, addr, value);
3440     }
3441 }
3442 
3443 static const MemoryRegionOps omap_mcbsp_ops = {
3444     .read = omap_mcbsp_read,
3445     .write = omap_mcbsp_write,
3446     .endianness = DEVICE_NATIVE_ENDIAN,
3447 };
3448 
3449 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3450 {
3451     memset(&s->spcr, 0, sizeof(s->spcr));
3452     memset(&s->rcr, 0, sizeof(s->rcr));
3453     memset(&s->xcr, 0, sizeof(s->xcr));
3454     s->srgr[0] = 0x0001;
3455     s->srgr[1] = 0x2000;
3456     memset(&s->mcr, 0, sizeof(s->mcr));
3457     memset(&s->pcr, 0, sizeof(s->pcr));
3458     memset(&s->rcer, 0, sizeof(s->rcer));
3459     memset(&s->xcer, 0, sizeof(s->xcer));
3460     s->tx_req = 0;
3461     s->rx_req = 0;
3462     s->tx_rate = 0;
3463     s->rx_rate = 0;
3464     timer_del(s->source_timer);
3465     timer_del(s->sink_timer);
3466 }
3467 
3468 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3469                                             hwaddr base,
3470                                             qemu_irq txirq, qemu_irq rxirq,
3471                                             qemu_irq *dma, omap_clk clk)
3472 {
3473     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *)
3474             g_malloc0(sizeof(struct omap_mcbsp_s));
3475 
3476     s->txirq = txirq;
3477     s->rxirq = rxirq;
3478     s->txdrq = dma[0];
3479     s->rxdrq = dma[1];
3480     s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3481     s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3482     omap_mcbsp_reset(s);
3483 
3484     memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3485     memory_region_add_subregion(system_memory, base, &s->iomem);
3486 
3487     return s;
3488 }
3489 
3490 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3491 {
3492     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3493 
3494     if (s->rx_rate) {
3495         s->rx_req = s->codec->in.len;
3496         omap_mcbsp_rx_newdata(s);
3497     }
3498 }
3499 
3500 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3501 {
3502     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3503 
3504     if (s->tx_rate) {
3505         s->tx_req = s->codec->out.size;
3506         omap_mcbsp_tx_newdata(s);
3507     }
3508 }
3509 
3510 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3511 {
3512     s->codec = slave;
3513     slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3514     slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3515 }
3516 
3517 /* LED Pulse Generators */
3518 struct omap_lpg_s {
3519     MemoryRegion iomem;
3520     QEMUTimer *tm;
3521 
3522     uint8_t control;
3523     uint8_t power;
3524     int64_t on;
3525     int64_t period;
3526     int clk;
3527     int cycle;
3528 };
3529 
3530 static void omap_lpg_tick(void *opaque)
3531 {
3532     struct omap_lpg_s *s = opaque;
3533 
3534     if (s->cycle)
3535         timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3536     else
3537         timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3538 
3539     s->cycle = !s->cycle;
3540     printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
3541 }
3542 
3543 static void omap_lpg_update(struct omap_lpg_s *s)
3544 {
3545     int64_t on, period = 1, ticks = 1000;
3546     static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3547 
3548     if (~s->control & (1 << 6))					/* LPGRES */
3549         on = 0;
3550     else if (s->control & (1 << 7))				/* PERM_ON */
3551         on = period;
3552     else {
3553         period = muldiv64(ticks, per[s->control & 7],		/* PERCTRL */
3554                         256 / 32);
3555         on = (s->clk && s->power) ? muldiv64(ticks,
3556                         per[(s->control >> 3) & 7], 256) : 0;	/* ONCTRL */
3557     }
3558 
3559     timer_del(s->tm);
3560     if (on == period && s->on < s->period)
3561         printf("%s: LED is on\n", __FUNCTION__);
3562     else if (on == 0 && s->on)
3563         printf("%s: LED is off\n", __FUNCTION__);
3564     else if (on && (on != s->on || period != s->period)) {
3565         s->cycle = 0;
3566         s->on = on;
3567         s->period = period;
3568         omap_lpg_tick(s);
3569         return;
3570     }
3571 
3572     s->on = on;
3573     s->period = period;
3574 }
3575 
3576 static void omap_lpg_reset(struct omap_lpg_s *s)
3577 {
3578     s->control = 0x00;
3579     s->power = 0x00;
3580     s->clk = 1;
3581     omap_lpg_update(s);
3582 }
3583 
3584 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3585                               unsigned size)
3586 {
3587     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3588     int offset = addr & OMAP_MPUI_REG_MASK;
3589 
3590     if (size != 1) {
3591         return omap_badwidth_read8(opaque, addr);
3592     }
3593 
3594     switch (offset) {
3595     case 0x00:	/* LCR */
3596         return s->control;
3597 
3598     case 0x04:	/* PMR */
3599         return s->power;
3600     }
3601 
3602     OMAP_BAD_REG(addr);
3603     return 0;
3604 }
3605 
3606 static void omap_lpg_write(void *opaque, hwaddr addr,
3607                            uint64_t value, unsigned size)
