1 /* 2 * TI OMAP processors emulation. 3 * 4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org> 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation; either version 2 or 9 * (at your option) version 3 of the License. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License along 17 * with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/error-report.h" 22 #include "qapi/error.h" 23 #include "qemu-common.h" 24 #include "cpu.h" 25 #include "hw/boards.h" 26 #include "hw/hw.h" 27 #include "hw/arm/arm.h" 28 #include "hw/arm/omap.h" 29 #include "sysemu/sysemu.h" 30 #include "hw/arm/soc_dma.h" 31 #include "sysemu/qtest.h" 32 #include "qemu/range.h" 33 #include "hw/sysbus.h" 34 #include "qemu/cutils.h" 35 #include "qemu/bcd.h" 36 37 static inline void omap_log_badwidth(const char *funcname, hwaddr addr, int sz) 38 { 39 qemu_log_mask(LOG_GUEST_ERROR, "%s: %d-bit register %#08" HWADDR_PRIx "\n", 40 funcname, 8 * sz, addr); 41 } 42 43 /* Should signal the TCMI/GPMC */ 44 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr) 45 { 46 uint8_t ret; 47 48 omap_log_badwidth(__func__, addr, 1); 49 cpu_physical_memory_read(addr, &ret, 1); 50 return ret; 51 } 52 53 void omap_badwidth_write8(void *opaque, hwaddr addr, 54 uint32_t value) 55 { 56 uint8_t val8 = value; 57 58 omap_log_badwidth(__func__, addr, 1); 59 cpu_physical_memory_write(addr, &val8, 1); 60 } 61 62 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr) 63 { 64 uint16_t ret; 65 66 omap_log_badwidth(__func__, addr, 2); 67 cpu_physical_memory_read(addr, &ret, 2); 68 return ret; 69 } 70 71 void omap_badwidth_write16(void *opaque, hwaddr addr, 72 uint32_t value) 73 { 74 uint16_t val16 = value; 75 76 omap_log_badwidth(__func__, addr, 2); 77 cpu_physical_memory_write(addr, &val16, 2); 78 } 79 80 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr) 81 { 82 uint32_t ret; 83 84 omap_log_badwidth(__func__, addr, 4); 85 cpu_physical_memory_read(addr, &ret, 4); 86 return ret; 87 } 88 89 void omap_badwidth_write32(void *opaque, hwaddr addr, 90 uint32_t value) 91 { 92 omap_log_badwidth(__func__, addr, 4); 93 cpu_physical_memory_write(addr, &value, 4); 94 } 95 96 /* MPU OS timers */ 97 struct omap_mpu_timer_s { 98 MemoryRegion iomem; 99 qemu_irq irq; 100 omap_clk clk; 101 uint32_t val; 102 int64_t time; 103 QEMUTimer *timer; 104 QEMUBH *tick; 105 int64_t rate; 106 int it_ena; 107 108 int enable; 109 int ptv; 110 int ar; 111 int st; 112 uint32_t reset_val; 113 }; 114 115 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer) 116 { 117 uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time; 118 119 if (timer->st && timer->enable && timer->rate) 120 return timer->val - muldiv64(distance >> (timer->ptv + 1), 121 timer->rate, NANOSECONDS_PER_SECOND); 122 else 123 return timer->val; 124 } 125 126 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer) 127 { 128 timer->val = omap_timer_read(timer); 129 timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 130 } 131 132 static inline void omap_timer_update(struct omap_mpu_timer_s *timer) 133 { 134 int64_t expires; 135 136 if (timer->enable && timer->st && timer->rate) { 137 timer->val = timer->reset_val; /* Should skip this on clk enable */ 138 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1), 139 NANOSECONDS_PER_SECOND, timer->rate); 140 141 /* If timer expiry would be sooner than in about 1 ms and 142 * auto-reload isn't set, then fire immediately. This is a hack 143 * to make systems like PalmOS run in acceptable time. PalmOS 144 * sets the interval to a very low value and polls the status bit 145 * in a busy loop when it wants to sleep just a couple of CPU 146 * ticks. */ 147 if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) { 148 timer_mod(timer->timer, timer->time + expires); 149 } else { 150 qemu_bh_schedule(timer->tick); 151 } 152 } else 153 timer_del(timer->timer); 154 } 155 156 static void omap_timer_fire(void *opaque) 157 { 158 struct omap_mpu_timer_s *timer = opaque; 159 160 if (!timer->ar) { 161 timer->val = 0; 162 timer->st = 0; 163 } 164 165 if (timer->it_ena) 166 /* Edge-triggered irq */ 167 qemu_irq_pulse(timer->irq); 168 } 169 170 static void omap_timer_tick(void *opaque) 171 { 172 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque; 173 174 omap_timer_sync(timer); 175 omap_timer_fire(timer); 176 omap_timer_update(timer); 177 } 178 179 static void omap_timer_clk_update(void *opaque, int line, int on) 180 { 181 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque; 182 183 omap_timer_sync(timer); 184 timer->rate = on ? omap_clk_getrate(timer->clk) : 0; 185 omap_timer_update(timer); 186 } 187 188 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer) 189 { 190 omap_clk_adduser(timer->clk, 191 qemu_allocate_irq(omap_timer_clk_update, timer, 0)); 192 timer->rate = omap_clk_getrate(timer->clk); 193 } 194 195 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr, 196 unsigned size) 197 { 198 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque; 199 200 if (size != 4) { 201 return omap_badwidth_read32(opaque, addr); 202 } 203 204 switch (addr) { 205 case 0x00: /* CNTL_TIMER */ 206 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st; 207 208 case 0x04: /* LOAD_TIM */ 209 break; 210 211 case 0x08: /* READ_TIM */ 212 return omap_timer_read(s); 213 } 214 215 OMAP_BAD_REG(addr); 216 return 0; 217 } 218 219 static void omap_mpu_timer_write(void *opaque, hwaddr addr, 220 uint64_t value, unsigned size) 221 { 222 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque; 223 224 if (size != 4) { 225 omap_badwidth_write32(opaque, addr, value); 226 return; 227 } 228 229 switch (addr) { 230 case 0x00: /* CNTL_TIMER */ 231 omap_timer_sync(s); 232 s->enable = (value >> 5) & 1; 233 s->ptv = (value >> 2) & 7; 234 s->ar = (value >> 1) & 1; 235 s->st = value & 1; 236 omap_timer_update(s); 237 return; 238 239 case 0x04: /* LOAD_TIM */ 240 s->reset_val = value; 241 return; 242 243 case 0x08: /* READ_TIM */ 244 OMAP_RO_REG(addr); 245 break; 246 247 default: 248 OMAP_BAD_REG(addr); 249 } 250 } 251 252 static const MemoryRegionOps omap_mpu_timer_ops = { 253 .read = omap_mpu_timer_read, 254 .write = omap_mpu_timer_write, 255 .endianness = DEVICE_LITTLE_ENDIAN, 256 }; 257 258 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s) 259 { 260 timer_del(s->timer); 261 s->enable = 0; 262 s->reset_val = 31337; 263 s->val = 0; 264 s->ptv = 0; 265 s->ar = 0; 266 s->st = 0; 267 s->it_ena = 1; 268 } 269 270 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory, 271 hwaddr base, 272 qemu_irq irq, omap_clk clk) 273 { 274 struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1); 275 276 s->irq = irq; 277 s->clk = clk; 278 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s); 279 s->tick = qemu_bh_new(omap_timer_fire, s); 280 omap_mpu_timer_reset(s); 281 omap_timer_clk_setup(s); 282 283 memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s, 284 "omap-mpu-timer", 0x100); 285 286 memory_region_add_subregion(system_memory, base, &s->iomem); 287 288 return s; 289 } 290 291 /* Watchdog timer */ 292 struct omap_watchdog_timer_s { 293 struct omap_mpu_timer_s timer; 294 MemoryRegion iomem; 295 uint8_t last_wr; 296 int mode; 297 int free; 298 int reset; 299 }; 300 301 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr, 302 unsigned size) 303 { 304 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque; 305 306 if (size != 2) { 307 return omap_badwidth_read16(opaque, addr); 308 } 309 310 switch (addr) { 311 case 0x00: /* CNTL_TIMER */ 312 return (s->timer.ptv << 9) | (s->timer.ar << 8) | 313 (s->timer.st << 7) | (s->free << 1); 314 315 case 0x04: /* READ_TIMER */ 316 return omap_timer_read(&s->timer); 317 318 case 0x08: /* TIMER_MODE */ 319 return s->mode << 15; 320 } 321 322 OMAP_BAD_REG(addr); 323 return 0; 324 } 325 326 static void omap_wd_timer_write(void *opaque, hwaddr addr, 327 uint64_t value, unsigned size) 328 { 329 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque; 330 331 if (size != 2) { 332 omap_badwidth_write16(opaque, addr, value); 333 return; 334 } 335 336 switch (addr) { 337 case 0x00: /* CNTL_TIMER */ 338 omap_timer_sync(&s->timer); 339 s->timer.ptv = (value >> 9) & 7; 340 s->timer.ar = (value >> 8) & 1; 341 s->timer.st = (value >> 7) & 1; 342 s->free = (value >> 1) & 1; 343 omap_timer_update(&s->timer); 344 break; 345 346 case 0x04: /* LOAD_TIMER */ 347 s->timer.reset_val = value & 0xffff; 348 break; 349 350 case 0x08: /* TIMER_MODE */ 351 if (!s->mode && ((value >> 15) & 1)) 352 omap_clk_get(s->timer.clk); 353 s->mode |= (value >> 15) & 1; 354 if (s->last_wr == 0xf5) { 355 if ((value & 0xff) == 0xa0) { 356 if (s->mode) { 357 s->mode = 0; 358 omap_clk_put(s->timer.clk); 359 } 360 } else { 361 /* XXX: on T|E hardware somehow this has no effect, 362 * on Zire 71 it works as specified. */ 363 s->reset = 1; 364 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 365 } 366 } 367 s->last_wr = value & 0xff; 368 break; 369 370 default: 371 OMAP_BAD_REG(addr); 372 } 373 } 374 375 static const MemoryRegionOps omap_wd_timer_ops = { 376 .read = omap_wd_timer_read, 377 .write = omap_wd_timer_write, 378 .endianness = DEVICE_NATIVE_ENDIAN, 379 }; 380 381 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s) 382 { 383 timer_del(s->timer.timer); 384 if (!s->mode) 385 omap_clk_get(s->timer.clk); 386 s->mode = 1; 387 s->free = 1; 388 s->reset = 0; 389 s->timer.enable = 1; 390 s->timer.it_ena = 1; 391 s->timer.reset_val = 0xffff; 392 s->timer.val = 0; 393 s->timer.st = 0; 394 s->timer.ptv = 0; 395 s->timer.ar = 0; 396 omap_timer_update(&s->timer); 397 } 398 399 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory, 400 hwaddr base, 401 qemu_irq irq, omap_clk clk) 402 { 403 struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1); 404 405 s->timer.irq = irq; 406 s->timer.clk = clk; 407 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer); 408 omap_wd_timer_reset(s); 409 omap_timer_clk_setup(&s->timer); 410 411 memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s, 412 "omap-wd-timer", 0x100); 413 memory_region_add_subregion(memory, base, &s->iomem); 414 415 return s; 416 } 417 418 /* 32-kHz timer */ 419 struct omap_32khz_timer_s { 420 struct omap_mpu_timer_s timer; 421 MemoryRegion iomem; 422 }; 423 424 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr, 425 unsigned size) 426 { 427 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque; 428 int offset = addr & OMAP_MPUI_REG_MASK; 429 430 if (size != 4) { 431 return omap_badwidth_read32(opaque, addr); 432 } 433 434 switch (offset) { 435 case 0x00: /* TVR */ 436 return s->timer.reset_val; 437 438 case 0x04: /* TCR */ 439 return omap_timer_read(&s->timer); 440 441 case 0x08: /* CR */ 442 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st; 443 444 default: 445 break; 446 } 447 OMAP_BAD_REG(addr); 448 return 0; 449 } 450 451 static void omap_os_timer_write(void *opaque, hwaddr addr, 452 uint64_t value, unsigned size) 453 { 454 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque; 455 int offset = addr & OMAP_MPUI_REG_MASK; 456 457 if (size != 4) { 458 omap_badwidth_write32(opaque, addr, value); 459 return; 460 } 461 462 switch (offset) { 463 case 0x00: /* TVR */ 464 s->timer.reset_val = value & 0x00ffffff; 465 break; 466 467 case 0x04: /* TCR */ 468 OMAP_RO_REG(addr); 469 break; 470 471 case 0x08: /* CR */ 472 s->timer.ar = (value >> 3) & 1; 473 s->timer.it_ena = (value >> 2) & 1; 474 if (s->timer.st != (value & 1) || (value & 2)) { 475 omap_timer_sync(&s->timer); 476 s->timer.enable = value & 1; 477 s->timer.st = value & 1; 478 omap_timer_update(&s->timer); 479 } 480 break; 481 482 default: 483 OMAP_BAD_REG(addr); 484 } 485 } 486 487 static const MemoryRegionOps omap_os_timer_ops = { 488 .read = omap_os_timer_read, 489 .write = omap_os_timer_write, 490 .endianness = DEVICE_NATIVE_ENDIAN, 491 }; 492 493 static void omap_os_timer_reset(struct omap_32khz_timer_s *s) 494 { 495 timer_del(s->timer.timer); 496 s->timer.enable = 0; 497 s->timer.it_ena = 0; 498 s->timer.reset_val = 0x00ffffff; 499 s->timer.val = 0; 500 s->timer.st = 0; 501 s->timer.ptv = 0; 502 s->timer.ar = 1; 503 } 504 505 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory, 506 hwaddr base, 507 qemu_irq irq, omap_clk clk) 508 { 509 struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1); 510 511 s->timer.irq = irq; 512 s->timer.clk = clk; 513 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer); 514 omap_os_timer_reset(s); 515 omap_timer_clk_setup(&s->timer); 516 517 memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s, 518 "omap-os-timer", 0x800); 519 memory_region_add_subregion(memory, base, &s->iomem); 520 521 return s; 522 } 523 524 /* Ultra Low-Power Device Module */ 525 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr, 526 unsigned size) 527 { 528 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; 529 uint16_t ret; 530 531 if (size != 2) { 532 return omap_badwidth_read16(opaque, addr); 533 } 534 535 switch (addr) { 536 case 0x14: /* IT_STATUS */ 537 ret = s->ulpd_pm_regs[addr >> 2]; 538 s->ulpd_pm_regs[addr >> 2] = 0; 539 qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K)); 540 return ret; 541 542 case 0x18: /* Reserved */ 543 case 0x1c: /* Reserved */ 544 case 0x20: /* Reserved */ 545 case 0x28: /* Reserved */ 546 case 0x2c: /* Reserved */ 547 OMAP_BAD_REG(addr); 548 /* fall through */ 549 case 0x00: /* COUNTER_32_LSB */ 550 case 0x04: /* COUNTER_32_MSB */ 551 case 0x08: /* COUNTER_HIGH_FREQ_LSB */ 552 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */ 553 case 0x10: /* GAUGING_CTRL */ 554 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */ 555 case 0x30: /* CLOCK_CTRL */ 556 case 0x34: /* SOFT_REQ */ 557 case 0x38: /* COUNTER_32_FIQ */ 558 case 0x3c: /* DPLL_CTRL */ 559 case 0x40: /* STATUS_REQ */ 560 /* XXX: check clk::usecount state for every clock */ 561 case 0x48: /* LOCL_TIME */ 562 case 0x4c: /* APLL_CTRL */ 563 case 0x50: /* POWER_CTRL */ 564 return s->ulpd_pm_regs[addr >> 2]; 565 } 566 567 OMAP_BAD_REG(addr); 568 return 0; 569 } 570 571 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s, 572 uint16_t diff, uint16_t value) 573 { 574 if (diff & (1 << 4)) /* USB_MCLK_EN */ 575 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1); 576 