1 /* 2 * TI OMAP processors emulation. 3 * 4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org> 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation; either version 2 or 9 * (at your option) version 3 of the License. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License along 17 * with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "hw/boards.h" 21 #include "hw/hw.h" 22 #include "hw/arm/arm.h" 23 #include "hw/arm/omap.h" 24 #include "sysemu/sysemu.h" 25 #include "hw/arm/soc_dma.h" 26 #include "sysemu/block-backend.h" 27 #include "sysemu/blockdev.h" 28 #include "qemu/range.h" 29 #include "hw/sysbus.h" 30 31 /* Should signal the TCMI/GPMC */ 32 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr) 33 { 34 uint8_t ret; 35 36 OMAP_8B_REG(addr); 37 cpu_physical_memory_read(addr, &ret, 1); 38 return ret; 39 } 40 41 void omap_badwidth_write8(void *opaque, hwaddr addr, 42 uint32_t value) 43 { 44 uint8_t val8 = value; 45 46 OMAP_8B_REG(addr); 47 cpu_physical_memory_write(addr, &val8, 1); 48 } 49 50 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr) 51 { 52 uint16_t ret; 53 54 OMAP_16B_REG(addr); 55 cpu_physical_memory_read(addr, &ret, 2); 56 return ret; 57 } 58 59 void omap_badwidth_write16(void *opaque, hwaddr addr, 60 uint32_t value) 61 { 62 uint16_t val16 = value; 63 64 OMAP_16B_REG(addr); 65 cpu_physical_memory_write(addr, &val16, 2); 66 } 67 68 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr) 69 { 70 uint32_t ret; 71 72 OMAP_32B_REG(addr); 73 cpu_physical_memory_read(addr, &ret, 4); 74 return ret; 75 } 76 77 void omap_badwidth_write32(void *opaque, hwaddr addr, 78 uint32_t value) 79 { 80 OMAP_32B_REG(addr); 81 cpu_physical_memory_write(addr, &value, 4); 82 } 83 84 /* MPU OS timers */ 85 struct omap_mpu_timer_s { 86 MemoryRegion iomem; 87 qemu_irq irq; 88 omap_clk clk; 89 uint32_t val; 90 int64_t time; 91 QEMUTimer *timer; 92 QEMUBH *tick; 93 int64_t rate; 94 int it_ena; 95 96 int enable; 97 int ptv; 98 int ar; 99 int st; 100 uint32_t reset_val; 101 }; 102 103 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer) 104 { 105 uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time; 106 107 if (timer->st && timer->enable && timer->rate) 108 return timer->val - muldiv64(distance >> (timer->ptv + 1), 109 timer->rate, get_ticks_per_sec()); 110 else 111 return timer->val; 112 } 113 114 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer) 115 { 116 timer->val = omap_timer_read(timer); 117 timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 118 } 119 120 static inline void omap_timer_update(struct omap_mpu_timer_s *timer) 121 { 122 int64_t expires; 123 124 if (timer->enable && timer->st && timer->rate) { 125 timer->val = timer->reset_val; /* Should skip this on clk enable */ 126 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1), 127 get_ticks_per_sec(), timer->rate); 128 129 /* If timer expiry would be sooner than in about 1 ms and 130 * auto-reload isn't set, then fire immediately. This is a hack 131 * to make systems like PalmOS run in acceptable time. PalmOS 132 * sets the interval to a very low value and polls the status bit 133 * in a busy loop when it wants to sleep just a couple of CPU 134 * ticks. */ 135 if (expires > (get_ticks_per_sec() >> 10) || timer->ar) 136 timer_mod(timer->timer, timer->time + expires); 137 else 138 qemu_bh_schedule(timer->tick); 139 } else 140 timer_del(timer->timer); 141 } 142 143 static void omap_timer_fire(void *opaque) 144 { 145 struct omap_mpu_timer_s *timer = opaque; 146 147 if (!timer->ar) { 148 timer->val = 0; 149 timer->st = 0; 150 } 151 152 if (timer->it_ena) 153 /* Edge-triggered irq */ 154 qemu_irq_pulse(timer->irq); 155 } 156 157 static void omap_timer_tick(void *opaque) 158 { 159 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque; 160 161 omap_timer_sync(timer); 162 omap_timer_fire(timer); 163 omap_timer_update(timer); 164 } 165 166 static void omap_timer_clk_update(void *opaque, int line, int on) 167 { 168 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque; 169 170 omap_timer_sync(timer); 171 timer->rate = on ? omap_clk_getrate(timer->clk) : 0; 172 omap_timer_update(timer); 173 } 174 175 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer) 176 { 177 omap_clk_adduser(timer->clk, 178 qemu_allocate_irq(omap_timer_clk_update, timer, 0)); 179 timer->rate = omap_clk_getrate(timer->clk); 180 } 181 182 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr, 183 unsigned size) 184 { 185 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque; 186 187 if (size != 4) { 188 return omap_badwidth_read32(opaque, addr); 189 } 190 191 switch (addr) { 192 case 0x00: /* CNTL_TIMER */ 193 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st; 194 195 case 0x04: /* LOAD_TIM */ 196 break; 197 198 case 0x08: /* READ_TIM */ 199 return omap_timer_read(s); 200 } 201 202 OMAP_BAD_REG(addr); 203 return 0; 204 } 205 206 static void omap_mpu_timer_write(void *opaque, hwaddr addr, 207 uint64_t value, unsigned size) 208 { 209 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque; 210 211 if (size != 4) { 212 omap_badwidth_write32(opaque, addr, value); 213 return; 214 } 215 216 switch (addr) { 217 case 0x00: /* CNTL_TIMER */ 218 omap_timer_sync(s); 219 s->enable = (value >> 5) & 1; 220 s->ptv = (value >> 2) & 7; 221 s->ar = (value >> 1) & 1; 222 s->st = value & 1; 223 omap_timer_update(s); 224 return; 225 226 case 0x04: /* LOAD_TIM */ 227 s->reset_val = value; 228 return; 229 230 case 0x08: /* READ_TIM */ 231 OMAP_RO_REG(addr); 232 break; 233 234 default: 235 OMAP_BAD_REG(addr); 236 } 237 } 238 239 static const MemoryRegionOps omap_mpu_timer_ops = { 240 .read = omap_mpu_timer_read, 241 .write = omap_mpu_timer_write, 242 .endianness = DEVICE_LITTLE_ENDIAN, 243 }; 244 245 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s) 246 { 247 timer_del(s->timer); 248 s->enable = 0; 249 s->reset_val = 31337; 250 s->val = 0; 251 s->ptv = 0; 252 s->ar = 0; 253 s->st = 0; 254 s->it_ena = 1; 255 } 256 257 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory, 258 hwaddr base, 259 qemu_irq irq, omap_clk clk) 260 { 261 struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1); 262 263 s->irq = irq; 264 s->clk = clk; 265 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s); 266 s->tick = qemu_bh_new(omap_timer_fire, s); 267 omap_mpu_timer_reset(s); 268 omap_timer_clk_setup(s); 269 270 memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s, 271 "omap-mpu-timer", 0x100); 272 273 memory_region_add_subregion(system_memory, base, &s->iomem); 274 275 return s; 276 } 277 278 /* Watchdog timer */ 279 struct omap_watchdog_timer_s { 280 struct omap_mpu_timer_s timer; 281 MemoryRegion iomem; 282 uint8_t last_wr; 283 int mode; 284 int free; 285 int reset; 286 }; 287 288 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr, 289 unsigned size) 290 { 291 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque; 292 293 if (size != 2) { 294 return omap_badwidth_read16(opaque, addr); 295 } 296 297 switch (addr) { 298 case 0x00: /* CNTL_TIMER */ 299 return (s->timer.ptv << 9) | (s->timer.ar << 8) | 300 (s->timer.st << 7) | (s->free << 1); 301 302 case 0x04: /* READ_TIMER */ 303 return omap_timer_read(&s->timer); 304 305 case 0x08: /* TIMER_MODE */ 306 return s->mode << 15; 307 } 308 309 OMAP_BAD_REG(addr); 310 return 0; 311 } 312 313 static void omap_wd_timer_write(void *opaque, hwaddr addr, 314 uint64_t value, unsigned size) 315 { 316 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque; 317 318 if (size != 2) { 319 omap_badwidth_write16(opaque, addr, value); 320 return; 321 } 322 323 switch (addr) { 324 case 0x00: /* CNTL_TIMER */ 325 omap_timer_sync(&s->timer); 326 s->timer.ptv = (value >> 9) & 7; 327 s->timer.ar = (value >> 8) & 1; 328 s->timer.st = (value >> 7) & 1; 329 s->free = (value >> 1) & 1; 330 omap_timer_update(&s->timer); 331 break; 332 333 case 0x04: /* LOAD_TIMER */ 334 s->timer.reset_val = value & 0xffff; 335 break; 336 337 case 0x08: /* TIMER_MODE */ 338 if (!s->mode && ((value >> 15) & 1)) 339 omap_clk_get(s->timer.clk); 340 s->mode |= (value >> 15) & 1; 341 if (s->last_wr == 0xf5) { 342 if ((value & 0xff) == 0xa0) { 343 if (s->mode) { 344 s->mode = 0; 345 omap_clk_put(s->timer.clk); 346 } 347 } else { 348 /* XXX: on T|E hardware somehow this has no effect, 349 * on Zire 71 it works as specified. */ 350 s->reset = 1; 351 qemu_system_reset_request(); 352 } 353 } 354 s->last_wr = value & 0xff; 355 break; 356 357 default: 358 OMAP_BAD_REG(addr); 359 } 360 } 361 362 static const MemoryRegionOps omap_wd_timer_ops = { 363 .read = omap_wd_timer_read, 364 .write = omap_wd_timer_write, 365 .endianness = DEVICE_NATIVE_ENDIAN, 366 }; 367 368 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s) 369 { 370 timer_del(s->timer.timer); 371 if (!s->mode) 372 omap_clk_get(s->timer.clk); 373 s->mode = 1; 374 s->free = 1; 375 s->reset = 0; 376 s->timer.enable = 1; 377 s->timer.it_ena = 1; 378 s->timer.reset_val = 0xffff; 379 s->timer.val = 0; 380 s->timer.st = 0; 381 s->timer.ptv = 0; 382 s->timer.ar = 0; 383 omap_timer_update(&s->timer); 384 } 385 386 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory, 387 hwaddr base, 388 qemu_irq irq, omap_clk clk) 389 { 390 struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1); 391 392 s->timer.irq = irq; 393 s->timer.clk = clk; 394 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer); 395 omap_wd_timer_reset(s); 396 omap_timer_clk_setup(&s->timer); 397 398 memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s, 399 "omap-wd-timer", 0x100); 400 memory_region_add_subregion(memory, base, &s->iomem); 401 402 return s; 403 } 404 405 /* 32-kHz timer */ 406 struct omap_32khz_timer_s { 407 struct omap_mpu_timer_s timer; 408 MemoryRegion iomem; 409 }; 410 411 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr, 412 unsigned size) 413 { 414 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque; 415 int offset = addr & OMAP_MPUI_REG_MASK; 416 417 if (size != 4) { 418 return omap_badwidth_read32(opaque, addr); 419 } 420 421 switch (offset) { 422 case 0x00: /* TVR */ 423 return s->timer.reset_val; 424 425 case 0x04: /* TCR */ 426 return omap_timer_read(&s->timer); 427 428 case 0x08: /* CR */ 429 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st; 430 431 default: 432 break; 433 } 434 OMAP_BAD_REG(addr); 435 return 0; 436 } 437 438 static void omap_os_timer_write(void *opaque, hwaddr addr, 439 uint64_t value, unsigned size) 440 { 441 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque; 442 int offset = addr & OMAP_MPUI_REG_MASK; 443 444 if (size != 4) { 445 omap_badwidth_write32(opaque, addr, value); 446 return; 447 } 448 449 switch (offset) { 450 case 0x00: /* TVR */ 451 s->timer.reset_val = value & 0x00ffffff; 452 break; 453 454 case 0x04: /* TCR */ 455 OMAP_RO_REG(addr); 456 break; 457 458 case 0x08: /* CR */ 459 s->timer.ar = (value >> 3) & 1; 460 s->timer.it_ena = (value >> 2) & 1; 461 if (s->timer.st != (value & 1) || (value & 2)) { 462 omap_timer_sync(&s->timer); 463 s->timer.enable = value & 1; 464 s->timer.st = value & 1; 465 omap_timer_update(&s->timer); 466 } 467 break; 468 469 default: 470 OMAP_BAD_REG(addr); 471 } 472 } 473 474 static const MemoryRegionOps omap_os_timer_ops = { 475 .read = omap_os_timer_read, 476 .write = omap_os_timer_write, 477 .endianness = DEVICE_NATIVE_ENDIAN, 478 }; 479 480 static void omap_os_timer_reset(struct omap_32khz_timer_s *s) 481 { 482 timer_del(s->timer.timer); 483 s->timer.enable = 0; 484 s->timer.it_ena = 0; 485 s->timer.reset_val = 0x00ffffff; 486 s->timer.val = 0; 487 s->timer.st = 0; 488 s->timer.ptv = 0; 489 s->timer.ar = 1; 490 } 491 492 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory, 493 hwaddr base, 494 qemu_irq irq, omap_clk clk) 495 { 496 struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1); 497 498 s->timer.irq = irq; 499 s->timer.clk = clk; 500 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer); 501 omap_os_timer_reset(s); 502 omap_timer_clk_setup(&s->timer); 503 504 memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s, 505 "omap-os-timer", 0x800); 506 memory_region_add_subregion(memory, base, &s->iomem); 507 508 return s; 509 } 510 511 /* Ultra Low-Power Device Module */ 512 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr, 513 unsigned size) 514 { 515 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; 516 uint16_t ret; 517 518 if (size != 2) { 519 return omap_badwidth_read16(opaque, addr); 520 } 521 522 switch (addr) { 523 case 0x14: /* IT_STATUS */ 524 ret = s->ulpd_pm_regs[addr >> 2]; 525 s->ulpd_pm_regs[addr >> 2] = 0; 526 qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K)); 527 return ret; 528 529 case 0x18: /* Reserved */ 530 case 0x1c: /* Reserved */ 531 case 0x20: /* Reserved */ 532 case 0x28: /* Reserved */ 533 case 0x2c: /* Reserved */ 534 OMAP_BAD_REG(addr); 535 /* fall through */ 536 case 0x00: /* COUNTER_32_LSB */ 537 case 0x04: /* COUNTER_32_MSB */ 538 case 0x08: /* COUNTER_HIGH_FREQ_LSB */ 539 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */ 540 case 0x10: /* GAUGING_CTRL */ 541 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */ 542 case 0x30: /* CLOCK_CTRL */ 543 case 0x34: /* SOFT_REQ */ 544 case 0x38: /* COUNTER_32_FIQ */ 545 case 0x3c: /* DPLL_CTRL */ 546 case 0x40: /* STATUS_REQ */ 547 /* XXX: check clk::usecount state for every clock */ 548 case 0x48: /* LOCL_TIME */ 549 case 0x4c: /* APLL_CTRL */ 550 case 0x50: /* POWER_CTRL */ 551 return s->ulpd_pm_regs[addr >> 2]; 552 } 553 554 OMAP_BAD_REG(addr); 555 return 0; 556 } 557 558 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s, 559 uint16_t diff, uint16_t value) 560 { 561 if (diff & (1 << 4)) /* USB_MCLK_EN */ 562 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1); 563 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */ 564 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1); 565 } 566 567 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s, 568 uint16_t diff, uint16_t value) 569 { 570 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */ 571 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1); 572 if (diff & (1 << 1)) /* SOFT_COM_REQ */ 573 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1); 574 if (diff & (1 << 2)) /* SOFT_SDW_REQ */ 575 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1); 576 if (diff & (1 << 3)) /* SOFT_USB_REQ */ 577 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1); 578 } 579 580 static void omap_ulpd_pm_write(void *opaque, hwaddr addr, 581 uint64_t value, unsigned size) 582 { 583 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; 584 int64_t now, ticks; 585 int div, mult; 586 static const int bypass_div[4] = { 1, 2, 4, 4 }; 587 uint16_t diff; 588 589 if (size != 2) { 590 omap_badwidth_write16(opaque, addr, value); 591 return; 592 } 593 594 switch (addr) { 595 case 0x00: /* COUNTER_32_LSB */ 596 case 0x04: /* COUNTER_32_MSB */ 597 case 0x08: /* COUNTER_HIGH_FREQ_LSB */ 598 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */ 599 case 0x14: /* IT_STATUS */ 600 case 0x40: /* STATUS_REQ */ 601 OMAP_RO_REG(addr); 602 break; 603 604 case 0x10: /* GAUGING_CTRL */ 605 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */ 606 if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) { 607 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 608 609 if (value & 1) 610 s->ulpd_gauge_start = now; 611 else { 612 now -= s->ulpd_gauge_start; 613 614 /* 32-kHz ticks */ 615 ticks = muldiv64(now, 32768, get_ticks_per_sec()); 616 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff; 617 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff; 618 if (ticks >> 32) /* OVERFLOW_32K */ 619 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2; 620 621 /* High frequency ticks */ 622 ticks = muldiv64(now, 12000000, get_ticks_per_sec()); 623 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff; 624 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff; 625 if (ticks >> 32) /* OVERFLOW_HI_FREQ */ 626 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1; 627 628 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */ 629 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K)); 630 } 631 } 632 s->ulpd_pm_regs[addr >> 2] = value; 633 break; 634 635 case 0x18: /* Reserved */ 636 case 0x1c: /* Reserved */ 637 case 0x20: /* Reserved */ 638 case 0x28: /* Reserved */ 639 case 0x2c: /* Reserved */ 640 OMAP_BAD_REG(addr); 641 /* fall through */ 642 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */ 643 case 0x38: /* COUNTER_32_FIQ */ 644 case 0x48: /* LOCL_TIME */ 645 case 0x50: /* POWER_CTRL */ 646 s->ulpd_pm_regs[addr >> 2] = value; 647 break; 648 649 case 0x30: /* CLOCK_CTRL */ 650 diff = s->ulpd_pm_regs[addr >> 2] ^ value; 651 s->ulpd_pm_regs[addr >> 2] = value & 0x3f; 652 omap_ulpd_clk_update(s, diff, value); 653 break; 654 655 case 0x34: /* SOFT_REQ */ 656 diff = s->ulpd_pm_regs[addr >> 2] ^ value; 657 s->ulpd_pm_regs[addr >> 2] = value & 0x1f; 658 omap_ulpd_req_update(s, diff, value); 659 break; 660 661 case 0x3c: /* DPLL_CTRL */ 662 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is 663 * omitted altogether, probably a typo. */ 664 /* This register has identical semantics with DPLL(1:3) control 665 * registers, see omap_dpll_write() */ 666 diff = s->ulpd_pm_regs[addr >> 2] & value; 667 s->ulpd_pm_regs[addr >> 2] = value & 0x2fff; 668 if (diff & (0x3ff << 2)) { 669 if (value & (1 << 4)) { /* PLL_ENABLE */ 670 div = ((value >> 5) & 3) + 1; /* PLL_DIV */ 671 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */ 672 } else { 673 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */ 674 mult = 1; 675 } 676 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult); 677 } 678 679 /* Enter the desired mode. */ 680 s->ulpd_pm_regs[addr >> 2] = 681 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) | 682 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1); 683 684 /* Act as if the lock is restored. */ 685 s->ulpd_pm_regs[addr >> 2] |= 2; 686 break; 687 688 case 0x4c: /* APLL_CTRL */ 689 diff = s->ulpd_pm_regs[addr >> 2] & value; 690 s->ulpd_pm_regs[addr >> 2] = value & 0xf; 691 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */ 692 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s, 693 (value & (1 << 0)) ? "apll" : "dpll4")); 694 break; 695 696 default: 697 OMAP_BAD_REG(addr); 698 } 699 } 700 701 static const MemoryRegionOps omap_ulpd_pm_ops = { 702 .read = omap_ulpd_pm_read, 703 .write = omap_ulpd_pm_write, 704 .endianness = DEVICE_NATIVE_ENDIAN, 705 }; 706 707 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu) 708 { 709 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001; 710 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000; 711 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001; 712 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000; 713 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000; 714 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01; 715 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01; 716 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01; 717 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff; 718 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01; 719 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01; 720 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000); 721 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000; 722 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000); 723 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000; 724 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001; 725 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211; 726 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */ 727 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960; 728 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08; 729 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08; 730 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4); 731 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4")); 732 } 733 734 static void omap_ulpd_pm_init(MemoryRegion *system_memory, 735 hwaddr base, 736 struct omap_mpu_state_s *mpu) 737 { 738 memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu, 739 "omap-ulpd-pm", 0x800); 740 memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem); 741 omap_ulpd_pm_reset(mpu); 742 } 743 744 /* OMAP Pin Configuration */ 745 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr, 746 unsigned size) 747 { 748 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; 749 750 if (size != 4) { 751 return omap_badwidth_read32(opaque, addr); 752 } 753 754 switch (addr) { 755 case 0x00: /* FUNC_MUX_CTRL_0 */ 756 case 0x04: /* FUNC_MUX_CTRL_1 */ 757 case 0x08: /* FUNC_MUX_CTRL_2 */ 758 return s->func_mux_ctrl[addr >> 2]; 759 760 case 0x0c: /* COMP_MODE_CTRL_0 */ 761 return s->comp_mode_ctrl[0]; 762 763 case 0x10: /* FUNC_MUX_CTRL_3 */ 764 case 0x14: /* FUNC_MUX_CTRL_4 */ 765 case 0x18: /* FUNC_MUX_CTRL_5 */ 766 case 0x1c: /* FUNC_MUX_CTRL_6 */ 767 case 0x20: /* FUNC_MUX_CTRL_7 */ 768 case 0x24: /* FUNC_MUX_CTRL_8 */ 769 case 0x28: /* FUNC_MUX_CTRL_9 */ 770 case 0x2c: /* FUNC_MUX_CTRL_A */ 771 case 0x30: /* FUNC_MUX_CTRL_B */ 772 case 0x34: /* FUNC_MUX_CTRL_C */ 773 case 0x38: /* FUNC_MUX_CTRL_D */ 774 return s->func_mux_ctrl[(addr >> 2) - 1]; 775 776 case 0x40: /* PULL_DWN_CTRL_0 */ 777 case 0x44: /* PULL_DWN_CTRL_1 */ 778 case 0x48: /* PULL_DWN_CTRL_2 */ 779 case 0x4c: /* PULL_DWN_CTRL_3 */ 780 return s->pull_dwn_ctrl[(addr & 0xf) >> 2]; 781 782 case 0x50: /* GATE_INH_CTRL_0 */ 783 return s->gate_inh_ctrl[0]; 784 785 case 0x60: /* VOLTAGE_CTRL_0 */ 786 return s->voltage_ctrl[0]; 787 788 case 0x70: /* TEST_DBG_CTRL_0 */ 789 return s->test_dbg_ctrl[0]; 790 791 case 0x80: /* MOD_CONF_CTRL_0 */ 792 return s->mod_conf_ctrl[0]; 793 } 794 795 OMAP_BAD_REG(addr); 796 return 0; 797 } 798 799 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s, 800 uint32_t diff, uint32_t value) 801 { 802 if (s->compat1509) { 803 if (diff & (1 << 9)) /* BLUETOOTH */ 804 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"), 805 (~value >> 9) & 1); 806 if (diff & (1 << 7)) /* USB.CLKO */ 807 omap_clk_onoff(omap_findclk(s, "usb.clko"), 808 (value >> 7) & 1); 809 } 810 } 811 812 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s, 813 uint32_t diff, uint32_t value) 814 { 815 if (s->compat1509) { 816 if (diff & (1U << 31)) { 817 /* MCBSP3_CLK_HIZ_DI */ 818 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1); 819 } 820 if (diff & (1 << 1)) { 821 /* CLK32K */ 822 omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1); 823 } 824 } 825 } 826 827 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s, 828 uint32_t diff, uint32_t value) 829 { 830 if (diff & (1U << 31)) { 831 /* CONF_MOD_UART3_CLK_MODE_R */ 832 omap_clk_reparent(omap_findclk(s, "uart3_ck"), 833 omap_findclk(s, ((value >> 31) & 1) ? 834 "ck_48m" : "armper_ck")); 835 } 836 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */ 837 omap_clk_reparent(omap_findclk(s, "uart2_ck"), 838 omap_findclk(s, ((value >> 30) & 1) ? 839 "ck_48m" : "armper_ck")); 840 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */ 841 omap_clk_reparent(omap_findclk(s, "uart1_ck"), 842 omap_findclk(s, ((value >> 29) & 1) ? 843 "ck_48m" : "armper_ck")); 844 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */ 845 omap_clk_reparent(omap_findclk(s, "mmc_ck"), 846 omap_findclk(s, ((value >> 23) & 1) ? 847 "ck_48m" : "armper_ck")); 848 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */ 849 omap_clk_reparent(omap_findclk(s, "com_mclk_out"), 850 omap_findclk(s, ((value >> 12) & 1) ? 851 "ck_48m" : "armper_ck")); 852 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */ 853 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1); 854 } 855 856 static void omap_pin_cfg_write(void *opaque, hwaddr addr, 857 uint64_t value, unsigned size) 858 { 859 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; 860 uint32_t diff; 861 862 if (size != 4) { 863 omap_badwidth_write32(opaque, addr, value); 864 return; 865 } 866 867 switch (addr) { 868 case 0x00: /* FUNC_MUX_CTRL_0 */ 869 diff = s->func_mux_ctrl[addr >> 2] ^ value; 870 s->func_mux_ctrl[addr >> 2] = value; 871 omap_pin_funcmux0_update(s, diff, value); 872 return; 873 874 case 0x04: /* FUNC_MUX_CTRL_1 */ 875 diff = s->func_mux_ctrl[addr >> 2] ^ value; 876 s->func_mux_ctrl[addr >> 2] = value; 877 omap_pin_funcmux1_update(s, diff, value); 878 return; 879 880 case 0x08: /* FUNC_MUX_CTRL_2 */ 881 s->func_mux_ctrl[addr >> 2] = value; 882 return; 883 884 case 0x0c: /* COMP_MODE_CTRL_0 */ 885 s->comp_mode_ctrl[0] = value; 886 s->compat1509 = (value != 0x0000eaef); 887 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]); 888 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]); 889 return; 890 891 case 0x10: /* FUNC_MUX_CTRL_3 */ 892 case 0x14: /* FUNC_MUX_CTRL_4 */ 893 case 0x18: /* FUNC_MUX_CTRL_5 */ 894 case 0x1c: /* FUNC_MUX_CTRL_6 */ 895 case 0x20: /* FUNC_MUX_CTRL_7 */ 896 case 0x24: /* FUNC_MUX_CTRL_8 */ 897 case 0x28: /* FUNC_MUX_CTRL_9 */ 898 case 0x2c: /* FUNC_MUX_CTRL_A */ 899 case 0x30: /* FUNC_MUX_CTRL_B */ 900 case 0x34: /* FUNC_MUX_CTRL_C */ 901 case 0x38: /* FUNC_MUX_CTRL_D */ 902 s->func_mux_ctrl[(addr >> 2) - 1] = value; 903 return; 904 905 case 0x40: /* PULL_DWN_CTRL_0 */ 906 case 0x44: /* PULL_DWN_CTRL_1 */ 907 case 0x48: /* PULL_DWN_CTRL_2 */ 908 case 0x4c: /* PULL_DWN_CTRL_3 */ 909 s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value; 910 return; 911 912 case 0x50: /* GATE_INH_CTRL_0 */ 913 s->gate_inh_ctrl[0] = value; 914 return; 915 916 case 0x60: /* VOLTAGE_CTRL_0 */ 917 s->voltage_ctrl[0] = value; 918 return; 919 920 case 0x70: /* TEST_DBG_CTRL_0 */ 921 s->test_dbg_ctrl[0] = value; 922 return; 923 924 case 0x80: /* MOD_CONF_CTRL_0 */ 925 diff = s->mod_conf_ctrl[0] ^ value; 926 s->mod_conf_ctrl[0] = value; 927 omap_pin_modconf1_update(s, diff, value); 928 return; 929 930 default: 931 OMAP_BAD_REG(addr); 932 } 933 } 934 935 static const MemoryRegionOps omap_pin_cfg_ops = { 936 .read = omap_pin_cfg_read, 937 .write = omap_pin_cfg_write, 938 .endianness = DEVICE_NATIVE_ENDIAN, 939 }; 940 941 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu) 942 { 943 /* Start in Compatibility Mode. */ 944 mpu->compat1509 = 1; 945 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0); 946 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0); 947 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0); 948 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl)); 949 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl)); 950 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl)); 951 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl)); 952 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl)); 953 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl)); 954 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl)); 955 } 956 957 static void omap_pin_cfg_init(MemoryRegion *system_memory, 958 hwaddr base, 959 struct omap_mpu_state_s *mpu) 960 { 961 memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu, 962 "omap-pin-cfg", 0x800); 963 memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem); 964 omap_pin_cfg_reset(mpu); 965 } 966 967 /* Device Identification, Die Identification */ 968 static uint64_t omap_id_read(void *opaque, hwaddr addr, 969 unsigned size) 970 { 971 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; 972 973 if (size != 4) { 974 return omap_badwidth_read32(opaque, addr); 975 } 976 977 switch (addr) { 978 case 0xfffe1800: /* DIE_ID_LSB */ 979 return 0xc9581f0e; 980 case 0xfffe1804: /* DIE_ID_MSB */ 981 return 0xa8858bfa; 982 983 case 0xfffe2000: /* PRODUCT_ID_LSB */ 984 return 0x00aaaafc; 985 case 0xfffe2004: /* PRODUCT_ID_MSB */ 986 return 0xcafeb574; 987 988 case 0xfffed400: /* JTAG_ID_LSB */ 989 switch (s->mpu_model) { 990 case omap310: 991 return 0x03310315; 992 case omap1510: 993 return 0x03310115; 994 default: 995 hw_error("%s: bad mpu model\n", __FUNCTION__); 996 } 997 break; 998 999 case 0xfffed404: /* JTAG_ID_MSB */ 1000 switch (s->mpu_model) { 1001 case omap310: 1002 return 0xfb57402f; 1003 case omap1510: 1004 return 0xfb47002f; 1005 default: 1006 hw_error("%s: bad mpu model\n", __FUNCTION__); 1007 } 1008 break; 1009 } 1010 1011 OMAP_BAD_REG(addr); 1012 return 0; 1013 } 1014 1015 static void omap_id_write(void *opaque, hwaddr addr, 1016 uint64_t value, unsigned size) 1017 { 1018 if (size != 4) { 1019 omap_badwidth_write32(opaque, addr, value); 