xref: /openbmc/qemu/hw/arm/omap1.c (revision 89854803)
1 /*
2  * TI OMAP processors emulation.
3  *
4  * Copyright (C) 2006-2008 Andrzej Zaborowski  <balrog@zabor.org>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 or
9  * (at your option) version 3 of the License.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License along
17  * with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/error-report.h"
22 #include "qapi/error.h"
23 #include "qemu-common.h"
24 #include "cpu.h"
25 #include "hw/boards.h"
26 #include "hw/hw.h"
27 #include "hw/arm/arm.h"
28 #include "hw/arm/omap.h"
29 #include "sysemu/sysemu.h"
30 #include "hw/arm/soc_dma.h"
31 #include "sysemu/block-backend.h"
32 #include "sysemu/blockdev.h"
33 #include "qemu/range.h"
34 #include "hw/sysbus.h"
35 #include "qemu/cutils.h"
36 #include "qemu/bcd.h"
37 
38 /* Should signal the TCMI/GPMC */
39 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
40 {
41     uint8_t ret;
42 
43     OMAP_8B_REG(addr);
44     cpu_physical_memory_read(addr, &ret, 1);
45     return ret;
46 }
47 
48 void omap_badwidth_write8(void *opaque, hwaddr addr,
49                 uint32_t value)
50 {
51     uint8_t val8 = value;
52 
53     OMAP_8B_REG(addr);
54     cpu_physical_memory_write(addr, &val8, 1);
55 }
56 
57 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
58 {
59     uint16_t ret;
60 
61     OMAP_16B_REG(addr);
62     cpu_physical_memory_read(addr, &ret, 2);
63     return ret;
64 }
65 
66 void omap_badwidth_write16(void *opaque, hwaddr addr,
67                 uint32_t value)
68 {
69     uint16_t val16 = value;
70 
71     OMAP_16B_REG(addr);
72     cpu_physical_memory_write(addr, &val16, 2);
73 }
74 
75 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
76 {
77     uint32_t ret;
78 
79     OMAP_32B_REG(addr);
80     cpu_physical_memory_read(addr, &ret, 4);
81     return ret;
82 }
83 
84 void omap_badwidth_write32(void *opaque, hwaddr addr,
85                 uint32_t value)
86 {
87     OMAP_32B_REG(addr);
88     cpu_physical_memory_write(addr, &value, 4);
89 }
90 
91 /* MPU OS timers */
92 struct omap_mpu_timer_s {
93     MemoryRegion iomem;
94     qemu_irq irq;
95     omap_clk clk;
96     uint32_t val;
97     int64_t time;
98     QEMUTimer *timer;
99     QEMUBH *tick;
100     int64_t rate;
101     int it_ena;
102 
103     int enable;
104     int ptv;
105     int ar;
106     int st;
107     uint32_t reset_val;
108 };
109 
110 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
111 {
112     uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
113 
114     if (timer->st && timer->enable && timer->rate)
115         return timer->val - muldiv64(distance >> (timer->ptv + 1),
116                                      timer->rate, NANOSECONDS_PER_SECOND);
117     else
118         return timer->val;
119 }
120 
121 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
122 {
123     timer->val = omap_timer_read(timer);
124     timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
125 }
126 
127 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
128 {
129     int64_t expires;
130 
131     if (timer->enable && timer->st && timer->rate) {
132         timer->val = timer->reset_val;	/* Should skip this on clk enable */
133         expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
134                            NANOSECONDS_PER_SECOND, timer->rate);
135 
136         /* If timer expiry would be sooner than in about 1 ms and
137          * auto-reload isn't set, then fire immediately.  This is a hack
138          * to make systems like PalmOS run in acceptable time.  PalmOS
139          * sets the interval to a very low value and polls the status bit
140          * in a busy loop when it wants to sleep just a couple of CPU
141          * ticks.  */
142         if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
143             timer_mod(timer->timer, timer->time + expires);
144         } else {
145             qemu_bh_schedule(timer->tick);
146         }
147     } else
148         timer_del(timer->timer);
149 }
150 
151 static void omap_timer_fire(void *opaque)
152 {
153     struct omap_mpu_timer_s *timer = opaque;
154 
155     if (!timer->ar) {
156         timer->val = 0;
157         timer->st = 0;
158     }
159 
160     if (timer->it_ena)
161         /* Edge-triggered irq */
162         qemu_irq_pulse(timer->irq);
163 }
164 
165 static void omap_timer_tick(void *opaque)
166 {
167     struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
168 
169     omap_timer_sync(timer);
170     omap_timer_fire(timer);
171     omap_timer_update(timer);
172 }
173 
174 static void omap_timer_clk_update(void *opaque, int line, int on)
175 {
176     struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
177 
178     omap_timer_sync(timer);
179     timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
180     omap_timer_update(timer);
181 }
182 
183 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
184 {
185     omap_clk_adduser(timer->clk,
186                     qemu_allocate_irq(omap_timer_clk_update, timer, 0));
187     timer->rate = omap_clk_getrate(timer->clk);
188 }
189 
190 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
191                                     unsigned size)
192 {
193     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
194 
195     if (size != 4) {
196         return omap_badwidth_read32(opaque, addr);
197     }
198 
199     switch (addr) {
200     case 0x00:	/* CNTL_TIMER */
201         return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
202 
203     case 0x04:	/* LOAD_TIM */
204         break;
205 
206     case 0x08:	/* READ_TIM */
207         return omap_timer_read(s);
208     }
209 
210     OMAP_BAD_REG(addr);
211     return 0;
212 }
213 
214 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
215                                  uint64_t value, unsigned size)
216 {
217     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
218 
219     if (size != 4) {
220         omap_badwidth_write32(opaque, addr, value);
221         return;
222     }
223 
224     switch (addr) {
225     case 0x00:	/* CNTL_TIMER */
226         omap_timer_sync(s);
227         s->enable = (value >> 5) & 1;
228         s->ptv = (value >> 2) & 7;
229         s->ar = (value >> 1) & 1;
230         s->st = value & 1;
231         omap_timer_update(s);
232         return;
233 
234     case 0x04:	/* LOAD_TIM */
235         s->reset_val = value;
236         return;
237 
238     case 0x08:	/* READ_TIM */
239         OMAP_RO_REG(addr);
240         break;
241 
242     default:
243         OMAP_BAD_REG(addr);
244     }
245 }
246 
247 static const MemoryRegionOps omap_mpu_timer_ops = {
248     .read = omap_mpu_timer_read,
249     .write = omap_mpu_timer_write,
250     .endianness = DEVICE_LITTLE_ENDIAN,
251 };
252 
253 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
254 {
255     timer_del(s->timer);
256     s->enable = 0;
257     s->reset_val = 31337;
258     s->val = 0;
259     s->ptv = 0;
260     s->ar = 0;
261     s->st = 0;
262     s->it_ena = 1;
263 }
264 
265 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
266                 hwaddr base,
267                 qemu_irq irq, omap_clk clk)
268 {
269     struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
270 
271     s->irq = irq;
272     s->clk = clk;
273     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
274     s->tick = qemu_bh_new(omap_timer_fire, s);
275     omap_mpu_timer_reset(s);
276     omap_timer_clk_setup(s);
277 
278     memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
279                           "omap-mpu-timer", 0x100);
280 
281     memory_region_add_subregion(system_memory, base, &s->iomem);
282 
283     return s;
284 }
285 
286 /* Watchdog timer */
287 struct omap_watchdog_timer_s {
288     struct omap_mpu_timer_s timer;
289     MemoryRegion iomem;
290     uint8_t last_wr;
291     int mode;
292     int free;
293     int reset;
294 };
295 
296 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
297                                    unsigned size)
298 {
299     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
300 
301     if (size != 2) {
302         return omap_badwidth_read16(opaque, addr);
303     }
304 
305     switch (addr) {
306     case 0x00:	/* CNTL_TIMER */
307         return (s->timer.ptv << 9) | (s->timer.ar << 8) |
308                 (s->timer.st << 7) | (s->free << 1);
309 
310     case 0x04:	/* READ_TIMER */
311         return omap_timer_read(&s->timer);
312 
313     case 0x08:	/* TIMER_MODE */
314         return s->mode << 15;
315     }
316 
317     OMAP_BAD_REG(addr);
318     return 0;
319 }
320 
321 static void omap_wd_timer_write(void *opaque, hwaddr addr,
322                                 uint64_t value, unsigned size)
323 {
324     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
325 
326     if (size != 2) {
327         omap_badwidth_write16(opaque, addr, value);
328         return;
329     }
330 
331     switch (addr) {
332     case 0x00:	/* CNTL_TIMER */
333         omap_timer_sync(&s->timer);
334         s->timer.ptv = (value >> 9) & 7;
335         s->timer.ar = (value >> 8) & 1;
336         s->timer.st = (value >> 7) & 1;
337         s->free = (value >> 1) & 1;
338         omap_timer_update(&s->timer);
339         break;
340 
341     case 0x04:	/* LOAD_TIMER */
342         s->timer.reset_val = value & 0xffff;
343         break;