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */ 577 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1); 578 } 579 580 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s, 581 uint16_t diff, uint16_t value) 582 { 583 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */ 584 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1); 585 if (diff & (1 << 1)) /* SOFT_COM_REQ */ 586 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1); 587 if (diff & (1 << 2)) /* SOFT_SDW_REQ */ 588 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1); 589 if (diff & (1 << 3)) /* SOFT_USB_REQ */ 590 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1); 591 } 592 593 static void omap_ulpd_pm_write(void *opaque, hwaddr addr, 594 uint64_t value, unsigned size) 595 { 596 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; 597 int64_t now, ticks; 598 int div, mult; 599 static const int bypass_div[4] = { 1, 2, 4, 4 }; 600 uint16_t diff; 601 602 if (size != 2) { 603 omap_badwidth_write16(opaque, addr, value); 604 return; 605 } 606 607 switch (addr) { 608 case 0x00: /* COUNTER_32_LSB */ 609 case 0x04: /* COUNTER_32_MSB */ 610 case 0x08: /* COUNTER_HIGH_FREQ_LSB */ 611 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */ 612 case 0x14: /* IT_STATUS */ 613 case 0x40: /* STATUS_REQ */ 614 OMAP_RO_REG(addr); 615 break; 616 617 case 0x10: /* GAUGING_CTRL */ 618 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */ 619 if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) { 620 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 621 622 if (value & 1) 623 s->ulpd_gauge_start = now; 624 else { 625 now -= s->ulpd_gauge_start; 626 627 /* 32-kHz ticks */ 628 ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND); 629 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff; 630 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff; 631 if (ticks >> 32) /* OVERFLOW_32K */ 632 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2; 633 634 /* High frequency ticks */ 635 ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND); 636 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff; 637 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff; 638 if (ticks >> 32) /* OVERFLOW_HI_FREQ */ 639 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1; 640 641 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */ 642 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K)); 643 } 644 } 645 s->ulpd_pm_regs[addr >> 2] = value; 646 break; 647 648 case 0x18: /* Reserved */ 649 case 0x1c: /* Reserved */ 650 case 0x20: /* Reserved */ 651 case 0x28: /* Reserved */ 652 case 0x2c: /* Reserved */ 653 OMAP_BAD_REG(addr); 654 /* fall through */ 655 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */ 656 case 0x38: /* COUNTER_32_FIQ */ 657 case 0x48: /* LOCL_TIME */ 658 case 0x50: /* POWER_CTRL */ 659 s->ulpd_pm_regs[addr >> 2] = value; 660 break; 661 662 case 0x30: /* CLOCK_CTRL */ 663 diff = s->ulpd_pm_regs[addr >> 2] ^ value; 664 s->ulpd_pm_regs[addr >> 2] = value & 0x3f; 665 omap_ulpd_clk_update(s, diff, value); 666 break; 667 668 case 0x34: /* SOFT_REQ */ 669 diff = s->ulpd_pm_regs[addr >> 2] ^ value; 670 s->ulpd_pm_regs[addr >> 2] = value & 0x1f; 671 omap_ulpd_req_update(s, diff, value); 672 break; 673 674 case 0x3c: /* DPLL_CTRL */ 675 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is 676 * omitted altogether, probably a typo. */ 677 /* This register has identical semantics with DPLL(1:3) control 678 * registers, see omap_dpll_write() */ 679 diff = s->ulpd_pm_regs[addr >> 2] & value; 680 s->ulpd_pm_regs[addr >> 2] = value & 0x2fff; 681 if (diff & (0x3ff << 2)) { 682 if (value & (1 << 4)) { /* PLL_ENABLE */ 683 div = ((value >> 5) & 3) + 1; /* PLL_DIV */ 684 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */ 685 } else { 686 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */ 687 mult = 1; 688 } 689 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult); 690 } 691 692 /* Enter the desired mode. */ 693 s->ulpd_pm_regs[addr >> 2] = 694 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) | 695 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1); 696 697 /* Act as if the lock is restored. */ 698 s->ulpd_pm_regs[addr >> 2] |= 2; 699 break; 700 701 case 0x4c: /* APLL_CTRL */ 702 diff = s->ulpd_pm_regs[addr >> 2] & value; 703 s->ulpd_pm_regs[addr >> 2] = value & 0xf; 704 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */ 705 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s, 706 (value & (1 << 0)) ? "apll" : "dpll4")); 707 break; 708 709 default: 710 OMAP_BAD_REG(addr); 711 } 712 } 713 714 static const MemoryRegionOps omap_ulpd_pm_ops = { 715 .read = omap_ulpd_pm_read, 716 .write = omap_ulpd_pm_write, 717 .endianness = DEVICE_NATIVE_ENDIAN, 718 }; 719 720 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu) 721 { 722 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001; 723 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000; 724 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001; 725 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000; 726 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000; 727 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01; 728 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01; 729 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01; 730 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff; 731 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01; 732 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01; 733 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000); 734 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000; 735 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000); 736 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000; 737 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001; 738 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211; 739 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */ 740 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960; 741 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08; 742 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08; 743 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4); 744 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4")); 745 } 746 747 static void omap_ulpd_pm_init(MemoryRegion *system_memory, 748 hwaddr base, 749 struct omap_mpu_state_s *mpu) 750 { 751 memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu, 752 "omap-ulpd-pm", 0x800); 753 memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem); 754 omap_ulpd_pm_reset(mpu); 755 } 756 757 /* OMAP Pin Configuration */ 758 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr, 759 unsigned size) 760 { 761 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; 762 763 if (size != 4) { 764 return omap_badwidth_read32(opaque, addr); 765 } 766 767 switch (addr) { 768 case 0x00: /* FUNC_MUX_CTRL_0 */ 769 case 0x04: /* FUNC_MUX_CTRL_1 */ 770 case 0x08: /* FUNC_MUX_CTRL_2 */ 771 return s->func_mux_ctrl[addr >> 2]; 772 773 case 0x0c: /* COMP_MODE_CTRL_0 */ 774 return s->comp_mode_ctrl[0]; 775 776 case 0x10: /* FUNC_MUX_CTRL_3 */ 777 case 0x14: /* FUNC_MUX_CTRL_4 */ 778 case 0x18: /* FUNC_MUX_CTRL_5 */ 779 case 0x1c: /* FUNC_MUX_CTRL_6 */ 780 case 0x20: /* FUNC_MUX_CTRL_7 */ 781 case 0x24: /* FUNC_MUX_CTRL_8 */ 782 case 0x28: /* FUNC_MUX_CTRL_9 */ 783 case 0x2c: /* FUNC_MUX_CTRL_A */ 784 case 0x30: /* FUNC_MUX_CTRL_B */ 785 case 0x34: /* FUNC_MUX_CTRL_C */ 786 case 0x38: /* FUNC_MUX_CTRL_D */ 787 return s->func_mux_ctrl[(addr >> 2) - 1]; 788 789 case 0x40: /* PULL_DWN_CTRL_0 */ 790 case 0x44: /* PULL_DWN_CTRL_1 */ 791 case 0x48: /* PULL_DWN_CTRL_2 */ 792 case 0x4c: /* PULL_DWN_CTRL_3 */ 793 return s->pull_dwn_ctrl[(addr & 0xf) >> 2]; 794 795 case 0x50: /* GATE_INH_CTRL_0 */ 796 return s->gate_inh_ctrl[0]; 797 798 case 0x60: /* VOLTAGE_CTRL_0 */ 799 return s->voltage_ctrl[0]; 800 801 case 0x70: /* TEST_DBG_CTRL_0 */ 802 return s->test_dbg_ctrl[0]; 803 804 case 0x80: /* MOD_CONF_CTRL_0 */ 805 return s->mod_conf_ctrl[0]; 806 } 807 808 OMAP_BAD_REG(addr); 809 return 0; 810 } 811 812 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s, 813 uint32_t diff, uint32_t value) 814 { 815 if (s->compat1509) { 816 if (diff & (1 << 9)) /* BLUETOOTH */ 817 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"), 818 (~value >> 9) & 1); 819 if (diff & (1 << 7)) /* USB.CLKO */ 820 omap_clk_onoff(omap_findclk(s, "usb.clko"), 821 (value >> 7) & 1); 822 } 823 } 824 825 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s, 826 uint32_t diff, uint32_t value) 827 { 828 if (s->compat1509) { 829 if (diff & (1U << 31)) { 830 /* MCBSP3_CLK_HIZ_DI */ 831 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1); 832 } 833 if (diff & (1 << 1)) { 834 /* CLK32K */ 835 omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1); 836 } 837 } 838 } 839 840 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s, 841 uint32_t diff, uint32_t value) 842 { 843 if (diff & (1U << 31)) { 844 /* CONF_MOD_UART3_CLK_MODE_R */ 845 omap_clk_reparent(omap_findclk(s, "uart3_ck"), 846 omap_findclk(s, ((value >> 31) & 1) ? 847 "ck_48m" : "armper_ck")); 848 } 849 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */ 850 omap_clk_reparent(omap_findclk(s, "uart2_ck"), 851 omap_findclk(s, ((value >> 30) & 1) ? 852 "ck_48m" : "armper_ck")); 853 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */ 854 omap_clk_reparent(omap_findclk(s, "uart1_ck"), 855 omap_findclk(s, ((value >> 29) & 1) ? 856 "ck_48m" : "armper_ck")); 857 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */ 858 omap_clk_reparent(omap_findclk(s, "mmc_ck"), 859 omap_findclk(s, ((value >> 23) & 1) ? 860 "ck_48m" : "armper_ck")); 861 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */ 862 omap_clk_reparent(omap_findclk(s, "com_mclk_out"), 863 omap_findclk(s, ((value >> 12) & 1) ? 864 "ck_48m" : "armper_ck")); 865 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */ 866 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1); 867 } 868 869 static void omap_pin_cfg_write(void *opaque, hwaddr addr, 870 uint64_t value, unsigned size) 871 { 872 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; 873 uint32_t diff; 874 875 if (size != 4) { 876 omap_badwidth_write32(opaque, addr, value); 877 return; 878 } 879 880 switch (addr) { 881 case 0x00: /* FUNC_MUX_CTRL_0 */ 882 diff = s->func_mux_ctrl[addr >> 2] ^ value; 883 s->func_mux_ctrl[addr >> 2] = value; 884 omap_pin_funcmux0_update(s, diff, value); 885 return; 886 887 case 0x04: /* FUNC_MUX_CTRL_1 */ 888 diff = s->func_mux_ctrl[addr >> 2] ^ value; 889 s->func_mux_ctrl[addr >> 2] = value; 890 omap_pin_funcmux1_update(s, diff, value); 891 return; 892 893 case 0x08: /* FUNC_MUX_CTRL_2 */ 894 s->func_mux_ctrl[addr >> 2] = value; 895 return; 896 897 case 0x0c: /* COMP_MODE_CTRL_0 */ 898 s->comp_mode_ctrl[0] = value; 899 s->compat1509 = (value != 0x0000eaef); 900 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]); 901 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]); 902 return; 903 904 case 0x10: /* FUNC_MUX_CTRL_3 */ 905 case 0x14: /* FUNC_MUX_CTRL_4 */ 906 case 0x18: /* FUNC_MUX_CTRL_5 */ 907 case 0x1c: /* FUNC_MUX_CTRL_6 */ 908 case 0x20: /* FUNC_MUX_CTRL_7 */ 909 case 0x24: /* FUNC_MUX_CTRL_8 */ 910 case 0x28: /* FUNC_MUX_CTRL_9 */ 911 case 0x2c: /* FUNC_MUX_CTRL_A */ 912 case 0x30: /* FUNC_MUX_CTRL_B */ 913 case 0x34: /* FUNC_MUX_CTRL_C */ 914 case 0x38: /* FUNC_MUX_CTRL_D */ 915 s->func_mux_ctrl[(addr >> 2) - 1] = value; 916 return; 917 918 case 0x40: /* PULL_DWN_CTRL_0 */ 919 case 0x44: /* PULL_DWN_CTRL_1 */ 920 case 0x48: /* PULL_DWN_CTRL_2 */ 921 case 0x4c: /* PULL_DWN_CTRL_3 */ 922 s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value; 923 return; 924 925 case 0x50: /* GATE_INH_CTRL_0 */ 926 s->gate_inh_ctrl[0] = value; 927 return; 928 929 case 0x60: /* VOLTAGE_CTRL_0 */ 930 s->voltage_ctrl[0] = value; 931 return; 932 933 case 0x70: /* TEST_DBG_CTRL_0 */ 934 s->test_dbg_ctrl[0] = value; 935 return; 936 937 case 0x80: /* MOD_CONF_CTRL_0 */ 938 diff = s->mod_conf_ctrl[0] ^ value; 939 s->mod_conf_ctrl[0] = value; 940 omap_pin_modconf1_update(s, diff, value); 941 return; 942 943 default: 944 OMAP_BAD_REG(addr); 945 } 946 } 947 948 static const MemoryRegionOps omap_pin_cfg_ops = { 949 .read = omap_pin_cfg_read, 950 .write = omap_pin_cfg_write, 951 .endianness = DEVICE_NATIVE_ENDIAN, 952 }; 953 954 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu) 955 { 956 /* Start in Compatibility Mode. */ 957 mpu->compat1509 = 1; 958 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0); 959 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0); 960 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0); 961 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl)); 962 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl)); 963 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl)); 964 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl)); 965 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl)); 966 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl)); 967 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl)); 968 } 969 970 static void omap_pin_cfg_init(MemoryRegion *system_memory, 971 hwaddr base, 972 struct omap_mpu_state_s *mpu) 973 { 974 memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu, 975 "omap-pin-cfg", 0x800); 976 memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem); 977 omap_pin_cfg_reset(mpu); 978 } 979 980 /* Device Identification, Die Identification */ 981 static uint64_t omap_id_read(void *opaque, hwaddr addr, 982 unsigned size) 983 { 984 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; 985 986 if (size != 4) { 987 return omap_badwidth_read32(opaque, addr); 988 } 989 990 switch (addr) { 991 case 0xfffe1800: /* DIE_ID_LSB */ 992 return 0xc9581f0e; 993 case 0xfffe1804: /* DIE_ID_MSB */ 994 return 0xa8858bfa; 995 996 case 0xfffe2000: /* PRODUCT_ID_LSB */ 997 return 0x00aaaafc; 998 case 0xfffe2004: /* PRODUCT_ID_MSB */ 999 return 0xcafeb574; 1000 1001 case 0xfffed400: /* JTAG_ID_LSB */ 1002 switch (s->mpu_model) { 1003 case omap310: 1004 return 0x03310315; 1005 case omap1510: 1006 return 0x03310115; 1007 default: 1008 hw_error("%s: bad mpu model\n", __func__); 1009 } 1010 break; 1011 1012 case 0xfffed404: /* JTAG_ID_MSB */ 1013 switch (s->mpu_model) { 1014 case omap310: 1015 return 0xfb57402f; 1016 case omap1510: 1017 return 0xfb47002f; 1018 default: 1019 hw_error("%s: bad mpu model\n", __func__); 1020 } 1021 break; 1022 } 1023 1024 OMAP_BAD_REG(addr); 1025 return 0; 1026 } 1027 1028 static void omap_id_write(void *opaque, hwaddr addr, 1029 uint64_t value, unsigned size) 1030 { 1031 if (size != 4) { 1032 omap_badwidth_write32(opaque, addr, value); 1033 return; 1034 } 1035 1036 OMAP_BAD_REG(addr); 1037 } 1038 1039 static const MemoryRegionOps omap_id_ops = { 1040 .read = omap_id_read, 1041 .write = omap_id_write, 1042 .endianness = DEVICE_NATIVE_ENDIAN, 1043 }; 1044 1045 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu) 1046 { 1047 memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu, 1048 "omap-id", 0x100000000ULL); 1049 memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem, 1050 0xfffe1800, 0x800); 1051 memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18); 1052 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem, 1053 0xfffed400, 0x100); 1054 memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4); 1055 if (!cpu_is_omap15xx(mpu)) { 1056 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20", 1057 &mpu->id_iomem, 0xfffe2000, 0x800); 1058 memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20); 1059 } 1060 } 1061 1062 /* MPUI Control (Dummy) */ 1063 static uint64_t omap_mpui_read(void *opaque, hwaddr addr, 1064 unsigned size) 1065 { 1066 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; 1067 1068 if (size != 4) { 1069 return omap_badwidth_read32(opaque, addr); 1070 } 1071 1072 switch (addr) { 1073 case 0x00: /* CTRL */ 1074 return s->mpui_ctrl; 1075 case 0x04: /* DEBUG_ADDR */ 1076 return 0x01ffffff; 1077 case 0x08: /* DEBUG_DATA */ 1078 return 0xffffffff; 1079 case 0x0c: /* DEBUG_FLAG */ 1080 return 0x00000800; 1081 case 0x10: /* STATUS */ 1082 return 0x00000000; 1083 1084 /* Not in OMAP310 */ 1085 case 0x14: /* DSP_STATUS */ 1086 case 0x18: /* DSP_BOOT_CONFIG */ 1087 return 0x00000000; 1088 case 0x1c: /* DSP_MPUI_CONFIG */ 1089 return 0x0000ffff; 1090 } 1091 1092 OMAP_BAD_REG(addr); 1093 return 0; 1094 } 1095 1096 static void omap_mpui_write(void *opaque, hwaddr addr, 1097 uint64_t value, unsigned size) 1098 { 1099 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; 1100 1101 if (size != 4) { 1102 omap_badwidth_write32(opaque, addr, value); 1103 return; 1104 } 1105 1106 switch (addr) { 1107 case 0x00: /* CTRL */ 1108 s->mpui_ctrl = value & 0x007fffff; 1109 break; 1110 1111 case 0x04: /* DEBUG_ADDR */ 1112 case 0x08: /* DEBUG_DATA */ 1113 case 0x0c: /* DEBUG_FLAG */ 1114 case 0x10: /* STATUS */ 1115 /* Not in OMAP310 */ 1116 case 0x14: /* DSP_STATUS */ 1117 OMAP_RO_REG(addr); 1118 break; 1119 case 0x18: /* DSP_BOOT_CONFIG */ 1120 case 0x1c: /* DSP_MPUI_CONFIG */ 1121 break; 1122 1123 default: 1124 OMAP_BAD_REG(addr); 1125 } 1126 } 1127 1128 static const MemoryRegionOps omap_mpui_ops = { 1129 .read = omap_mpui_read, 1130 .write = omap_mpui_write, 1131 .endianness = DEVICE_NATIVE_ENDIAN, 1132 }; 1133 1134 static void omap_mpui_reset(struct omap_mpu_state_s *s) 1135 { 1136 s->mpui_ctrl = 0x0003ff1b; 1137 } 1138 1139 static void omap_mpui_init(MemoryRegion *memory, hwaddr base, 1140 struct omap_mpu_state_s *mpu) 1141 { 1142 memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu, 1143 "omap-mpui", 0x100); 1144 memory_region_add_subregion(memory, base, &mpu->mpui_iomem); 1145 1146 omap_mpui_reset(mpu); 1147 } 1148 1149 /* TIPB Bridges */ 1150 struct omap_tipb_bridge_s { 1151 qemu_irq abort; 1152 MemoryRegion iomem; 1153 1154 int width_intr; 1155 uint16_t control; 1156 uint16_t alloc; 1157 uint16_t buffer; 1158 uint16_t enh_control; 1159 }; 1160 1161 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr, 1162 unsigned size) 1163 { 1164 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque; 1165 1166 if (size < 2) { 1167 return omap_badwidth_read16(opaque, addr); 1168 } 1169 1170 switch (addr) { 1171 case 0x00: /* TIPB_CNTL */ 1172 return s->control; 1173 case 0x04: /* TIPB_BUS_ALLOC */ 1174 return s->alloc; 1175 case 0x08: /* MPU_TIPB_CNTL */ 1176 return s->buffer; 1177 case 0x0c: /* ENHANCED_TIPB_CNTL */ 1178 return s->enh_control; 1179 case 0x10: /* ADDRESS_DBG */ 1180 case 0x14: /* DATA_DEBUG_LOW */ 1181 case 0x18: /* DATA_DEBUG_HIGH */ 1182 return 0xffff; 1183 case 0x1c: /* DEBUG_CNTR_SIG */ 1184 return 0x00f8; 1185 } 1186 1187 OMAP_BAD_REG(addr); 1188 return 0; 1189 } 1190 1191 static void omap_tipb_bridge_write(void *opaque, hwaddr addr, 1192 uint64_t value, unsigned size) 1193 { 1194 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque; 1195 1196 if (size < 2) { 1197 omap_badwidth_write16(opaque, addr, value); 1198 return; 1199 } 1200 1201 switch (addr) { 1202 case 0x00: /* TIPB_CNTL */ 1203 s->control = value & 0xffff; 1204 break; 1205 1206 case 0x04: /* TIPB_BUS_ALLOC */ 1207 s->alloc = value & 0x003f; 1208 break; 1209 1210 case 0x08: /* MPU_TIPB_CNTL */ 1211 s->buffer = value & 0x0003; 1212 break; 1213 1214 case 0x0c: /* ENHANCED_TIPB_CNTL */ 1215 s->width_intr = !(value & 2); 1216 s->enh_control = value & 0x000f; 1217 break; 1218 1219 case 0x10: /* ADDRESS_DBG */ 1220 case 0x14: /* DATA_DEBUG_LOW */ 1221 case 0x18: /* DATA_DEBUG_HIGH */ 1222 case 0x1c: /* DEBUG_CNTR_SIG */ 1223 OMAP_RO_REG(addr); 1224 break; 1225 1226 default: 1227 OMAP_BAD_REG(addr); 1228 } 1229 } 1230 1231 static const MemoryRegionOps omap_tipb_bridge_ops = { 1232 .read = omap_tipb_bridge_read, 1233 .write = omap_tipb_bridge_write, 1234 .endianness = DEVICE_NATIVE_ENDIAN, 1235 }; 1236 1237 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s) 1238 { 1239 s->control = 0xffff; 1240 s->alloc = 0x0009; 1241 s->buffer = 0x0000; 1242 s->enh_control = 0x000f; 1243 } 1244 1245 static struct omap_tipb_bridge_s *omap_tipb_bridge_init( 1246 MemoryRegion *memory, hwaddr base, 1247 qemu_irq abort_irq, omap_clk clk) 1248 { 1249 struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1); 1250 1251 s->abort = abort_irq; 1252 omap_tipb_bridge_reset(s); 1253 1254 memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s, 1255 "omap-tipb-bridge", 0x100); 1256 memory_region_add_subregion(memory, base, &s->iomem); 1257 1258 return s; 1259 } 1260 1261 /* Dummy Traffic Controller's Memory Interface */ 1262 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr, 1263 unsigned size) 1264 { 1265 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; 1266 uint32_t ret; 1267 1268 if (size != 4) { 1269 return omap_badwidth_read32(opaque, addr); 1270 } 1271 1272 switch (addr) { 1273 case 0x00: /* IMIF_PRIO */ 1274 case 0x04: /* EMIFS_PRIO */ 1275 case 0x08: /* EMIFF_PRIO */ 1276 case 0x0c: /* EMIFS_CONFIG */ 1277 case 0x10: /* EMIFS_CS0_CONFIG */ 1278 case 0x14: /* EMIFS_CS1_CONFIG */ 1279 case 0x18: /* EMIFS_CS2_CONFIG */ 1280 case 0x1c: /* EMIFS_CS3_CONFIG */ 1281 case 0x24: /* EMIFF_MRS */ 1282 case 0x28: /* TIMEOUT1 */ 1283 case 0x2c: /* TIMEOUT2 */ 1284 case 0x30: /* TIMEOUT3 */ 1285 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */ 1286 case 0x40: /* EMIFS_CFG_DYN_WAIT */ 1287 return s->tcmi_regs[addr >> 2]; 1288 1289 case 0x20: /* EMIFF_SDRAM_CONFIG */ 1290 ret = s->tcmi_regs[addr >> 2]; 1291 s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */ 1292 /* XXX: We can try using the VGA_DIRTY flag for this */ 1293 return ret; 1294 } 1295 1296 OMAP_BAD_REG(addr); 1297 return 0; 1298 } 1299 1300 static void omap_tcmi_write(void *opaque, hwaddr addr, 1301 uint64_t value, unsigned size) 1302 { 1303 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; 1304 1305 if (size != 4) { 1306 omap_badwidth_write32(opaque, addr, value); 1307 return; 1308 } 1309 1310 switch (addr) { 1311 case 0x00: /* IMIF_PRIO */ 1312 case 0x04: /* EMIFS_PRIO */ 1313 case 0x08: /* EMIFF_PRIO */ 1314 case 0x10: /* EMIFS_CS0_CONFIG */ 1315 case 0x14: /* EMIFS_CS1_CONFIG */ 1316 case 0x18: /* EMIFS_CS2_CONFIG */ 1317 case 0x1c: /* EMIFS_CS3_CONFIG */ 1318 case 0x20: /* EMIFF_SDRAM_CONFIG */ 1319 case 0x24: /* EMIFF_MRS */ 1320 case 0x28: /* TIMEOUT1 */ 1321 case 0x2c: /* TIMEOUT2 */ 1322 case 0x30: /* TIMEOUT3 */ 1323 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */ 1324 case 0x40: /* EMIFS_CFG_DYN_WAIT */ 1325 s->tcmi_regs[addr >> 2] = value; 1326 break; 1327 case 0x0c: /* EMIFS_CONFIG */ 1328 s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4); 1329 break; 1330 1331 default: 1332 OMAP_BAD_REG(addr); 1333 } 1334 } 1335 1336 static const MemoryRegionOps omap_tcmi_ops = { 1337 .read = omap_tcmi_read, 1338 .write = omap_tcmi_write, 1339 .endianness = DEVICE_NATIVE_ENDIAN, 1340 }; 1341 1342 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu) 1343 { 1344 mpu->tcmi_regs[0x00 >> 2] = 0x00000000; 1345 mpu->tcmi_regs[0x04 >> 2] = 0x00000000; 1346 mpu->tcmi_regs[0x08 >> 2] = 0x00000000; 1347 mpu->tcmi_regs[0x0c >> 2] = 0x00000010; 1348 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb; 1349 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb; 1350 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb; 1351 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb; 1352 mpu->tcmi_regs[0x20 >> 2] = 0x00618800; 1353 mpu->tcmi_regs[0x24 >> 2] = 0x00000037; 1354 mpu->tcmi_regs[0x28 >> 2] = 0x00000000; 1355 mpu->tcmi_regs[0x2c >> 2] = 0x00000000; 1356 mpu->tcmi_regs[0x30 >> 2] = 0x00000000; 1357 mpu->tcmi_regs[0x3c >> 2] = 0x00000003; 1358 mpu->tcmi_regs[0x40 >> 2] = 0x00000000; 1359 } 1360 1361 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base, 1362 struct omap_mpu_state_s *mpu) 1363 { 1364 memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu, 1365 "omap-tcmi", 0x100); 1366 memory_region_add_subregion(memory, base, &mpu->tcmi_iomem); 1367 omap_tcmi_reset(mpu); 1368 } 1369 1370 /* Digital phase-locked loops control */ 1371 struct dpll_ctl_s { 1372 MemoryRegion iomem; 1373 uint16_t mode; 1374 omap_clk dpll; 1375 }; 1376 1377 static uint64_t omap_dpll_read(void *opaque, hwaddr addr, 1378 unsigned size) 1379 { 1380 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque; 1381 1382 if (size != 2) { 1383 return omap_badwidth_read16(opaque, addr); 1384 } 1385 1386 if (addr == 0x00) /* CTL_REG */ 1387 return s->mode; 1388 1389 OMAP_BAD_REG(addr); 1390 return 0; 1391 } 1392 1393 static void omap_dpll_write(void *opaque, hwaddr addr, 1394 uint64_t value, unsigned size) 1395 { 1396 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque; 1397 uint16_t diff; 1398 static const int bypass_div[4] = { 1, 2, 4, 4 }; 1399 int div, mult; 1400 1401 if (size != 2) { 1402 omap_badwidth_write16(opaque, addr, value); 1403 return; 1404 } 1405 1406 if (addr == 0x00) { /* CTL_REG */ 1407 /* See omap_ulpd_pm_write() too */ 1408 diff = s->mode & value; 1409 s->mode = value & 0x2fff; 1410 if (diff & (0x3ff << 2)) { 1411 if (value & (1 << 4)) { /* PLL_ENABLE */ 1412 div = ((value >> 5) & 3) + 1; /* PLL_DIV */ 1413 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */ 1414 } else { 1415 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */ 1416 mult = 1; 1417 } 1418 omap_clk_setrate(s->dpll, div, mult); 1419 } 1420 1421 /* Enter the desired mode. */ 1422 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1); 1423 1424 /* Act as if the lock is restored. */ 1425 s->mode |= 2; 1426 } else { 1427 OMAP_BAD_REG(addr); 1428 } 1429 } 1430 1431 static const MemoryRegionOps omap_dpll_ops = { 1432 .read = omap_dpll_read, 1433 .write = omap_dpll_write, 1434 .endianness = DEVICE_NATIVE_ENDIAN, 1435 }; 1436 1437 static void omap_dpll_reset(struct dpll_ctl_s *s) 1438 { 1439 s->mode = 0x2002; 1440 omap_clk_setrate(s->dpll, 1, 1); 1441 } 1442 1443 static struct dpll_ctl_s *omap_dpll_init(MemoryRegion *memory, 1444 hwaddr base, omap_clk clk) 1445 { 1446 struct dpll_ctl_s *s = g_malloc0(sizeof(*s)); 1447 memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100); 1448 1449 s->dpll = clk; 1450 omap_dpll_reset(s); 1451 1452 memory_region_add_subregion(memory, base, &s->iomem); 1453 return s; 1454 } 1455 1456 /* MPU Clock/Reset/Power Mode Control */ 1457 static uint64_t omap_clkm_read(void *opaque, hwaddr addr, 1458 unsigned size) 1459 { 1460 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; 1461 1462 if (size != 2) { 1463 return omap_badwidth_read16(opaque, addr); 1464 } 1465 1466 switch (addr) { 1467 case 0x00: /* ARM_CKCTL */ 1468 return s->clkm.arm_ckctl; 1469 1470 case 0x04: /* ARM_IDLECT1 */ 1471 return s->clkm.arm_idlect1; 1472 1473 case 0x08: /* ARM_IDLECT2 */ 1474 return s->clkm.arm_idlect2; 1475 1476 case 0x0c: /* ARM_EWUPCT */ 1477 return s->clkm.arm_ewupct; 1478 1479 case 0x10: /* ARM_RSTCT1 */ 1480 return s->clkm.arm_rstct1; 1481 1482 case 0x14: /* ARM_RSTCT2 */ 1483 return s->clkm.arm_rstct2; 1484 1485 case 0x18: /* ARM_SYSST */ 1486 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start; 1487 1488 case 0x1c: /* ARM_CKOUT1 */ 1489 return s->clkm.arm_ckout1; 1490 1491 case 0x20: /* ARM_CKOUT2 */ 1492 break; 1493 } 1494 1495 OMAP_BAD_REG(addr); 1496 return 0; 1497 } 1498 1499 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s, 1500 uint16_t diff, uint16_t value) 1501 { 1502 omap_clk clk; 1503 1504 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */ 1505 if (value & (1 << 14)) 1506 /* Reserved */; 1507 else { 1508 clk = omap_findclk(s, "arminth_ck"); 1509 omap_clk_reparent(clk, omap_findclk(s, "tc_ck")); 1510 } 1511 } 1512 if (diff & (1 << 12)) { /* ARM_TIMXO */ 1513 clk = omap_findclk(s, "armtim_ck"); 1514 if (value & (1 << 12)) 1515 omap_clk_reparent(clk, omap_findclk(s, "clkin")); 1516 else 1517 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1")); 1518 } 1519 /* XXX: en_dspck */ 1520 if (diff & (3 << 10)) { /* DSPMMUDIV */ 1521 clk = omap_findclk(s, "dspmmu_ck"); 1522 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1); 1523 } 1524 if (diff & (3 << 8)) { /* TCDIV */ 1525 clk = omap_findclk(s, "tc_ck"); 1526 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1); 1527 } 1528 if (diff & (3 << 6)) { /* DSPDIV */ 1529 clk = omap_findclk(s, "dsp_ck"); 1530 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1); 1531 } 1532 if (diff & (3 << 4)) { /* ARMDIV */ 1533 clk = omap_findclk(s, "arm_ck"); 1534 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1); 1535 } 1536 if (diff & (3 << 2)) { /* LCDDIV */ 1537 clk = omap_findclk(s, "lcd_ck"); 1538 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1); 1539 } 1540 if (diff & (3 << 0)) { /* PERDIV */ 1541 clk = omap_findclk(s, "armper_ck"); 1542 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1); 1543 } 1544 } 1545 1546 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s, 1547 uint16_t diff, uint16_t value) 1548 { 1549 omap_clk clk; 1550 1551 if (value & (1 << 11)) { /* SETARM_IDLE */ 1552 cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT); 1553 } 1554 if (!