1020 return; 1021 } 1022 1023 OMAP_BAD_REG(addr); 1024 } 1025 1026 static const MemoryRegionOps omap_id_ops = { 1027 .read = omap_id_read, 1028 .write = omap_id_write, 1029 .endianness = DEVICE_NATIVE_ENDIAN, 1030 }; 1031 1032 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu) 1033 { 1034 memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu, 1035 "omap-id", 0x100000000ULL); 1036 memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem, 1037 0xfffe1800, 0x800); 1038 memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18); 1039 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem, 1040 0xfffed400, 0x100); 1041 memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4); 1042 if (!cpu_is_omap15xx(mpu)) { 1043 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20", 1044 &mpu->id_iomem, 0xfffe2000, 0x800); 1045 memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20); 1046 } 1047 } 1048 1049 /* MPUI Control (Dummy) */ 1050 static uint64_t omap_mpui_read(void *opaque, hwaddr addr, 1051 unsigned size) 1052 { 1053 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; 1054 1055 if (size != 4) { 1056 return omap_badwidth_read32(opaque, addr); 1057 } 1058 1059 switch (addr) { 1060 case 0x00: /* CTRL */ 1061 return s->mpui_ctrl; 1062 case 0x04: /* DEBUG_ADDR */ 1063 return 0x01ffffff; 1064 case 0x08: /* DEBUG_DATA */ 1065 return 0xffffffff; 1066 case 0x0c: /* DEBUG_FLAG */ 1067 return 0x00000800; 1068 case 0x10: /* STATUS */ 1069 return 0x00000000; 1070 1071 /* Not in OMAP310 */ 1072 case 0x14: /* DSP_STATUS */ 1073 case 0x18: /* DSP_BOOT_CONFIG */ 1074 return 0x00000000; 1075 case 0x1c: /* DSP_MPUI_CONFIG */ 1076 return 0x0000ffff; 1077 } 1078 1079 OMAP_BAD_REG(addr); 1080 return 0; 1081 } 1082 1083 static void omap_mpui_write(void *opaque, hwaddr addr, 1084 uint64_t value, unsigned size) 1085 { 1086 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; 1087 1088 if (size != 4) { 1089 omap_badwidth_write32(opaque, addr, value); 1090 return; 1091 } 1092 1093 switch (addr) { 1094 case 0x00: /* CTRL */ 1095 s->mpui_ctrl = value & 0x007fffff; 1096 break; 1097 1098 case 0x04: /* DEBUG_ADDR */ 1099 case 0x08: /* DEBUG_DATA */ 1100 case 0x0c: /* DEBUG_FLAG */ 1101 case 0x10: /* STATUS */ 1102 /* Not in OMAP310 */ 1103 case 0x14: /* DSP_STATUS */ 1104 OMAP_RO_REG(addr); 1105 break; 1106 case 0x18: /* DSP_BOOT_CONFIG */ 1107 case 0x1c: /* DSP_MPUI_CONFIG */ 1108 break; 1109 1110 default: 1111 OMAP_BAD_REG(addr); 1112 } 1113 } 1114 1115 static const MemoryRegionOps omap_mpui_ops = { 1116 .read = omap_mpui_read, 1117 .write = omap_mpui_write, 1118 .endianness = DEVICE_NATIVE_ENDIAN, 1119 }; 1120 1121 static void omap_mpui_reset(struct omap_mpu_state_s *s) 1122 { 1123 s->mpui_ctrl = 0x0003ff1b; 1124 } 1125 1126 static void omap_mpui_init(MemoryRegion *memory, hwaddr base, 1127 struct omap_mpu_state_s *mpu) 1128 { 1129 memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu, 1130 "omap-mpui", 0x100); 1131 memory_region_add_subregion(memory, base, &mpu->mpui_iomem); 1132 1133 omap_mpui_reset(mpu); 1134 } 1135 1136 /* TIPB Bridges */ 1137 struct omap_tipb_bridge_s { 1138 qemu_irq abort; 1139 MemoryRegion iomem; 1140 1141 int width_intr; 1142 uint16_t control; 1143 uint16_t alloc; 1144 uint16_t buffer; 1145 uint16_t enh_control; 1146 }; 1147 1148 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr, 1149 unsigned size) 1150 { 1151 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque; 1152 1153 if (size < 2) { 1154 return omap_badwidth_read16(opaque, addr); 1155 } 1156 1157 switch (addr) { 1158 case 0x00: /* TIPB_CNTL */ 1159 return s->control; 1160 case 0x04: /* TIPB_BUS_ALLOC */ 1161 return s->alloc; 1162 case 0x08: /* MPU_TIPB_CNTL */ 1163 return s->buffer; 1164 case 0x0c: /* ENHANCED_TIPB_CNTL */ 1165 return s->enh_control; 1166 case 0x10: /* ADDRESS_DBG */ 1167 case 0x14: /* DATA_DEBUG_LOW */ 1168 case 0x18: /* DATA_DEBUG_HIGH */ 1169 return 0xffff; 1170 case 0x1c: /* DEBUG_CNTR_SIG */ 1171 return 0x00f8; 1172 } 1173 1174 OMAP_BAD_REG(addr); 1175 return 0; 1176 } 1177 1178 static void omap_tipb_bridge_write(void *opaque, hwaddr addr, 1179 uint64_t value, unsigned size) 1180 { 1181 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque; 1182 1183 if (size < 2) { 1184 omap_badwidth_write16(opaque, addr, value); 1185 return; 1186 } 1187 1188 switch (addr) { 1189 case 0x00: /* TIPB_CNTL */ 1190 s->control = value & 0xffff; 1191 break; 1192 1193 case 0x04: /* TIPB_BUS_ALLOC */ 1194 s->alloc = value & 0x003f; 1195 break; 1196 1197 case 0x08: /* MPU_TIPB_CNTL */ 1198 s->buffer = value & 0x0003; 1199 break; 1200 1201 case 0x0c: /* ENHANCED_TIPB_CNTL */ 1202 s->width_intr = !(value & 2); 1203 s->enh_control = value & 0x000f; 1204 break; 1205 1206 case 0x10: /* ADDRESS_DBG */ 1207 case 0x14: /* DATA_DEBUG_LOW */ 1208 case 0x18: /* DATA_DEBUG_HIGH */ 1209 case 0x1c: /* DEBUG_CNTR_SIG */ 1210 OMAP_RO_REG(addr); 1211 break; 1212 1213 default: 1214 OMAP_BAD_REG(addr); 1215 } 1216 } 1217 1218 static const MemoryRegionOps omap_tipb_bridge_ops = { 1219 .read = omap_tipb_bridge_read, 1220 .write = omap_tipb_bridge_write, 1221 .endianness = DEVICE_NATIVE_ENDIAN, 1222 }; 1223 1224 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s) 1225 { 1226 s->control = 0xffff; 1227 s->alloc = 0x0009; 1228 s->buffer = 0x0000; 1229 s->enh_control = 0x000f; 1230 } 1231 1232 static struct omap_tipb_bridge_s *omap_tipb_bridge_init( 1233 MemoryRegion *memory, hwaddr base, 1234 qemu_irq abort_irq, omap_clk clk) 1235 { 1236 struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1); 1237 1238 s->abort = abort_irq; 1239 omap_tipb_bridge_reset(s); 1240 1241 memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s, 1242 "omap-tipb-bridge", 0x100); 1243 memory_region_add_subregion(memory, base, &s->iomem); 1244 1245 return s; 1246 } 1247 1248 /* Dummy Traffic Controller's Memory Interface */ 1249 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr, 1250 unsigned size) 1251 { 1252 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; 1253 uint32_t ret; 1254 1255 if (size != 4) { 1256 return omap_badwidth_read32(opaque, addr); 1257 } 1258 1259 switch (addr) { 1260 case 0x00: /* IMIF_PRIO */ 1261 case 0x04: /* EMIFS_PRIO */ 1262 case 0x08: /* EMIFF_PRIO */ 1263 case 0x0c: /* EMIFS_CONFIG */ 1264 case 0x10: /* EMIFS_CS0_CONFIG */ 1265 case 0x14: /* EMIFS_CS1_CONFIG */ 1266 case 0x18: /* EMIFS_CS2_CONFIG */ 1267 case 0x1c: /* EMIFS_CS3_CONFIG */ 1268 case 0x24: /* EMIFF_MRS */ 1269 case 0x28: /* TIMEOUT1 */ 1270 case 0x2c: /* TIMEOUT2 */ 1271 case 0x30: /* TIMEOUT3 */ 1272 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */ 1273 case 0x40: /* EMIFS_CFG_DYN_WAIT */ 1274 return s->tcmi_regs[addr >> 2]; 1275 1276 case 0x20: /* EMIFF_SDRAM_CONFIG */ 1277 ret = s->tcmi_regs[addr >> 2]; 1278 s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */ 1279 /* XXX: We can try using the VGA_DIRTY flag for this */ 1280 return ret; 1281 } 1282 1283 OMAP_BAD_REG(addr); 1284 return 0; 1285 } 1286 1287 static void omap_tcmi_write(void *opaque, hwaddr addr, 1288 uint64_t value, unsigned size) 1289 { 1290 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; 1291 1292 if (size != 4) { 1293 omap_badwidth_write32(opaque, addr, value); 1294 return; 1295 } 1296 1297 switch (addr) { 1298 case 0x00: /* IMIF_PRIO */ 1299 case 0x04: /* EMIFS_PRIO */ 1300 case 0x08: /* EMIFF_PRIO */ 1301 case 0x10: /* EMIFS_CS0_CONFIG */ 1302 case 0x14: /* EMIFS_CS1_CONFIG */ 1303 case 0x18: /* EMIFS_CS2_CONFIG */ 1304 case 0x1c: /* EMIFS_CS3_CONFIG */ 1305 case 0x20: /* EMIFF_SDRAM_CONFIG */ 1306 case 0x24: /* EMIFF_MRS */ 1307 case 0x28: /* TIMEOUT1 */ 1308 case 0x2c: /* TIMEOUT2 */ 1309 case 0x30: /* TIMEOUT3 */ 1310 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */ 1311 case 0x40: /* EMIFS_CFG_DYN_WAIT */ 1312 s->tcmi_regs[addr >> 2] = value; 1313 break; 1314 case 0x0c: /* EMIFS_CONFIG */ 1315 s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4); 1316 break; 1317 1318 default: 1319 OMAP_BAD_REG(addr); 1320 } 1321 } 1322 1323 static const MemoryRegionOps omap_tcmi_ops = { 1324 .read = omap_tcmi_read, 1325 .write = omap_tcmi_write, 1326 .endianness = DEVICE_NATIVE_ENDIAN, 1327 }; 1328 1329 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu) 1330 { 1331 mpu->tcmi_regs[0x00 >> 2] = 0x00000000; 1332 mpu->tcmi_regs[0x04 >> 2] = 0x00000000; 1333 mpu->tcmi_regs[0x08 >> 2] = 0x00000000; 1334 mpu->tcmi_regs[0x0c >> 2] = 0x00000010; 1335 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb; 1336 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb; 1337 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb; 1338 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb; 1339 mpu->tcmi_regs[0x20 >> 2] = 0x00618800; 1340 mpu->tcmi_regs[0x24 >> 2] = 0x00000037; 1341 mpu->tcmi_regs[0x28 >> 2] = 0x00000000; 1342 mpu->tcmi_regs[0x2c >> 2] = 0x00000000; 1343 mpu->tcmi_regs[0x30 >> 2] = 0x00000000; 1344 mpu->tcmi_regs[0x3c >> 2] = 0x00000003; 1345 mpu->tcmi_regs[0x40 >> 2] = 0x00000000; 1346 } 1347 1348 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base, 1349 struct omap_mpu_state_s *mpu) 1350 { 1351 memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu, 1352 "omap-tcmi", 0x100); 1353 memory_region_add_subregion(memory, base, &mpu->tcmi_iomem); 1354 omap_tcmi_reset(mpu); 1355 } 1356 1357 /* Digital phase-locked loops control */ 1358 struct dpll_ctl_s { 1359 MemoryRegion iomem; 1360 uint16_t mode; 1361 omap_clk dpll; 1362 }; 1363 1364 static uint64_t omap_dpll_read(void *opaque, hwaddr addr, 1365 unsigned size) 1366 { 1367 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque; 1368 1369 if (size != 2) { 1370 return omap_badwidth_read16(opaque, addr); 1371 } 1372 1373 if (addr == 0x00) /* CTL_REG */ 1374 return s->mode; 1375 1376 OMAP_BAD_REG(addr); 1377 return 0; 1378 } 1379 1380 static void omap_dpll_write(void *opaque, hwaddr addr, 1381 uint64_t value, unsigned size) 1382 { 1383 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque; 1384 uint16_t diff; 1385 static const int bypass_div[4] = { 1, 2, 4, 4 }; 1386 int div, mult; 1387 1388 if (size != 2) { 1389 omap_badwidth_write16(opaque, addr, value); 1390 return; 1391 } 1392 1393 if (addr == 0x00) { /* CTL_REG */ 1394 /* See omap_ulpd_pm_write() too */ 1395 diff = s->mode & value; 1396 s->mode = value & 0x2fff; 1397 if (diff & (0x3ff << 2)) { 1398 if (value & (1 << 4)) { /* PLL_ENABLE */ 1399 div = ((value >> 5) & 3) + 1; /* PLL_DIV */ 1400 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */ 1401 } else { 1402 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */ 1403 mult = 1; 1404 } 1405 omap_clk_setrate(s->dpll, div, mult); 1406 } 1407 1408 /* Enter the desired mode. */ 1409 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1); 1410 1411 /* Act as if the lock is restored. */ 1412 s->mode |= 2; 1413 } else { 1414 OMAP_BAD_REG(addr); 1415 } 1416 } 1417 1418 static const MemoryRegionOps omap_dpll_ops = { 1419 .read = omap_dpll_read, 1420 .write = omap_dpll_write, 1421 .endianness = DEVICE_NATIVE_ENDIAN, 1422 }; 1423 1424 static void omap_dpll_reset(struct dpll_ctl_s *s) 1425 { 1426 s->mode = 0x2002; 1427 omap_clk_setrate(s->dpll, 1, 1); 1428 } 1429 1430 static struct dpll_ctl_s *omap_dpll_init(MemoryRegion *memory, 1431 hwaddr base, omap_clk clk) 1432 { 1433 struct dpll_ctl_s *s = g_malloc0(sizeof(*s)); 1434 memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100); 1435 1436 s->dpll = clk; 1437 omap_dpll_reset(s); 1438 1439 memory_region_add_subregion(memory, base, &s->iomem); 1440 return s; 1441 } 1442 1443 /* MPU Clock/Reset/Power Mode Control */ 1444 static uint64_t omap_clkm_read(void *opaque, hwaddr addr, 1445 unsigned size) 1446 { 1447 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; 1448 1449 if (size != 2) { 1450 return omap_badwidth_read16(opaque, addr); 1451 } 1452 1453 switch (addr) { 1454 case 0x00: /* ARM_CKCTL */ 1455 return s->clkm.arm_ckctl; 1456 1457 case 0x04: /* ARM_IDLECT1 */ 1458 return s->clkm.arm_idlect1; 1459 1460 case 0x08: /* ARM_IDLECT2 */ 1461 return s->clkm.arm_idlect2; 1462 1463 case 0x0c: /* ARM_EWUPCT */ 1464 return s->clkm.arm_ewupct; 1465 1466 case 0x10: /* ARM_RSTCT1 */ 1467 return s->clkm.arm_rstct1; 1468 1469 case 0x14: /* ARM_RSTCT2 */ 1470 return s->clkm.arm_rstct2; 1471 1472 case 0x18: /* ARM_SYSST */ 1473 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start; 1474 1475 case 0x1c: /* ARM_CKOUT1 */ 1476 return s->clkm.arm_ckout1; 1477 1478 case 0x20: /* ARM_CKOUT2 */ 1479 break; 1480 } 1481 1482 OMAP_BAD_REG(addr); 1483 return 0; 1484 } 1485 1486 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s, 1487 uint16_t diff, uint16_t value) 1488 { 1489 omap_clk clk; 1490 1491 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */ 1492 if (value & (1 << 14)) 1493 /* Reserved */; 1494 else { 1495 clk = omap_findclk(s, "arminth_ck"); 1496 omap_clk_reparent(clk, omap_findclk(s, "tc_ck")); 1497 } 1498 } 1499 if (diff & (1 << 12)) { /* ARM_TIMXO */ 1500 clk = omap_findclk(s, "armtim_ck"); 1501 if (value & (1 << 12)) 1502 omap_clk_reparent(clk, omap_findclk(s, "clkin")); 1503 else 1504 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1")); 1505 } 1506 /* XXX: en_dspck */ 1507 if (diff & (3 << 10)) { /* DSPMMUDIV */ 1508 clk = omap_findclk(s, "dspmmu_ck"); 1509 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1); 1510 } 1511 if (diff & (3 << 8)) { /* TCDIV */ 1512 clk = omap_findclk(s, "tc_ck"); 1513 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1); 1514 } 1515 if (diff & (3 << 6)) { /* DSPDIV */ 1516 clk = omap_findclk(s, "dsp_ck"); 1517 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1); 1518 } 1519 if (diff & (3 << 4)) { /* ARMDIV */ 1520 clk = omap_findclk(s, "arm_ck"); 1521 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1); 1522 } 1523 if (diff & (3 << 2)) { /* LCDDIV */ 1524 clk = omap_findclk(s, "lcd_ck"); 1525 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1); 1526 } 1527 if (diff & (3 << 0)) { /* PERDIV */ 1528 clk = omap_findclk(s, "armper_ck"); 1529 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1); 1530 } 1531 } 1532 1533 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s, 1534 uint16_t diff, uint16_t value) 1535 { 1536 omap_clk clk; 1537 1538 if (value & (1 << 11)) { /* SETARM_IDLE */ 1539 cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT); 1540 } 1541 if (!