344 
345     case 0x08:	/* TIMER_MODE */
346         if (!s->mode && ((value >> 15) & 1))
347             omap_clk_get(s->timer.clk);
348         s->mode |= (value >> 15) & 1;
349         if (s->last_wr == 0xf5) {
350             if ((value & 0xff) == 0xa0) {
351                 if (s->mode) {
352                     s->mode = 0;
353                     omap_clk_put(s->timer.clk);
354                 }
355             } else {
356                 /* XXX: on T|E hardware somehow this has no effect,
357                  * on Zire 71 it works as specified.  */
358                 s->reset = 1;
359                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
360             }
361         }
362         s->last_wr = value & 0xff;
363         break;
364 
365     default:
366         OMAP_BAD_REG(addr);
367     }
368 }
369 
370 static const MemoryRegionOps omap_wd_timer_ops = {
371     .read = omap_wd_timer_read,
372     .write = omap_wd_timer_write,
373     .endianness = DEVICE_NATIVE_ENDIAN,
374 };
375 
376 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
377 {
378     timer_del(s->timer.timer);
379     if (!s->mode)
380         omap_clk_get(s->timer.clk);
381     s->mode = 1;
382     s->free = 1;
383     s->reset = 0;
384     s->timer.enable = 1;
385     s->timer.it_ena = 1;
386     s->timer.reset_val = 0xffff;
387     s->timer.val = 0;
388     s->timer.st = 0;
389     s->timer.ptv = 0;
390     s->timer.ar = 0;
391     omap_timer_update(&s->timer);
392 }
393 
394 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
395                 hwaddr base,
396                 qemu_irq irq, omap_clk clk)
397 {
398     struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
399 
400     s->timer.irq = irq;
401     s->timer.clk = clk;
402     s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
403     omap_wd_timer_reset(s);
404     omap_timer_clk_setup(&s->timer);
405 
406     memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
407                           "omap-wd-timer", 0x100);
408     memory_region_add_subregion(memory, base, &s->iomem);
409 
410     return s;
411 }
412 
413 /* 32-kHz timer */
414 struct omap_32khz_timer_s {
415     struct omap_mpu_timer_s timer;
416     MemoryRegion iomem;
417 };
418 
419 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
420                                    unsigned size)
421 {
422     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
423     int offset = addr & OMAP_MPUI_REG_MASK;
424 
425     if (size != 4) {
426         return omap_badwidth_read32(opaque, addr);
427     }
428 
429     switch (offset) {
430     case 0x00:	/* TVR */
431         return s->timer.reset_val;
432 
433     case 0x04:	/* TCR */
434         return omap_timer_read(&s->timer);
435 
436     case 0x08:	/* CR */
437         return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
438 
439     default:
440         break;
441     }
442     OMAP_BAD_REG(addr);
443     return 0;
444 }
445 
446 static void omap_os_timer_write(void *opaque, hwaddr addr,
447                                 uint64_t value, unsigned size)
448 {
449     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
450     int offset = addr & OMAP_MPUI_REG_MASK;
451 
452     if (size != 4) {
453         omap_badwidth_write32(opaque, addr, value);
454         return;
455     }
456 
457     switch (offset) {
458     case 0x00:	/* TVR */
459         s->timer.reset_val = value & 0x00ffffff;
460         break;
461 
462     case 0x04:	/* TCR */
463         OMAP_RO_REG(addr);
464         break;
465 
466     case 0x08:	/* CR */
467         s->timer.ar = (value >> 3) & 1;
468         s->timer.it_ena = (value >> 2) & 1;
469         if (s->timer.st != (value & 1) || (value & 2)) {
470             omap_timer_sync(&s->timer);
471             s->timer.enable = value & 1;
472             s->timer.st = value & 1;
473             omap_timer_update(&s->timer);
474         }
475         break;
476 
477     default:
478         OMAP_BAD_REG(addr);
479     }
480 }
481 
482 static const MemoryRegionOps omap_os_timer_ops = {
483     .read = omap_os_timer_read,
484     .write = omap_os_timer_write,
485     .endianness = DEVICE_NATIVE_ENDIAN,
486 };
487 
488 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
489 {
490     timer_del(s->timer.timer);
491     s->timer.enable = 0;
492     s->timer.it_ena = 0;
493     s->timer.reset_val = 0x00ffffff;
494     s->timer.val = 0;
495     s->timer.st = 0;
496     s->timer.ptv = 0;
497     s->timer.ar = 1;
498 }
499 
500 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
501                 hwaddr base,
502                 qemu_irq irq, omap_clk clk)
503 {
504     struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
505 
506     s->timer.irq = irq;
507     s->timer.clk = clk;
508     s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
509     omap_os_timer_reset(s);
510     omap_timer_clk_setup(&s->timer);
511 
512     memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
513                           "omap-os-timer", 0x800);
514     memory_region_add_subregion(memory, base, &s->iomem);
515 
516     return s;
517 }
518 
519 /* Ultra Low-Power Device Module */
520 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
521                                   unsigned size)
522 {
523     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
524     uint16_t ret;
525 
526     if (size != 2) {
527         return omap_badwidth_read16(opaque, addr);
528     }
529 
530     switch (addr) {
531     case 0x14:	/* IT_STATUS */
532         ret = s->ulpd_pm_regs[addr >> 2];
533         s->ulpd_pm_regs[addr >> 2] = 0;
534         qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
535         return ret;
536 
537     case 0x18:	/* Reserved */
538     case 0x1c:	/* Reserved */
539     case 0x20:	/* Reserved */
540     case 0x28:	/* Reserved */
541     case 0x2c:	/* Reserved */
542         OMAP_BAD_REG(addr);
543         /* fall through */
544     case 0x00:	/* COUNTER_32_LSB */
545     case 0x04:	/* COUNTER_32_MSB */
546     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
547     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
548     case 0x10:	/* GAUGING_CTRL */
549     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
550     case 0x30:	/* CLOCK_CTRL */
551     case 0x34:	/* SOFT_REQ */
552     case 0x38:	/* COUNTER_32_FIQ */
553     case 0x3c:	/* DPLL_CTRL */
554     case 0x40:	/* STATUS_REQ */
555         /* XXX: check clk::usecount state for every clock */
556     case 0x48:	/* LOCL_TIME */
557     case 0x4c:	/* APLL_CTRL */
558     case 0x50:	/* POWER_CTRL */
559         return s->ulpd_pm_regs[addr >> 2];
560     }
561 
562     OMAP_BAD_REG(addr);
563     return 0;
564 }
565 
566 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
567                 uint16_t diff, uint16_t value)
568 {
569     if (diff & (1 << 4))				/* USB_MCLK_EN */
570         omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
571     if (diff & (1 << 5))				/* DIS_USB_PVCI_CLK */
572         omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
573 }
574 
575 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
576                 uint16_t diff, uint16_t value)
577 {
578     if (diff & (1 << 0))				/* SOFT_DPLL_REQ */
579         omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
580     if (diff & (1 << 1))				/* SOFT_COM_REQ */
581         omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
582     if (diff & (1 << 2))				/* SOFT_SDW_REQ */
583         omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
584     if (diff & (1 << 3))				/* SOFT_USB_REQ */
585         omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
586 }
587 
588 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
589                                uint64_t value, unsigned size)
590 {
591     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
592     int64_t now, ticks;
593     int div, mult;
594     static const int bypass_div[4] = { 1, 2, 4, 4 };
595     uint16_t diff;
596 
597     if (size != 2) {
598         omap_badwidth_write16(opaque, addr, value);
599         return;
600     }
601 
602     switch (addr) {
603     case 0x00:	/* COUNTER_32_LSB */
604     case 0x04:	/* COUNTER_32_MSB */
605     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
606     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
607     case 0x14:	/* IT_STATUS */
608     case 0x40:	/* STATUS_REQ */
609         OMAP_RO_REG(addr);
610         break;
611 
612     case 0x10:	/* GAUGING_CTRL */
613         /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
614         if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
615             now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
616 
617             if (value & 1)
618                 s->ulpd_gauge_start = now;
619             else {
620                 now -= s->ulpd_gauge_start;
621 
622                 /* 32-kHz ticks */
623                 ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
624                 s->ulpd_pm_regs[0x00 >> 2] = (ticks >>  0) & 0xffff;
625                 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
626                 if (ticks >> 32)	/* OVERFLOW_32K */
627                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
628 
629                 /* High frequency ticks */
630                 ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