(value & (1 << 10))) { /* WKUP_MODE */ 1555 /* XXX: disable wakeup from IRQ */ 1556 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 1557 } 1558 1559 #define SET_CANIDLE(clock, bit) \ 1560 if (diff & (1 << bit)) { \ 1561 clk = omap_findclk(s, clock); \ 1562 omap_clk_canidle(clk, (value >> bit) & 1); \ 1563 } 1564 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */ 1565 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */ 1566 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */ 1567 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */ 1568 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */ 1569 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */ 1570 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */ 1571 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */ 1572 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */ 1573 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */ 1574 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */ 1575 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */ 1576 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */ 1577 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */ 1578 } 1579 1580 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s, 1581 uint16_t diff, uint16_t value) 1582 { 1583 omap_clk clk; 1584 1585 #define SET_ONOFF(clock, bit) \ 1586 if (diff & (1 << bit)) { \ 1587 clk = omap_findclk(s, clock); \ 1588 omap_clk_onoff(clk, (value >> bit) & 1); \ 1589 } 1590 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */ 1591 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */ 1592 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */ 1593 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */ 1594 SET_ONOFF("lb_ck", 4) /* EN_LBCK */ 1595 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */ 1596 SET_ONOFF("mpui_ck", 6) /* EN_APICK */ 1597 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */ 1598 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */ 1599 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */ 1600 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */ 1601 } 1602 1603 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s, 1604 uint16_t diff, uint16_t value) 1605 { 1606 omap_clk clk; 1607 1608 if (diff & (3 << 4)) { /* TCLKOUT */ 1609 clk = omap_findclk(s, "tclk_out"); 1610 switch ((value >> 4) & 3) { 1611 case 1: 1612 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3")); 1613 omap_clk_onoff(clk, 1); 1614 break; 1615 case 2: 1616 omap_clk_reparent(clk, omap_findclk(s, "tc_ck")); 1617 omap_clk_onoff(clk, 1); 1618 break; 1619 default: 1620 omap_clk_onoff(clk, 0); 1621 } 1622 } 1623 if (diff & (3 << 2)) { /* DCLKOUT */ 1624 clk = omap_findclk(s, "dclk_out"); 1625 switch ((value >> 2) & 3) { 1626 case 0: 1627 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck")); 1628 break; 1629 case 1: 1630 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2")); 1631 break; 1632 case 2: 1633 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck")); 1634 break; 1635 case 3: 1636 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14")); 1637 break; 1638 } 1639 } 1640 if (diff & (3 << 0)) { /* ACLKOUT */ 1641 clk = omap_findclk(s, "aclk_out"); 1642 switch ((value >> 0) & 3) { 1643 case 1: 1644 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1")); 1645 omap_clk_onoff(clk, 1); 1646 break; 1647 case 2: 1648 omap_clk_reparent(clk, omap_findclk(s, "arm_ck")); 1649 omap_clk_onoff(clk, 1); 1650 break; 1651 case 3: 1652 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14")); 1653 omap_clk_onoff(clk, 1); 1654 break; 1655 default: 1656 omap_clk_onoff(clk, 0); 1657 } 1658 } 1659 } 1660 1661 static void omap_clkm_write(void *opaque, hwaddr addr, 1662 uint64_t value, unsigned size) 1663 { 1664 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; 1665 uint16_t diff; 1666 omap_clk clk; 1667 static const char *clkschemename[8] = { 1668 "fully synchronous", "fully asynchronous", "synchronous scalable", 1669 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4", 1670 }; 1671 1672 if (size != 2) { 1673 omap_badwidth_write16(opaque, addr, value); 1674 return; 1675 } 1676 1677 switch (addr) { 1678 case 0x00: /* ARM_CKCTL */ 1679 diff = s->clkm.arm_ckctl ^ value; 1680 s->clkm.arm_ckctl = value & 0x7fff; 1681 omap_clkm_ckctl_update(s, diff, value); 1682 return; 1683 1684 case 0x04: /* ARM_IDLECT1 */ 1685 diff = s->clkm.arm_idlect1 ^ value; 1686 s->clkm.arm_idlect1 = value & 0x0fff; 1687 omap_clkm_idlect1_update(s, diff, value); 1688 return; 1689 1690 case 0x08: /* ARM_IDLECT2 */ 1691 diff = s->clkm.arm_idlect2 ^ value; 1692 s->clkm.arm_idlect2 = value & 0x07ff; 1693 omap_clkm_idlect2_update(s, diff, value); 1694 return; 1695 1696 case 0x0c: /* ARM_EWUPCT */ 1697 s->clkm.arm_ewupct = value & 0x003f; 1698 return; 1699 1700 case 0x10: /* ARM_RSTCT1 */ 1701 diff = s->clkm.arm_rstct1 ^ value; 1702 s->clkm.arm_rstct1 = value & 0x0007; 1703 if (value & 9) { 1704 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 1705 s->clkm.cold_start = 0xa; 1706 } 1707 if (diff & ~value & 4) { /* DSP_RST */ 1708 omap_mpui_reset(s); 1709 omap_tipb_bridge_reset(s->private_tipb); 1710 omap_tipb_bridge_reset(s->public_tipb); 1711 } 1712 if (diff & 2) { /* DSP_EN */ 1713 clk = omap_findclk(s, "dsp_ck"); 1714 omap_clk_canidle(clk, (~value >> 1) & 1); 1715 } 1716 return; 1717 1718 case 0x14: /* ARM_RSTCT2 */ 1719 s->clkm.arm_rstct2 = value & 0x0001; 1720 return; 1721 1722 case 0x18: /* ARM_SYSST */ 1723 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) { 1724 s->clkm.clocking_scheme = (value >> 11) & 7; 1725 printf("%s: clocking scheme set to %s\n", __func__, 1726 clkschemename[s->clkm.clocking_scheme]); 1727 } 1728 s->clkm.cold_start &= value & 0x3f; 1729 return; 1730 1731 case 0x1c: /* ARM_CKOUT1 */ 1732 diff = s->clkm.arm_ckout1 ^ value; 1733 s->clkm.arm_ckout1 = value & 0x003f; 1734 omap_clkm_ckout1_update(s, diff, value); 1735 return; 1736 1737 case 0x20: /* ARM_CKOUT2 */ 1738 default: 1739 OMAP_BAD_REG(addr); 1740 } 1741 } 1742 1743 static const MemoryRegionOps omap_clkm_ops = { 1744 .read = omap_clkm_read, 1745 .write = omap_clkm_write, 1746 .endianness = DEVICE_NATIVE_ENDIAN, 1747 }; 1748 1749 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr, 1750 unsigned size) 1751 { 1752 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; 1753 CPUState *cpu = CPU(s->cpu); 1754 1755 if (size != 2) { 1756 return omap_badwidth_read16(opaque, addr); 1757 } 1758 1759 switch (addr) { 1760 case 0x04: /* DSP_IDLECT1 */ 1761 return s->clkm.dsp_idlect1; 1762 1763 case 0x08: /* DSP_IDLECT2 */ 1764 return s->clkm.dsp_idlect2; 1765 1766 case 0x14: /* DSP_RSTCT2 */ 1767 return s->clkm.dsp_rstct2; 1768 1769 case 0x18: /* DSP_SYSST */ 1770 cpu = CPU(s->cpu); 1771 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start | 1772 (cpu->halted << 6); /* Quite useless... */ 1773 } 1774 1775 OMAP_BAD_REG(addr); 1776 return 0; 1777 } 1778 1779 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s, 1780 uint16_t diff, uint16_t value) 1781 { 1782 omap_clk clk; 1783 1784 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */ 1785 } 1786 1787 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s, 1788 uint16_t diff, uint16_t value) 1789 { 1790 omap_clk clk; 1791 1792 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */ 1793 } 1794 1795 static void omap_clkdsp_write(void *opaque, hwaddr addr, 1796 uint64_t value, unsigned size) 1797 { 1798 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; 1799 uint16_t diff; 1800 1801 if (size != 2) { 1802 omap_badwidth_write16(opaque, addr, value); 1803 return; 1804 } 1805 1806 switch (addr) { 1807 case 0x04: /* DSP_IDLECT1 */ 1808 diff = s->clkm.dsp_idlect1 ^ value; 1809 s->clkm.dsp_idlect1 = value & 0x01f7; 1810 omap_clkdsp_idlect1_update(s, diff, value); 1811 break; 1812 1813 case 0x08: /* DSP_IDLECT2 */ 1814 s->clkm.dsp_idlect2 = value & 0x0037; 1815 diff = s->clkm.dsp_idlect1 ^ value; 1816 omap_clkdsp_idlect2_update(s, diff, value); 1817 break; 1818 1819 case 0x14: /* DSP_RSTCT2 */ 1820 s->clkm.dsp_rstct2 = value & 0x0001; 1821 break; 1822 1823 case 0x18: /* DSP_SYSST */ 1824 s->clkm.cold_start &= value & 0x3f; 1825 break; 1826 1827 default: 1828 OMAP_BAD_REG(addr); 1829 } 1830 } 1831 1832 static const MemoryRegionOps omap_clkdsp_ops = { 1833 .read = omap_clkdsp_read, 1834 .write = omap_clkdsp_write, 1835 .endianness = DEVICE_NATIVE_ENDIAN, 1836 }; 1837 1838 static void omap_clkm_reset(struct omap_mpu_state_s *s) 1839 { 1840 if (s->wdt && s->wdt->reset) 1841 s->clkm.cold_start = 0x6; 1842 s->clkm.clocking_scheme = 0; 1843 omap_clkm_ckctl_update(s, ~0, 0x3000); 1844 s->clkm.arm_ckctl = 0x3000; 1845 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400); 1846 s->clkm.arm_idlect1 = 0x0400; 1847 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100); 1848 s->clkm.arm_idlect2 = 0x0100; 1849 s->clkm.arm_ewupct = 0x003f; 1850 s->clkm.arm_rstct1 = 0x0000; 1851 s->clkm.arm_rstct2 = 0x0000; 1852 s->clkm.arm_ckout1 = 0x0015; 1853 s->clkm.dpll1_mode = 0x2002; 1854 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040); 1855 s->clkm.dsp_idlect1 = 0x0040; 1856 omap_clkdsp_idlect2_update(s, ~0, 0x0000); 1857 s->clkm.dsp_idlect2 = 0x0000; 1858 s->clkm.dsp_rstct2 = 0x0000; 1859 } 1860 1861 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base, 1862 hwaddr dsp_base, struct omap_mpu_state_s *s) 1863 { 1864 memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s, 1865 "omap-clkm", 0x100); 1866 memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s, 1867 "omap-clkdsp", 0x1000); 1868 1869 s->clkm.arm_idlect1 = 0x03ff; 1870 s->clkm.arm_idlect2 = 0x0100; 1871 s->clkm.dsp_idlect1 = 0x0002; 1872 omap_clkm_reset(s); 1873 s->clkm.cold_start = 0x3a; 1874 1875 memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem); 1876 memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem); 1877 } 1878 1879 /* MPU I/O */ 1880 struct omap_mpuio_s { 1881 qemu_irq irq; 1882 qemu_irq kbd_irq; 1883 qemu_irq *in; 1884 qemu_irq handler[16]; 1885 qemu_irq wakeup; 1886 MemoryRegion iomem; 1887 1888 uint16_t inputs; 1889 uint16_t outputs; 1890 uint16_t dir; 1891 uint16_t edge; 1892 uint16_t mask; 1893 uint16_t ints; 1894 1895 uint16_t debounce; 1896 uint16_t latch; 1897 uint8_t event; 1898 1899 uint8_t buttons[5]; 1900 uint8_t row_latch; 1901 uint8_t cols; 1902 int kbd_mask; 1903 int clk; 1904 }; 1905 1906 static void omap_mpuio_set(void *opaque, int line, int level) 1907 { 1908 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque; 1909 uint16_t prev = s->inputs; 1910 1911 if (level) 1912 s->inputs |= 1 << line; 1913 else 1914 s->inputs &= ~(1 << line); 1915 1916 if (((1 << line) & s->dir & ~s->mask) && s->clk) { 1917 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) { 1918 s->ints |= 1 << line; 1919 qemu_irq_raise(s->irq); 1920 /* TODO: wakeup */ 1921 } 1922 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */ 1923 (s->event >> 1) == line) /* PIN_SELECT */ 1924 s->latch = s->inputs; 1925 } 1926 } 1927 1928 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s) 1929 { 1930 int i; 1931 uint8_t *row, rows = 0, cols = ~s->cols; 1932 1933 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1) 1934 if (*row & cols) 1935 rows |= i; 1936 1937 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk); 1938 s->row_latch = ~rows; 1939 } 1940 1941 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr, 1942 unsigned size) 1943 { 1944 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque; 1945 int offset = addr & OMAP_MPUI_REG_MASK; 1946 uint16_t ret; 1947 1948 if (size != 2) { 1949 return omap_badwidth_read16(opaque, addr); 1950 } 1951 1952 switch (offset) { 1953 case 0x00: /* INPUT_LATCH */ 1954 return s->inputs; 1955 1956 case 0x04: /* OUTPUT_REG */ 1957 return s->outputs; 1958 1959 case 0x08: /* IO_CNTL */ 1960 return s->dir; 1961 1962 case 0x10: /* KBR_LATCH */ 1963 return s->row_latch; 1964 1965 case 0x14: /* KBC_REG */ 1966 return s->cols; 1967 1968 case 0x18: /* GPIO_EVENT_MODE_REG */ 1969 return s->event; 1970 1971 case 0x1c: /* GPIO_INT_EDGE_REG */ 1972 return s->edge; 1973 1974 case 0x20: /* KBD_INT */ 1975 return (~s->row_latch & 0x1f) && !s->kbd_mask; 1976 1977 case 0x24: /* GPIO_INT */ 1978 ret = s->ints; 1979 s->ints &= s->mask; 1980 if (ret) 1981 qemu_irq_lower(s->irq); 1982 return ret; 1983 1984 case 0x28: /* KBD_MASKIT */ 1985 return s->kbd_mask; 1986 1987 case 0x2c: /* GPIO_MASKIT */ 1988 return s->mask; 1989 1990 case 0x30: /* GPIO_DEBOUNCING_REG */ 1991 return s->debounce; 1992 1993 case 0x34: /* GPIO_LATCH_REG */ 1994 return s->latch; 1995 } 1996 1997 OMAP_BAD_REG(addr); 1998 return 0; 1999 } 2000 2001 static void omap_mpuio_write(void *opaque, hwaddr addr, 2002 uint64_t value, unsigned size) 2003 { 2004 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque; 2005 int offset = addr & OMAP_MPUI_REG_MASK; 2006 uint16_t diff; 2007 int ln; 2008 2009 if (size != 2) { 2010 omap_badwidth_write16(opaque, addr, value); 2011 return; 2012 } 2013 2014 switch (offset) { 2015 case 0x04: /* OUTPUT_REG */ 2016 diff = (s->outputs ^ value) & ~s->dir; 2017 s->outputs = value; 2018 while ((ln = ctz32(diff)) != 32) { 2019 if (s->handler[ln]) 2020 qemu_set_irq(s->handler[ln], (value >> ln) & 1); 2021 diff &= ~(1 << ln); 2022 } 2023 break; 2024 2025 case 0x08: /* IO_CNTL */ 2026 diff = s->outputs & (s->dir ^ value); 2027 s->dir = value; 2028 2029 value = s->outputs & ~s->dir; 2030 while ((ln = ctz32(diff)) != 32) { 2031 if (s->handler[ln]) 2032 qemu_set_irq(s->handler[ln], (value >> ln) & 1); 2033 diff &= ~(1 << ln); 2034 } 2035 break; 2036 2037 case 0x14: /* KBC_REG */ 2038 s->cols = value; 2039 omap_mpuio_kbd_update(s); 2040 break; 2041 2042 case 0x18: /* GPIO_EVENT_MODE_REG */ 