3608 {
3609     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3610     int offset = addr & OMAP_MPUI_REG_MASK;
3611 
3612     if (size != 1) {
3613         omap_badwidth_write8(opaque, addr, value);
3614         return;
3615     }
3616 
3617     switch (offset) {
3618     case 0x00:	/* LCR */
3619         if (~value & (1 << 6))					/* LPGRES */
3620             omap_lpg_reset(s);
3621         s->control = value & 0xff;
3622         omap_lpg_update(s);
3623         return;
3624 
3625     case 0x04:	/* PMR */
3626         s->power = value & 0x01;
3627         omap_lpg_update(s);
3628         return;
3629 
3630     default:
3631         OMAP_BAD_REG(addr);
3632         return;
3633     }
3634 }
3635 
3636 static const MemoryRegionOps omap_lpg_ops = {
3637     .read = omap_lpg_read,
3638     .write = omap_lpg_write,
3639     .endianness = DEVICE_NATIVE_ENDIAN,
3640 };
3641 
3642 static void omap_lpg_clk_update(void *opaque, int line, int on)
3643 {
3644     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3645 
3646     s->clk = on;
3647     omap_lpg_update(s);
3648 }
3649 
3650 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3651                                         hwaddr base, omap_clk clk)
3652 {
3653     struct omap_lpg_s *s = (struct omap_lpg_s *)
3654             g_malloc0(sizeof(struct omap_lpg_s));
3655 
3656     s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3657 
3658     omap_lpg_reset(s);
3659 
3660     memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3661     memory_region_add_subregion(system_memory, base, &s->iomem);
3662 
3663     omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3664 
3665     return s;
3666 }
3667 
3668 /* MPUI Peripheral Bridge configuration */
3669 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3670                                   unsigned size)
3671 {
3672     if (size != 2) {
3673         return omap_badwidth_read16(opaque, addr);
3674     }
3675 
3676     if (addr == OMAP_MPUI_BASE)	/* CMR */
3677         return 0xfe4d;
3678 
3679     OMAP_BAD_REG(addr);
3680     return 0;
3681 }
3682 
3683 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3684                                uint64_t value, unsigned size)
3685 {
3686     /* FIXME: infinite loop */
3687     omap_badwidth_write16(opaque, addr, value);
3688 }
3689 
3690 static const MemoryRegionOps omap_mpui_io_ops = {
3691     .read = omap_mpui_io_read,
3692     .write = omap_mpui_io_write,
3693     .endianness = DEVICE_NATIVE_ENDIAN,
3694 };
3695 
3696 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3697                                struct omap_mpu_state_s *mpu)
3698 {
3699     memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3700                           "omap-mpui-io", 0x7fff);
3701     memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3702                                 &mpu->mpui_io_iomem);
3703 }
3704 
3705 /* General chip reset */
3706 static void omap1_mpu_reset(void *opaque)
3707 {
3708     struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3709 
3710     omap_dma_reset(mpu->dma);
3711     omap_mpu_timer_reset(mpu->timer[0]);
3712     omap_mpu_timer_reset(mpu->timer[1]);
3713     omap_mpu_timer_reset(mpu->timer[2]);
3714     omap_wd_timer_reset(mpu->wdt);
3715     omap_os_timer_reset(mpu->os_timer);
3716     omap_lcdc_reset(mpu->lcd);
3717     omap_ulpd_pm_reset(mpu);
3718     omap_pin_cfg_reset(mpu);
3719     omap_mpui_reset(mpu);
3720     omap_tipb_bridge_reset(mpu->private_tipb);
3721     omap_tipb_bridge_reset(mpu->public_tipb);
3722     omap_dpll_reset(mpu->dpll[0]);
3723     omap_dpll_reset(mpu->dpll[1]);
3724     omap_dpll_reset(mpu->dpll[2]);
3725     omap_uart_reset(mpu->uart[0]);
3726     omap_uart_reset(mpu->uart[1]);
3727     omap_uart_reset(mpu->uart[2]);
3728     omap_mmc_reset(mpu->mmc);
3729     omap_mpuio_reset(mpu->mpuio);
3730     omap_uwire_reset(mpu->microwire);
3731     omap_pwl_reset(mpu->pwl);
3732     omap_pwt_reset(mpu->pwt);
3733     omap_rtc_reset(mpu->rtc);
3734     omap_mcbsp_reset(mpu->mcbsp1);
3735     omap_mcbsp_reset(mpu->mcbsp2);
3736     omap_mcbsp_reset(mpu->mcbsp3);
3737     omap_lpg_reset(mpu->led[0]);
3738     omap_lpg_reset(mpu->led[1]);
3739     omap_clkm_reset(mpu);
3740     cpu_reset(CPU(mpu->cpu));
3741 }
3742 
3743 static const struct omap_map_s {
3744     hwaddr phys_dsp;
3745     hwaddr phys_mpu;
3746     uint32_t size;
3747     const char *name;
3748 } omap15xx_dsp_mm[] = {
3749     /* Strobe 0 */
3750     { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" },		/* CS0 */
3751     { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" },		/* CS1 */
3752     { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" },		/* CS3 */
3753     { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" },	/* CS4 */
3754     { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" },	/* CS5 */
3755     { 0xe1013000, 0xfffb3000, 0x800, "uWire" },			/* CS6 */
3756     { 0xe1013800, 0xfffb3800, 0x800, "I^2C" },			/* CS7 */
3757     { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" },		/* CS8 */