631                 s->ulpd_pm_regs[0x08 >> 2] = (ticks >>  0) & 0xffff;
632                 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
633                 if (ticks >> 32)	/* OVERFLOW_HI_FREQ */
634                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
635 
636                 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0;	/* IT_GAUGING */
637                 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
638             }
639         }
640         s->ulpd_pm_regs[addr >> 2] = value;
641         break;
642 
643     case 0x18:	/* Reserved */
644     case 0x1c:	/* Reserved */
645     case 0x20:	/* Reserved */
646     case 0x28:	/* Reserved */
647     case 0x2c:	/* Reserved */
648         OMAP_BAD_REG(addr);
649         /* fall through */
650     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
651     case 0x38:	/* COUNTER_32_FIQ */
652     case 0x48:	/* LOCL_TIME */
653     case 0x50:	/* POWER_CTRL */
654         s->ulpd_pm_regs[addr >> 2] = value;
655         break;
656 
657     case 0x30:	/* CLOCK_CTRL */
658         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
659         s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
660         omap_ulpd_clk_update(s, diff, value);
661         break;
662 
663     case 0x34:	/* SOFT_REQ */
664         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
665         s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
666         omap_ulpd_req_update(s, diff, value);
667         break;
668 
669     case 0x3c:	/* DPLL_CTRL */
670         /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
671          * omitted altogether, probably a typo.  */
672         /* This register has identical semantics with DPLL(1:3) control
673          * registers, see omap_dpll_write() */
674         diff = s->ulpd_pm_regs[addr >> 2] & value;
675         s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
676         if (diff & (0x3ff << 2)) {
677             if (value & (1 << 4)) {			/* PLL_ENABLE */
678                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
679                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
680             } else {
681                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
682                 mult = 1;
683             }
684             omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
685         }
686 
687         /* Enter the desired mode.  */
688         s->ulpd_pm_regs[addr >> 2] =
689                 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
690                 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
691 
692         /* Act as if the lock is restored.  */
693         s->ulpd_pm_regs[addr >> 2] |= 2;
694         break;
695 
696     case 0x4c:	/* APLL_CTRL */
697         diff = s->ulpd_pm_regs[addr >> 2] & value;
698         s->ulpd_pm_regs[addr >> 2] = value & 0xf;
699         if (diff & (1 << 0))				/* APLL_NDPLL_SWITCH */
700             omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
701                                     (value & (1 << 0)) ? "apll" : "dpll4"));
702         break;
703 
704     default:
705         OMAP_BAD_REG(addr);
706     }
707 }
708 
709 static const MemoryRegionOps omap_ulpd_pm_ops = {
710     .read = omap_ulpd_pm_read,
711     .write = omap_ulpd_pm_write,
712     .endianness = DEVICE_NATIVE_ENDIAN,
713 };
714 
715 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
716 {
717     mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
718     mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
719     mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
720     mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
721     mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
722     mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
723     mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
724     mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
725     mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
726     mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
727     mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
728     omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
729     mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
730     omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
731     mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
732     mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
733     mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
734     mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
735     mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
736     mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
737     mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
738     omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
739     omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
740 }
741 
742 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
743                 hwaddr base,
744                 struct omap_mpu_state_s *mpu)
745 {
746     memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
747                           "omap-ulpd-pm", 0x800);
748     memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
749     omap_ulpd_pm_reset(mpu);
750 }
751 
752 /* OMAP Pin Configuration */
753 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
754                                   unsigned size)
755 {
756     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
757 
758     if (size != 4) {
759         return omap_badwidth_read32(opaque, addr);
760     }
761 
762     switch (addr) {
763     case 0x00:	/* FUNC_MUX_CTRL_0 */
764     case 0x04:	/* FUNC_MUX_CTRL_1 */
765     case 0x08:	/* FUNC_MUX_CTRL_2 */
766         return s->func_mux_ctrl[addr >> 2];
767 
768     case 0x0c:	/* COMP_MODE_CTRL_0 */
769         return s->comp_mode_ctrl[0];
770 
771     case 0x10:	/* FUNC_MUX_CTRL_3 */
772     case 0x14:	/* FUNC_MUX_CTRL_4 */
773     case 0x18:	/* FUNC_MUX_CTRL_5 */
774     case 0x1c:	/* FUNC_MUX_CTRL_6 */
775     case 0x20:	/* FUNC_MUX_CTRL_7 */
776     case 0x24:	/* FUNC_MUX_CTRL_8 */
777     case 0x28:	/* FUNC_MUX_CTRL_9 */
778     case 0x2c:	/* FUNC_MUX_CTRL_A */
779     case 0x30:	/* FUNC_MUX_CTRL_B */
780     case 0x34:	/* FUNC_MUX_CTRL_C */
781     case 0x38:	/* FUNC_MUX_CTRL_D */
782         return s->func_mux_ctrl[(addr >> 2) - 1];
783 
784     case 0x40:	/* PULL_DWN_CTRL_0 */
785     case 0x44:	/* PULL_DWN_CTRL_1 */
786     case 0x48:	/* PULL_DWN_CTRL_2 */
787     case 0x4c:	/* PULL_DWN_CTRL_3 */
788         return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
789 
790     case 0x50:	/* GATE_INH_CTRL_0 */
791         return s->gate_inh_ctrl[0];
792 
793     case 0x60:	/* VOLTAGE_CTRL_0 */
794         return s->voltage_ctrl[0];
795 
796     case 0x70:	/* TEST_DBG_CTRL_0 */
797         return s->test_dbg_ctrl[0];
798 
799     case 0x80:	/* MOD_CONF_CTRL_0 */
800         return s->mod_conf_ctrl[0];
801     }
802 
803     OMAP_BAD_REG(addr);
804     return 0;
805 }
806 
807 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
808                 uint32_t diff, uint32_t value)
809 {
810     if (s->compat1509) {
811         if (diff & (1 << 9))			/* BLUETOOTH */
812             omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
813                             (~value >> 9) & 1);
814         if (diff & (1 << 7))			/* USB.CLKO */
815             omap_clk_onoff(omap_findclk(s, "usb.clko"),
816                             (value >> 7) & 1);
817     }
818 }
819 
820 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
821                 uint32_t diff, uint32_t value)
822 {
823     if (s->compat1509) {
824         if (diff & (1U << 31)) {
825             /* MCBSP3_CLK_HIZ_DI */
826             omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
827         }
828         if (diff & (1 << 1)) {
829             /* CLK32K */
830             omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
831         }
832     }
833 }
834 
835 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
836                 uint32_t diff, uint32_t value)
837 {
838     if (diff & (1U << 31)) {
839         /* CONF_MOD_UART3_CLK_MODE_R */
840         omap_clk_reparent(omap_findclk(s, "uart3_ck"),
841                           omap_findclk(s, ((value >> 31) & 1) ?
842                                        "ck_48m" : "armper_ck"));
843     }
844     if (diff & (1 << 30))			/* CONF_MOD_UART2_CLK_MODE_R */
845          omap_clk_reparent(omap_findclk(s, "uart2_ck"),
846                          omap_findclk(s, ((value >> 30) & 1) ?
847                                  "ck_48m" : "armper_ck"));
848     if (diff & (1 << 29))			/* CONF_MOD_UART1_CLK_MODE_R */
849          omap_clk_reparent(omap_findclk(s, "uart1_ck"),
850                          omap_findclk(s, ((value >> 29) & 1) ?
851                                  "ck_48m" : "armper_ck"));
852     if (diff & (1 << 23))			/* CONF_MOD_MMC_SD_CLK_REQ_R */
853          omap_clk_reparent(omap_findclk(s, "mmc_ck"),
854                          omap_findclk(s, ((value >> 23) & 1) ?
855                                  "ck_48m" : "armper_ck"));
856     if (diff & (1 << 12))			/* CONF_MOD_COM_MCLK_12_48_S */
857          omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
858                          omap_findclk(s, ((value >> 12) & 1) ?