(value & (1 << 10))) /* WKUP_MODE */ 1542 qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */ 1543 1544 #define SET_CANIDLE(clock, bit) \ 1545 if (diff & (1 << bit)) { \ 1546 clk = omap_findclk(s, clock); \ 1547 omap_clk_canidle(clk, (value >> bit) & 1); \ 1548 } 1549 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */ 1550 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */ 1551 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */ 1552 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */ 1553 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */ 1554 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */ 1555 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */ 1556 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */ 1557 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */ 1558 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */ 1559 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */ 1560 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */ 1561 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */ 1562 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */ 1563 } 1564 1565 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s, 1566 uint16_t diff, uint16_t value) 1567 { 1568 omap_clk clk; 1569 1570 #define SET_ONOFF(clock, bit) \ 1571 if (diff & (1 << bit)) { \ 1572 clk = omap_findclk(s, clock); \ 1573 omap_clk_onoff(clk, (value >> bit) & 1); \ 1574 } 1575 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */ 1576 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */ 1577 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */ 1578 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */ 1579 SET_ONOFF("lb_ck", 4) /* EN_LBCK */ 1580 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */ 1581 SET_ONOFF("mpui_ck", 6) /* EN_APICK */ 1582 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */ 1583 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */ 1584 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */ 1585 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */ 1586 } 1587 1588 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s, 1589 uint16_t diff, uint16_t value) 1590 { 1591 omap_clk clk; 1592 1593 if (diff & (3 << 4)) { /* TCLKOUT */ 1594 clk = omap_findclk(s, "tclk_out"); 1595 switch ((value >> 4) & 3) { 1596 case 1: 1597 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3")); 1598 omap_clk_onoff(clk, 1); 1599 break; 1600 case 2: 1601 omap_clk_reparent(clk, omap_findclk(s, "tc_ck")); 1602 omap_clk_onoff(clk, 1); 1603 break; 1604 default: 1605 omap_clk_onoff(clk, 0); 1606 } 1607 } 1608 if (diff & (3 << 2)) { /* DCLKOUT */ 1609 clk = omap_findclk(s, "dclk_out"); 1610 switch ((value >> 2) & 3) { 1611 case 0: 1612 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck")); 1613 break; 1614 case 1: 1615 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2")); 1616 break; 1617 case 2: 1618 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck")); 1619 break; 1620 case 3: 1621 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14")); 1622 break; 1623 } 1624 } 1625 if (diff & (3 << 0)) { /* ACLKOUT */ 1626 clk = omap_findclk(s, "aclk_out"); 1627 switch ((value >> 0) & 3) { 1628 case 1: 1629 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1")); 1630 omap_clk_onoff(clk, 1); 1631 break; 1632 case 2: 1633 omap_clk_reparent(clk, omap_findclk(s, "arm_ck")); 1634 omap_clk_onoff(clk, 1); 1635 break; 1636 case 3: 1637 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14")); 1638 omap_clk_onoff(clk, 1); 1639 break; 1640 default: 1641 omap_clk_onoff(clk, 0); 1642 } 1643 } 1644 } 1645 1646 static void omap_clkm_write(void *opaque, hwaddr addr, 1647 uint64_t value, unsigned size) 1648 { 1649 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; 1650 uint16_t diff; 1651 omap_clk clk; 1652 static const char *clkschemename[8] = { 1653 "fully synchronous", "fully asynchronous", "synchronous scalable", 1654 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4", 1655 }; 1656 1657 if (size != 2) { 1658 omap_badwidth_write16(opaque, addr, value); 1659 return; 1660 } 1661 1662 switch (addr) { 1663 case 0x00: /* ARM_CKCTL */ 1664 diff = s->clkm.arm_ckctl ^ value; 1665 s->clkm.arm_ckctl = value & 0x7fff; 1666 omap_clkm_ckctl_update(s, diff, value); 1667 return; 1668 1669 case 0x04: /* ARM_IDLECT1 */ 1670 diff = s->clkm.arm_idlect1 ^ value; 1671 s->clkm.arm_idlect1 = value & 0x0fff; 1672 omap_clkm_idlect1_update(s, diff, value); 1673 return; 1674 1675 case 0x08: /* ARM_IDLECT2 */ 1676 diff = s->clkm.arm_idlect2 ^ value; 1677 s->clkm.arm_idlect2 = value & 0x07ff; 1678 omap_clkm_idlect2_update(s, diff, value); 1679 return; 1680 1681 case 0x0c: /* ARM_EWUPCT */ 1682 s->clkm.arm_ewupct = value & 0x003f; 1683 return; 1684 1685 case 0x10: /* ARM_RSTCT1 */ 1686 diff = s->clkm.arm_rstct1 ^ value; 1687 s->clkm.arm_rstct1 = value & 0x0007; 1688 if (value & 9) { 1689 qemu_system_reset_request(); 1690 s->clkm.cold_start = 0xa; 1691 } 1692 if (diff & ~value & 4) { /* DSP_RST */ 1693 omap_mpui_reset(s); 1694 omap_tipb_bridge_reset(s->private_tipb); 1695 omap_tipb_bridge_reset(s->public_tipb); 1696 } 1697 if (diff & 2) { /* DSP_EN */ 1698 clk = omap_findclk(s, "dsp_ck"); 1699 omap_clk_canidle(clk, (~value >> 1) & 1); 1700 } 1701 return; 1702 1703 case 0x14: /* ARM_RSTCT2 */ 1704 s->clkm.arm_rstct2 = value & 0x0001; 1705 return; 1706 1707 case 0x18: /* ARM_SYSST */ 1708 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) { 1709 s->clkm.clocking_scheme = (value >> 11) & 7; 1710 printf("%s: clocking scheme set to %s\n", __FUNCTION__, 1711 clkschemename[s->clkm.clocking_scheme]); 1712 } 1713 s->clkm.cold_start &= value & 0x3f; 1714 return; 1715 1716 case 0x1c: /* ARM_CKOUT1 */ 1717 diff = s->clkm.arm_ckout1 ^ value; 1718 s->clkm.arm_ckout1 = value & 0x003f; 1719 omap_clkm_ckout1_update(s, diff, value); 1720 return; 1721 1722 case 0x20: /* ARM_CKOUT2 */ 1723 default: 1724 OMAP_BAD_REG(addr); 1725 } 1726 } 1727 1728 static const MemoryRegionOps omap_clkm_ops = { 1729 .read = omap_clkm_read, 1730 .write = omap_clkm_write, 1731 .endianness = DEVICE_NATIVE_ENDIAN, 1732 }; 1733 1734 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr, 1735 unsigned size) 1736 { 1737 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; 1738 CPUState *cpu = CPU(s->cpu); 1739 1740 if (size != 2) { 1741 return omap_badwidth_read16(opaque, addr); 1742 } 1743 1744 switch (addr) { 1745 case 0x04: /* DSP_IDLECT1 */ 1746 return s->clkm.dsp_idlect1; 1747 1748 case 0x08: /* DSP_IDLECT2 */ 1749 return s->clkm.dsp_idlect2; 1750 1751 case 0x14: /* DSP_RSTCT2 */ 1752 return s->clkm.dsp_rstct2; 1753 1754 case 0x18: /* DSP_SYSST */ 1755 cpu = CPU(s->cpu); 1756 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start | 1757 (cpu->halted << 6); /* Quite useless... */ 1758 } 1759 1760 OMAP_BAD_REG(addr); 1761 return 0; 1762 } 1763 1764 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s, 1765 uint16_t diff, uint16_t value) 1766 { 1767 omap_clk clk; 1768 1769 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */ 1770 } 1771 1772 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s, 1773 uint16_t diff, uint16_t value) 1774 { 1775 omap_clk clk; 1776 1777 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */ 1778 } 1779 1780 static void omap_clkdsp_write(void *opaque, hwaddr addr, 1781 uint64_t value, unsigned size) 1782 { 1783 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; 1784 uint16_t diff; 1785 1786 if (size != 2) { 1787 omap_badwidth_write16(opaque, addr, value); 1788 return; 1789 } 1790 1791 switch (addr) { 1792 case 0x04: /* DSP_IDLECT1 */ 1793 diff = s->clkm.dsp_idlect1 ^ value; 1794 s->clkm.dsp_idlect1 = value & 0x01f7; 1795 omap_clkdsp_idlect1_update(s, diff, value); 1796 break; 1797 1798 case 0x08: /* DSP_IDLECT2 */ 1799 s->clkm.dsp_idlect2 = value & 0x0037; 1800 diff = s->clkm.dsp_idlect1 ^ value; 1801 omap_clkdsp_idlect2_update(s, diff, value); 1802 break; 1803 1804 case 0x14: /* DSP_RSTCT2 */ 1805 s->clkm.dsp_rstct2 = value & 0x0001; 1806 break; 1807 1808 case 0x18: /* DSP_SYSST */ 1809 s->clkm.cold_start &= value & 0x3f; 1810 break; 1811 1812 default: 1813 OMAP_BAD_REG(addr); 1814 } 1815 } 1816 1817 static const MemoryRegionOps omap_clkdsp_ops = { 1818 .read = omap_clkdsp_read, 1819 .write = omap_clkdsp_write, 1820 .endianness = DEVICE_NATIVE_ENDIAN, 1821 }; 1822 1823 static void omap_clkm_reset(struct omap_mpu_state_s *s) 1824 { 1825 if (s->wdt && s->wdt->reset) 1826 s->clkm.cold_start = 0x6; 1827 s->clkm.clocking_scheme = 0; 1828 omap_clkm_ckctl_update(s, ~0, 0x3000); 1829 s->clkm.arm_ckctl = 0x3000; 1830 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400); 1831 s->clkm.arm_idlect1 = 0x0400; 1832 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100); 1833 s->clkm.arm_idlect2 = 0x0100; 1834 s->clkm.arm_ewupct = 0x003f; 1835 s->clkm.arm_rstct1 = 0x0000; 1836 s->clkm.arm_rstct2 = 0x0000; 1837 s->clkm.arm_ckout1 = 0x0015; 1838 s->clkm.dpll1_mode = 0x2002; 1839 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040); 1840 s->clkm.dsp_idlect1 = 0x0040; 1841 omap_clkdsp_idlect2_update(s, ~0, 0x0000); 1842 s->clkm.dsp_idlect2 = 0x0000; 1843 s->clkm.dsp_rstct2 = 0x0000; 1844 } 1845 1846 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base, 1847 hwaddr dsp_base, struct omap_mpu_state_s *s) 1848 { 1849 memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s, 1850 "omap-clkm", 0x100); 1851 memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s, 1852 "omap-clkdsp", 0x1000); 1853 1854 s->clkm.arm_idlect1 = 0x03ff; 1855 s->clkm.arm_idlect2 = 0x0100; 1856 s->clkm.dsp_idlect1 = 0x0002; 1857 omap_clkm_reset(s); 1858 s->clkm.cold_start = 0x3a; 1859 1860 memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem); 1861 memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem); 1862 } 1863 1864 /* MPU I/O */ 1865 struct omap_mpuio_s { 1866 qemu_irq irq; 1867 qemu_irq kbd_irq; 1868 qemu_irq *in; 1869 qemu_irq handler[16]; 1870 qemu_irq wakeup; 1871 MemoryRegion iomem; 1872 1873 uint16_t inputs; 1874 uint16_t outputs; 1875 uint16_t dir; 1876 uint16_t edge; 1877 uint16_t mask; 1878 uint16_t ints; 1879 1880 uint16_t debounce; 1881 uint16_t latch; 1882 uint8_t event; 1883 1884 uint8_t buttons[5]; 1885 uint8_t row_latch; 1886 uint8_t cols; 1887 int kbd_mask; 1888 int clk; 1889 }; 1890 1891 static void omap_mpuio_set(void *opaque, int line, int level) 1892 { 1893 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque; 1894 uint16_t prev = s->inputs; 1895 1896 if (level) 1897 s->inputs |= 1 << line; 1898 else 1899 s->inputs &= ~(1 << line); 1900 1901 if (((1 << line) & s->dir & ~s->mask) && s->clk) { 1902 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) { 1903 s->ints |= 1 << line; 1904 qemu_irq_raise(s->irq); 1905 /* TODO: wakeup */ 1906 } 1907 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */ 1908 (s->event >> 1) == line) /* PIN_SELECT */ 1909 s->latch = s->inputs; 1910 } 1911 } 1912 1913 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s) 1914 { 1915 int i; 1916 uint8_t *row, rows = 0, cols = ~s->cols; 1917 1918 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1) 1919 if (*row & cols) 1920 rows |= i; 1921 1922 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk); 1923 s->row_latch = ~rows; 1924 } 1925 1926 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr, 1927 unsigned size) 1928 { 1929 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque; 1930 int offset = addr & OMAP_MPUI_REG_MASK; 1931 uint16_t ret; 1932 1933 if (size != 2) { 1934 return omap_badwidth_read16(opaque, addr); 1935 } 1936 1937 switch (offset) { 1938 case 0x00: /* INPUT_LATCH */ 1939 return s->inputs; 1940 1941 case 0x04: /* OUTPUT_REG */ 1942 return s->outputs; 1943 1944 case 0x08: /* IO_CNTL */ 1945 return s->dir; 1946 1947 case 0x10: /* KBR_LATCH */ 1948 return s->row_latch; 1949 1950 case 0x14: /* KBC_REG */ 1951 return s->cols; 1952 1953 case 0x18: /* GPIO_EVENT_MODE_REG */ 1954 return s->event; 1955 1956 case 0x1c: /* GPIO_INT_EDGE_REG */ 1957 return s->edge; 1958 1959 case 0x20: /* KBD_INT */ 1960 return (~s->row_latch & 0x1f) && !s->kbd_mask; 1961 1962 case 0x24: /* GPIO_INT */ 1963 ret = s->ints; 1964 s->ints &= s->mask; 1965 if (ret) 1966 qemu_irq_lower(s->irq); 1967 return ret; 1968 1969 case 0x28: /* KBD_MASKIT */ 1970 return s->kbd_mask; 1971 1972 case 0x2c: /* GPIO_MASKIT */ 1973 return s->mask; 1974 1975 case 0x30: /* GPIO_DEBOUNCING_REG */ 1976 return s->debounce; 1977 1978 case 0x34: /* GPIO_LATCH_REG */ 1979 return s->latch; 1980 } 1981 1982 OMAP_BAD_REG(addr); 1983 return 0; 1984 } 1985 1986 static void omap_mpuio_write(void *opaque, hwaddr addr, 1987 uint64_t value, unsigned size) 1988 { 1989 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque; 1990 int offset = addr & OMAP_MPUI_REG_MASK; 1991 uint16_t diff; 1992 int ln; 1993 1994 if (size != 2) { 1995 omap_badwidth_write16(opaque, addr, value); 1996 return; 1997 } 1998 1999 switch (offset) { 2000 case 0x04: /* OUTPUT_REG */ 2001 diff = (s->outputs ^ value) & ~s->dir; 2002 s->outputs = value; 2003 while ((ln = ctz32(diff)) != 32) { 2004 if (s->handler[ln]) 2005 qemu_set_irq(s->handler[ln], (value >> ln) & 1); 2006 diff &= ~(1 << ln); 2007 } 2008 break; 2009 2010 case 0x08: /* IO_CNTL */ 2011 diff = s->outputs & (s->dir ^ value); 2012 s->dir = value; 2013 2014 value = s->outputs & ~s->dir; 2015 while ((ln = ctz32(diff)) != 32) { 2016 if (s->handler[ln]) 2017 qemu_set_irq(s->handler[ln], (value >> ln) & 1); 2018 diff &= ~(1 << ln); 2019 } 2020 break; 2021 2022 case 0x14: /* KBC_REG */ 2023 s->cols = value; 2024 omap_mpuio_kbd_update(s); 2025 break; 2026 2027 case 0x18: /* GPIO_EVENT_MODE_REG */ 2028 s->event = value & 0x1f; 2029 break; 2030 2031 case 0x1c: /* GPIO_INT_EDGE_REG */ 2032 s->edge = value; 2033 break; 2034 2035 case 0x28: /* KBD_MASKIT */ 2036 s->kbd_mask = value & 1; 2037 omap_mpuio_kbd_update(s); 2038 break; 2039 2040 case 0x2c: /* GPIO_MASKIT */ 2041 s->mask = value; 2042 break; 2043 2044 case 0x30: /* GPIO_DEBOUNCING_REG */ 2045 s->debounce = value & 0x1ff; 2046 break; 2047 2048 