3758     { 0xe1014800, 0xfffb4800, 0x800, "RTC" },			/* CS9 */
3759     { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" },			/* CS10 */
3760     { 0xe1015800, 0xfffb5800, 0x800, "PWL" },			/* CS11 */
3761     { 0xe1016000, 0xfffb6000, 0x800, "PWT" },			/* CS12 */
3762     { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" },		/* CS14 */
3763     { 0xe1017800, 0xfffb7800, 0x800, "MMC" },			/* CS15 */
3764     { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" },		/* CS18 */
3765     { 0xe1019800, 0xfffb9800, 0x800, "UART3" },			/* CS19 */
3766     { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" },		/* CS25 */
3767     /* Strobe 1 */
3768     { 0xe101e000, 0xfffce000, 0x800, "GPIOs" },			/* CS28 */
3769 
3770     { 0 }
3771 };
3772 
3773 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3774                                    const struct omap_map_s *map)
3775 {
3776     MemoryRegion *io;
3777 
3778     for (; map->phys_dsp; map ++) {
3779         io = g_new(MemoryRegion, 1);
3780         memory_region_init_alias(io, NULL, map->name,
3781                                  system_memory, map->phys_mpu, map->size);
3782         memory_region_add_subregion(system_memory, map->phys_dsp, io);
3783     }
3784 }
3785 
3786 void omap_mpu_wakeup(void *opaque, int irq, int req)
3787 {
3788     struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3789     CPUState *cpu = CPU(mpu->cpu);
3790 
3791     if (cpu->halted) {
3792         cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3793     }
3794 }
3795 
3796 static const struct dma_irq_map omap1_dma_irq_map[] = {
3797     { 0, OMAP_INT_DMA_CH0_6 },
3798     { 0, OMAP_INT_DMA_CH1_7 },
3799     { 0, OMAP_INT_DMA_CH2_8 },
3800     { 0, OMAP_INT_DMA_CH3 },
3801     { 0, OMAP_INT_DMA_CH4 },
3802     { 0, OMAP_INT_DMA_CH5 },
3803     { 1, OMAP_INT_1610_DMA_CH6 },
3804     { 1, OMAP_INT_1610_DMA_CH7 },
3805     { 1, OMAP_INT_1610_DMA_CH8 },
3806     { 1, OMAP_INT_1610_DMA_CH9 },
3807     { 1, OMAP_INT_1610_DMA_CH10 },
3808     { 1, OMAP_INT_1610_DMA_CH11 },
3809     { 1, OMAP_INT_1610_DMA_CH12 },
3810     { 1, OMAP_INT_1610_DMA_CH13 },
3811     { 1, OMAP_INT_1610_DMA_CH14 },
3812     { 1, OMAP_INT_1610_DMA_CH15 }
3813 };
3814 
3815 /* DMA ports for OMAP1 */
3816 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3817                 hwaddr addr)
3818 {
3819     return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3820 }
3821 
3822 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3823                 hwaddr addr)
3824 {
3825     return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3826                              addr);
3827 }
3828 
3829 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3830                 hwaddr addr)
3831 {
3832     return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3833 }
3834 
3835 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3836                 hwaddr addr)
3837 {
3838     return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3839 }
3840 
3841 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3842                 hwaddr addr)
3843 {
3844     return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3845 }
3846 
3847 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3848                 hwaddr addr)
3849 {
3850     return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3851 }
3852 
3853 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3854                 unsigned long sdram_size,
3855                 const char *core)
3856 {
3857     int i;
3858     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
3859             g_malloc0(sizeof(struct omap_mpu_state_s));
3860     qemu_irq dma_irqs[6];
3861     DriveInfo *dinfo;
3862     SysBusDevice *busdev;
3863 
3864     if (!core)
3865         core = "ti925t";
3866 
3867     /* Core */
3868     s->mpu_model = omap310;
3869     s->cpu = cpu_arm_init(core);
3870     if (s->cpu == NULL) {
3871         fprintf(stderr, "Unable to find CPU definition\n");
3872         exit(1);
3873     }
3874     s->sdram_size = sdram_size;
3875     s->sram_size = OMAP15XX_SRAM_SIZE;
3876 
3877     s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3878 
3879     /* Clocks */
3880     omap_clk_init(s);
3881 
3882     /* Memory-mapped stuff */
3883     memory_region_allocate_system_memory(&s->emiff_ram, NULL, "omap1.dram",
3884                                          s->sdram_size);
3885     memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3886     memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3887                            &error_abort);
3888     vmstate_register_ram_global(&s->imif_ram);
3889     memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3890 
3891     omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3892 
3893     s->ih[0] = qdev_create(NULL, "omap-intc");
3894     qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3895     qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3896     qdev_init_nofail(s->ih[0]);
3897     busdev = SYS_BUS_DEVICE(s->ih[0]);