859                                  "ck_48m" : "armper_ck"));
860     if (diff & (1 << 9))			/* CONF_MOD_USB_HOST_HHC_UHO */
861          omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
862 }
863 
864 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
865                                uint64_t value, unsigned size)
866 {
867     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
868     uint32_t diff;
869 
870     if (size != 4) {
871         omap_badwidth_write32(opaque, addr, value);
872         return;
873     }
874 
875     switch (addr) {
876     case 0x00:	/* FUNC_MUX_CTRL_0 */
877         diff = s->func_mux_ctrl[addr >> 2] ^ value;
878         s->func_mux_ctrl[addr >> 2] = value;
879         omap_pin_funcmux0_update(s, diff, value);
880         return;
881 
882     case 0x04:	/* FUNC_MUX_CTRL_1 */
883         diff = s->func_mux_ctrl[addr >> 2] ^ value;
884         s->func_mux_ctrl[addr >> 2] = value;
885         omap_pin_funcmux1_update(s, diff, value);
886         return;
887 
888     case 0x08:	/* FUNC_MUX_CTRL_2 */
889         s->func_mux_ctrl[addr >> 2] = value;
890         return;
891 
892     case 0x0c:	/* COMP_MODE_CTRL_0 */
893         s->comp_mode_ctrl[0] = value;
894         s->compat1509 = (value != 0x0000eaef);
895         omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
896         omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
897         return;
898 
899     case 0x10:	/* FUNC_MUX_CTRL_3 */
900     case 0x14:	/* FUNC_MUX_CTRL_4 */
901     case 0x18:	/* FUNC_MUX_CTRL_5 */
902     case 0x1c:	/* FUNC_MUX_CTRL_6 */
903     case 0x20:	/* FUNC_MUX_CTRL_7 */
904     case 0x24:	/* FUNC_MUX_CTRL_8 */
905     case 0x28:	/* FUNC_MUX_CTRL_9 */
906     case 0x2c:	/* FUNC_MUX_CTRL_A */
907     case 0x30:	/* FUNC_MUX_CTRL_B */
908     case 0x34:	/* FUNC_MUX_CTRL_C */
909     case 0x38:	/* FUNC_MUX_CTRL_D */
910         s->func_mux_ctrl[(addr >> 2) - 1] = value;
911         return;
912 
913     case 0x40:	/* PULL_DWN_CTRL_0 */
914     case 0x44:	/* PULL_DWN_CTRL_1 */
915     case 0x48:	/* PULL_DWN_CTRL_2 */
916     case 0x4c:	/* PULL_DWN_CTRL_3 */
917         s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
918         return;
919 
920     case 0x50:	/* GATE_INH_CTRL_0 */
921         s->gate_inh_ctrl[0] = value;
922         return;
923 
924     case 0x60:	/* VOLTAGE_CTRL_0 */
925         s->voltage_ctrl[0] = value;
926         return;
927 
928     case 0x70:	/* TEST_DBG_CTRL_0 */
929         s->test_dbg_ctrl[0] = value;
930         return;
931 
932     case 0x80:	/* MOD_CONF_CTRL_0 */
933         diff = s->mod_conf_ctrl[0] ^ value;
934         s->mod_conf_ctrl[0] = value;
935         omap_pin_modconf1_update(s, diff, value);
936         return;
937 
938     default:
939         OMAP_BAD_REG(addr);
940     }
941 }
942 
943 static const MemoryRegionOps omap_pin_cfg_ops = {
944     .read = omap_pin_cfg_read,
945     .write = omap_pin_cfg_write,
946     .endianness = DEVICE_NATIVE_ENDIAN,
947 };
948 
949 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
950 {
951     /* Start in Compatibility Mode.  */
952     mpu->compat1509 = 1;
953     omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
954     omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
955     omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
956     memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
957     memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
958     memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
959     memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
960     memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
961     memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
962     memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
963 }
964 
965 static void omap_pin_cfg_init(MemoryRegion *system_memory,
966                 hwaddr base,
967                 struct omap_mpu_state_s *mpu)
968 {
969     memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
970                           "omap-pin-cfg", 0x800);
971     memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
972     omap_pin_cfg_reset(mpu);
973 }
974 
975 /* Device Identification, Die Identification */
976 static uint64_t omap_id_read(void *opaque, hwaddr addr,
977                              unsigned size)
978 {
979     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
980 
981     if (size != 4) {
982         return omap_badwidth_read32(opaque, addr);
983     }
984 
985     switch (addr) {
986     case 0xfffe1800:	/* DIE_ID_LSB */
987         return 0xc9581f0e;
988     case 0xfffe1804:	/* DIE_ID_MSB */
989         return 0xa8858bfa;
990 
991     case 0xfffe2000:	/* PRODUCT_ID_LSB */
992         return 0x00aaaafc;
993     case 0xfffe2004:	/* PRODUCT_ID_MSB */
994         return 0xcafeb574;
995 
996     case 0xfffed400:	/* JTAG_ID_LSB */
997         switch (s->mpu_model) {
998         case omap310:
999             return 0x03310315;
1000         case omap1510:
1001             return 0x03310115;
1002         default:
1003             hw_error("%s: bad mpu model\n", __func__);
1004         }
1005         break;
1006 
1007     case 0xfffed404:	/* JTAG_ID_MSB */
1008         switch (s->mpu_model) {
1009         case omap310:
1010             return 0xfb57402f;
1011         case omap1510:
1012             return 0xfb47002f;
1013         default:
1014             hw_error("%s: bad mpu model\n", __func__);
1015         }
1016         break;
1017     }
1018 
1019     OMAP_BAD_REG(addr);
1020     return 0;
1021 }
1022 
1023 static void omap_id_write(void *opaque, hwaddr addr,
1024                           uint64_t value, unsigned size)
1025 {
1026     if (size != 4) {
1027         omap_badwidth_write32(opaque, addr, value);
1028         return;
1029     }
1030 
1031     OMAP_BAD_REG(addr);
1032 }
1033 
1034 static const MemoryRegionOps omap_id_ops = {
1035     .read = omap_id_read,
1036     .write = omap_id_write,
1037     .endianness = DEVICE_NATIVE_ENDIAN,
1038 };
1039 
1040 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1041 {
1042     memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1043                           "omap-id", 0x100000000ULL);
1044     memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1045                              0xfffe1800, 0x800);
1046     memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1047     memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1048                              0xfffed400, 0x100);
1049     memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1050     if (!cpu_is_omap15xx(mpu)) {
1051         memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1052                                  &mpu->id_iomem, 0xfffe2000, 0x800);
1053         memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1054     }
1055 }
1056 
1057 /* MPUI Control (Dummy) */
1058 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1059                                unsigned size)
1060 {
1061     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1062 
1063     if (size != 4) {
1064         return omap_badwidth_read32(opaque, addr);
1065     }
1066 
1067     switch (addr) {
1068     case 0x00:	/* CTRL */
1069         return s->mpui_ctrl;
1070     case 0x04:	/* DEBUG_ADDR */
1071         return 0x01ffffff;
1072     case 0x08:	/* DEBUG_DATA */
1073         return 0xffffffff;
1074     case 0x0c:	/* DEBUG_FLAG */
1075         return 0x00000800;
1076     case 0x10:	/* STATUS */
1077         return 0x00000000;
1078 
1079     /* Not in OMAP310 */
1080     case 0x14:	/* DSP_STATUS */
1081     case 0x18:	/* DSP_BOOT_CONFIG */
1082         return 0x00000000;
1083     case 0x1c:	/* DSP_MPUI_CONFIG */
1084         return 0x0000ffff;
1085     }
1086 
1087     OMAP_BAD_REG(addr);
1088     return 0;
1089 }
1090 
1091 static void omap_mpui_write(void *opaque, hwaddr addr,
1092                             uint64_t value, unsigned size)
1093 {
1094     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1095 
1096     if (size != 4) {
1097         omap_badwidth_write32(opaque, addr, value);
1098         return;
1099     }
1100 
1101     switch (addr) {
1102     case 0x00:	/* CTRL */
1103         s->mpui_ctrl = value & 0x007fffff;
1104         break;
1105 
1106     case 0x04:	/* DEBUG_ADDR */
1107     case 0x08:	/* DEBUG_DATA */
1108     case 0x0c:	/* DEBUG_FLAG */
1109     case 0x10:	/* STATUS */
1110     /* Not in OMAP310 */
1111     case 0x14:	/* DSP_STATUS */
1112         OMAP_RO_REG(addr);
1113         break;
1114     case 0x18:	/* DSP_BOOT_CONFIG */
1115     case 0x1c:	/* DSP_MPUI_CONFIG */
1116         break;
1117 
1118     default:
1119         OMAP_BAD_REG(addr);
1120     }
1121 }
1122 
1123 static const MemoryRegionOps omap_mpui_ops = {
1124     .read = omap_mpui_read,
1125     .write = omap_mpui_write,
1126     .endianness = DEVICE_NATIVE_ENDIAN,
1127 };
1128 
1129 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1130 {
1131     s->mpui_ctrl = 0x0003ff1b;
1132 }
1133 
1134 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1135                 struct omap_mpu_state_s *mpu)
1136 {