case 0x00: /* INPUT_LATCH */ 2049 case 0x10: /* KBR_LATCH */ 2050 case 0x20: /* KBD_INT */ 2051 case 0x24: /* GPIO_INT */ 2052 case 0x34: /* GPIO_LATCH_REG */ 2053 OMAP_RO_REG(addr); 2054 return; 2055 2056 default: 2057 OMAP_BAD_REG(addr); 2058 return; 2059 } 2060 } 2061 2062 static const MemoryRegionOps omap_mpuio_ops = { 2063 .read = omap_mpuio_read, 2064 .write = omap_mpuio_write, 2065 .endianness = DEVICE_NATIVE_ENDIAN, 2066 }; 2067 2068 static void omap_mpuio_reset(struct omap_mpuio_s *s) 2069 { 2070 s->inputs = 0; 2071 s->outputs = 0; 2072 s->dir = ~0; 2073 s->event = 0; 2074 s->edge = 0; 2075 s->kbd_mask = 0; 2076 s->mask = 0; 2077 s->debounce = 0; 2078 s->latch = 0; 2079 s->ints = 0; 2080 s->row_latch = 0x1f; 2081 s->clk = 1; 2082 } 2083 2084 static void omap_mpuio_onoff(void *opaque, int line, int on) 2085 { 2086 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque; 2087 2088 s->clk = on; 2089 if (on) 2090 omap_mpuio_kbd_update(s); 2091 } 2092 2093 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory, 2094 hwaddr base, 2095 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup, 2096 omap_clk clk) 2097 { 2098 struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1); 2099 2100 s->irq = gpio_int; 2101 s->kbd_irq = kbd_int; 2102 s->wakeup = wakeup; 2103 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16); 2104 omap_mpuio_reset(s); 2105 2106 memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s, 2107 "omap-mpuio", 0x800); 2108 memory_region_add_subregion(memory, base, &s->iomem); 2109 2110 omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0)); 2111 2112 return s; 2113 } 2114 2115 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s) 2116 { 2117 return s->in; 2118 } 2119 2120 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler) 2121 { 2122 if (line >= 16 || line < 0) 2123 hw_error("%s: No GPIO line %i\n", __FUNCTION__, line); 2124 s->handler[line] = handler; 2125 } 2126 2127 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down) 2128 { 2129 if (row >= 5 || row < 0) 2130 hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row); 2131 2132 if (down) 2133 s->buttons[row] |= 1 << col; 2134 else 2135 s->buttons[row] &= ~(1 << col); 2136 2137 omap_mpuio_kbd_update(s); 2138 } 2139 2140 /* MicroWire Interface */ 2141 struct omap_uwire_s { 2142 MemoryRegion iomem; 2143 qemu_irq txirq; 2144 qemu_irq rxirq; 2145 qemu_irq txdrq; 2146 2147 uint16_t txbuf; 2148 uint16_t rxbuf; 2149 uint16_t control; 2150 uint16_t setup[5]; 2151 2152 uWireSlave *chip[4]; 2153 }; 2154 2155 static void omap_uwire_transfer_start(struct omap_uwire_s *s) 2156 { 2157 int chipselect = (s->control >> 10) & 3; /* INDEX */ 2158 uWireSlave *slave = s->chip[chipselect]; 2159 2160 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */ 2161 if (s->control & (1 << 12)) /* CS_CMD */ 2162 if (slave && slave->send) 2163 slave->send(slave->opaque, 2164 s->txbuf >> (16 - ((s->control >> 5) & 0x1f))); 2165 s->control &= ~(1 << 14); /* CSRB */ 2166 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or 2167 * a DRQ. When is the level IRQ supposed to be reset? */ 2168 } 2169 2170 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */ 2171 if (s->control & (1 << 12)) /* CS_CMD */ 2172 if (slave && slave->receive) 2173 s->rxbuf = slave->receive(slave->opaque); 2174 s->control |= 1 << 15; /* RDRB */ 2175 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or 2176 * a DRQ. When is the level IRQ supposed to be reset? */ 2177 } 2178 } 2179 2180 static uint64_t omap_uwire_read(void *opaque, hwaddr addr, 2181 unsigned size) 2182 { 2183 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque; 2184 int offset = addr & OMAP_MPUI_REG_MASK; 2185 2186 if (size != 2) { 2187 return omap_badwidth_read16(opaque, addr); 2188 } 2189 2190 switch (offset) { 2191 case 0x00: /* RDR */ 2192 s->control &= ~(1 << 15); /* RDRB */ 2193 return s->rxbuf; 2194 2195 case 0x04: /* CSR */ 2196 return s->control; 2197 2198 case 0x08: /* SR1 */ 2199 return s->setup[0]; 2200 case 0x0c: /* SR2 */ 2201 return s->setup[1]; 2202 case 0x10: /* SR3 */ 2203 return s->setup[2]; 2204 case 0x14: /* SR4 */ 2205 return s->setup[3]; 2206 case 0x18: /* SR5 */ 2207 return s->setup[4]; 2208 } 2209 2210 OMAP_BAD_REG(addr); 2211 return 0; 2212 } 2213 2214 static void omap_uwire_write(void *opaque, hwaddr addr, 2215 uint64_t value, unsigned size) 2216 { 2217 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque; 2218 int offset = addr & OMAP_MPUI_REG_MASK; 2219 2220 if (size != 2) { 2221 omap_badwidth_write16(opaque, addr, value); 2222 return; 2223 } 2224 2225 switch (offset) { 2226 case 0x00: /* TDR */ 2227 s->txbuf = value; /* TD */ 2228 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */ 2229 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */ 2230 (s->control & (1 << 12)))) { /* CS_CMD */ 2231 s->control |= 1 << 14; /* CSRB */ 2232 omap_uwire_transfer_start(s); 2233 } 2234 break; 2235 2236 case 0x04: /* CSR */ 2237 s->control = value & 0x1fff; 2238 if (value & (1 << 13)) /* START */ 2239 omap_uwire_transfer_start(s); 2240 break; 2241 2242 case 0x08: /* SR1 */ 2243 s->setup[0] = value & 0x003f; 2244 break; 2245 2246 case 0x0c: /* SR2 */ 2247 s->setup[1] = value & 0x0fc0; 2248 break; 2249 2250 case 0x10: /* SR3 */ 2251 s->setup[2] = value & 0x0003; 2252 break; 2253 2254 case 0x14: /* SR4 */ 2255 s->setup[3] = value & 0x0001; 2256 break; 2257 2258 case 0x18: /* SR5 */ 2259 s->setup[4] = value & 0x000f; 2260 break; 2261 2262 default: 2263 OMAP_BAD_REG(addr); 2264 return; 2265 } 2266 } 2267 2268 static const MemoryRegionOps omap_uwire_ops = { 2269 .read = omap_uwire_read, 2270 .write = omap_uwire_write, 2271 .endianness = DEVICE_NATIVE_ENDIAN, 2272 }; 2273 2274 static void omap_uwire_reset(struct omap_uwire_s *s) 2275 { 2276 s->control = 0; 2277 s->setup[0] = 0; 2278 s->setup[1] = 0; 2279 s->setup[2] = 0; 2280 s->setup[3] = 0; 2281 s->setup[4] = 0; 2282 } 2283 2284 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory, 2285 hwaddr base, 2286 qemu_irq txirq, qemu_irq rxirq, 2287 qemu_irq dma, 2288 omap_clk clk) 2289 { 2290 struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1); 2291 2292 s->txirq = txirq; 2293 s->rxirq = rxirq; 2294 s->txdrq = dma; 2295 omap_uwire_reset(s); 2296 2297 memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800); 2298 memory_region_add_subregion(system_memory, base, &s->iomem); 2299 2300 return s; 2301 } 2302 2303 void omap_uwire_attach(struct omap_uwire_s *s, 2304 uWireSlave *slave, int chipselect) 2305 { 2306 if (chipselect < 0 || chipselect > 3) { 2307 fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect); 2308 exit(-1); 2309 } 2310 2311 s->chip[chipselect] = slave; 2312 } 2313 2314 /* Pseudonoise Pulse-Width Light Modulator */ 2315 struct omap_pwl_s { 2316 MemoryRegion iomem; 2317 uint8_t output; 2318 uint8_t level; 2319 uint8_t enable; 2320 int clk; 2321 }; 2322 2323 static void omap_pwl_update(struct omap_pwl_s *s) 2324 { 2325 int output = (s->clk && s->enable) ? s->level : 0; 2326 2327 if (output != s->output) { 2328 s->output = output; 2329 printf("%s: Backlight now at %i/256\n", __FUNCTION__, output); 2330 } 2331 } 2332 2333 static uint64_t omap_pwl_read(void *opaque, hwaddr addr, 2334 unsigned size) 2335 { 2336 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque; 2337 int offset = addr & OMAP_MPUI_REG_MASK; 2338 2339 if (size != 1) { 2340 return omap_badwidth_read8(opaque, addr); 2341 } 2342 2343 switch (offset) { 2344 case 0x00: /* PWL_LEVEL */ 2345 return s->level; 2346 case 0x04: /* PWL_CTRL */ 2347 return s->enable; 2348 } 2349 OMAP_BAD_REG(addr); 2350 return 0; 2351 } 2352 2353 static void omap_pwl_write(void *opaque, hwaddr addr, 2354 uint64_t value, unsigned size) 2355 { 2356 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque; 2357 int offset = addr & OMAP_MPUI_REG_MASK; 2358 2359 if (size != 1) { 2360 omap_badwidth_write8(opaque, addr, value); 2361 return; 2362 } 2363 2364 switch (offset) { 2365 case 0x00: /* PWL_LEVEL */ 2366 s->level = value; 2367 omap_pwl_update(s); 2368 break; 2369 case 0x04: /* PWL_CTRL */ 2370 s->enable = value & 1; 2371 omap_pwl_update(s); 2372 break; 2373 default: 2374 OMAP_BAD_REG(addr); 2375 return; 2376 } 2377 } 2378 2379 static const MemoryRegionOps omap_pwl_ops = { 2380 .read = omap_pwl_read, 2381 .write = omap_pwl_write, 2382 .endianness = DEVICE_NATIVE_ENDIAN, 2383 }; 2384 2385 static void omap_pwl_reset(struct omap_pwl_s *s) 2386 { 2387 s->output = 0; 2388 s->level = 0; 2389 s->enable = 0; 2390 s->clk = 1; 2391 omap_pwl_update(s); 2392 } 2393 2394 static void omap_pwl_clk_update(void *opaque, int line, int on) 2395 { 2396 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque; 2397 2398 s->clk = on; 2399 omap_pwl_update(s); 2400 } 2401 2402 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory, 2403 hwaddr base, 2404 omap_clk clk) 2405 { 2406 struct omap_pwl_s *s = g_malloc0(sizeof(*s)); 2407 2408 omap_pwl_reset(s); 2409 2410 memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s, 2411 "omap-pwl", 0x800); 2412 memory_region_add_subregion(system_memory, base, &s->iomem); 2413 2414 omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0)); 2415 return s; 2416 } 2417 2418 /* Pulse-Width Tone module */ 2419 struct omap_pwt_s { 2420 MemoryRegion iomem; 2421 uint8_t frc; 2422 uint8_t vrc; 2423 uint8_t gcr; 2424 omap_clk clk; 2425 }; 2426 2427 static uint64_t omap_pwt_read(void *opaque, hwaddr addr, 2428 unsigned size) 2429 { 2430 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque; 2431 int offset = addr & OMAP_MPUI_REG_MASK; 2432 2433 if (size != 1) { 2434 return omap_badwidth_read8(opaque, addr); 2435 } 2436 2437 switch (offset) { 2438 case 0x00: /* FRC */ 2439 return s->frc; 2440 case 0x04: /* VCR */ 2441 return s->vrc; 2442 case 0x08: /* GCR */ 2443 return s->gcr; 2444 } 2445 OMAP_BAD_REG(addr); 2446 return 0; 2447 } 2448 2449 static void omap_pwt_write(void *opaque, hwaddr addr, 2450 uint64_t value, unsigned size) 2451 { 2452 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque; 2453 int offset = addr & OMAP_MPUI_REG_MASK; 2454 2455 if (size != 1) { 2456 omap_badwidth_write8(opaque, addr, value); 2457 return; 2458 } 2459 2460 switch (offset) { 2461 case 0x00: /* FRC */ 2462 s->frc = value & 0x3f; 2463 break; 2464 case 0x04: /* VRC */ 2465 if ((value ^ s->vrc) & 1) { 2466 if (value & 1) 2467 printf("%s: %iHz buzz on\n", __FUNCTION__, (int) 2468 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */ 2469 ((omap_clk_getrate(s->clk) >> 3) / 2470 /* Pre-multiplexer divider */ 2471 ((s->gcr & 2) ? 1 : 154) / 2472 /* Octave multiplexer */ 2473 (2 << (value & 3)) * 2474 /* 101/107 divider */ 2475 ((value & (1 << 2)) ? 101 : 107) * 2476 /* 49/55 divider */ 2477 ((value & (1 << 3)) ? 49 : 55) * 2478 /* 50/63 divider */ 2479 ((value & (1 << 4)) ? 50 : 63) * 2480 /* 80/127 divider */ 2481 ((value & (1 << 5)) ? 80 : 127) / 2482 (107 * 55 * 63 * 127))); 2483 else 2484 printf("%s: silence!\n", __FUNCTION__); 2485 } 2486 s->vrc = value & 0x7f; 2487 break; 2488 case 0x08: /* GCR */ 2489 s->gcr = value & 3; 2490 break; 2491 default: 2492 OMAP_BAD_REG(addr); 2493 return; 2494 } 2495 } 2496 2497 static const MemoryRegionOps omap_pwt_ops = { 2498 .read =omap_pwt_read, 2499 .write = omap_pwt_write, 2500 .endianness = DEVICE_NATIVE_ENDIAN, 2501 }; 2502 2503 static void omap_pwt_reset(struct omap_pwt_s *s) 2504 { 2505 s->frc = 0; 2506 s->vrc = 0; 2507 s->gcr = 0; 2508 } 2509 2510 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory, 2511 hwaddr base, 2512 omap_clk clk) 2513 { 2514 struct omap_pwt_s *s = g_malloc0(sizeof(*s)); 2515 s->clk = clk; 2516 omap_pwt_reset(s); 2517 2518 memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s, 2519 "omap-pwt", 0x800); 2520 memory_region_add_subregion(system_memory, base, &s->iomem); 2521 return s; 2522 } 2523 2524 /* Real-time Clock module */ 2525 struct omap_rtc_s { 2526 MemoryRegion iomem; 2527 qemu_irq irq; 2528 qemu_irq alarm; 2529 QEMUTimer *clk; 2530 2531 uint8_t interrupts; 2532 uint8_t status; 2533 int16_t comp_reg; 2534 int running; 2535 int pm_am; 2536 int auto_comp; 2537 int round; 2538 struct tm alarm_tm; 2539 time_t alarm_ti; 2540 2541 struct tm current_tm; 2542 time_t ti; 2543 uint64_t tick; 2544 }; 2545 2546 static void omap_rtc_interrupts_update(struct omap_rtc_s *s) 2547 { 2548 /* s->alarm is level-triggered */ 2549 qemu_set_irq(s->alarm, (s->status >> 6) & 1); 2550 } 2551 2552 static void omap_rtc_alarm_update(struct omap_rtc_s *s) 2553 { 2554 s->alarm_ti = mktimegm(&s->alarm_tm); 2555 if (s->alarm_ti == -1) 2556 printf("%s: conversion failed\n", __FUNCTION__); 2557 } 2558 2559 static uint64_t omap_rtc_read(void *opaque, hwaddr addr, 2560 unsigned size) 2561 { 2562 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque; 2563 int offset = addr & OMAP_MPUI_REG_MASK; 2564 uint8_t i; 2565 2566 if (size != 1) { 2567 return omap_badwidth_read8(opaque, addr); 2568 } 2569 2570 switch (offset) { 2571 case 0x00: /* SECONDS_REG */ 2572 return to_bcd(s->current_tm.tm_sec); 2573 2574 case 0x04: /* MINUTES_REG */ 2575 return to_bcd(s->current_tm.tm_min); 2576 2577 case 0x08: /* HOURS_REG */ 2578 if (s->pm_am) 2579 return ((s->current_tm.tm_hour > 11) << 7) | 2580 to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1); 2581 else 2582 return to_bcd(s->current_tm.tm_hour); 2583 2584 case 0x0c: /* DAYS_REG */ 2585 return to_bcd(s->current_tm.tm_mday); 2586 2587 case 0x10: /* MONTHS_REG */ 2588 return to_bcd(s->current_tm.tm_mon + 1); 2589 2590 case 0x14: /* YEARS_REG */ 2591 return to_bcd(s->current_tm.tm_year % 100); 2592 2593 case 0x18: /* WEEK_REG */ 2594 return s->current_tm.tm_wday; 2595 2596 case 0x20: /* ALARM_SECONDS_REG */ 2597 return to_bcd(s->alarm_tm.tm_sec); 2598 2599 case 0x24: /* ALARM_MINUTES_REG */ 2600 return to_bcd(s->alarm_tm.tm_min); 2601 2602 case 0x28: /* ALARM_HOURS_REG */ 2603 if (s->pm_am) 2604 return ((s->alarm_tm.tm_hour > 11) << 7) | 2605 to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1); 2606 else 2607 return to_bcd(s->alarm_tm.tm_hour); 2608 2609 case 0x2c: /* ALARM_DAYS_REG */ 2610 return to_bcd(s->alarm_tm.tm_mday); 2611 2612 case 0x30: /* ALARM_MONTHS_REG */ 2613 return to_bcd(s->alarm_tm.tm_mon + 1); 2614 