2043 s->event = value & 0x1f; 2044 break; 2045 2046 case 0x1c: /* GPIO_INT_EDGE_REG */ 2047 s->edge = value; 2048 break; 2049 2050 case 0x28: /* KBD_MASKIT */ 2051 s->kbd_mask = value & 1; 2052 omap_mpuio_kbd_update(s); 2053 break; 2054 2055 case 0x2c: /* GPIO_MASKIT */ 2056 s->mask = value; 2057 break; 2058 2059 case 0x30: /* GPIO_DEBOUNCING_REG */ 2060 s->debounce = value & 0x1ff; 2061 break; 2062 2063 case 0x00: /* INPUT_LATCH */ 2064 case 0x10: /* KBR_LATCH */ 2065 case 0x20: /* KBD_INT */ 2066 case 0x24: /* GPIO_INT */ 2067 case 0x34: /* GPIO_LATCH_REG */ 2068 OMAP_RO_REG(addr); 2069 return; 2070 2071 default: 2072 OMAP_BAD_REG(addr); 2073 return; 2074 } 2075 } 2076 2077 static const MemoryRegionOps omap_mpuio_ops = { 2078 .read = omap_mpuio_read, 2079 .write = omap_mpuio_write, 2080 .endianness = DEVICE_NATIVE_ENDIAN, 2081 }; 2082 2083 static void omap_mpuio_reset(struct omap_mpuio_s *s) 2084 { 2085 s->inputs = 0; 2086 s->outputs = 0; 2087 s->dir = ~0; 2088 s->event = 0; 2089 s->edge = 0; 2090 s->kbd_mask = 0; 2091 s->mask = 0; 2092 s->debounce = 0; 2093 s->latch = 0; 2094 s->ints = 0; 2095 s->row_latch = 0x1f; 2096 s->clk = 1; 2097 } 2098 2099 static void omap_mpuio_onoff(void *opaque, int line, int on) 2100 { 2101 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque; 2102 2103 s->clk = on; 2104 if (on) 2105 omap_mpuio_kbd_update(s); 2106 } 2107 2108 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory, 2109 hwaddr base, 2110 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup, 2111 omap_clk clk) 2112 { 2113 struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1); 2114 2115 s->irq = gpio_int; 2116 s->kbd_irq = kbd_int; 2117 s->wakeup = wakeup; 2118 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16); 2119 omap_mpuio_reset(s); 2120 2121 memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s, 2122 "omap-mpuio", 0x800); 2123 memory_region_add_subregion(memory, base, &s->iomem); 2124 2125 omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0)); 2126 2127 return s; 2128 } 2129 2130 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s) 2131 { 2132 return s->in; 2133 } 2134 2135 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler) 2136 { 2137 if (line >= 16 || line < 0) 2138 hw_error("%s: No GPIO line %i\n", __func__, line); 2139 s->handler[line] = handler; 2140 } 2141 2142 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down) 2143 { 2144 if (row >= 5 || row < 0) 2145 hw_error("%s: No key %i-%i\n", __func__, col, row); 2146 2147 if (down) 2148 s->buttons[row] |= 1 << col; 2149 else 2150 s->buttons[row] &= ~(1 << col); 2151 2152 omap_mpuio_kbd_update(s); 2153 } 2154 2155 /* MicroWire Interface */ 2156 struct omap_uwire_s { 2157 MemoryRegion iomem; 2158 qemu_irq txirq; 2159 qemu_irq rxirq; 2160 qemu_irq txdrq; 2161 2162 uint16_t txbuf; 2163 uint16_t rxbuf; 2164 uint16_t control; 2165 uint16_t setup[5]; 2166 2167 uWireSlave *chip[4]; 2168 }; 2169 2170 static void omap_uwire_transfer_start(struct omap_uwire_s *s) 2171 { 2172 int chipselect = (s->control >> 10) & 3; /* INDEX */ 2173 uWireSlave *slave = s->chip[chipselect]; 2174 2175 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */ 2176 if (s->control & (1 << 12)) /* CS_CMD */ 2177 if (slave && slave->send) 2178 slave->send(slave->opaque, 2179 s->txbuf >> (16 - ((s->control >> 5) & 0x1f))); 2180 s->control &= ~(1 << 14); /* CSRB */ 2181 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or 2182 * a DRQ. When is the level IRQ supposed to be reset? */ 2183 } 2184 2185 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */ 2186 if (s->control & (1 << 12)) /* CS_CMD */ 2187 if (slave && slave->receive) 2188 s->rxbuf = slave->receive(slave->opaque); 2189 s->control |= 1 << 15; /* RDRB */ 2190 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or 2191 * a DRQ. When is the level IRQ supposed to be reset? */ 2192 } 2193 } 2194 2195 static uint64_t omap_uwire_read(void *opaque, hwaddr addr, 2196 unsigned size) 2197 { 2198 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque; 2199 int offset = addr & OMAP_MPUI_REG_MASK; 2200 2201 if (size != 2) { 2202 return omap_badwidth_read16(opaque, addr); 2203 } 2204 2205 switch (offset) { 2206 case 0x00: /* RDR */ 2207 s->control &= ~(1 << 15); /* RDRB */ 2208 return s->rxbuf; 2209 2210 case 0x04: /* CSR */ 2211 return s->control; 2212 2213 case 0x08: /* SR1 */ 2214 return s->setup[0]; 2215 case 0x0c: /* SR2 */ 2216 return s->setup[1]; 2217 case 0x10: /* SR3 */ 2218 return s->setup[2]; 2219 case 0x14: /* SR4 */ 2220 return s->setup[3]; 2221 case 0x18: /* SR5 */ 2222 return s->setup[4]; 2223 } 2224 2225 OMAP_BAD_REG(addr); 2226 return 0; 2227 } 2228 2229 static void omap_uwire_write(void *opaque, hwaddr addr, 2230 uint64_t value, unsigned size) 2231 { 2232 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque; 2233 int offset = addr & OMAP_MPUI_REG_MASK; 2234 2235 if (size != 2) { 2236 omap_badwidth_write16(opaque, addr, value); 2237 return; 2238 } 2239 2240 switch (offset) { 2241 case 0x00: /* TDR */ 2242 s->txbuf = value; /* TD */ 2243 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */ 2244 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */ 2245 (s->control & (1 << 12)))) { /* CS_CMD */ 2246 s->control |= 1 << 14; /* CSRB */ 2247 omap_uwire_transfer_start(s); 2248 } 2249 break; 2250 2251 case 0x04: /* CSR */ 2252 s->control = value & 0x1fff; 2253 if (value & (1 << 13)) /* START */ 2254 omap_uwire_transfer_start(s); 2255 break; 2256 2257 case 0x08: /* SR1 */ 2258 s->setup[0] = value & 0x003f; 2259 break; 2260 2261 case 0x0c: /* SR2 */ 2262 s->setup[1] = value & 0x0fc0; 2263 break; 2264 2265 case 0x10: /* SR3 */ 2266 s->setup[2] = value & 0x0003; 2267 break; 2268 2269 case 0x14: /* SR4 */ 2270 s->setup[3] = value & 0x0001; 2271 break; 2272 2273 case 0x18: /* SR5 */ 2274 s->setup[4] = value & 0x000f; 2275 break; 2276 2277 default: 2278 OMAP_BAD_REG(addr); 2279 return; 2280 } 2281 } 2282 2283 static const MemoryRegionOps omap_uwire_ops = { 2284 .read = omap_uwire_read, 2285 .write = omap_uwire_write, 2286 .endianness = DEVICE_NATIVE_ENDIAN, 2287 }; 2288 2289 static void omap_uwire_reset(struct omap_uwire_s *s) 2290 { 2291 s->control = 0; 2292 s->setup[0] = 0; 2293 s->setup[1] = 0; 2294 s->setup[2] = 0; 2295 s->setup[3] = 0; 2296 s->setup[4] = 0; 2297 } 2298 2299 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory, 2300 hwaddr base, 2301 qemu_irq txirq, qemu_irq rxirq, 2302 qemu_irq dma, 2303 omap_clk clk) 2304 { 2305 struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1); 2306 2307 s->txirq = txirq; 2308 s->rxirq = rxirq; 2309 s->txdrq = dma; 2310 omap_uwire_reset(s); 2311 2312 memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800); 2313 memory_region_add_subregion(system_memory, base, &s->iomem); 2314 2315 return s; 2316 } 2317 2318 void omap_uwire_attach(struct omap_uwire_s *s, 2319 uWireSlave *slave, int chipselect) 2320 { 2321 if (chipselect < 0 || chipselect > 3) { 2322 error_report("%s: Bad chipselect %i", __func__, chipselect); 2323 exit(-1); 2324 } 2325 2326 s->chip[chipselect] = slave; 2327 } 2328 2329 /* Pseudonoise Pulse-Width Light Modulator */ 2330 struct omap_pwl_s { 2331 MemoryRegion iomem; 2332 uint8_t output; 2333 uint8_t level; 2334 uint8_t enable; 2335 int clk; 2336 }; 2337 2338 static void omap_pwl_update(struct omap_pwl_s *s) 2339 { 2340 int output = (s->clk && s->enable) ? s->level : 0; 2341 2342 if (output != s->output) { 2343 s->output = output; 2344 printf("%s: Backlight now at %i/256\n", __func__, output); 2345 } 2346 } 2347 2348 static uint64_t omap_pwl_read(void *opaque, hwaddr addr, 2349 unsigned size) 2350 { 2351 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque; 2352 int offset = addr & OMAP_MPUI_REG_MASK; 2353 2354 if (size != 1) { 2355 return omap_badwidth_read8(opaque, addr); 2356 } 2357 2358 switch (offset) { 2359 case 0x00: /* PWL_LEVEL */ 2360 return s->level; 2361 case 0x04: /* PWL_CTRL */ 2362 return s->enable; 2363 } 2364 OMAP_BAD_REG(addr); 2365 return 0; 2366 } 2367 2368 static void omap_pwl_write(void *opaque, hwaddr addr, 2369 uint64_t value, unsigned size) 2370 { 2371 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque; 2372 int offset = addr & OMAP_MPUI_REG_MASK; 2373 2374 if (size != 1) { 2375 omap_badwidth_write8(opaque, addr, value); 2376 return; 2377 } 2378 2379 switch (offset) { 2380 case 0x00: /* PWL_LEVEL */ 2381 s->level = value; 2382 omap_pwl_update(s); 2383 break; 2384 case 0x04: /* PWL_CTRL */ 2385 s->enable = value & 1; 2386 omap_pwl_update(s); 2387 break; 2388 default: 2389 OMAP_BAD_REG(addr); 2390 return; 2391 } 2392 } 2393 2394 static const MemoryRegionOps omap_pwl_ops = { 2395 .read = omap_pwl_read, 2396 .write = omap_pwl_write, 2397 .endianness = DEVICE_NATIVE_ENDIAN, 2398 }; 2399 2400 static void omap_pwl_reset(struct omap_pwl_s *s) 2401 { 2402 s->output = 0; 2403 s->level = 0; 2404 s->enable = 0; 2405 s->clk = 1; 2406 omap_pwl_update(s); 2407 } 2408 2409 static void omap_pwl_clk_update(void *opaque, int line, int on) 2410 { 2411 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque; 2412 2413 s->clk = on; 2414 omap_pwl_update(s); 2415 } 2416 2417 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory, 2418 hwaddr base, 2419 omap_clk clk) 2420 { 2421 struct omap_pwl_s *s = g_malloc0(sizeof(*s)); 2422 2423 omap_pwl_reset(s); 2424 2425 memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s, 2426 "omap-pwl", 0x800); 2427 memory_region_add_subregion(system_memory, base, &s->iomem); 2428 2429 omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0)); 2430 return s; 2431 } 2432 2433 /* Pulse-Width Tone module */ 2434 struct omap_pwt_s { 2435 MemoryRegion iomem; 2436 uint8_t frc; 2437 uint8_t vrc; 2438 uint8_t gcr; 2439 omap_clk clk; 2440 }; 2441 2442 static uint64_t omap_pwt_read(void *opaque, hwaddr addr, 2443 unsigned size) 2444 { 2445 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque; 2446 int offset = addr & OMAP_MPUI_REG_MASK; 2447 2448 if (size != 1) { 2449 return omap_badwidth_read8(opaque, addr); 2450 } 2451 2452 switch (offset) { 2453 case 0x00: /* FRC */ 2454 return s->frc; 2455 case 0x04: /* VCR */ 2456 return s->vrc; 2457 case 0x08: /* GCR */ 2458 return s->gcr; 2459 } 2460 OMAP_BAD_REG(addr); 2461 return 0; 2462 } 2463 2464 static void omap_pwt_write(void *opaque, hwaddr addr, 2465 uint64_t value, unsigned size) 2466 { 2467 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque; 2468 int offset = addr & OMAP_MPUI_REG_MASK; 2469 2470 if (size != 1) { 2471 omap_badwidth_write8(opaque, addr, value); 2472 return; 2473 } 2474 2475 switch (offset) { 2476 case 0x00: /* FRC */ 2477 s->frc = value & 0x3f; 2478 break; 2479 case 0x04: /* VRC */ 2480 if ((value ^ s->vrc) & 1) { 2481 if (value & 1) 2482 printf("%s: %iHz buzz on\n", __func__, (int) 2483 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */ 2484 ((omap_clk_getrate(s->clk) >> 3) / 2485 /* Pre-multiplexer divider */ 2486 ((s->gcr & 2) ? 1 : 154) / 2487 /* Octave multiplexer */ 2488 (2 << (value & 3)) * 2489 /* 101/107 divider */ 2490 ((value & (1 << 2)) ? 101 : 107) * 2491 /* 49/55 divider */ 2492 ((value & (1 << 3)) ? 49 : 55) * 2493 /* 50/63 divider */ 2494 ((value & (1 << 4)) ? 50 : 63) * 2495 /* 80/127 divider */ 2496 ((value & (1 << 5)) ? 80 : 127) / 2497 (107 * 55 * 63 * 127))); 2498 else 2499 printf("%s: silence!\n", __func__); 2500 } 2501 s->vrc = value & 0x7f; 2502 break; 2503 case 0x08: /* GCR */ 2504 s->gcr = value & 3; 2505 break; 2506 default: 2507 OMAP_BAD_REG(addr); 2508 return; 2509 } 2510 } 2511 2512 static const MemoryRegionOps omap_pwt_ops = { 2513 .read =omap_pwt_read, 2514 .write = omap_pwt_write, 2515 .endianness = DEVICE_NATIVE_ENDIAN, 2516 }; 2517 2518 static void omap_pwt_reset(struct omap_pwt_s *s) 2519 { 2520 s->frc = 0; 2521 s->vrc = 0; 2522 s->gcr = 0; 2523 } 2524 2525 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory, 2526 hwaddr base, 2527 omap_clk clk) 2528 { 2529 struct omap_pwt_s *s = g_malloc0(sizeof(*s)); 2530 s->clk = clk; 2531 omap_pwt_reset(s); 2532 2533 memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s, 2534 "omap-pwt", 0x800); 2535 memory_region_add_subregion(system_memory, base, &s->iomem); 2536 return s; 2537 } 2538 2539 /* Real-time Clock module */ 2540 struct omap_rtc_s { 2541 MemoryRegion iomem; 2542 qemu_irq irq; 2543 qemu_irq alarm; 2544 QEMUTimer *clk; 2545 2546 uint8_t interrupts; 2547 uint8_t status; 2548 int16_t comp_reg; 2549 int running; 2550 int pm_am; 2551 int auto_comp; 2552 int round; 2553 struct tm alarm_tm; 2554 time_t alarm_ti; 2555 2556 struct tm current_tm; 2557 time_t ti; 2558 uint64_t tick; 2559 }; 2560 2561 static void omap_rtc_interrupts_update(struct omap_rtc_s *s) 2562 { 2563 /* s->alarm is level-triggered */ 2564 qemu_set_irq(s->alarm, (s->status >> 6) & 1); 2565 } 2566 2567 static void omap_rtc_alarm_update(struct omap_rtc_s *s) 2568 { 2569 s->alarm_ti = mktimegm(&s->alarm_tm); 2570 if (s->alarm_ti == -1) 2571 printf("%s: conversion failed\n", __func__); 2572 } 2573 2574 static uint64_t omap_rtc_read(void *opaque, hwaddr addr, 2575 unsigned size) 2576 { 2577 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque; 2578 int offset = addr & OMAP_MPUI_REG_MASK; 2579 uint8_t i; 2580 2581 if (size != 1) { 2582 return omap_badwidth_read8(opaque, addr); 2583 } 2584 2585 switch (offset) { 2586 case 0x00: /* SECONDS_REG */ 2587 return to_bcd(s->current_tm.tm_sec); 2588 2589 case 0x04: /* MINUTES_REG */ 2590 return to_bcd(s->current_tm.tm_min); 2591 2592 case 0x08: /* HOURS_REG */ 2593 if (s->pm_am) 2594 return ((s->current_tm.tm_hour > 11) << 7) | 2595 to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1); 2596 else 2597 return to_bcd(s->current_tm.tm_hour); 2598 2599 case 0x0c: /* DAYS_REG */ 2600 return to_bcd(s->current_tm.tm_mday); 2601 2602 case 0x10: /* MONTHS_REG */ 2603 return to_bcd(s->current_tm.tm_mon + 1); 2604 2605 case 0x14: /* YEARS_REG */ 2606 return to_bcd(s->current_tm.tm_year % 100); 2607 2608 case 0x18: /* WEEK_REG */ 2609 return s->current_tm.tm_wday; 2610 2611 case 0x20: /* ALARM_SECONDS_REG */ 2612 return to_bcd(s->alarm_tm.tm_sec); 2613 2614 case 0x24: /* ALARM_MINUTES_REG */ 2615 return to_bcd(s->alarm_tm.tm_min); 2616 2617 case 0x28: /* ALARM_HOURS_REG */ 2618 if (s->pm_am) 