1137     memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1138                           "omap-mpui", 0x100);
1139     memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1140 
1141     omap_mpui_reset(mpu);
1142 }
1143 
1144 /* TIPB Bridges */
1145 struct omap_tipb_bridge_s {
1146     qemu_irq abort;
1147     MemoryRegion iomem;
1148 
1149     int width_intr;
1150     uint16_t control;
1151     uint16_t alloc;
1152     uint16_t buffer;
1153     uint16_t enh_control;
1154 };
1155 
1156 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1157                                       unsigned size)
1158 {
1159     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1160 
1161     if (size < 2) {
1162         return omap_badwidth_read16(opaque, addr);
1163     }
1164 
1165     switch (addr) {
1166     case 0x00:	/* TIPB_CNTL */
1167         return s->control;
1168     case 0x04:	/* TIPB_BUS_ALLOC */
1169         return s->alloc;
1170     case 0x08:	/* MPU_TIPB_CNTL */
1171         return s->buffer;
1172     case 0x0c:	/* ENHANCED_TIPB_CNTL */
1173         return s->enh_control;
1174     case 0x10:	/* ADDRESS_DBG */
1175     case 0x14:	/* DATA_DEBUG_LOW */
1176     case 0x18:	/* DATA_DEBUG_HIGH */
1177         return 0xffff;
1178     case 0x1c:	/* DEBUG_CNTR_SIG */
1179         return 0x00f8;
1180     }
1181 
1182     OMAP_BAD_REG(addr);
1183     return 0;
1184 }
1185 
1186 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1187                                    uint64_t value, unsigned size)
1188 {
1189     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1190 
1191     if (size < 2) {
1192         omap_badwidth_write16(opaque, addr, value);
1193         return;
1194     }
1195 
1196     switch (addr) {
1197     case 0x00:	/* TIPB_CNTL */
1198         s->control = value & 0xffff;
1199         break;
1200 
1201     case 0x04:	/* TIPB_BUS_ALLOC */
1202         s->alloc = value & 0x003f;
1203         break;
1204 
1205     case 0x08:	/* MPU_TIPB_CNTL */
1206         s->buffer = value & 0x0003;
1207         break;
1208 
1209     case 0x0c:	/* ENHANCED_TIPB_CNTL */
1210         s->width_intr = !(value & 2);
1211         s->enh_control = value & 0x000f;
1212         break;
1213 
1214     case 0x10:	/* ADDRESS_DBG */
1215     case 0x14:	/* DATA_DEBUG_LOW */
1216     case 0x18:	/* DATA_DEBUG_HIGH */
1217     case 0x1c:	/* DEBUG_CNTR_SIG */
1218         OMAP_RO_REG(addr);
1219         break;
1220 
1221     default:
1222         OMAP_BAD_REG(addr);
1223     }
1224 }
1225 
1226 static const MemoryRegionOps omap_tipb_bridge_ops = {
1227     .read = omap_tipb_bridge_read,
1228     .write = omap_tipb_bridge_write,
1229     .endianness = DEVICE_NATIVE_ENDIAN,
1230 };
1231 
1232 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1233 {
1234     s->control = 0xffff;
1235     s->alloc = 0x0009;
1236     s->buffer = 0x0000;
1237     s->enh_control = 0x000f;
1238 }
1239 
1240 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1241     MemoryRegion *memory, hwaddr base,
1242     qemu_irq abort_irq, omap_clk clk)
1243 {
1244     struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1245 
1246     s->abort = abort_irq;
1247     omap_tipb_bridge_reset(s);
1248 
1249     memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1250                           "omap-tipb-bridge", 0x100);
1251     memory_region_add_subregion(memory, base, &s->iomem);
1252 
1253     return s;
1254 }
1255 
1256 /* Dummy Traffic Controller's Memory Interface */
1257 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1258                                unsigned size)
1259 {
1260     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1261     uint32_t ret;
1262 
1263     if (size != 4) {
1264         return omap_badwidth_read32(opaque, addr);
1265     }
1266 
1267     switch (addr) {
1268     case 0x00:	/* IMIF_PRIO */
1269     case 0x04:	/* EMIFS_PRIO */
1270     case 0x08:	/* EMIFF_PRIO */
1271     case 0x0c:	/* EMIFS_CONFIG */
1272     case 0x10:	/* EMIFS_CS0_CONFIG */
1273     case 0x14:	/* EMIFS_CS1_CONFIG */
1274     case 0x18:	/* EMIFS_CS2_CONFIG */
1275     case 0x1c:	/* EMIFS_CS3_CONFIG */
1276     case 0x24:	/* EMIFF_MRS */
1277     case 0x28:	/* TIMEOUT1 */
1278     case 0x2c:	/* TIMEOUT2 */
1279     case 0x30:	/* TIMEOUT3 */
1280     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
1281     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
1282         return s->tcmi_regs[addr >> 2];
1283 
1284     case 0x20:	/* EMIFF_SDRAM_CONFIG */
1285         ret = s->tcmi_regs[addr >> 2];
1286         s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1287         /* XXX: We can try using the VGA_DIRTY flag for this */
1288         return ret;
1289     }
1290 
1291     OMAP_BAD_REG(addr);
1292     return 0;
1293 }
1294 
1295 static void omap_tcmi_write(void *opaque, hwaddr addr,
1296                             uint64_t value, unsigned size)
1297 {
1298     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1299 
1300     if (size != 4) {
1301         omap_badwidth_write32(opaque, addr, value);
1302         return;
1303     }
1304 
1305     switch (addr) {
1306     case 0x00:	/* IMIF_PRIO */
1307     case 0x04:	/* EMIFS_PRIO */
1308     case 0x08:	/* EMIFF_PRIO */
1309     case 0x10:	/* EMIFS_CS0_CONFIG */
1310     case 0x14:	/* EMIFS_CS1_CONFIG */
1311     case 0x18:	/* EMIFS_CS2_CONFIG */
1312     case 0x1c:	/* EMIFS_CS3_CONFIG */
1313     case 0x20:	/* EMIFF_SDRAM_CONFIG */
1314     case 0x24:	/* EMIFF_MRS */
1315     case 0x28:	/* TIMEOUT1 */
1316     case 0x2c:	/* TIMEOUT2 */
1317     case 0x30:	/* TIMEOUT3 */
1318     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
1319     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
1320         s->tcmi_regs[addr >> 2] = value;
1321         break;
1322     case 0x0c:	/* EMIFS_CONFIG */
1323         s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1324         break;
1325 
1326     default:
1327         OMAP_BAD_REG(addr);
1328     }
1329 }
1330 
1331 static const MemoryRegionOps omap_tcmi_ops = {
1332     .read = omap_tcmi_read,
1333     .write = omap_tcmi_write,
1334     .endianness = DEVICE_NATIVE_ENDIAN,
1335 };
1336 
1337 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1338 {
1339     mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1340     mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1341     mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1342     mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1343     mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1344     mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1345     mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1346     mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1347     mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1348     mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1349     mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1350     mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1351     mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1352     mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1353     mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1354 }
1355 
1356 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1357                 struct omap_mpu_state_s *mpu)
1358 {
1359     memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1360                           "omap-tcmi", 0x100);
1361     memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1362     omap_tcmi_reset(mpu);
1363 }
1364 
1365 /* Digital phase-locked loops control */
1366 struct dpll_ctl_s {
1367     MemoryRegion iomem;
1368     uint16_t mode;
1369     omap_clk dpll;
1370 };
1371 
1372 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1373                                unsigned size)
1374 {
1375     struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1376 
1377     if (size != 2) {
1378         return omap_badwidth_read16(opaque, addr);
1379     }
1380 
1381     if (addr == 0x00)	/* CTL_REG */
1382         return s->mode;
1383 
1384     OMAP_BAD_REG(addr);
1385     return 0;
1386 }
1387 
1388 static void omap_dpll_write(void *opaque, hwaddr addr,
1389                             uint64_t value, unsigned size)
1390 {
1391     struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1392     uint16_t diff;
1393     static const int bypass_div[4] = { 1, 2, 4, 4 };
1394     int div, mult;
1395 
1396     if (size != 2) {
1397         omap_badwidth_write16(opaque, addr, value);
1398         return;
1399     }
1400 
1401     if (addr == 0x00) {	/* CTL_REG */
1402         /* See omap_ulpd_pm_write() too */
1403         diff = s->mode & value;
1404         s->mode = value & 0x2fff;
1405         if (diff & (0x3ff << 2)) {
1406             if (value & (1 << 4)) {			/* PLL_ENABLE */
1407                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
1408                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
1409             } else {
1410                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
1411                 mult = 1;
1412             }
1413             omap_clk_setrate(s->dpll, div, mult);
1414         }
1415 
1416         /* Enter the desired mode.  */