2615 case 0x34: /* ALARM_YEARS_REG */ 2616 return to_bcd(s->alarm_tm.tm_year % 100); 2617 2618 case 0x40: /* RTC_CTRL_REG */ 2619 return (s->pm_am << 3) | (s->auto_comp << 2) | 2620 (s->round << 1) | s->running; 2621 2622 case 0x44: /* RTC_STATUS_REG */ 2623 i = s->status; 2624 s->status &= ~0x3d; 2625 return i; 2626 2627 case 0x48: /* RTC_INTERRUPTS_REG */ 2628 return s->interrupts; 2629 2630 case 0x4c: /* RTC_COMP_LSB_REG */ 2631 return ((uint16_t) s->comp_reg) & 0xff; 2632 2633 case 0x50: /* RTC_COMP_MSB_REG */ 2634 return ((uint16_t) s->comp_reg) >> 8; 2635 } 2636 2637 OMAP_BAD_REG(addr); 2638 return 0; 2639 } 2640 2641 static void omap_rtc_write(void *opaque, hwaddr addr, 2642 uint64_t value, unsigned size) 2643 { 2644 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque; 2645 int offset = addr & OMAP_MPUI_REG_MASK; 2646 struct tm new_tm; 2647 time_t ti[2]; 2648 2649 if (size != 1) { 2650 omap_badwidth_write8(opaque, addr, value); 2651 return; 2652 } 2653 2654 switch (offset) { 2655 case 0x00: /* SECONDS_REG */ 2656 #ifdef ALMDEBUG 2657 printf("RTC SEC_REG <-- %02x\n", value); 2658 #endif 2659 s->ti -= s->current_tm.tm_sec; 2660 s->ti += from_bcd(value); 2661 return; 2662 2663 case 0x04: /* MINUTES_REG */ 2664 #ifdef ALMDEBUG 2665 printf("RTC MIN_REG <-- %02x\n", value); 2666 #endif 2667 s->ti -= s->current_tm.tm_min * 60; 2668 s->ti += from_bcd(value) * 60; 2669 return; 2670 2671 case 0x08: /* HOURS_REG */ 2672 #ifdef ALMDEBUG 2673 printf("RTC HRS_REG <-- %02x\n", value); 2674 #endif 2675 s->ti -= s->current_tm.tm_hour * 3600; 2676 if (s->pm_am) { 2677 s->ti += (from_bcd(value & 0x3f) & 12) * 3600; 2678 s->ti += ((value >> 7) & 1) * 43200; 2679 } else 2680 s->ti += from_bcd(value & 0x3f) * 3600; 2681 return; 2682 2683 case 0x0c: /* DAYS_REG */ 2684 #ifdef ALMDEBUG 2685 printf("RTC DAY_REG <-- %02x\n", value); 2686 #endif 2687 s->ti -= s->current_tm.tm_mday * 86400; 2688 s->ti += from_bcd(value) * 86400; 2689 return; 2690 2691 case 0x10: /* MONTHS_REG */ 2692 #ifdef ALMDEBUG 2693 printf("RTC MTH_REG <-- %02x\n", value); 2694 #endif 2695 memcpy(&new_tm, &s->current_tm, sizeof(new_tm)); 2696 new_tm.tm_mon = from_bcd(value); 2697 ti[0] = mktimegm(&s->current_tm); 2698 ti[1] = mktimegm(&new_tm); 2699 2700 if (ti[0] != -1 && ti[1] != -1) { 2701 s->ti -= ti[0]; 2702 s->ti += ti[1]; 2703 } else { 2704 /* A less accurate version */ 2705 s->ti -= s->current_tm.tm_mon * 2592000; 2706 s->ti += from_bcd(value) * 2592000; 2707 } 2708 return; 2709 2710 case 0x14: /* YEARS_REG */ 2711 #ifdef ALMDEBUG 2712 printf("RTC YRS_REG <-- %02x\n", value); 2713 #endif 2714 memcpy(&new_tm, &s->current_tm, sizeof(new_tm)); 2715 new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100); 2716 ti[0] = mktimegm(&s->current_tm); 2717 ti[1] = mktimegm(&new_tm); 2718 2719 if (ti[0] != -1 && ti[1] != -1) { 2720 s->ti -= ti[0]; 2721 s->ti += ti[1]; 2722 } else { 2723 /* A less accurate version */ 2724 s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000; 2725 s->ti += (time_t)from_bcd(value) * 31536000; 2726 } 2727 return; 2728 2729 case 0x18: /* WEEK_REG */ 2730 return; /* Ignored */ 2731 2732 case 0x20: /* ALARM_SECONDS_REG */ 2733 #ifdef ALMDEBUG 2734 printf("ALM SEC_REG <-- %02x\n", value); 2735 #endif 2736 s->alarm_tm.tm_sec = from_bcd(value); 2737 omap_rtc_alarm_update(s); 2738 return; 2739 2740 case 0x24: /* ALARM_MINUTES_REG */ 2741 #ifdef ALMDEBUG 2742 printf("ALM MIN_REG <-- %02x\n", value); 2743 #endif 2744 s->alarm_tm.tm_min = from_bcd(value); 2745 omap_rtc_alarm_update(s); 2746 return; 2747 2748 case 0x28: /* ALARM_HOURS_REG */ 2749 #ifdef ALMDEBUG 2750 printf("ALM HRS_REG <-- %02x\n", value); 2751 #endif 2752 if (s->pm_am) 2753 s->alarm_tm.tm_hour = 2754 ((from_bcd(value & 0x3f)) % 12) + 2755 ((value >> 7) & 1) * 12; 2756 else 2757 s->alarm_tm.tm_hour = from_bcd(value); 2758 omap_rtc_alarm_update(s); 2759 return; 2760 2761 case 0x2c: /* ALARM_DAYS_REG */ 2762 #ifdef ALMDEBUG 2763 printf("ALM DAY_REG <-- %02x\n", value); 2764 #endif 2765 s->alarm_tm.tm_mday = from_bcd(value); 2766 omap_rtc_alarm_update(s); 2767 return; 2768 2769 case 0x30: /* ALARM_MONTHS_REG */ 2770 #ifdef ALMDEBUG 2771 printf("ALM MON_REG <-- %02x\n", value); 2772 #endif 2773 s->alarm_tm.tm_mon = from_bcd(value); 2774 omap_rtc_alarm_update(s); 2775 return; 2776 2777 case 0x34: /* ALARM_YEARS_REG */ 2778 #ifdef ALMDEBUG 2779 printf("ALM YRS_REG <-- %02x\n", value); 2780 #endif 2781 s->alarm_tm.tm_year = from_bcd(value); 2782 omap_rtc_alarm_update(s); 2783 return; 2784 2785 case 0x40: /* RTC_CTRL_REG */ 2786 #ifdef ALMDEBUG 2787 printf("RTC CONTROL <-- %02x\n", value); 2788 #endif 2789 s->pm_am = (value >> 3) & 1; 2790 s->auto_comp = (value >> 2) & 1; 2791 s->round = (value >> 1) & 1; 2792 s->running = value & 1; 2793 s->status &= 0xfd; 2794 s->status |= s->running << 1; 2795 return; 2796 2797 case 0x44: /* RTC_STATUS_REG */ 2798 #ifdef ALMDEBUG 2799 printf("RTC STATUSL <-- %02x\n", value); 2800 #endif 2801 s->status &= ~((value & 0xc0) ^ 0x80); 2802 omap_rtc_interrupts_update(s); 2803 return; 2804 2805 case 0x48: /* RTC_INTERRUPTS_REG */ 2806 #ifdef ALMDEBUG 2807 printf("RTC INTRS <-- %02x\n", value); 2808 #endif 2809 s->interrupts = value; 2810 return; 2811 2812 case 0x4c: /* RTC_COMP_LSB_REG */ 2813 #ifdef ALMDEBUG 2814 printf("RTC COMPLSB <-- %02x\n", value); 2815 #endif 2816 s->comp_reg &= 0xff00; 2817 s->comp_reg |= 0x00ff & value; 2818 return; 2819 2820 case 0x50: /* RTC_COMP_MSB_REG */ 2821 #ifdef ALMDEBUG 2822 printf("RTC COMPMSB <-- %02x\n", value); 2823 #endif 2824 s->comp_reg &= 0x00ff; 2825 s->comp_reg |= 0xff00 & (value << 8); 2826 return; 2827 2828 default: 2829 OMAP_BAD_REG(addr); 2830 return; 2831 } 2832 } 2833 2834 static const MemoryRegionOps omap_rtc_ops = { 2835 .read = omap_rtc_read, 2836 .write = omap_rtc_write, 2837 .endianness = DEVICE_NATIVE_ENDIAN, 2838 }; 2839 2840 static void omap_rtc_tick(void *opaque) 2841 { 2842 struct omap_rtc_s *s = opaque; 2843 2844 if (s->round) { 2845 /* Round to nearest full minute. */ 2846 if (s->current_tm.tm_sec < 30) 2847 s->ti -= s->current_tm.tm_sec; 2848 else 2849 s->ti += 60 - s->current_tm.tm_sec; 2850 2851 s->round = 0; 2852 } 2853 2854 localtime_r(&s->ti, &s->current_tm); 2855 2856 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) { 2857 s->status |= 0x40; 2858 omap_rtc_interrupts_update(s); 2859 } 2860 2861 if (s->interrupts & 0x04) 2862 switch (s->interrupts & 3) { 2863 case 0: 2864 s->status |= 0x04; 2865 qemu_irq_pulse(s->irq); 2866 break; 2867 case 1: 2868 if (s->current_tm.tm_sec) 2869 break; 2870 s->status |= 0x08; 2871 qemu_irq_pulse(s->irq); 2872 break; 2873 case 2: 2874 if (s->current_tm.tm_sec || s->current_tm.tm_min) 2875 break; 2876 s->status |= 0x10; 2877 qemu_irq_pulse(s->irq); 2878 break; 2879 case 3: 2880 if (s->current_tm.tm_sec || 2881 s->current_tm.tm_min || s->current_tm.tm_hour) 2882 break; 2883 s->status |= 0x20; 2884 qemu_irq_pulse(s->irq); 2885 break; 2886 } 2887 2888 /* Move on */ 2889 if (s->running) 2890 s->ti ++; 2891 s->tick += 1000; 2892 2893 /* 2894 * Every full hour add a rough approximation of the compensation 2895 * register to the 32kHz Timer (which drives the RTC) value. 2896 */ 2897 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min) 2898 s->tick += s->comp_reg * 1000 / 32768; 2899 2900 timer_mod(s->clk, s->tick); 2901 } 2902 2903 static void omap_rtc_reset(struct omap_rtc_s *s) 2904 { 2905 struct tm tm; 2906 2907 s->interrupts = 0; 2908 s->comp_reg = 0; 2909 s->running = 0; 2910 s->pm_am = 0; 2911 s->auto_comp = 0; 2912 s->round = 0; 2913 s->tick = qemu_clock_get_ms(rtc_clock); 2914 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm)); 2915 s->alarm_tm.tm_mday = 0x01; 2916 s->status = 1 << 7; 2917 qemu_get_timedate(&tm, 0); 2918 s->ti = mktimegm(&tm); 2919 2920 omap_rtc_alarm_update(s); 2921 omap_rtc_tick(s); 2922 } 2923 2924 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory, 2925 hwaddr base, 2926 qemu_irq timerirq, qemu_irq alarmirq, 2927 omap_clk clk) 2928 { 2929 struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1); 2930 2931 s->irq = timerirq; 2932 s->alarm = alarmirq; 2933 s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s); 2934 2935 omap_rtc_reset(s); 2936 2937 memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s, 2938 "omap-rtc", 0x800); 2939 memory_region_add_subregion(system_memory, base, &s->iomem); 2940 2941 return s; 2942 } 2943 2944 /* Multi-channel Buffered Serial Port interfaces */ 2945 struct omap_mcbsp_s { 2946 MemoryRegion iomem; 2947 qemu_irq txirq; 2948 qemu_irq rxirq; 2949 qemu_irq txdrq; 2950 qemu_irq rxdrq; 2951 2952 uint16_t spcr[2]; 2953 uint16_t rcr[2]; 2954 uint16_t xcr[2]; 2955 uint16_t srgr[2]; 2956 uint16_t mcr[2]; 2957 uint16_t pcr; 2958 uint16_t rcer[8]; 2959 uint16_t xcer[8]; 2960 int tx_rate; 2961 int rx_rate; 2962 int tx_req; 2963 int rx_req; 2964 2965 I2SCodec *codec; 2966 QEMUTimer *source_timer; 2967 QEMUTimer *sink_timer; 2968 }; 2969 2970 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s) 2971 { 2972 int irq; 2973 2974 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */ 2975 case 0: 2976 irq = (s->spcr[0] >> 1) & 1; /* RRDY */ 2977 break; 2978 case 3: 2979 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */ 2980 break; 2981 default: 2982 irq = 0; 2983 break; 2984 } 2985 2986 if (irq) 2987 qemu_irq_pulse(s->rxirq); 2988 2989 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */ 2990 case 0: 2991 irq = (s->spcr[1] >> 1) & 1; /* XRDY */ 2992 break; 2993 case 3: 2994 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */ 2995 break; 2996 default: 2997 irq = 0; 2998 break; 2999 } 3000 3001 if (irq) 3002 qemu_irq_pulse(s->txirq); 3003 } 3004 3005 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s) 3006 { 3007 if ((s->spcr[0] >> 1) & 1) /* RRDY */ 3008 s->spcr[0] |= 1 << 2; /* RFULL */ 3009 s->spcr[0] |= 1 << 1; /* RRDY */ 3010 qemu_irq_raise(s->rxdrq); 3011 omap_mcbsp_intr_update(s); 3012 } 3013 3014 static void omap_mcbsp_source_tick(void *opaque) 3015 { 3016 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque; 3017 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 }; 3018 3019 if (!s->rx_rate) 3020 return; 3021 if (s->rx_req) 3022 printf("%s: Rx FIFO overrun\n", __FUNCTION__); 3023 3024 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7]; 3025 3026 omap_mcbsp_rx_newdata(s); 3027 timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 3028 get_ticks_per_sec()); 3029 } 3030 3031 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s) 3032 { 3033 if (!s->codec || !s->codec->rts) 3034 omap_mcbsp_source_tick(s); 3035 else if (s->codec->in.len) { 3036 s->rx_req = s->codec->in.len; 3037 omap_mcbsp_rx_newdata(s); 3038 } 3039 } 3040 3041 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s) 3042 { 3043 timer_del(s->source_timer); 3044 } 3045 3046 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s) 3047 { 3048 s->spcr[0] &= ~(1 << 1); /* RRDY */ 3049 qemu_irq_lower(s->rxdrq); 3050 omap_mcbsp_intr_update(s); 3051 } 3052 3053 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s) 3054 { 3055 s->spcr[1] |= 1 << 1; /* XRDY */ 3056 qemu_irq_raise(s->txdrq); 3057 omap_mcbsp_intr_update(s); 3058 } 3059 3060 static void omap_mcbsp_sink_tick(void *opaque) 3061 { 3062 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque; 3063 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 }; 3064 3065 if (!s->tx_rate) 3066 return; 3067 if (s->tx_req) 3068 printf("%s: Tx FIFO underrun\n", __FUNCTION__); 3069 3070 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7]; 3071 3072 omap_mcbsp_tx_newdata(s); 3073 timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 3074 get_ticks_per_sec()); 3075 } 3076 3077 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s) 3078 { 3079 if (!s->codec || !s->codec->cts) 3080 omap_mcbsp_sink_tick(s); 3081 else if (s->codec->out.size) { 3082 s->tx_req = s->codec->out.size; 3083 omap_mcbsp_tx_newdata(s); 3084 } 3085 } 3086 3087 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s) 3088 { 3089 s->spcr[1] &= ~(1 << 1); /* XRDY */ 3090 qemu_irq_lower(s->txdrq); 3091 omap_mcbsp_intr_update(s); 3092 if (s->codec && s->codec->cts) 3093 s->codec->tx_swallow(s->codec->opaque); 3094 } 3095 3096 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s) 3097 { 3098 s->tx_req = 0; 3099 omap_mcbsp_tx_done(s); 3100 timer_del(s->sink_timer); 3101 } 3102 3103 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s) 3104 { 3105 int prev_rx_rate, prev_tx_rate; 3106 int rx_rate = 0, tx_rate = 0; 3107 int cpu_rate = 1500000; /* XXX */ 3108 3109 /* TODO: check CLKSTP bit */ 3110 if (s->spcr[1] & (1 << 6)) { /* GRST */ 3111 if (s->spcr[0] & (1 << 0)) { /* RRST */ 3112 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */ 3113 (s->pcr & (1 << 8))) { /* CLKRM */ 3114 if (~s->pcr & (1 << 7)) /* SCLKME */ 3115 rx_rate = cpu_rate / 3116 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */ 3117 } else 3118 if (s->codec) 3119 rx_rate = s->codec->rx_rate; 3120 } 3121 3122 if (s->spcr[1] & (1 << 0)) { /* XRST */ 3123 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */ 3124 (s->pcr & (1 << 9))) { /* CLKXM */ 3125 if (~s->pcr & (1 << 7)) /* SCLKME */ 3126 tx_rate = cpu_rate / 3127 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */ 3128 } else 3129 if (s->codec) 3130 tx_rate = s->codec->tx_rate; 3131 } 3132 } 3133 prev_tx_rate = s->tx_rate; 3134 prev_rx_rate = s->rx_rate; 3135 s->tx_rate = tx_rate; 3136 s->rx_rate = rx_rate; 3137 3138 if (s->codec) 3139 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate); 3140 3141 if (!prev_tx_rate && tx_rate) 3142 omap_mcbsp_tx_start(s); 3143 else if (s->tx_rate && !tx_rate) 3144 omap_mcbsp_tx_stop(s); 3145 3146 if (!prev_rx_rate && rx_rate) 3147 omap_mcbsp_rx_start(s); 3148 else if (prev_tx_rate && !tx_rate) 3149 omap_mcbsp_rx_stop(s); 3150 } 3151 3152 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr, 3153 unsigned size) 3154 { 3155 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque; 3156 int offset = addr & OMAP_MPUI_REG_MASK; 3157 uint16_t ret; 3158 3159 if (size != 2) { 3160 return omap_badwidth_read16(opaque, addr); 3161 } 3162 3163 switch (offset) { 3164 case 0x00: /* DRR2 */ 3165 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */ 3166 return 0x0000; 3167 /* Fall through. */ 3168 case 0x02: /* DRR1 */ 3169 if (s->rx_req < 2) { 3170 printf("%s: Rx FIFO underrun\n", __FUNCTION__); 3171 omap_mcbsp_rx_done(s); 3172 } else { 3173 s->tx_req -= 2; 3174 if (s->codec && s->codec->in.len >= 2) { 3175 ret = s->codec->in.fifo[s->codec->in.start ++] << 8; 3176 ret |= s->codec->in.fifo[s->codec->in.start ++]; 3177 s->codec->in.len -= 2; 3178 } else 3179 ret = 0x0000; 3180 if (!s->tx_req) 3181 omap_mcbsp_rx_done(s); 3182 return ret; 3183 } 3184 return 0x0000; 3185 3186 case 0x04: /* DXR2 */ 3187 case 0x06: /* DXR1 */ 3188 return 0x0000; 3189 3190 case 0x08: /* SPCR2 */ 3191 return s->spcr[1]; 3192 case 0x0a: /* SPCR1 */ 3193 return s->spcr[0]; 3194 case 0x0c: /* RCR2 */ 3195 return s->rcr[1]; 3196 case 0x0e: /* RCR1 */ 3197 return s->rcr[0]; 3198 case 0x10: /* XCR2 */ 3199 return s->xcr[1]; 3200 case 0x12: /* XCR1 */ 3201 return s->xcr[0]; 3202 case 0x14: /* SRGR2 */ 3203 return s->srgr[1]; 3204 case 0x16: /* SRGR1 */ 3205 return s->srgr[0]; 3206 case 0x18: /* MCR2 */ 3207 return s->mcr[1]; 3208 case 0x1a: /* MCR1 */ 3209 return s->mcr[0]; 3210 case 0x1c: /* RCERA */ 3211 return s->rcer[0]; 3212 case 0x1e: /* RCERB */ 3213 return s->rcer[1]; 3214 case 0x20: /* XCERA */ 3215 return s->xcer[0]; 3216 case 0x22: /* XCERB */ 3217 return s->xcer[1]; 3218 case 0x24: /* PCR0 */ 3219 return s->pcr; 3220 case 0x26: /* RCERC */ 3221 return s->rcer[2]; 3222 case 0x28: /* RCERD */ 3223 return s->rcer[3]; 3224 case 0x2a: /* XCERC */ 3225 return s->xcer[2]; 3226 case 0x2c: /* XCERD */ 3227 return s->xcer[3]; 3228 case 0x2e: /* RCERE */ 3229 return s->rcer[4]; 3230 case 0x30: /* RCERF */ 3231 return s->rcer[5]; 3232 case 0x32: /* XCERE */ 3233 return s->xcer[4]; 3234 case 0x34: /* XCERF */ 3235 return s->xcer[5]; 3236 case 0x36: /* RCERG */ 3237 return s->rcer[6]; 3238 case 0x38: /* RCERH */ 3239 return s->rcer[7]; 3240 case 0x3a: /* XCERG */ 3241 return s->xcer[6]; 3242 case 0x3c: /* XCERH */ 3243 return s->xcer[7]; 3244 } 3245 3246 OMAP_BAD_REG(addr); 3247 return 0; 3248 } 3249 3250 static void omap_mcbsp_writeh(void *opaque, hwaddr addr, 3251 uint32_t value) 3252 { 3253 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque; 3254 int offset = addr & OMAP_MPUI_REG_MASK; 3255 3256 switch (offset) { 3257 case 0x00: /* DRR2 */ 3258 case 0x02: /* DRR1 */ 3259 OMAP_RO_REG(addr); 3260 return; 3261 3262 case 0x04: /* DXR2 */ 3263 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */ 3264 return; 3265 /* Fall through. */ 3266 case 0x06: /* DXR1 */ 3267 if (s->tx_req > 1) { 3268 s->tx_req -= 2; 3269 if (s->codec && s->codec->cts) { 3270 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff; 3271 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff; 3272 } 3273 if (s->tx_req < 2) 3274 omap_mcbsp_tx_done(s); 3275 } else 3276 printf("%s: Tx FIFO overrun\n", __FUNCTION__); 3277 return; 3278 3279 case 0x08: /* SPCR2 */ 3280 s->spcr[1] &= 0x0002; 3281 s->spcr[1] |= 0x03f9 & value; 3282 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */ 3283 if (~value & 1) /* XRST */ 3284 s->spcr[1] &= ~6; 3285 omap_mcbsp_req_update(s); 3286 return; 3287 case 0x0a: /* SPCR1 */ 3288 s->spcr[0] &= 0x0006; 3289 s->spcr[0] |= 0xf8f9 & value; 3290 if (value & (1 << 15)) /* DLB */ 3291 printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__); 3292 if (~value & 1) { /* RRST */ 3293 s->spcr[0] &= ~6; 3294 s->rx_req = 0; 3295 omap_mcbsp_rx_done(s); 3296 } 3297 omap_mcbsp_req_update(s); 3298 return; 3299 3300 case 0x0c: /* RCR2 */ 3301 s->rcr[1] = value & 0xffff; 3302 return; 3303 case 0x0e: /* RCR1 */ 3304 s->rcr[0] = value & 0x7fe0; 3305 return; 3306 case 0x10: /* XCR2 */ 3307 s->xcr[1] = value & 0xffff; 3308 return; 3309 case 0x12: /* XCR1 */ 3310 s->xcr[0] = value & 0x7fe0; 3311 return; 3312 case 0x14: /* SRGR2 */ 3313 s->srgr[1] = value & 0xffff; 3314 omap_mcbsp_req_update(s); 3315 return; 3316 case 0x16: /* SRGR1 */ 3317 s->srgr[0] = value & 0xffff; 3318 omap_mcbsp_req_update(s); 3319 return; 3320 case 0x18: /* MCR2 */ 3321 s->mcr[1] = value & 0x03e3; 3322 if (value & 3) /* XMCM */ 3323 printf("%s: Tx channel selection mode enable attempt\n", 3324 __FUNCTION__); 3325 return; 3326 case 0x1a: /* MCR1 */ 3327 s->mcr[0] = value & 0x03e1; 3328 if (value & 1) /* RMCM */ 3329 printf("%s: Rx channel selection mode enable attempt\n", 3330 __FUNCTION__); 3331 return; 3332 case 0x1c: /* RCERA */ 3333 s->rcer[0] = value & 0xffff; 3334 return; 3335 case 0x1e: /* RCERB */ 3336 s->rcer[1] = value & 0xffff; 3337 return; 3338 case 0x20: /* XCERA */ 3339 s->xcer[0] = value & 0xffff; 3340 return; 3341 case 0x22: /* XCERB */ 3342 s->xcer[1] = value & 0xffff; 3343 return; 3344 case 0x24: /* PCR0 */ 3345 s->pcr = value & 0x7faf; 3346 return; 3347 case 0x26: /* RCERC */ 3348 s->rcer[2] = value & 0xffff; 3349 return; 3350 case 0x28: /* RCERD */ 3351 s->rcer[3] = value & 0xffff; 3352 return; 3353 case 0x2a: /* XCERC */ 3354 s->xcer[2] = value & 0xffff; 3355 return; 3356 case 0x2c: /* XCERD */ 3357 s->xcer[3] = value & 0xffff; 3358 return; 3359 case 0x2e: /* RCERE */ 3360 s->rcer[4] = value & 0xffff; 3361 return; 3362 case 0x30: /* RCERF */ 3363 s->rcer[5] = value & 0xffff; 3364 return; 3365 case 0x32: /* XCERE */ 3366 s->xcer[4] = value & 0xffff; 3367 return; 3368 case 0x34: /* XCERF */ 3369 s->xcer[5] = value & 0xffff; 3370 return; 3371 case 0x36: /* RCERG */ 3372 s->rcer[6] = value & 0xffff; 3373 return; 3374 case 0x38: /* RCERH */ 3375 s->rcer[7] = value & 0xffff; 3376 return; 3377 case 0x3a: /* XCERG */ 3378 s->xcer[6] = value & 0xffff; 3379 return; 3380 case 0x3c: /* XCERH */ 3381 s->xcer[7] = value & 0xffff; 3382 return; 3383 } 3384 3385 OMAP_BAD_REG(addr); 3386 } 3387 3388 static void omap_mcbsp_writew(void *opaque, hwaddr addr, 3389 uint32_t value) 3390 { 3391 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque; 3392 int offset = addr & OMAP_MPUI_REG_MASK; 3393 3394 if (offset == 0x04) { /* DXR */ 3395 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */ 3396 return; 3397 if (s->tx_req > 3) { 3398 s->tx_req -= 4; 3399 if (s->codec && s->codec->cts) { 3400 s->codec->out.fifo[s->codec->out.len ++] = 3401 (value >> 24) & 0xff; 3402 s->codec->out.fifo[s->codec->out.len ++] = 3403 (value >> 16) & 0xff; 3404 s->codec->out.fifo[s->codec->out.len ++] = 3405 (value >> 8) & 0xff; 3406 s->codec->out.fifo[s->codec->out.len ++] = 3407 (value >> 0) & 0xff; 3408 } 3409 if (s->tx_req < 4) 3410 omap_mcbsp_tx_done(s); 3411 } else 3412 printf("%s: Tx FIFO overrun\n", __FUNCTION__); 3413 return; 3414 } 3415 3416 omap_badwidth_write16(opaque, addr, value); 3417 } 3418 3419 static void omap_mcbsp_write(void *opaque, hwaddr addr, 3420 uint64_t value, unsigned size) 3421 { 3422 switch (size) { 3423 case 2: 3424 omap_mcbsp_writeh(opaque, addr, value); 3425 break; 3426 case 4: 3427 omap_mcbsp_writew(opaque, addr, value); 3428 break; 3429 default: 3430 omap_badwidth_write16(opaque, addr, value); 3431 } 3432 } 3433 3434 static const MemoryRegionOps omap_mcbsp_ops = { 3435 .read = omap_mcbsp_read, 3436 .write = omap_mcbsp_write, 3437 .endianness = DEVICE_NATIVE_ENDIAN, 3438 }; 3439 3440 static void omap_mcbsp_reset(struct omap_mcbsp_s *s) 3441 { 3442 memset(&s->spcr, 0, sizeof(s->spcr)); 3443 memset(&s->rcr, 0, sizeof(s->rcr)); 3444 memset(&s->xcr, 0, sizeof(s->xcr)); 3445 s->srgr[0] = 0x0001; 3446 s->srgr[1] = 0x2000; 3447 memset(&s->mcr, 0, sizeof(s->mcr)); 3448 memset(&s->pcr, 0, sizeof(s->pcr)); 3449 memset(&s->rcer, 0, sizeof(s->rcer)); 3450 memset(&s->xcer, 0, sizeof(s->xcer)); 3451 s->tx_req = 0; 3452 s->rx_req = 0; 3453 s->tx_rate = 0; 3454 s->rx_rate = 0; 3455 timer_del(s->source_timer); 3456 timer_del(s->sink_timer); 3457 } 3458 3459 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory, 3460 hwaddr base, 3461 qemu_irq txirq, qemu_irq rxirq, 3462 qemu_irq *dma, omap_clk clk) 3463 { 3464 struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1); 3465 3466 s->txirq = txirq; 3467 s->rxirq = rxirq; 3468 s->txdrq = dma[0]; 3469 s->rxdrq = dma[1]; 3470 s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s); 3471 s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s); 3472 omap_mcbsp_reset(s); 3473 3474 memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800); 3475 memory_region_add_subregion(system_memory, base, &s->iomem); 3476 3477 return s; 3478 } 3479 3480 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level) 3481 { 3482 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque; 3483 3484 if (s->rx_rate) { 3485 s->rx_req = s->codec->in.len; 3486 omap_mcbsp_rx_newdata(s); 3487 } 3488 } 3489 3490 static void omap_mcbsp_i2s_start(void *opaque, int line, int level) 3491 { 3492 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque; 3493 3494 if (s->tx_rate) { 3495 s->tx_req = s->codec->out.size; 3496 omap_mcbsp_tx_newdata(s); 3497 } 3498 } 3499 3500 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave) 3501 { 3502 s->codec = slave; 3503 slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0); 3504 slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0); 3505 } 3506 3507 /* LED Pulse Generators */ 3508 struct omap_lpg_s { 3509 MemoryRegion iomem; 3510 QEMUTimer *tm; 3511 3512 uint8_t control; 3513 uint8_t power; 3514 int64_t on; 3515 int64_t period; 3516 int clk; 3517 int cycle; 3518 }; 3519 3520 static void omap_lpg_tick(void *opaque) 3521 { 3522 struct omap_lpg_s *s = opaque; 3523 3524 if (s->cycle) 3525 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on); 3526 else 3527 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on); 3528 3529 s->cycle = !s->cycle; 3530 printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off"); 3531 } 3532 3533 static void omap_lpg_update(struct omap_lpg_s *s) 3534 { 3535 int64_t on, period = 1, ticks = 1000; 3536 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 }; 3537 3538 if (~s->control & (1 << 6)) /* LPGRES */ 3539 on = 0; 3540 else if (s->control & (1 << 7)) /* PERM_ON */ 3541 on = period; 3542 else { 3543 period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */ 3544 256 / 32); 3545 on = (s->clk && s->power) ? muldiv64(ticks, 3546 per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */ 3547 } 3548 3549 timer_del(s->tm); 3550 if (on == period && s->on < s->period) 3551 printf("%s: LED is on\n", __FUNCTION__); 3552 else if (on == 0 && s->on) 3553 printf("%s: LED is off\n", __FUNCTION__); 3554 else if (on && (on != s->on || period != s->period)) { 3555 s->cycle = 0; 3556 s->on = on; 3557 s->period = period; 3558 omap_lpg_tick(s); 3559 return; 3560 } 3561 3562 s->on = on; 3563 s->period = period; 3564 } 3565 3566 static void omap_lpg_reset(struct omap_lpg_s *s) 3567 { 3568 s->control = 0x00; 3569 s->power = 0x00; 3570 s->clk = 1; 3571 omap_lpg_update(s); 3572 } 3573 3574 static uint64_t omap_lpg_read(void *opaque, hwaddr addr, 3575 unsigned size) 3576 { 3577 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque; 3578 int offset = addr & OMAP_MPUI_REG_MASK; 3579 3580 if (size != 1) { 3581 return omap_badwidth_read8(opaque, addr); 3582 } 3583 3584 switch (offset) { 3585 case 0x00: /* LCR */ 3586 return s->control; 3587 3588 case 0x04: /* PMR */ 3589 return s->power; 3590 } 3591 3592 OMAP_BAD_REG(addr); 3593 return 0; 3594 } 3595 3596 static void omap_lpg_write(void *opaque, hwaddr addr, 3597 uint64_t value, unsigned size) 3598 { 3599 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque; 3600 int offset = addr & OMAP_MPUI_REG_MASK; 3601 3602 if (size != 1) { 3603 omap_badwidth_write8(opaque, addr, value); 3604 return; 3605 } 3606 3607 switch (offset) { 3608 case 0x00: /* LCR */ 3609 if (~value & (1 << 6)) /* LPGRES */ 3610 omap_lpg_reset(s); 3611 s->control = value & 0xff; 3612 omap_lpg_update(s); 3613 return; 3614 3615 case 0x04: /* PMR */ 3616 s->power = value & 0x01; 3617 omap_lpg_update(s); 3618 return; 3619 3620 default: 3621 OMAP_BAD_REG(addr); 3622 return; 3623 } 3624 } 3625 3626 static const MemoryRegionOps omap_lpg_ops = { 3627 .read = omap_lpg_read, 3628 .write = omap_lpg_write, 3629 .endianness = DEVICE_NATIVE_ENDIAN, 3630 }; 3631 3632 static void omap_lpg_clk_update(void *opaque, int line, int on) 3633 { 3634 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque; 3635 3636 s->clk = on; 3637 omap_lpg_update(s); 3638 } 3639 3640 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory, 3641 hwaddr base, omap_clk clk) 3642 { 3643 struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1); 3644 3645 s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s); 3646 3647 omap_lpg_reset(s); 3648 3649 memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800); 3650 memory_region_add_subregion(system_memory, base, &s->iomem); 3651 3652 omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0)); 3653 3654 return s; 3655 } 3656 3657 /* MPUI Peripheral Bridge configuration */ 3658 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr, 3659 unsigned size) 3660 { 3661 if (size != 2) { 3662 return omap_badwidth_read16(opaque, addr); 3663 } 3664 3665 if (addr == OMAP_MPUI_BASE) /* CMR */ 3666 return 0xfe4d; 3667 3668 OMAP_BAD_REG(addr); 3669 return 0; 3670 } 3671 3672 static void omap_mpui_io_write(void *opaque, hwaddr addr, 3673 uint64_t value, unsigned size) 3674 { 3675 /* FIXME: infinite loop */ 3676 omap_badwidth_write16(opaque, addr, value); 3677 } 3678 3679 static const MemoryRegionOps omap_mpui_io_ops = { 3680 .read = omap_mpui_io_read, 3681 .write = omap_mpui_io_write, 3682 .endianness = DEVICE_NATIVE_ENDIAN, 3683 }; 3684 3685 static void omap_setup_mpui_io(MemoryRegion *system_memory, 3686 struct omap_mpu_state_s *mpu) 3687 { 3688 memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu, 3689 "omap-mpui-io", 0x7fff); 3690 memory_region_add_subregion(system_memory, OMAP_MPUI_BASE, 3691 &mpu->mpui_io_iomem); 3692 } 3693 3694 /* General chip reset */ 3695 static void omap1_mpu_reset(void *opaque) 3696 { 3697 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque; 3698 3699 omap_dma_reset(mpu->dma); 3700 omap_mpu_timer_reset(mpu->timer[0]); 3701 omap_mpu_timer_reset(mpu->timer[1]); 3702 omap_mpu_timer_reset(mpu->timer[2]); 3703 omap_wd_timer_reset(mpu->wdt); 3704 omap_os_timer_reset(mpu->os_timer); 3705 omap_lcdc_reset(mpu->lcd); 3706 