3898     sysbus_connect_irq(busdev, 0,
3899                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3900     sysbus_connect_irq(busdev, 1,
3901                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3902     sysbus_mmio_map(busdev, 0, 0xfffecb00);
3903     s->ih[1] = qdev_create(NULL, "omap-intc");
3904     qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3905     qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3906     qdev_init_nofail(s->ih[1]);
3907     busdev = SYS_BUS_DEVICE(s->ih[1]);
3908     sysbus_connect_irq(busdev, 0,
3909                        qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3910     /* The second interrupt controller's FIQ output is not wired up */
3911     sysbus_mmio_map(busdev, 0, 0xfffe0000);
3912 
3913     for (i = 0; i < 6; i++) {
3914         dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3915                                        omap1_dma_irq_map[i].intr);
3916     }
3917     s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3918                            qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3919                            s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3920 
3921     s->port[emiff    ].addr_valid = omap_validate_emiff_addr;
3922     s->port[emifs    ].addr_valid = omap_validate_emifs_addr;
3923     s->port[imif     ].addr_valid = omap_validate_imif_addr;
3924     s->port[tipb     ].addr_valid = omap_validate_tipb_addr;
3925     s->port[local    ].addr_valid = omap_validate_local_addr;
3926     s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3927 
3928     /* Register SDRAM and SRAM DMA ports for fast transfers.  */
3929     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3930                          OMAP_EMIFF_BASE, s->sdram_size);
3931     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3932                          OMAP_IMIF_BASE, s->sram_size);
3933 
3934     s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3935                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3936                     omap_findclk(s, "mputim_ck"));
3937     s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3938                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3939                     omap_findclk(s, "mputim_ck"));
3940     s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3941                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3942                     omap_findclk(s, "mputim_ck"));
3943 
3944     s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3945                     qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3946                     omap_findclk(s, "armwdt_ck"));
3947 
3948     s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3949                     qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3950                     omap_findclk(s, "clk32-kHz"));
3951 
3952     s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3953                             qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3954                             omap_dma_get_lcdch(s->dma),
3955                             omap_findclk(s, "lcd_ck"));
3956 
3957     omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3958     omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3959     omap_id_init(system_memory, s);
3960 
3961     omap_mpui_init(system_memory, 0xfffec900, s);
3962 
3963     s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3964                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3965                     omap_findclk(s, "tipb_ck"));
3966     s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3967                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3968                     omap_findclk(s, "tipb_ck"));
3969 
3970     omap_tcmi_init(system_memory, 0xfffecc00, s);
3971 
3972     s->uart[0] = omap_uart_init(0xfffb0000,
3973                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3974                     omap_findclk(s, "uart1_ck"),
3975                     omap_findclk(s, "uart1_ck"),
3976                     s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3977                     "uart1",
3978                     serial_hds[0]);
3979     s->uart[1] = omap_uart_init(0xfffb0800,
3980                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3981                     omap_findclk(s, "uart2_ck"),
3982                     omap_findclk(s, "uart2_ck"),
3983                     s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3984                     "uart2",
3985                     serial_hds[0] ? serial_hds[1] : NULL);
3986     s->uart[2] = omap_uart_init(0xfffb9800,
3987                                 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3988                     omap_findclk(s, "uart3_ck"),
3989                     omap_findclk(s, "uart3_ck"),
3990                     s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3991                     "uart3",
3992                     serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