1417         s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1418 
1419         /* Act as if the lock is restored.  */
1420         s->mode |= 2;
1421     } else {
1422         OMAP_BAD_REG(addr);
1423     }
1424 }
1425 
1426 static const MemoryRegionOps omap_dpll_ops = {
1427     .read = omap_dpll_read,
1428     .write = omap_dpll_write,
1429     .endianness = DEVICE_NATIVE_ENDIAN,
1430 };
1431 
1432 static void omap_dpll_reset(struct dpll_ctl_s *s)
1433 {
1434     s->mode = 0x2002;
1435     omap_clk_setrate(s->dpll, 1, 1);
1436 }
1437 
1438 static struct dpll_ctl_s  *omap_dpll_init(MemoryRegion *memory,
1439                            hwaddr base, omap_clk clk)
1440 {
1441     struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1442     memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1443 
1444     s->dpll = clk;
1445     omap_dpll_reset(s);
1446 
1447     memory_region_add_subregion(memory, base, &s->iomem);
1448     return s;
1449 }
1450 
1451 /* MPU Clock/Reset/Power Mode Control */
1452 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1453                                unsigned size)
1454 {
1455     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1456 
1457     if (size != 2) {
1458         return omap_badwidth_read16(opaque, addr);
1459     }
1460 
1461     switch (addr) {
1462     case 0x00:	/* ARM_CKCTL */
1463         return s->clkm.arm_ckctl;
1464 
1465     case 0x04:	/* ARM_IDLECT1 */
1466         return s->clkm.arm_idlect1;
1467 
1468     case 0x08:	/* ARM_IDLECT2 */
1469         return s->clkm.arm_idlect2;
1470 
1471     case 0x0c:	/* ARM_EWUPCT */
1472         return s->clkm.arm_ewupct;
1473 
1474     case 0x10:	/* ARM_RSTCT1 */
1475         return s->clkm.arm_rstct1;
1476 
1477     case 0x14:	/* ARM_RSTCT2 */
1478         return s->clkm.arm_rstct2;
1479 
1480     case 0x18:	/* ARM_SYSST */
1481         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1482 
1483     case 0x1c:	/* ARM_CKOUT1 */
1484         return s->clkm.arm_ckout1;
1485 
1486     case 0x20:	/* ARM_CKOUT2 */
1487         break;
1488     }
1489 
1490     OMAP_BAD_REG(addr);
1491     return 0;
1492 }
1493 
1494 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1495                 uint16_t diff, uint16_t value)
1496 {
1497     omap_clk clk;
1498 
1499     if (diff & (1 << 14)) {				/* ARM_INTHCK_SEL */
1500         if (value & (1 << 14))
1501             /* Reserved */;
1502         else {
1503             clk = omap_findclk(s, "arminth_ck");
1504             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1505         }
1506     }
1507     if (diff & (1 << 12)) {				/* ARM_TIMXO */
1508         clk = omap_findclk(s, "armtim_ck");
1509         if (value & (1 << 12))
1510             omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1511         else
1512             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1513     }
1514     /* XXX: en_dspck */
1515     if (diff & (3 << 10)) {				/* DSPMMUDIV */
1516         clk = omap_findclk(s, "dspmmu_ck");
1517         omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1518     }
1519     if (diff & (3 << 8)) {				/* TCDIV */
1520         clk = omap_findclk(s, "tc_ck");
1521         omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1522     }
1523     if (diff & (3 << 6)) {				/* DSPDIV */
1524         clk = omap_findclk(s, "dsp_ck");
1525         omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1526     }
1527     if (diff & (3 << 4)) {				/* ARMDIV */
1528         clk = omap_findclk(s, "arm_ck");
1529         omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1530     }
1531     if (diff & (3 << 2)) {				/* LCDDIV */
1532         clk = omap_findclk(s, "lcd_ck");
1533         omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1534     }
1535     if (diff & (3 << 0)) {				/* PERDIV */
1536         clk = omap_findclk(s, "armper_ck");
1537         omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1538     }
1539 }
1540 
1541 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1542                 uint16_t diff, uint16_t value)
1543 {
1544     omap_clk clk;
1545 
1546     if (value & (1 << 11)) {                            /* SETARM_IDLE */
1547         cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1548     }
1549     if (!(value & (1 << 10))) {                         /* WKUP_MODE */
1550         /* XXX: disable wakeup from IRQ */
1551         qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1552     }
1553 
1554 #define SET_CANIDLE(clock, bit)				\
1555     if (diff & (1 << bit)) {				\
1556         clk = omap_findclk(s, clock);			\
1557         omap_clk_canidle(clk, (value >> bit) & 1);	\
1558     }
1559     SET_CANIDLE("mpuwd_ck", 0)				/* IDLWDT_ARM */
1560     SET_CANIDLE("armxor_ck", 1)				/* IDLXORP_ARM */
1561     SET_CANIDLE("mpuper_ck", 2)				/* IDLPER_ARM */
1562     SET_CANIDLE("lcd_ck", 3)				/* IDLLCD_ARM */
1563     SET_CANIDLE("lb_ck", 4)				/* IDLLB_ARM */
1564     SET_CANIDLE("hsab_ck", 5)				/* IDLHSAB_ARM */
1565     SET_CANIDLE("tipb_ck", 6)				/* IDLIF_ARM */
1566     SET_CANIDLE("dma_ck", 6)				/* IDLIF_ARM */
1567     SET_CANIDLE("tc_ck", 6)				/* IDLIF_ARM */
1568     SET_CANIDLE("dpll1", 7)				/* IDLDPLL_ARM */
1569     SET_CANIDLE("dpll2", 7)				/* IDLDPLL_ARM */
1570     SET_CANIDLE("dpll3", 7)				/* IDLDPLL_ARM */
1571     SET_CANIDLE("mpui_ck", 8)				/* IDLAPI_ARM */
1572     SET_CANIDLE("armtim_ck", 9)				/* IDLTIM_ARM */
1573 }
1574 
1575 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1576                 uint16_t diff, uint16_t value)
1577 {
1578     omap_clk clk;
1579 
1580 #define SET_ONOFF(clock, bit)				\
1581     if (diff & (1 << bit)) {				\
1582         clk = omap_findclk(s, clock);			\
1583         omap_clk_onoff(clk, (value >> bit) & 1);	\
1584     }
1585     SET_ONOFF("mpuwd_ck", 0)				/* EN_WDTCK */
1586     SET_ONOFF("armxor_ck", 1)				/* EN_XORPCK */
1587     SET_ONOFF("mpuper_ck", 2)				/* EN_PERCK */
1588     SET_ONOFF("lcd_ck", 3)				/* EN_LCDCK */
1589     SET_ONOFF("lb_ck", 4)				/* EN_LBCK */
1590     SET_ONOFF("hsab_ck", 5)				/* EN_HSABCK */
1591     SET_ONOFF("mpui_ck", 6)				/* EN_APICK */
1592     SET_ONOFF("armtim_ck", 7)				/* EN_TIMCK */
1593     SET_CANIDLE("dma_ck", 8)				/* DMACK_REQ */
1594     SET_ONOFF("arm_gpio_ck", 9)				/* EN_GPIOCK */
1595     SET_ONOFF("lbfree_ck", 10)				/* EN_LBFREECK */
1596 }
1597 
1598 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1599                 uint16_t diff, uint16_t value)
1600 {
1601     omap_clk clk;
1602 
1603     if (diff & (3 << 4)) {				/* TCLKOUT */
1604         clk = omap_findclk(s, "tclk_out");
1605         switch ((value >> 4) & 3) {
1606         case 1:
1607             omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1608             omap_clk_onoff(clk, 1);
1609             break;
1610         case 2:
1611             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1612             omap_clk_onoff(clk, 1);
1613             break;
1614         default:
1615             omap_clk_onoff(clk, 0);
1616         }
1617     }
1618     if (diff & (3 << 2)) {				/* DCLKOUT */
1619         clk = omap_findclk(s, "dclk_out");
1620         switch ((value >> 2) & 3) {
1621         case 0:
1622             omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1623             break;
1624         case 1:
1625             omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1626             break;
1627         case 2:
1628             omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1629             break;
1630         case 3:
1631             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1632             break;
1633         }
1634     }
1635     if (diff & (3 << 0)) {				/* ACLKOUT */
1636         clk = omap_findclk(s, "aclk_out");
1637         switch ((value >> 0) & 3) {
1638         case 1:
1639             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1640             omap_clk_onoff(clk, 1);
1641             break;
1642         case 2:
1643             omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1644             omap_clk_onoff(clk, 1);
1645             break;
1646         case 3:
1647             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1648             omap_clk_onoff(clk, 1);
1649             break;
1650         default:
1651             omap_clk_onoff(clk, 0);
1652         }
1653     }
1654 }
1655 
1656 static void omap_clkm_write(void *opaque, hwaddr addr,
1657                             uint64_t value, unsigned size)
1658 {
1659     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1660     uint16_t diff;
1661     omap_clk clk;
1662     static const char *clkschemename[8] = {
1663         "fully synchronous", "fully asynchronous", "synchronous scalable",
1664         "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1665     };
1666 
1667     if (size != 2) {
1668         omap_badwidth_write16(opaque, addr, value);
1669         return;
1670     }
1671 
1672     switch (addr) {
1673     case 0x00:	/* ARM_CKCTL */
1674         diff = s->clkm.arm_ckctl ^ value;
1675         s->clkm.arm_ckctl = value & 0x7fff;