2619 return ((s->alarm_tm.tm_hour > 11) << 7) | 2620 to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1); 2621 else 2622 return to_bcd(s->alarm_tm.tm_hour); 2623 2624 case 0x2c: /* ALARM_DAYS_REG */ 2625 return to_bcd(s->alarm_tm.tm_mday); 2626 2627 case 0x30: /* ALARM_MONTHS_REG */ 2628 return to_bcd(s->alarm_tm.tm_mon + 1); 2629 2630 case 0x34: /* ALARM_YEARS_REG */ 2631 return to_bcd(s->alarm_tm.tm_year % 100); 2632 2633 case 0x40: /* RTC_CTRL_REG */ 2634 return (s->pm_am << 3) | (s->auto_comp << 2) | 2635 (s->round << 1) | s->running; 2636 2637 case 0x44: /* RTC_STATUS_REG */ 2638 i = s->status; 2639 s->status &= ~0x3d; 2640 return i; 2641 2642 case 0x48: /* RTC_INTERRUPTS_REG */ 2643 return s->interrupts; 2644 2645 case 0x4c: /* RTC_COMP_LSB_REG */ 2646 return ((uint16_t) s->comp_reg) & 0xff; 2647 2648 case 0x50: /* RTC_COMP_MSB_REG */ 2649 return ((uint16_t) s->comp_reg) >> 8; 2650 } 2651 2652 OMAP_BAD_REG(addr); 2653 return 0; 2654 } 2655 2656 static void omap_rtc_write(void *opaque, hwaddr addr, 2657 uint64_t value, unsigned size) 2658 { 2659 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque; 2660 int offset = addr & OMAP_MPUI_REG_MASK; 2661 struct tm new_tm; 2662 time_t ti[2]; 2663 2664 if (size != 1) { 2665 omap_badwidth_write8(opaque, addr, value); 2666 return; 2667 } 2668 2669 switch (offset) { 2670 case 0x00: /* SECONDS_REG */ 2671 #ifdef ALMDEBUG 2672 printf("RTC SEC_REG <-- %02x\n", value); 2673 #endif 2674 s->ti -= s->current_tm.tm_sec; 2675 s->ti += from_bcd(value); 2676 return; 2677 2678 case 0x04: /* MINUTES_REG */ 2679 #ifdef ALMDEBUG 2680 printf("RTC MIN_REG <-- %02x\n", value); 2681 #endif 2682 s->ti -= s->current_tm.tm_min * 60; 2683 s->ti += from_bcd(value) * 60; 2684 return; 2685 2686 case 0x08: /* HOURS_REG */ 2687 #ifdef ALMDEBUG 2688 printf("RTC HRS_REG <-- %02x\n", value); 2689 #endif 2690 s->ti -= s->current_tm.tm_hour * 3600; 2691 if (s->pm_am) { 2692 s->ti += (from_bcd(value & 0x3f) & 12) * 3600; 2693 s->ti += ((value >> 7) & 1) * 43200; 2694 } else 2695 s->ti += from_bcd(value & 0x3f) * 3600; 2696 return; 2697 2698 case 0x0c: /* DAYS_REG */ 2699 #ifdef ALMDEBUG 2700 printf("RTC DAY_REG <-- %02x\n", value); 2701 #endif 2702 s->ti -= s->current_tm.tm_mday * 86400; 2703 s->ti += from_bcd(value) * 86400; 2704 return; 2705 2706 case 0x10: /* MONTHS_REG */ 2707 #ifdef ALMDEBUG 2708 printf("RTC MTH_REG <-- %02x\n", value); 2709 #endif 2710 memcpy(&new_tm, &s->current_tm, sizeof(new_tm)); 2711 new_tm.tm_mon = from_bcd(value); 2712 ti[0] = mktimegm(&s->current_tm); 2713 ti[1] = mktimegm(&new_tm); 2714 2715 if (ti[0] != -1 && ti[1] != -1) { 2716 s->ti -= ti[0]; 2717 s->ti += ti[1]; 2718 } else { 2719 /* A less accurate version */ 2720 s->ti -= s->current_tm.tm_mon * 2592000; 2721 s->ti += from_bcd(value) * 2592000; 2722 } 2723 return; 2724 2725 case 0x14: /* YEARS_REG */ 2726 #ifdef ALMDEBUG 2727 printf("RTC YRS_REG <-- %02x\n", value); 2728 #endif 2729 memcpy(&new_tm, &s->current_tm, sizeof(new_tm)); 2730 new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100); 2731 ti[0] = mktimegm(&s->current_tm); 2732 ti[1] = mktimegm(&new_tm); 2733 2734 if (ti[0] != -1 && ti[1] != -1) { 2735 s->ti -= ti[0]; 2736 s->ti += ti[1]; 2737 } else { 2738 /* A less accurate version */ 2739 s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000; 2740 s->ti += (time_t)from_bcd(value) * 31536000; 2741 } 2742 return; 2743 2744 case 0x18: /* WEEK_REG */ 2745 return; /* Ignored */ 2746 2747 case 0x20: /* ALARM_SECONDS_REG */ 2748 #ifdef ALMDEBUG 2749 printf("ALM SEC_REG <-- %02x\n", value); 2750 #endif 2751 s->alarm_tm.tm_sec = from_bcd(value); 2752 omap_rtc_alarm_update(s); 2753 return; 2754 2755 case 0x24: /* ALARM_MINUTES_REG */ 2756 #ifdef ALMDEBUG 2757 printf("ALM MIN_REG <-- %02x\n", value); 2758 #endif 2759 s->alarm_tm.tm_min = from_bcd(value); 2760 omap_rtc_alarm_update(s); 2761 return; 2762 2763 case 0x28: /* ALARM_HOURS_REG */ 2764 #ifdef ALMDEBUG 2765 printf("ALM HRS_REG <-- %02x\n", value); 2766 #endif 2767 if (s->pm_am) 2768 s->alarm_tm.tm_hour = 2769 ((from_bcd(value & 0x3f)) % 12) + 2770 ((value >> 7) & 1) * 12; 2771 else 2772 s->alarm_tm.tm_hour = from_bcd(value); 2773 omap_rtc_alarm_update(s); 2774 return; 2775 2776 case 0x2c: /* ALARM_DAYS_REG */ 2777 #ifdef ALMDEBUG 2778 printf("ALM DAY_REG <-- %02x\n", value); 2779 #endif 2780 s->alarm_tm.tm_mday = from_bcd(value); 2781 omap_rtc_alarm_update(s); 2782 return; 2783 2784 case 0x30: /* ALARM_MONTHS_REG */ 2785 #ifdef ALMDEBUG 2786 printf("ALM MON_REG <-- %02x\n", value); 2787 #endif 2788 s->alarm_tm.tm_mon = from_bcd(value); 2789 omap_rtc_alarm_update(s); 2790 return; 2791 2792 case 0x34: /* ALARM_YEARS_REG */ 2793 #ifdef ALMDEBUG 2794 printf("ALM YRS_REG <-- %02x\n", value); 2795 #endif 2796 s->alarm_tm.tm_year = from_bcd(value); 2797 omap_rtc_alarm_update(s); 2798 return; 2799 2800 case 0x40: /* RTC_CTRL_REG */ 2801 #ifdef ALMDEBUG 2802 printf("RTC CONTROL <-- %02x\n", value); 2803 #endif 2804 s->pm_am = (value >> 3) & 1; 2805 s->auto_comp = (value >> 2) & 1; 2806 s->round = (value >> 1) & 1; 2807 s->running = value & 1; 2808 s->status &= 0xfd; 2809 s->status |= s->running << 1; 2810 return; 2811 2812 case 0x44: /* RTC_STATUS_REG */ 2813 #ifdef ALMDEBUG 2814 printf("RTC STATUSL <-- %02x\n", value); 2815 #endif 2816 s->status &= ~((value & 0xc0) ^ 0x80); 2817 omap_rtc_interrupts_update(s); 2818 return; 2819 2820 case 0x48: /* RTC_INTERRUPTS_REG */ 2821 #ifdef ALMDEBUG 2822 printf("RTC INTRS <-- %02x\n", value); 2823 #endif 2824 s->interrupts = value; 2825 return; 2826 2827 case 0x4c: /* RTC_COMP_LSB_REG */ 2828 #ifdef ALMDEBUG 2829 printf("RTC COMPLSB <-- %02x\n", value); 2830 #endif 2831 s->comp_reg &= 0xff00; 2832 s->comp_reg |= 0x00ff & value; 2833 return; 2834 2835 case 0x50: /* RTC_COMP_MSB_REG */ 2836 #ifdef ALMDEBUG 2837 printf("RTC COMPMSB <-- %02x\n", value); 2838 #endif 2839 s->comp_reg &= 0x00ff; 2840 s->comp_reg |= 0xff00 & (value << 8); 2841 return; 2842 2843 default: 2844 OMAP_BAD_REG(addr); 2845 return; 2846 } 2847 } 2848 2849 static const MemoryRegionOps omap_rtc_ops = { 2850 .read = omap_rtc_read, 2851 .write = omap_rtc_write, 2852 .endianness = DEVICE_NATIVE_ENDIAN, 2853 }; 2854 2855 static void omap_rtc_tick(void *opaque) 2856 { 2857 struct omap_rtc_s *s = opaque; 2858 2859 if (s->round) { 2860 /* Round to nearest full minute. */ 2861 if (s->current_tm.tm_sec < 30) 2862 s->ti -= s->current_tm.tm_sec; 2863 else 2864 s->ti += 60 - s->current_tm.tm_sec; 2865 2866 s->round = 0; 2867 } 2868 2869 localtime_r(&s->ti, &s->current_tm); 2870 2871 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) { 2872 s->status |= 0x40; 2873 omap_rtc_interrupts_update(s); 2874 } 2875 2876 if (s->interrupts & 0x04) 2877 switch (s->interrupts & 3) { 2878 case 0: 2879 s->status |= 0x04; 2880 qemu_irq_pulse(s->irq); 2881 break; 2882 case 1: 2883 if (s->current_tm.tm_sec) 2884 break; 2885 s->status |= 0x08; 2886 qemu_irq_pulse(s->irq); 2887 break; 2888 case 2: 2889 if (s->current_tm.tm_sec || s->current_tm.tm_min) 2890 break; 2891 s->status |= 0x10; 2892 qemu_irq_pulse(s->irq); 2893 break; 2894 case 3: 2895 if (s->current_tm.tm_sec || 2896 s->current_tm.tm_min || s->current_tm.tm_hour) 2897 break; 2898 s->status |= 0x20; 2899 qemu_irq_pulse(s->irq); 2900 break; 2901 } 2902 2903 /* Move on */ 2904 if (s->running) 2905 s->ti ++; 2906 s->tick += 1000; 2907 2908 /* 2909 * Every full hour add a rough approximation of the compensation 2910 * register to the 32kHz Timer (which drives the RTC) value. 2911 */ 2912 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min) 2913 s->tick += s->comp_reg * 1000 / 32768; 2914 2915 timer_mod(s->clk, s->tick); 2916 } 2917 2918 static void omap_rtc_reset(struct omap_rtc_s *s) 2919 { 2920 struct tm tm; 2921 2922 s->interrupts = 0; 2923 s->comp_reg = 0; 2924 s->running = 0; 2925 s->pm_am = 0; 2926 s->auto_comp = 0; 2927 s->round = 0; 2928 s->tick = qemu_clock_get_ms(rtc_clock); 2929 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm)); 2930 s->alarm_tm.tm_mday = 0x01; 2931 s->status = 1 << 7; 2932 qemu_get_timedate(&tm, 0); 2933 s->ti = mktimegm(&tm); 2934 2935 omap_rtc_alarm_update(s); 2936 omap_rtc_tick(s); 2937 } 2938 2939 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory, 2940 hwaddr base, 2941 qemu_irq timerirq, qemu_irq alarmirq, 2942 omap_clk clk) 2943 { 2944 struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1); 2945 2946 s->irq = timerirq; 2947 s->alarm = alarmirq; 2948 s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s); 2949 2950 omap_rtc_reset(s); 2951 2952 memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s, 2953 "omap-rtc", 0x800); 2954 memory_region_add_subregion(system_memory, base, &s->iomem); 2955 2956 return s; 2957 } 2958 2959 /* Multi-channel Buffered Serial Port interfaces */ 2960 struct omap_mcbsp_s { 2961 MemoryRegion iomem; 2962 qemu_irq txirq; 2963 qemu_irq rxirq; 2964 qemu_irq txdrq; 2965 qemu_irq rxdrq; 2966 2967 uint16_t spcr[2]; 2968 uint16_t rcr[2]; 2969 uint16_t xcr[2]; 2970 uint16_t srgr[2]; 2971 uint16_t mcr[2]; 2972 uint16_t pcr; 2973 uint16_t rcer[8]; 2974 uint16_t xcer[8]; 2975 int tx_rate; 2976 int rx_rate; 2977 int tx_req; 2978 int rx_req; 2979 2980 I2SCodec *codec; 2981 QEMUTimer *source_timer; 2982 QEMUTimer *sink_timer; 2983 }; 2984 2985 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s) 2986 { 2987 int irq; 2988 2989 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */ 2990 case 0: 2991 irq = (s->spcr[0] >> 1) & 1; /* RRDY */ 2992 break; 2993 case 3: 2994 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */ 2995 break; 2996 default: 2997 irq = 0; 2998 break; 2999 } 3000 3001 if (irq) 3002 qemu_irq_pulse(s->rxirq); 3003 3004 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */ 3005 case 0: 3006 irq = (s->spcr[1] >> 1) & 1; /* XRDY */ 3007 break; 3008 case 3: 3009 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */ 3010 break; 3011 default: 3012 irq = 0; 3013 break; 3014 } 3015 3016 if (irq) 3017 qemu_irq_pulse(s->txirq); 3018 } 3019 3020 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s) 3021 { 3022 if ((s->spcr[0] >> 1) & 1) /* RRDY */ 3023 s->spcr[0] |= 1 << 2; /* RFULL */ 3024 s->spcr[0] |= 1 << 1; /* RRDY */ 3025 qemu_irq_raise(s->rxdrq); 3026 omap_mcbsp_intr_update(s); 3027 } 3028 3029 static void omap_mcbsp_source_tick(void *opaque) 3030 { 3031 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque; 3032 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 }; 3033 3034 if (!s->rx_rate) 3035 return; 3036 if (s->rx_req) 3037 printf("%s: Rx FIFO overrun\n", __func__); 3038 3039 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7]; 3040 3041 omap_mcbsp_rx_newdata(s); 3042 timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 3043 NANOSECONDS_PER_SECOND); 3044 } 3045 3046 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s) 3047 { 3048 if (!s->codec || !s->codec->rts) 3049 omap_mcbsp_source_tick(s); 3050 else if (s->codec->in.len) { 3051 s->rx_req = s->codec->in.len; 3052 omap_mcbsp_rx_newdata(s); 3053 } 3054 } 3055 3056 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s) 3057 { 3058 timer_del(s->source_timer); 3059 } 3060 3061 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s) 3062 { 3063 s->spcr[0] &= ~(1 << 1); /* RRDY */ 3064 qemu_irq_lower(s->rxdrq); 3065 omap_mcbsp_intr_update(s); 3066 } 3067 3068 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s) 3069 { 3070 s->spcr[1] |= 1 << 1; /* XRDY */ 3071 qemu_irq_raise(s->txdrq); 3072 omap_mcbsp_intr_update(s); 3073 } 3074 3075 static void omap_mcbsp_sink_tick(void *opaque) 3076 { 3077 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque; 3078 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 }; 3079 3080 if (!s->tx_rate) 3081 return; 3082 if (s->tx_req) 3083 printf("%s: Tx FIFO underrun\n", __func__); 3084 3085 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7]; 3086 3087 omap_mcbsp_tx_newdata(s); 3088 timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 3089 NANOSECONDS_PER_SECOND); 3090 } 3091 3092 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s) 3093 { 3094 if (!s->codec || !s->codec->cts) 3095 omap_mcbsp_sink_tick(s); 3096 else if (s->codec->out.size) { 3097 s->tx_req = s->codec->out.size; 3098 omap_mcbsp_tx_newdata(s); 3099 } 3100 } 3101 3102 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s) 3103 { 3104 s->spcr[1] &= ~(1 << 1); /* XRDY */ 3105 qemu_irq_lower(s->txdrq); 3106 omap_mcbsp_intr_update(s); 3107 if (s->codec && s->codec->cts) 3108 s->codec->tx_swallow(s->codec->opaque); 3109 } 3110 3111 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s) 3112 { 3113 s->tx_req = 0; 3114 omap_mcbsp_tx_done(s); 3115 timer_del(s->sink_timer); 3116 } 3117 3118 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s) 3119 { 3120 int prev_rx_rate, prev_tx_rate; 3121 int rx_rate = 0, tx_rate = 0; 3122 int cpu_rate = 1500000; /* XXX */ 3123 3124 /* TODO: check CLKSTP bit */ 3125 if (s->spcr[1] & (1 << 6)) { /* GRST */ 3126 if (s->spcr[0] & (1 << 0)) { /* RRST */ 3127 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */ 3128 (s->pcr & (1 << 8))) { /* CLKRM */ 3129 if (~s->pcr & (1 << 7)) /* SCLKME */ 3130 rx_rate = cpu_rate / 3131 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */ 3132 } else 3133 if (s->codec) 3134 rx_rate = s->codec->rx_rate; 3135 } 3136 3137 if (s->spcr[1] & (1 << 0)) { /* XRST */ 3138 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */ 3139 (s->pcr & (1 << 9))) { /* CLKXM */ 3140 if (~s->pcr & (1 << 7)) /* SCLKME */ 3141 tx_rate = cpu_rate / 3142 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */ 3143 } else 3144 if (s->codec) 3145 tx_rate = s->codec->tx_rate; 3146 } 3147 } 3148 prev_tx_rate = s->tx_rate; 3149 prev_rx_rate = s->rx_rate; 3150 s->tx_rate = tx_rate; 3151 s->rx_rate = rx_rate; 3152 3153 if (s->codec) 3154 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate); 3155 3156 if (!prev_tx_rate && tx_rate) 3157 omap_mcbsp_tx_start(s); 3158 else if (s->tx_rate && !tx_rate) 3159 omap_mcbsp_tx_stop(s); 3160 3161 if (!prev_rx_rate && rx_rate) 3162 omap_mcbsp_rx_start(s); 3163 else if (prev_tx_rate && !tx_rate) 3164 omap_mcbsp_rx_stop(s); 3165 } 3166 3167 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr, 3168 unsigned size) 3169 { 3170 