omap_ulpd_pm_reset(mpu); 3707 omap_pin_cfg_reset(mpu); 3708 omap_mpui_reset(mpu); 3709 omap_tipb_bridge_reset(mpu->private_tipb); 3710 omap_tipb_bridge_reset(mpu->public_tipb); 3711 omap_dpll_reset(mpu->dpll[0]); 3712 omap_dpll_reset(mpu->dpll[1]); 3713 omap_dpll_reset(mpu->dpll[2]); 3714 omap_uart_reset(mpu->uart[0]); 3715 omap_uart_reset(mpu->uart[1]); 3716 omap_uart_reset(mpu->uart[2]); 3717 omap_mmc_reset(mpu->mmc); 3718 omap_mpuio_reset(mpu->mpuio); 3719 omap_uwire_reset(mpu->microwire); 3720 omap_pwl_reset(mpu->pwl); 3721 omap_pwt_reset(mpu->pwt); 3722 omap_rtc_reset(mpu->rtc); 3723 omap_mcbsp_reset(mpu->mcbsp1); 3724 omap_mcbsp_reset(mpu->mcbsp2); 3725 omap_mcbsp_reset(mpu->mcbsp3); 3726 omap_lpg_reset(mpu->led[0]); 3727 omap_lpg_reset(mpu->led[1]); 3728 omap_clkm_reset(mpu); 3729 cpu_reset(CPU(mpu->cpu)); 3730 } 3731 3732 static const struct omap_map_s { 3733 hwaddr phys_dsp; 3734 hwaddr phys_mpu; 3735 uint32_t size; 3736 const char *name; 3737 } omap15xx_dsp_mm[] = { 3738 /* Strobe 0 */ 3739 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */ 3740 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */ 3741 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */ 3742 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */ 3743 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */ 3744 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */ 3745 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */ 3746 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */ 3747 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */ 3748 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */ 3749 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */ 3750 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */ 3751 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */ 3752 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */ 3753 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */ 3754 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */ 3755 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */ 3756 /* Strobe 1 */ 3757 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */ 3758 3759 { 0 } 3760 }; 3761 3762 static void omap_setup_dsp_mapping(MemoryRegion *system_memory, 3763 const struct omap_map_s *map) 3764 { 3765 MemoryRegion *io; 3766 3767 for (; map->phys_dsp; map ++) { 3768 io = g_new(MemoryRegion, 1); 3769 memory_region_init_alias(io, NULL, map->name, 3770 system_memory, map->phys_mpu, map->size); 3771 memory_region_add_subregion(system_memory, map->phys_dsp, io); 3772 } 3773 } 3774 3775 void omap_mpu_wakeup(void *opaque, int irq, int req) 3776 { 3777 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque; 3778 CPUState *cpu = CPU(mpu->cpu); 3779 3780 if (cpu->halted) { 3781 cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB); 3782 } 3783 } 3784 3785 static const struct dma_irq_map omap1_dma_irq_map[] = { 3786 { 0, OMAP_INT_DMA_CH0_6 }, 3787 { 0, OMAP_INT_DMA_CH1_7 }, 3788 { 0, OMAP_INT_DMA_CH2_8 }, 3789 { 0, OMAP_INT_DMA_CH3 }, 3790 { 0, OMAP_INT_DMA_CH4 }, 3791 { 0, OMAP_INT_DMA_CH5 }, 3792 { 1, OMAP_INT_1610_DMA_CH6 }, 3793 { 1, OMAP_INT_1610_DMA_CH7 }, 3794 { 1, OMAP_INT_1610_DMA_CH8 }, 3795 { 1, OMAP_INT_1610_DMA_CH9 }, 3796 { 1, OMAP_INT_1610_DMA_CH10 }, 3797 { 1, OMAP_INT_1610_DMA_CH11 }, 3798 { 1, OMAP_INT_1610_DMA_CH12 }, 3799 { 1, OMAP_INT_1610_DMA_CH13 }, 3800 { 1, OMAP_INT_1610_DMA_CH14 }, 3801 { 1, OMAP_INT_1610_DMA_CH15 } 3802 }; 3803 3804 /* DMA ports for OMAP1 */ 3805 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s, 3806 hwaddr addr) 3807 { 3808 return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr); 3809 } 3810 3811 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s, 3812 hwaddr addr) 3813 { 3814 return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE, 3815 addr); 3816 } 3817 3818 static int omap_validate_imif_addr(struct omap_mpu_state_s *s, 3819 hwaddr addr) 3820 { 3821 return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr); 3822 } 3823 3824 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s, 3825 hwaddr addr) 3826 { 3827 return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr); 3828 } 3829 3830 static int omap_validate_local_addr(struct omap_mpu_state_s *s, 3831 hwaddr addr) 3832 { 3833 return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr); 3834 } 3835 3836 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s, 3837 hwaddr addr) 3838 { 3839 return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr); 3840 } 3841 3842 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory, 3843 unsigned long sdram_size, 3844 const char *core) 3845 { 3846 int i; 3847 struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1); 3848 qemu_irq dma_irqs[6]; 3849 DriveInfo *dinfo; 3850 SysBusDevice *busdev; 3851 3852 if (!core) 3853 core = "ti925t"; 3854 3855 /* Core */ 3856 s->mpu_model = omap310; 3857 s->cpu = cpu_arm_init(core); 3858 if (s->cpu == NULL) { 3859 fprintf(stderr, "Unable to find CPU definition\n"); 3860 exit(1); 3861 } 3862 s->sdram_size = sdram_size; 3863 s->sram_size = OMAP15XX_SRAM_SIZE; 3864 3865 s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0); 3866 3867 /* Clocks */ 3868 omap_clk_init(s); 3869 3870 /* Memory-mapped stuff */ 3871 memory_region_allocate_system_memory(&s->emiff_ram, NULL, "omap1.dram", 3872 s->sdram_size); 3873 memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram); 3874 memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size, 3875 &error_fatal); 3876 vmstate_register_ram_global(&s->imif_ram); 3877 memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram); 3878 3879 omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s); 3880 3881 s->ih[0] = qdev_create(NULL, "omap-intc"); 3882 qdev_prop_set_uint32(s->ih[0], "size", 0x100); 3883 qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck")); 3884 qdev_init_nofail(s->ih[0]); 3885 busdev = SYS_BUS_DEVICE(s->ih[0]); 3886 sysbus_connect_irq(busdev, 0, 3887 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ)); 3888 sysbus_connect_irq(busdev, 1, 3889 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ)); 3890 sysbus_mmio_map(busdev, 0, 0xfffecb00); 3891 s->ih[1] = qdev_create(NULL, "omap-intc"); 3892 qdev_prop_set_uint32(s->ih[1], "size", 0x800); 3893 qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck")); 3894 qdev_init_nofail(s->ih[1]); 3895 busdev = SYS_BUS_DEVICE(s->ih[1]); 3896 sysbus_connect_irq(busdev, 0, 3897 qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ)); 3898 /* The second interrupt controller's FIQ output is not wired up */ 3899 sysbus_mmio_map(busdev, 0, 0xfffe0000); 3900 3901 for (i = 0; i < 6; i++) { 3902 dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih], 3903 omap1_dma_irq_map[i].intr); 3904 } 3905 s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory, 3906 qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD), 3907 s, omap_findclk(s, "dma_ck"), omap_dma_3_1); 3908 3909 s->port[emiff ].addr_valid = omap_validate_emiff_addr; 3910 s->port[emifs ].addr_valid = omap_validate_emifs_addr; 3911 s->port[imif ].addr_valid = omap_validate_imif_addr; 3912 s->port[tipb ].addr_valid = omap_validate_tipb_addr; 3913 s->port[local ].addr_valid = omap_validate_local_addr; 3914 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr; 3915 3916 /* Register SDRAM and SRAM DMA ports for fast transfers. */ 3917 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram), 3918 OMAP_EMIFF_BASE, s->sdram_size); 3919 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram), 3920 OMAP_IMIF_BASE, s->sram_size); 3921 3922 s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500, 3923 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1), 3924 omap_findclk(s, "mputim_ck")); 3925 s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600, 3926 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2), 3927 omap_findclk(s, "mputim_ck")); 3928 s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700, 3929 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3), 3930 omap_findclk(s, "mputim_ck")); 3931 3932 s->wdt = omap_wd_timer_init(system_memory, 0xfffec800, 3933 qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER), 3934 omap_findclk(s, "armwdt_ck")); 3935 3936 s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000, 3937 qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER), 3938 omap_findclk(s, "clk32-kHz")); 3939 3940 s->lcd = omap_lcdc_init(system_memory, 0xfffec000, 3941 qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL), 3942 omap_dma_get_lcdch(s->dma), 3943 omap_findclk(s, "lcd_ck")); 3944 3945 omap_ulpd_pm_init(system_memory, 0xfffe0800, s); 3946 omap_pin_cfg_init(system_memory, 0xfffe1000, s); 3947 omap_id_init(system_memory, s); 3948 3949 omap_mpui_init(system_memory, 0xfffec900, s); 3950 3951 s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00, 3952 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV), 3953 omap_findclk(s, "tipb_ck")); 3954 s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300, 3955 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB), 3956 omap_findclk(s, "tipb_ck")); 3957 3958 omap_tcmi_init(system_memory, 0xfffecc00, s); 3959 3960 s->uart[0] = omap_uart_init(0xfffb0000, 3961 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1), 3962 omap_findclk(s, "uart1_ck"), 3963 omap_findclk(s, "uart1_ck"), 3964 s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX], 3965 "uart1", 3966 serial_hds[0]); 3967 s->uart[1] = omap_uart_init(0xfffb0800, 3968 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2), 3969 omap_findclk(s, "uart2_ck"), 3970 omap_findclk(s, "uart2_ck"), 3971 s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX], 3972 "uart2", 3973 serial_hds[0] ? serial_hds[1] : NULL); 3974 s->uart[2] = omap_uart_init(0xfffb9800, 3975 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3), 3976 omap_findclk(s, "uart3_ck"), 3977 omap_findclk(s, "uart3_ck"), 3978 s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX], 3979 "uart3", 3980 serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL); 3981 3982 s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00, 3983 omap_findclk(s, "dpll1")); 3984 s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000, 3985 omap_findclk(s, "dpll2")); 3986 s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100, 3987 omap_findclk(s, "dpll3")); 3988 3989 dinfo = drive_get(IF_SD, 0, 0); 3990 if (!dinfo) { 3991 fprintf(stderr, "qemu: missing SecureDigital device\n"); 3992 exit(1); 3993 } 3994 s->mmc = omap_mmc_init(0xfffb7800, system_memory, 3995 blk_by_legacy_dinfo(dinfo), 3996 qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN), 3997 &s->drq[OMAP_DMA_MMC_TX], 3998 omap_findclk(s, "mmc_ck")); 3999 4000 s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000, 4001 qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD), 4002 qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO), 4003 s->wakeup, omap_findclk(s, "clk32-kHz")); 4004 4005 s->gpio = qdev_create(NULL, "omap-gpio"); 4006 qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model); 4007 qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck")); 4008 qdev_init_nofail(s->gpio); 4009 sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0, 4010 qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1)); 4011 sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000); 4012 4013 s->microwire = omap_uwire_init(system_memory, 0xfffb3000, 4014 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX), 4015 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX), 4016 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck")); 4017 4018 s->pwl = omap_pwl_init(system_memory, 0xfffb5800, 4019 omap_findclk(s, "armxor_ck")); 4020 s->pwt = omap_pwt_init(system_memory, 0xfffb6000, 4021 omap_findclk(s, "armxor_ck")); 4022 4023 s->i2c[0] = qdev_create(NULL, "omap_i2c"); 4024 qdev_prop_set_uint8(s->i2c[0], "revision", 0x11); 4025 qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck")); 4026 qdev_init_nofail(s->i2c[0]); 4027 busdev = SYS_BUS_DEVICE(s->i2c[0]); 4028 sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C)); 4029 sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]); 4030 sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]); 4031 sysbus_mmio_map(busdev, 0, 0xfffb3800); 4032 4033 s->rtc = omap_rtc_init(system_memory, 0xfffb4800, 4034 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER), 4035 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM), 4036 omap_findclk(s, "clk32-kHz")); 4037 4038 s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800, 4039 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX), 4040 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX), 4041 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck")); 4042 s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000, 4043 qdev_get_gpio_in(s->ih[0], 4044 OMAP_INT_310_McBSP2_TX), 4045 qdev_get_gpio_in(s->ih[0], 4046 OMAP_INT_310_McBSP2_RX), 4047 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck")); 4048 s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000, 4049 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX), 4050 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX), 4051 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck")); 4052 4053 s->led[0] = omap_lpg_init(system_memory, 4054 0xfffbd000, omap_findclk(s, "clk32-kHz")); 4055 s->led[1] = omap_lpg_init(system_memory, 4056 0xfffbd800, omap_findclk(s, "clk32-kHz")); 4057 4058 /* Register mappings not currenlty implemented: 4059 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310) 4060 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310) 4061 * USB W2FC fffb4000 - fffb47ff 4062 * Camera Interface fffb6800 - fffb6fff 4063 * USB Host fffba000 - fffba7ff 4064 * FAC fffba800 - fffbafff 4065 * HDQ/1-Wire fffbc000 - fffbc7ff 4066 * TIPB switches fffbc800 - fffbcfff 4067 * Mailbox fffcf000 - fffcf7ff 4068 * Local bus IF fffec100 - fffec1ff 4069 * Local bus MMU fffec200 - fffec2ff 4070 * DSP MMU fffed200 - fffed2ff 4071 */ 4072 4073 omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm); 4074 omap_setup_mpui_io(system_memory, s); 4075 4076 qemu_register_reset(omap1_mpu_reset, s); 4077 4078 return s; 4079 } 4080