1676         omap_clkm_ckctl_update(s, diff, value);
1677         return;
1678 
1679     case 0x04:	/* ARM_IDLECT1 */
1680         diff = s->clkm.arm_idlect1 ^ value;
1681         s->clkm.arm_idlect1 = value & 0x0fff;
1682         omap_clkm_idlect1_update(s, diff, value);
1683         return;
1684 
1685     case 0x08:	/* ARM_IDLECT2 */
1686         diff = s->clkm.arm_idlect2 ^ value;
1687         s->clkm.arm_idlect2 = value & 0x07ff;
1688         omap_clkm_idlect2_update(s, diff, value);
1689         return;
1690 
1691     case 0x0c:	/* ARM_EWUPCT */
1692         s->clkm.arm_ewupct = value & 0x003f;
1693         return;
1694 
1695     case 0x10:	/* ARM_RSTCT1 */
1696         diff = s->clkm.arm_rstct1 ^ value;
1697         s->clkm.arm_rstct1 = value & 0x0007;
1698         if (value & 9) {
1699             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1700             s->clkm.cold_start = 0xa;
1701         }
1702         if (diff & ~value & 4) {				/* DSP_RST */
1703             omap_mpui_reset(s);
1704             omap_tipb_bridge_reset(s->private_tipb);
1705             omap_tipb_bridge_reset(s->public_tipb);
1706         }
1707         if (diff & 2) {						/* DSP_EN */
1708             clk = omap_findclk(s, "dsp_ck");
1709             omap_clk_canidle(clk, (~value >> 1) & 1);
1710         }
1711         return;
1712 
1713     case 0x14:	/* ARM_RSTCT2 */
1714         s->clkm.arm_rstct2 = value & 0x0001;
1715         return;
1716 
1717     case 0x18:	/* ARM_SYSST */
1718         if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1719             s->clkm.clocking_scheme = (value >> 11) & 7;
1720             printf("%s: clocking scheme set to %s\n", __func__,
1721                    clkschemename[s->clkm.clocking_scheme]);
1722         }
1723         s->clkm.cold_start &= value & 0x3f;
1724         return;
1725 
1726     case 0x1c:	/* ARM_CKOUT1 */
1727         diff = s->clkm.arm_ckout1 ^ value;
1728         s->clkm.arm_ckout1 = value & 0x003f;
1729         omap_clkm_ckout1_update(s, diff, value);
1730         return;
1731 
1732     case 0x20:	/* ARM_CKOUT2 */
1733     default:
1734         OMAP_BAD_REG(addr);
1735     }
1736 }
1737 
1738 static const MemoryRegionOps omap_clkm_ops = {
1739     .read = omap_clkm_read,
1740     .write = omap_clkm_write,
1741     .endianness = DEVICE_NATIVE_ENDIAN,
1742 };
1743 
1744 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1745                                  unsigned size)
1746 {
1747     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1748     CPUState *cpu = CPU(s->cpu);
1749 
1750     if (size != 2) {
1751         return omap_badwidth_read16(opaque, addr);
1752     }
1753 
1754     switch (addr) {
1755     case 0x04:	/* DSP_IDLECT1 */
1756         return s->clkm.dsp_idlect1;
1757 
1758     case 0x08:	/* DSP_IDLECT2 */
1759         return s->clkm.dsp_idlect2;
1760 
1761     case 0x14:	/* DSP_RSTCT2 */
1762         return s->clkm.dsp_rstct2;
1763 
1764     case 0x18:	/* DSP_SYSST */
1765         cpu = CPU(s->cpu);
1766         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1767                 (cpu->halted << 6);      /* Quite useless... */
1768     }
1769 
1770     OMAP_BAD_REG(addr);
1771     return 0;
1772 }
1773 
1774 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1775                 uint16_t diff, uint16_t value)
1776 {
1777     omap_clk clk;
1778 
1779     SET_CANIDLE("dspxor_ck", 1);			/* IDLXORP_DSP */
1780 }
1781 
1782 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1783                 uint16_t diff, uint16_t value)
1784 {
1785     omap_clk clk;
1786 
1787     SET_ONOFF("dspxor_ck", 1);				/* EN_XORPCK */
1788 }
1789 
1790 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1791                               uint64_t value, unsigned size)
1792 {
1793     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1794     uint16_t diff;
1795 
1796     if (size != 2) {
1797         omap_badwidth_write16(opaque, addr, value);
1798         return;
1799     }
1800 
1801     switch (addr) {
1802     case 0x04:	/* DSP_IDLECT1 */
1803         diff = s->clkm.dsp_idlect1 ^ value;
1804         s->clkm.dsp_idlect1 = value & 0x01f7;
1805         omap_clkdsp_idlect1_update(s, diff, value);
1806         break;
1807 
1808     case 0x08:	/* DSP_IDLECT2 */
1809         s->clkm.dsp_idlect2 = value & 0x0037;
1810         diff = s->clkm.dsp_idlect1 ^ value;
1811         omap_clkdsp_idlect2_update(s, diff, value);
1812         break;
1813 
1814     case 0x14:	/* DSP_RSTCT2 */
1815         s->clkm.dsp_rstct2 = value & 0x0001;
1816         break;
1817 
1818     case 0x18:	/* DSP_SYSST */
1819         s->clkm.cold_start &= value & 0x3f;
1820         break;
1821 
1822     default:
1823         OMAP_BAD_REG(addr);
1824     }
1825 }
1826 
1827 static const MemoryRegionOps omap_clkdsp_ops = {
1828     .read = omap_clkdsp_read,
1829     .write = omap_clkdsp_write,
1830     .endianness = DEVICE_NATIVE_ENDIAN,
1831 };
1832 
1833 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1834 {
1835     if (s->wdt && s->wdt->reset)
1836         s->clkm.cold_start = 0x6;
1837     s->clkm.clocking_scheme = 0;
1838     omap_clkm_ckctl_update(s, ~0, 0x3000);
1839     s->clkm.arm_ckctl = 0x3000;
1840     omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1841     s->clkm.arm_idlect1 = 0x0400;
1842     omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1843     s->clkm.arm_idlect2 = 0x0100;
1844     s->clkm.arm_ewupct = 0x003f;
1845     s->clkm.arm_rstct1 = 0x0000;
1846     s->clkm.arm_rstct2 = 0x0000;
1847     s->clkm.arm_ckout1 = 0x0015;
1848     s->clkm.dpll1_mode = 0x2002;
1849     omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1850     s->clkm.dsp_idlect1 = 0x0040;
1851     omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1852     s->clkm.dsp_idlect2 = 0x0000;
1853     s->clkm.dsp_rstct2 = 0x0000;
1854 }
1855 
1856 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1857                 hwaddr dsp_base, struct omap_mpu_state_s *s)
1858 {
1859     memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1860                           "omap-clkm", 0x100);
1861     memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1862                           "omap-clkdsp", 0x1000);
1863 
1864     s->clkm.arm_idlect1 = 0x03ff;
1865     s->clkm.arm_idlect2 = 0x0100;
1866     s->clkm.dsp_idlect1 = 0x0002;
1867     omap_clkm_reset(s);
1868     s->clkm.cold_start = 0x3a;
1869 
1870     memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1871     memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1872 }
1873 
1874 /* MPU I/O */
1875 struct omap_mpuio_s {
1876     qemu_irq irq;
1877     qemu_irq kbd_irq;
1878     qemu_irq *in;
1879     qemu_irq handler[16];
1880     qemu_irq wakeup;
1881     MemoryRegion iomem;
1882 
1883     uint16_t inputs;
1884     uint16_t outputs;
1885     uint16_t dir;
1886     uint16_t edge;
1887     uint16_t mask;
1888     uint16_t ints;
1889 
1890     uint16_t debounce;
1891     uint16_t latch;
1892     uint8_t event;
1893 
1894     uint8_t buttons[5];
1895     uint8_t row_latch;
1896     uint8_t cols;
1897     int kbd_mask;
1898     int clk;
1899 };
1900 
1901 static void omap_mpuio_set(void *opaque, int line, int level)
1902 {
1903     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1904     uint16_t prev = s->inputs;
1905 
1906     if (level)
1907         s->inputs |= 1 << line;
1908     else
1909         s->inputs &= ~(1 << line);
1910 
1911     if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1912         if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1913             s->ints |= 1 << line;
1914             qemu_irq_raise(s->irq);
1915             /* TODO: wakeup */
1916         }
1917         if ((s->event & (1 << 0)) &&		/* SET_GPIO_EVENT_MODE */
1918                 (s->event >> 1) == line)	/* PIN_SELECT */
1919             s->latch = s->inputs;
1920     }
1921 }
1922 
1923 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1924 {
1925     int i;
1926     uint8_t *row, rows = 0, cols = ~s->cols;
1927 
1928     for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1929         if (*row & cols)
1930             rows |= i;
1931 
1932     qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1933     s->row_latch = ~rows;
1934 }
1935 
1936 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1937                                 unsigned size)
1938 {
1939     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1940     int offset = addr & OMAP_MPUI_REG_MASK;
1941     uint16_t ret;
1942 
1943     if (size != 2) {
1944         return omap_badwidth_read16(opaque, addr);
1945     }
1946 
1947     switch (offset) {
1948     case 0x00:	/* INPUT_LATCH */
1949         return s->inputs;
1950 
1951     case 0x04:	/* OUTPUT_REG */
1952         return s->outputs;
1953 
1954     case 0x08:	/* IO_CNTL */
1955         return s->dir;
1956 
1957     case 0x10:	/* KBR_LATCH */
1958         return s->row_latch;
1959 
1960     case 0x14:	/* KBC_REG */
1961         return s->cols;
1962 
1963     case 0x18:	/* GPIO_EVENT_MODE_REG */
1964         return s->event;
1965 
1966     case 0x1c:	/* GPIO_INT_EDGE_REG */
1967         return s->edge;
1968 