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque; 3171 int offset = addr & OMAP_MPUI_REG_MASK; 3172 uint16_t ret; 3173 3174 if (size != 2) { 3175 return omap_badwidth_read16(opaque, addr); 3176 } 3177 3178 switch (offset) { 3179 case 0x00: /* DRR2 */ 3180 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */ 3181 return 0x0000; 3182 /* Fall through. */ 3183 case 0x02: /* DRR1 */ 3184 if (s->rx_req < 2) { 3185 printf("%s: Rx FIFO underrun\n", __func__); 3186 omap_mcbsp_rx_done(s); 3187 } else { 3188 s->tx_req -= 2; 3189 if (s->codec && s->codec->in.len >= 2) { 3190 ret = s->codec->in.fifo[s->codec->in.start ++] << 8; 3191 ret |= s->codec->in.fifo[s->codec->in.start ++]; 3192 s->codec->in.len -= 2; 3193 } else 3194 ret = 0x0000; 3195 if (!s->tx_req) 3196 omap_mcbsp_rx_done(s); 3197 return ret; 3198 } 3199 return 0x0000; 3200 3201 case 0x04: /* DXR2 */ 3202 case 0x06: /* DXR1 */ 3203 return 0x0000; 3204 3205 case 0x08: /* SPCR2 */ 3206 return s->spcr[1]; 3207 case 0x0a: /* SPCR1 */ 3208 return s->spcr[0]; 3209 case 0x0c: /* RCR2 */ 3210 return s->rcr[1]; 3211 case 0x0e: /* RCR1 */ 3212 return s->rcr[0]; 3213 case 0x10: /* XCR2 */ 3214 return s->xcr[1]; 3215 case 0x12: /* XCR1 */ 3216 return s->xcr[0]; 3217 case 0x14: /* SRGR2 */ 3218 return s->srgr[1]; 3219 case 0x16: /* SRGR1 */ 3220 return s->srgr[0]; 3221 case 0x18: /* MCR2 */ 3222 return s->mcr[1]; 3223 case 0x1a: /* MCR1 */ 3224 return s->mcr[0]; 3225 case 0x1c: /* RCERA */ 3226 return s->rcer[0]; 3227 case 0x1e: /* RCERB */ 3228 return s->rcer[1]; 3229 case 0x20: /* XCERA */ 3230 return s->xcer[0]; 3231 case 0x22: /* XCERB */ 3232 return s->xcer[1]; 3233 case 0x24: /* PCR0 */ 3234 return s->pcr; 3235 case 0x26: /* RCERC */ 3236 return s->rcer[2]; 3237 case 0x28: /* RCERD */ 3238 return s->rcer[3]; 3239 case 0x2a: /* XCERC */ 3240 return s->xcer[2]; 3241 case 0x2c: /* XCERD */ 3242 return s->xcer[3]; 3243 case 0x2e: /* RCERE */ 3244 return s->rcer[4]; 3245 case 0x30: /* RCERF */ 3246 return s->rcer[5]; 3247 case 0x32: /* XCERE */ 3248 return s->xcer[4]; 3249 case 0x34: /* XCERF */ 3250 return s->xcer[5]; 3251 case 0x36: /* RCERG */ 3252 return s->rcer[6]; 3253 case 0x38: /* RCERH */ 3254 return s->rcer[7]; 3255 case 0x3a: /* XCERG */ 3256 return s->xcer[6]; 3257 case 0x3c: /* XCERH */ 3258 return s->xcer[7]; 3259 } 3260 3261 OMAP_BAD_REG(addr); 3262 return 0; 3263 } 3264 3265 static void omap_mcbsp_writeh(void *opaque, hwaddr addr, 3266 uint32_t value) 3267 { 3268 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque; 3269 int offset = addr & OMAP_MPUI_REG_MASK; 3270 3271 switch (offset) { 3272 case 0x00: /* DRR2 */ 3273 case 0x02: /* DRR1 */ 3274 OMAP_RO_REG(addr); 3275 return; 3276 3277 case 0x04: /* DXR2 */ 3278 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */ 3279 return; 3280 /* Fall through. */ 3281 case 0x06: /* DXR1 */ 3282 if (s->tx_req > 1) { 3283 s->tx_req -= 2; 3284 if (s->codec && s->codec->cts) { 3285 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff; 3286 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff; 3287 } 3288 if (s->tx_req < 2) 3289 omap_mcbsp_tx_done(s); 3290 } else 3291 printf("%s: Tx FIFO overrun\n", __func__); 3292 return; 3293 3294 case 0x08: /* SPCR2 */ 3295 s->spcr[1] &= 0x0002; 3296 s->spcr[1] |= 0x03f9 & value; 3297 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */ 3298 if (~value & 1) /* XRST */ 3299 s->spcr[1] &= ~6; 3300 omap_mcbsp_req_update(s); 3301 return; 3302 case 0x0a: /* SPCR1 */ 3303 s->spcr[0] &= 0x0006; 3304 s->spcr[0] |= 0xf8f9 & value; 3305 if (value & (1 << 15)) /* DLB */ 3306 printf("%s: Digital Loopback mode enable attempt\n", __func__); 3307 if (~value & 1) { /* RRST */ 3308 s->spcr[0] &= ~6; 3309 s->rx_req = 0; 3310 omap_mcbsp_rx_done(s); 3311 } 3312 omap_mcbsp_req_update(s); 3313 return; 3314 3315 case 0x0c: /* RCR2 */ 3316 s->rcr[1] = value & 0xffff; 3317 return; 3318 case 0x0e: /* RCR1 */ 3319 s->rcr[0] = value & 0x7fe0; 3320 return; 3321 case 0x10: /* XCR2 */ 3322 s->xcr[1] = value & 0xffff; 3323 return; 3324 case 0x12: /* XCR1 */ 3325 s->xcr[0] = value & 0x7fe0; 3326 return; 3327 case 0x14: /* SRGR2 */ 3328 s->srgr[1] = value & 0xffff; 3329 omap_mcbsp_req_update(s); 3330 return; 3331 case 0x16: /* SRGR1 */ 3332 s->srgr[0] = value & 0xffff; 3333 omap_mcbsp_req_update(s); 3334 return; 3335 case 0x18: /* MCR2 */ 3336 s->mcr[1] = value & 0x03e3; 3337 if (value & 3) /* XMCM */ 3338 printf("%s: Tx channel selection mode enable attempt\n", __func__); 3339 return; 3340 case 0x1a: /* MCR1 */ 3341 s->mcr[0] = value & 0x03e1; 3342 if (value & 1) /* RMCM */ 3343 printf("%s: Rx channel selection mode enable attempt\n", __func__); 3344 return; 3345 case 0x1c: /* RCERA */ 3346 s->rcer[0] = value & 0xffff; 3347 return; 3348 case 0x1e: /* RCERB */ 3349 s->rcer[1] = value & 0xffff; 3350 return; 3351 case 0x20: /* XCERA */ 3352 s->xcer[0] = value & 0xffff; 3353 return; 3354 case 0x22: /* XCERB */ 3355 s->xcer[1] = value & 0xffff; 3356 return; 3357 case 0x24: /* PCR0 */ 3358 s->pcr = value & 0x7faf; 3359 return; 3360 case 0x26: /* RCERC */ 3361 s->rcer[2] = value & 0xffff; 3362 return; 3363 case 0x28: /* RCERD */ 3364 s->rcer[3] = value & 0xffff; 3365 return; 3366 case 0x2a: /* XCERC */ 3367 s->xcer[2] = value & 0xffff; 3368 return; 3369 case 0x2c: /* XCERD */ 3370 s->xcer[3] = value & 0xffff; 3371 return; 3372 case 0x2e: /* RCERE */ 3373 s->rcer[4] = value & 0xffff; 3374 return; 3375 case 0x30: /* RCERF */ 3376 s->rcer[5] = value & 0xffff; 3377 return; 3378 case 0x32: /* XCERE */ 3379 s->xcer[4] = value & 0xffff; 3380 return; 3381 case 0x34: /* XCERF */ 3382 s->xcer[5] = value & 0xffff; 3383 return; 3384 case 0x36: /* RCERG */ 3385 s->rcer[6] = value & 0xffff; 3386 return; 3387 case 0x38: /* RCERH */ 3388 s->rcer[7] = value & 0xffff; 3389 return; 3390 case 0x3a: /* XCERG */ 3391 s->xcer[6] = value & 0xffff; 3392 return; 3393 case 0x3c: /* XCERH */ 3394 s->xcer[7] = value & 0xffff; 3395 return; 3396 } 3397 3398 OMAP_BAD_REG(addr); 3399 } 3400 3401 static void omap_mcbsp_writew(void *opaque, hwaddr addr, 3402 uint32_t value) 3403 { 3404 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque; 3405 int offset = addr & OMAP_MPUI_REG_MASK; 3406 3407 if (offset == 0x04) { /* DXR */ 3408 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */ 3409 return; 3410 if (s->tx_req > 3) { 3411 s->tx_req -= 4; 3412 if (s->codec && s->codec->cts) { 3413 s->codec->out.fifo[s->codec->out.len ++] = 3414 (value >> 24) & 0xff; 3415 s->codec->out.fifo[s->codec->out.len ++] = 3416 (value >> 16) & 0xff; 3417 s->codec->out.fifo[s->codec->out.len ++] = 3418 (value >> 8) & 0xff; 3419 s->codec->out.fifo[s->codec->out.len ++] = 3420 (value >> 0) & 0xff; 3421 } 3422 if (s->tx_req < 4) 3423 omap_mcbsp_tx_done(s); 3424 } else 3425 printf("%s: Tx FIFO overrun\n", __func__); 3426 return; 3427 } 3428 3429 omap_badwidth_write16(opaque, addr, value); 3430 } 3431 3432 static void omap_mcbsp_write(void *opaque, hwaddr addr, 3433 uint64_t value, unsigned size) 3434 { 3435 switch (size) { 3436 case 2: 3437 omap_mcbsp_writeh(opaque, addr, value); 3438 break; 3439 case 4: 3440 omap_mcbsp_writew(opaque, addr, value); 3441 break; 3442 default: 3443 omap_badwidth_write16(opaque, addr, value); 3444 } 3445 } 3446 3447 static const MemoryRegionOps omap_mcbsp_ops = { 3448 .read = omap_mcbsp_read, 3449 .write = omap_mcbsp_write, 3450 .endianness = DEVICE_NATIVE_ENDIAN, 3451 }; 3452 3453 static void omap_mcbsp_reset(struct omap_mcbsp_s *s) 3454 { 3455 memset(&s->spcr, 0, sizeof(s->spcr)); 3456 memset(&s->rcr, 0, sizeof(s->rcr)); 3457 memset(&s->xcr, 0, sizeof(s->xcr)); 3458 s->srgr[0] = 0x0001; 3459 s->srgr[1] = 0x2000; 3460 memset(&s->mcr, 0, sizeof(s->mcr)); 3461 memset(&s->pcr, 0, sizeof(s->pcr)); 3462 memset(&s->rcer, 0, sizeof(s->rcer)); 3463 memset(&s->xcer, 0, sizeof(s->xcer)); 3464 s->tx_req = 0; 3465 s->rx_req = 0; 3466 s->tx_rate = 0; 3467 s->rx_rate = 0; 3468 timer_del(s->source_timer); 3469 timer_del(s->sink_timer); 3470 } 3471 3472 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory, 3473 hwaddr base, 3474 qemu_irq txirq, qemu_irq rxirq, 3475 qemu_irq *dma, omap_clk clk) 3476 { 3477 struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1); 3478 3479 s->txirq = txirq; 3480 s->rxirq = rxirq; 3481 s->txdrq = dma[0]; 3482 s->rxdrq = dma[1]; 3483 s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s); 3484 s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s); 3485 omap_mcbsp_reset(s); 3486 3487 memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800); 3488 memory_region_add_subregion(system_memory, base, &s->iomem); 3489 3490 return s; 3491 } 3492 3493 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level) 3494 { 3495 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque; 3496 3497 if (s->rx_rate) { 3498 s->rx_req = s->codec->in.len; 3499 omap_mcbsp_rx_newdata(s); 3500 } 3501 } 3502 3503 static void omap_mcbsp_i2s_start(void *opaque, int line, int level) 3504 { 3505 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque; 3506 3507 if (s->tx_rate) { 3508 s->tx_req = s->codec->out.size; 3509 omap_mcbsp_tx_newdata(s); 3510 } 3511 } 3512 3513 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave) 3514 { 3515 s->codec = slave; 3516 slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0); 3517 slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0); 3518 } 3519 3520 /* LED Pulse Generators */ 3521 struct omap_lpg_s { 3522 MemoryRegion iomem; 3523 QEMUTimer *tm; 3524 3525 uint8_t control; 3526 uint8_t power; 3527 int64_t on; 3528 int64_t period; 3529 int clk; 3530 int cycle; 3531 }; 3532 3533 static void omap_lpg_tick(void *opaque) 3534 { 3535 struct omap_lpg_s *s = opaque; 3536 3537 if (s->cycle) 3538 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on); 3539 else 3540 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on); 3541 3542 s->cycle = !s->cycle; 3543 printf("%s: LED is %s\n", __func__, s->cycle ? "on" : "off"); 3544 } 3545 3546 static void omap_lpg_update(struct omap_lpg_s *s) 3547 { 3548 int64_t on, period = 1, ticks = 1000; 3549 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 }; 3550 3551 if (~s->control & (1 << 6)) /* LPGRES */ 3552 on = 0; 3553 else if (s->control & (1 << 7)) /* PERM_ON */ 3554 on = period; 3555 else { 3556 period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */ 3557 256 / 32); 3558 on = (s->clk && s->power) ? muldiv64(ticks, 3559 per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */ 3560 } 3561 3562 timer_del(s->tm); 3563 if (on == period && s->on < s->period) 3564 printf("%s: LED is on\n", __func__); 3565 else if (on == 0 && s->on) 3566 printf("%s: LED is off\n", __func__); 3567 else if (on && (on != s->on || period != s->period)) { 3568 s->cycle = 0; 3569 s->on = on; 3570 s->period = period; 3571 omap_lpg_tick(s); 3572 return; 3573 } 3574 3575 s->on = on; 3576 s->period = period; 3577 } 3578 3579 static void omap_lpg_reset(struct omap_lpg_s *s) 3580 { 3581 s->control = 0x00; 3582 s->power = 0x00; 3583 s->clk = 1; 3584 omap_lpg_update(s); 3585 } 3586 3587 static uint64_t omap_lpg_read(void *opaque, hwaddr addr, 3588 unsigned size) 3589 { 3590 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque; 3591 int offset = addr & OMAP_MPUI_REG_MASK; 3592 3593 if (size != 1) { 3594 return omap_badwidth_read8(opaque, addr); 3595 } 3596 3597 switch (offset) { 3598 case 0x00: /* LCR */ 3599 return s->control; 3600 3601 case 0x04: /* PMR */ 3602 return s->power; 3603 } 3604 3605 OMAP_BAD_REG(addr); 3606 return 0; 3607 } 3608 3609 static void omap_lpg_write(void *opaque, hwaddr addr, 3610 uint64_t value, unsigned size) 3611 { 3612 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque; 3613 int offset = addr & OMAP_MPUI_REG_MASK; 3614 3615 if (size != 1) { 3616 omap_badwidth_write8(opaque, addr, value); 3617 return; 3618 } 3619 3620 switch (offset) { 3621 case 0x00: /* LCR */ 3622 if (~value & (1 << 6)) /* LPGRES */ 3623 omap_lpg_reset(s); 3624 s->control = value & 0xff; 3625 omap_lpg_update(s); 3626 return; 3627 3628 case 0x04: /* PMR */ 3629 s->power = value & 0x01; 3630 omap_lpg_update(s); 3631 return; 3632 3633 default: 3634 OMAP_BAD_REG(addr); 3635 return; 3636 } 3637 } 3638 3639 static const MemoryRegionOps omap_lpg_ops = { 3640 .read = omap_lpg_read, 3641 .write = omap_lpg_write, 3642 .endianness = DEVICE_NATIVE_ENDIAN, 3643 }; 3644 3645 static void omap_lpg_clk_update(void *opaque, int line, int on) 3646 { 3647 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque; 3648 3649 s->clk = on; 3650 omap_lpg_update(s); 3651 } 3652 3653 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory, 3654 hwaddr base, omap_clk clk) 3655 { 3656 struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1); 3657 3658 s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s); 3659 3660 omap_lpg_reset(s); 3661 3662 memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800); 3663 memory_region_add_subregion(system_memory, base, &s->iomem); 3664 3665 omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0)); 3666 3667 return s; 3668 } 3669 3670 /* MPUI Peripheral Bridge configuration */ 3671 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr, 3672 unsigned size) 3673 { 3674 if (size != 2) { 3675 return omap_badwidth_read16(opaque, addr); 3676 } 3677 3678 if (addr == OMAP_MPUI_BASE) /* CMR */ 3679 return 0xfe4d; 3680 3681 OMAP_BAD_REG(addr); 3682 return 0; 3683 } 3684 3685 static void omap_mpui_io_write(void *opaque, hwaddr addr, 3686 uint64_t value, unsigned size) 3687 { 3688 /* FIXME: infinite loop */ 3689 omap_badwidth_write16(opaque, addr, value); 3690 } 3691 3692 static const MemoryRegionOps omap_mpui_io_ops = { 3693 .read = omap_mpui_io_read, 3694 .write = omap_mpui_io_write, 3695 .endianness = DEVICE_NATIVE_ENDIAN, 3696 }; 3697 3698 static void omap_setup_mpui_io(MemoryRegion *system_memory, 3699 struct omap_mpu_state_s *mpu) 3700 { 3701 memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu, 3702 "omap-mpui-io", 0x7fff); 3703 memory_region_add_subregion(system_memory, OMAP_MPUI_BASE, 3704 &mpu->mpui_io_iomem); 3705 } 3706 3707 /* General chip reset */ 3708 static void omap1_mpu_reset(void *opaque) 3709 { 3710 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque; 3711 3712 omap_dma_reset(mpu->dma); 3713 