3993 
3994     s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3995                                 omap_findclk(s, "dpll1"));
3996     s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3997                                 omap_findclk(s, "dpll2"));
3998     s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3999                                 omap_findclk(s, "dpll3"));
4000 
4001     dinfo = drive_get(IF_SD, 0, 0);
4002     if (!dinfo) {
4003         fprintf(stderr, "qemu: missing SecureDigital device\n");
4004         exit(1);
4005     }
4006     s->mmc = omap_mmc_init(0xfffb7800, system_memory,
4007                            blk_by_legacy_dinfo(dinfo),
4008                            qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
4009                            &s->drq[OMAP_DMA_MMC_TX],
4010                     omap_findclk(s, "mmc_ck"));
4011 
4012     s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4013                                qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4014                                qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4015                                s->wakeup, omap_findclk(s, "clk32-kHz"));
4016 
4017     s->gpio = qdev_create(NULL, "omap-gpio");
4018     qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4019     qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
4020     qdev_init_nofail(s->gpio);
4021     sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4022                        qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4023     sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4024 
4025     s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4026                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4027                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4028                     s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4029 
4030     s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4031                            omap_findclk(s, "armxor_ck"));
4032     s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4033                            omap_findclk(s, "armxor_ck"));
4034 
4035     s->i2c[0] = qdev_create(NULL, "omap_i2c");
4036     qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4037     qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4038     qdev_init_nofail(s->i2c[0]);
4039     busdev = SYS_BUS_DEVICE(s->i2c[0]);
4040     sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4041     sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4042     sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4043     sysbus_mmio_map(busdev, 0, 0xfffb3800);
4044 
4045     s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4046                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4047                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4048                     omap_findclk(s, "clk32-kHz"));
4049 
4050     s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4051                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4052                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4053                     &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4054     s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4055                                 qdev_get_gpio_in(s->ih[0],
4056                                                  OMAP_INT_310_McBSP2_TX),
4057                                 qdev_get_gpio_in(s->ih[0],
4058                                                  OMAP_INT_310_McBSP2_RX),
4059                     &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4060     s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4061                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4062                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4063                     &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4064 
4065     s->led[0] = omap_lpg_init(system_memory,
4066                               0xfffbd000, omap_findclk(s, "clk32-kHz"));
4067     s->led[1] = omap_lpg_init(system_memory,
4068                               0xfffbd800, omap_findclk(s, "clk32-kHz"));
4069 
4070     /* Register mappings not currenlty implemented:
4071      * MCSI2 Comm	fffb2000 - fffb27ff (not mapped on OMAP310)
4072      * MCSI1 Bluetooth	fffb2800 - fffb2fff (not mapped on OMAP310)
4073      * USB W2FC		fffb4000 - fffb47ff
4074      * Camera Interface	fffb6800 - fffb6fff
4075      * USB Host		fffba000 - fffba7ff
4076      * FAC		fffba800 - fffbafff
4077      * HDQ/1-Wire	fffbc000 - fffbc7ff
4078      * TIPB switches	fffbc800 - fffbcfff
4079      * Mailbox		fffcf000 - fffcf7ff
4080      * Local bus IF	fffec100 - fffec1ff
4081      * Local bus MMU	fffec200 - fffec2ff
4082      * DSP MMU		fffed200 - fffed2ff
4083      */
4084 
4085     omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4086     omap_setup_mpui_io(system_memory, s);
4087 
4088     qemu_register_reset(omap1_mpu_reset, s);
4089 
4090     return s;
4091 }
4092