omap_mpu_timer_reset(mpu->timer[0]); 3714 omap_mpu_timer_reset(mpu->timer[1]); 3715 omap_mpu_timer_reset(mpu->timer[2]); 3716 omap_wd_timer_reset(mpu->wdt); 3717 omap_os_timer_reset(mpu->os_timer); 3718 omap_lcdc_reset(mpu->lcd); 3719 omap_ulpd_pm_reset(mpu); 3720 omap_pin_cfg_reset(mpu); 3721 omap_mpui_reset(mpu); 3722 omap_tipb_bridge_reset(mpu->private_tipb); 3723 omap_tipb_bridge_reset(mpu->public_tipb); 3724 omap_dpll_reset(mpu->dpll[0]); 3725 omap_dpll_reset(mpu->dpll[1]); 3726 omap_dpll_reset(mpu->dpll[2]); 3727 omap_uart_reset(mpu->uart[0]); 3728 omap_uart_reset(mpu->uart[1]); 3729 omap_uart_reset(mpu->uart[2]); 3730 omap_mmc_reset(mpu->mmc); 3731 omap_mpuio_reset(mpu->mpuio); 3732 omap_uwire_reset(mpu->microwire); 3733 omap_pwl_reset(mpu->pwl); 3734 omap_pwt_reset(mpu->pwt); 3735 omap_rtc_reset(mpu->rtc); 3736 omap_mcbsp_reset(mpu->mcbsp1); 3737 omap_mcbsp_reset(mpu->mcbsp2); 3738 omap_mcbsp_reset(mpu->mcbsp3); 3739 omap_lpg_reset(mpu->led[0]); 3740 omap_lpg_reset(mpu->led[1]); 3741 omap_clkm_reset(mpu); 3742 cpu_reset(CPU(mpu->cpu)); 3743 } 3744 3745 static const struct omap_map_s { 3746 hwaddr phys_dsp; 3747 hwaddr phys_mpu; 3748 uint32_t size; 3749 const char *name; 3750 } omap15xx_dsp_mm[] = { 3751 /* Strobe 0 */ 3752 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */ 3753 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */ 3754 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */ 3755 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */ 3756 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */ 3757 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */ 3758 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */ 3759 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */ 3760 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */ 3761 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */ 3762 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */ 3763 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */ 3764 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */ 3765 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */ 3766 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */ 3767 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */ 3768 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */ 3769 /* Strobe 1 */ 3770 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */ 3771 3772 { 0 } 3773 }; 3774 3775 static void omap_setup_dsp_mapping(MemoryRegion *system_memory, 3776 const struct omap_map_s *map) 3777 { 3778 MemoryRegion *io; 3779 3780 for (; map->phys_dsp; map ++) { 3781 io = g_new(MemoryRegion, 1); 3782 memory_region_init_alias(io, NULL, map->name, 3783 system_memory, map->phys_mpu, map->size); 3784 memory_region_add_subregion(system_memory, map->phys_dsp, io); 3785 } 3786 } 3787 3788 void omap_mpu_wakeup(void *opaque, int irq, int req) 3789 { 3790 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque; 3791 CPUState *cpu = CPU(mpu->cpu); 3792 3793 if (cpu->halted) { 3794 cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB); 3795 } 3796 } 3797 3798 static const struct dma_irq_map omap1_dma_irq_map[] = { 3799 { 0, OMAP_INT_DMA_CH0_6 }, 3800 { 0, OMAP_INT_DMA_CH1_7 }, 3801 { 0, OMAP_INT_DMA_CH2_8 }, 3802 { 0, OMAP_INT_DMA_CH3 }, 3803 { 0, OMAP_INT_DMA_CH4 }, 3804 { 0, OMAP_INT_DMA_CH5 }, 3805 { 1, OMAP_INT_1610_DMA_CH6 }, 3806 { 1, OMAP_INT_1610_DMA_CH7 }, 3807 { 1, OMAP_INT_1610_DMA_CH8 }, 3808 { 1, OMAP_INT_1610_DMA_CH9 }, 3809 { 1, OMAP_INT_1610_DMA_CH10 }, 3810 { 1, OMAP_INT_1610_DMA_CH11 }, 3811 { 1, OMAP_INT_1610_DMA_CH12 }, 3812 { 1, OMAP_INT_1610_DMA_CH13 }, 3813 { 1, OMAP_INT_1610_DMA_CH14 }, 3814 { 1, OMAP_INT_1610_DMA_CH15 } 3815 }; 3816 3817 /* DMA ports for OMAP1 */ 3818 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s, 3819 hwaddr addr) 3820 { 3821 return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr); 3822 } 3823 3824 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s, 3825 hwaddr addr) 3826 { 3827 return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE, 3828 addr); 3829 } 3830 3831 static int omap_validate_imif_addr(struct omap_mpu_state_s *s, 3832 hwaddr addr) 3833 { 3834 return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr); 3835 } 3836 3837 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s, 3838 hwaddr addr) 3839 { 3840 return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr); 3841 } 3842 3843 static int omap_validate_local_addr(struct omap_mpu_state_s *s, 3844 hwaddr addr) 3845 { 3846 return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr); 3847 } 3848 3849 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s, 3850 hwaddr addr) 3851 { 3852 return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr); 3853 } 3854 3855 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory, 3856 unsigned long sdram_size, 3857 const char *cpu_type) 3858 { 3859 int i; 3860 struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1); 3861 qemu_irq dma_irqs[6]; 3862 DriveInfo *dinfo; 3863 SysBusDevice *busdev; 3864 3865 /* Core */ 3866 s->mpu_model = omap310; 3867 s->cpu = ARM_CPU(cpu_create(cpu_type)); 3868 s->sdram_size = sdram_size; 3869 s->sram_size = OMAP15XX_SRAM_SIZE; 3870 3871 s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0); 3872 3873 /* Clocks */ 3874 omap_clk_init(s); 3875 3876 /* Memory-mapped stuff */ 3877 memory_region_allocate_system_memory(&s->emiff_ram, NULL, "omap1.dram", 3878 s->sdram_size); 3879 memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram); 3880 memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size, 3881 &error_fatal); 3882 memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram); 3883 3884 omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s); 3885 3886 s->ih[0] = qdev_create(NULL, "omap-intc"); 3887 qdev_prop_set_uint32(s->ih[0], "size", 0x100); 3888 qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck")); 3889 qdev_init_nofail(s->ih[0]); 3890 busdev = SYS_BUS_DEVICE(s->ih[0]); 3891 sysbus_connect_irq(busdev, 0, 3892 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ)); 3893 sysbus_connect_irq(busdev, 1, 3894 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ)); 3895 sysbus_mmio_map(busdev, 0, 0xfffecb00); 3896 s->ih[1] = qdev_create(NULL, "omap-intc"); 3897 qdev_prop_set_uint32(s->ih[1], "size", 0x800); 3898 qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck")); 3899 qdev_init_nofail(s->ih[1]); 3900 busdev = SYS_BUS_DEVICE(s->ih[1]); 3901 sysbus_connect_irq(busdev, 0, 3902 qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ)); 3903 /* The second interrupt controller's FIQ output is not wired up */ 3904 sysbus_mmio_map(busdev, 0, 0xfffe0000); 3905 3906 for (i = 0; i < 6; i++) { 3907 dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih], 3908 omap1_dma_irq_map[i].intr); 3909 } 3910 s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory, 3911 qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD), 3912 s, omap_findclk(s, "dma_ck"), omap_dma_3_1); 3913 3914 s->port[emiff ].addr_valid = omap_validate_emiff_addr; 3915 s->port[emifs ].addr_valid = omap_validate_emifs_addr; 3916 s->port[imif ].addr_valid = omap_validate_imif_addr; 3917 s->port[tipb ].addr_valid = omap_validate_tipb_addr; 3918 s->port[local ].addr_valid = omap_validate_local_addr; 3919 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr; 3920 3921 /* Register SDRAM and SRAM DMA ports for fast transfers. */ 3922 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram), 3923 OMAP_EMIFF_BASE, s->sdram_size); 3924 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram), 3925 OMAP_IMIF_BASE, s->sram_size); 3926 3927 s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500, 3928 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1), 3929 omap_findclk(s, "mputim_ck")); 3930 s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600, 3931 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2), 3932 omap_findclk(s, "mputim_ck")); 3933 s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700, 3934 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3), 3935 omap_findclk(s, "mputim_ck")); 3936 3937 s->wdt = omap_wd_timer_init(system_memory, 0xfffec800, 3938 qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER), 3939 omap_findclk(s, "armwdt_ck")); 3940 3941 s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000, 3942 qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER), 3943 omap_findclk(s, "clk32-kHz")); 3944 3945 s->lcd = omap_lcdc_init(system_memory, 0xfffec000, 3946 qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL), 3947 omap_dma_get_lcdch(s->dma), 3948 omap_findclk(s, "lcd_ck")); 3949 3950 omap_ulpd_pm_init(system_memory, 0xfffe0800, s); 3951 omap_pin_cfg_init(system_memory, 0xfffe1000, s); 3952 omap_id_init(system_memory, s); 3953 3954 omap_mpui_init(system_memory, 0xfffec900, s); 3955 3956 s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00, 3957 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV), 3958 omap_findclk(s, "tipb_ck")); 3959 s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300, 3960 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB), 3961 omap_findclk(s, "tipb_ck")); 3962 3963 omap_tcmi_init(system_memory, 0xfffecc00, s); 3964 3965 s->uart[0] = omap_uart_init(0xfffb0000, 3966 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1), 3967 omap_findclk(s, "uart1_ck"), 3968 omap_findclk(s, "uart1_ck"), 3969 s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX], 3970 "uart1", 3971 serial_hd(0)); 3972 s->uart[1] = omap_uart_init(0xfffb0800, 3973 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2), 3974 omap_findclk(s, "uart2_ck"), 3975 omap_findclk(s, "uart2_ck"), 3976 s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX], 3977 "uart2", 3978 serial_hd(0) ? serial_hd(1) : NULL); 3979 s->uart[2] = omap_uart_init(0xfffb9800, 3980 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3), 3981 omap_findclk(s, "uart3_ck"), 3982 omap_findclk(s, "uart3_ck"), 3983 s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX], 3984 "uart3", 3985 serial_hd(0) && serial_hd(1) ? serial_hd(2) : NULL); 3986 3987 s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00, 3988 omap_findclk(s, "dpll1")); 3989 s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000, 3990 omap_findclk(s, "dpll2")); 3991 s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100, 3992 omap_findclk(s, "dpll3")); 3993 3994 dinfo = drive_get(IF_SD, 0, 0); 3995 if (!dinfo && !qtest_enabled()) { 3996 warn_report("missing SecureDigital device"); 3997 } 3998 s->mmc = omap_mmc_init(0xfffb7800, system_memory, 3999 dinfo ? blk_by_legacy_dinfo(dinfo) : NULL, 4000 qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN), 4001 &s->drq[OMAP_DMA_MMC_TX], 4002 omap_findclk(s, "mmc_ck")); 4003 4004 s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000, 4005 qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD), 4006 qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO), 4007 s->wakeup, omap_findclk(s, "clk32-kHz")); 4008 4009 s->gpio = qdev_create(NULL, "omap-gpio"); 4010 qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model); 4011 qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck")); 4012 qdev_init_nofail(s->gpio); 4013 sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0, 4014 qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1)); 4015 sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000); 4016 4017 s->microwire = omap_uwire_init(system_memory, 0xfffb3000, 4018 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX), 4019 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX), 4020 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck")); 4021 4022 s->pwl = omap_pwl_init(system_memory, 0xfffb5800, 4023 omap_findclk(s, "armxor_ck")); 4024 s->pwt = omap_pwt_init(system_memory, 0xfffb6000, 4025 omap_findclk(s, "armxor_ck")); 4026 4027 s->i2c[0] = qdev_create(NULL, "omap_i2c"); 4028 qdev_prop_set_uint8(s->i2c[0], "revision", 0x11); 4029 qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck")); 4030 qdev_init_nofail(s->i2c[0]); 4031 busdev = SYS_BUS_DEVICE(s->i2c[0]); 4032 sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C)); 4033 sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]); 4034 sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]); 4035 sysbus_mmio_map(busdev, 0, 0xfffb3800); 4036 4037 s->rtc = omap_rtc_init(system_memory, 0xfffb4800, 4038 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER), 4039 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM), 4040 omap_findclk(s, "clk32-kHz")); 4041 4042 s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800, 4043 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX), 4044 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX), 4045 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck")); 4046 s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000, 4047 qdev_get_gpio_in(s->ih[0], 4048 OMAP_INT_310_McBSP2_TX), 4049 qdev_get_gpio_in(s->ih[0], 4050 OMAP_INT_310_McBSP2_RX), 4051 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck")); 4052 s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000, 4053 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX), 4054 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX), 4055 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck")); 4056 4057 s->led[0] = omap_lpg_init(system_memory, 4058 0xfffbd000, omap_findclk(s, "clk32-kHz")); 4059 s->led[1] = omap_lpg_init(system_memory, 4060 0xfffbd800, omap_findclk(s, "clk32-kHz")); 4061 4062 /* Register mappings not currenlty implemented: 4063 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310) 4064 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310) 4065 * USB W2FC fffb4000 - fffb47ff 4066 * Camera Interface fffb6800 - fffb6fff 4067 * USB Host fffba000 - fffba7ff 4068 * FAC fffba800 - fffbafff 4069 * HDQ/1-Wire fffbc000 - fffbc7ff 4070 * TIPB switches fffbc800 - fffbcfff 4071 * Mailbox fffcf000 - fffcf7ff 4072 * Local bus IF fffec100 - fffec1ff 4073 * Local bus MMU fffec200 - fffec2ff 4074 * DSP MMU fffed200 - fffed2ff 4075 */ 4076 4077 omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm); 4078 omap_setup_mpui_io(system_memory, s); 4079 4080 qemu_register_reset(omap1_mpu_reset, s); 4081 4082 return s; 4083 } 4084