1969     case 0x20:	/* KBD_INT */
1970         return (~s->row_latch & 0x1f) && !s->kbd_mask;
1971 
1972     case 0x24:	/* GPIO_INT */
1973         ret = s->ints;
1974         s->ints &= s->mask;
1975         if (ret)
1976             qemu_irq_lower(s->irq);
1977         return ret;
1978 
1979     case 0x28:	/* KBD_MASKIT */
1980         return s->kbd_mask;
1981 
1982     case 0x2c:	/* GPIO_MASKIT */
1983         return s->mask;
1984 
1985     case 0x30:	/* GPIO_DEBOUNCING_REG */
1986         return s->debounce;
1987 
1988     case 0x34:	/* GPIO_LATCH_REG */
1989         return s->latch;
1990     }
1991 
1992     OMAP_BAD_REG(addr);
1993     return 0;
1994 }
1995 
1996 static void omap_mpuio_write(void *opaque, hwaddr addr,
1997                              uint64_t value, unsigned size)
1998 {
1999     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2000     int offset = addr & OMAP_MPUI_REG_MASK;
2001     uint16_t diff;
2002     int ln;
2003 
2004     if (size != 2) {
2005         omap_badwidth_write16(opaque, addr, value);
2006         return;
2007     }
2008 
2009     switch (offset) {
2010     case 0x04:	/* OUTPUT_REG */
2011         diff = (s->outputs ^ value) & ~s->dir;
2012         s->outputs = value;
2013         while ((ln = ctz32(diff)) != 32) {
2014             if (s->handler[ln])
2015                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2016             diff &= ~(1 << ln);
2017         }
2018         break;
2019 
2020     case 0x08:	/* IO_CNTL */
2021         diff = s->outputs & (s->dir ^ value);
2022         s->dir = value;
2023 
2024         value = s->outputs & ~s->dir;
2025         while ((ln = ctz32(diff)) != 32) {
2026             if (s->handler[ln])
2027                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2028             diff &= ~(1 << ln);
2029         }
2030         break;
2031 
2032     case 0x14:	/* KBC_REG */
2033         s->cols = value;
2034         omap_mpuio_kbd_update(s);
2035         break;
2036 
2037     case 0x18:	/* GPIO_EVENT_MODE_REG */
2038         s->event = value & 0x1f;
2039         break;
2040 
2041     case 0x1c:	/* GPIO_INT_EDGE_REG */
2042         s->edge = value;
2043         break;
2044 
2045     case 0x28:	/* KBD_MASKIT */
2046         s->kbd_mask = value & 1;
2047         omap_mpuio_kbd_update(s);
2048         break;
2049 
2050     case 0x2c:	/* GPIO_MASKIT */
2051         s->mask = value;
2052         break;
2053 
2054     case 0x30:	/* GPIO_DEBOUNCING_REG */
2055         s->debounce = value & 0x1ff;
2056         break;
2057 
2058     case 0x00:	/* INPUT_LATCH */
2059     case 0x10:	/* KBR_LATCH */
2060     case 0x20:	/* KBD_INT */
2061     case 0x24:	/* GPIO_INT */
2062     case 0x34:	/* GPIO_LATCH_REG */
2063         OMAP_RO_REG(addr);
2064         return;
2065 
2066     default:
2067         OMAP_BAD_REG(addr);
2068         return;
2069     }
2070 }
2071 
2072 static const MemoryRegionOps omap_mpuio_ops  = {
2073     .read = omap_mpuio_read,
2074     .write = omap_mpuio_write,
2075     .endianness = DEVICE_NATIVE_ENDIAN,
2076 };
2077 
2078 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2079 {
2080     s->inputs = 0;
2081     s->outputs = 0;
2082     s->dir = ~0;
2083     s->event = 0;
2084     s->edge = 0;
2085     s->kbd_mask = 0;
2086     s->mask = 0;
2087     s->debounce = 0;
2088     s->latch = 0;
2089     s->ints = 0;
2090     s->row_latch = 0x1f;
2091     s->clk = 1;
2092 }
2093 
2094 static void omap_mpuio_onoff(void *opaque, int line, int on)
2095 {
2096     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2097 
2098     s->clk = on;
2099     if (on)
2100         omap_mpuio_kbd_update(s);
2101 }
2102 
2103 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2104                 hwaddr base,
2105                 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2106                 omap_clk clk)
2107 {
2108     struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2109 
2110     s->irq = gpio_int;
2111     s->kbd_irq = kbd_int;
2112     s->wakeup = wakeup;
2113     s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2114     omap_mpuio_reset(s);
2115 
2116     memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2117                           "omap-mpuio", 0x800);
2118     memory_region_add_subregion(memory, base, &s->iomem);
2119 
2120     omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2121 
2122     return s;
2123 }
2124 
2125 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2126 {
2127     return s->in;
2128 }
2129 
2130 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2131 {
2132     if (line >= 16 || line < 0)
2133         hw_error("%s: No GPIO line %i\n", __func__, line);
2134     s->handler[line] = handler;
2135 }
2136 
2137 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2138 {
2139     if (row >= 5 || row < 0)
2140         hw_error("%s: No key %i-%i\n", __func__, col, row);
2141 
2142     if (down)
2143         s->buttons[row] |= 1 << col;
2144     else
2145         s->buttons[row] &= ~(1 << col);
2146 
2147     omap_mpuio_kbd_update(s);
2148 }
2149 
2150 /* MicroWire Interface */
2151 struct omap_uwire_s {
2152     MemoryRegion iomem;
2153     qemu_irq txirq;
2154     qemu_irq rxirq;
2155     qemu_irq txdrq;
2156 
2157     uint16_t txbuf;
2158     uint16_t rxbuf;
2159     uint16_t control;
2160     uint16_t setup[5];
2161 
2162     uWireSlave *chip[4];
2163 };
2164 
2165 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2166 {
2167     int chipselect = (s->control >> 10) & 3;		/* INDEX */
2168     uWireSlave *slave = s->chip[chipselect];
2169 
2170     if ((s->control >> 5) & 0x1f) {			/* NB_BITS_WR */
2171         if (s->control & (1 << 12))			/* CS_CMD */
2172             if (slave && slave->send)
2173                 slave->send(slave->opaque,
2174                                 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2175         s->control &= ~(1 << 14);			/* CSRB */
2176         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2177          * a DRQ.  When is the level IRQ supposed to be reset?  */
2178     }
2179 
2180     if ((s->control >> 0) & 0x1f) {			/* NB_BITS_RD */
2181         if (s->control & (1 << 12))			/* CS_CMD */
2182             if (slave && slave->receive)
2183                 s->rxbuf = slave->receive(slave->opaque);
2184         s->control |= 1 << 15;				/* RDRB */
2185         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2186          * a DRQ.  When is the level IRQ supposed to be reset?  */
2187     }
2188 }
2189 
2190 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2191                                 unsigned size)
2192 {
2193     struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2194     int offset = addr & OMAP_MPUI_REG_MASK;
2195 
2196     if (size != 2) {
2197         return omap_badwidth_read16(opaque, addr);
2198     }
2199 
2200     switch (offset) {
2201     case 0x00:	/* RDR */
2202         s->control &= ~(1 << 15);			/* RDRB */
2203         return s->rxbuf;
2204 
2205     case 0x04:	/* CSR */
2206         return s->control;
2207 
2208     case 0x08:	/* SR1 */
2209         return s->setup[0];
2210     case 0x0c:	/* SR2 */
2211         return s->setup[1];
2212     case 0x10:	/* SR3 */
2213         return s->setup[2];
2214     case 0x14:	/* SR4 */
2215         return s->setup[3];
2216     case 0x18:	/* SR5 */
2217         return s->setup[4];
2218     }
2219 
2220     OMAP_BAD_REG(addr);
2221     return 0;
2222 }
2223 
2224 static void omap_uwire_write(void *opaque, hwaddr addr,
2225                              uint64_t value, unsigned size)
2226 {
2227     struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2228     int offset = addr & OMAP_MPUI_REG_MASK;
2229 
2230     if (size != 2) {
2231         omap_badwidth_write16(opaque, addr, value);
2232         return;
2233     }
2234 
2235     switch (offset) {
2236     case 0x00:	/* TDR */
2237         s->txbuf = value;				/* TD */
2238         if ((s->setup[4] & (1 << 2)) &&			/* AUTO_TX_EN */
2239                         ((s->setup[4] & (1 << 3)) ||	/* CS_TOGGLE_TX_EN */
2240                          (s->control & (1 << 12)))) {	/* CS_CMD */
2241             s->control |= 1 << 14;			/* CSRB */
2242             omap_uwire_transfer_start(s);
2243         }
2244         break;
2245 
2246     case 0x04:	/* CSR */
2247         s->control = value & 0x1fff;
2248         if (value & (1 << 13))				/* START */
2249             omap_uwire_transfer_start(s);
2250         break;
2251 
2252     case 0x08:	/* SR1 */
2253         s->setup[0] = value & 0x003f;
2254         break;
2255 
2256     case 0x0c:	/* SR2 */
2257         s->setup[1] = value & 0x0fc0;
2258         break;
2259 
2260     case 0x10:	/* SR3 */
2261         s->setup[2] = value & 0x0003;
2262         break;
2263 
2264     case 0x14:	/* SR4 */
2265         s->setup[3] = value & 0x0001;
2266         break;
2267 
2268     case 0x18:	/* SR5 */
2269         s->setup[4] = value & 0x000f;
2270         break;
2271 
2272     default:
2273         OMAP_BAD_REG(addr);
2274         return;
2275     }
2276 }
2277 
2278 static const MemoryRegionOps omap_uwire_ops = {
2279     .read = omap_uwire_read,
2280     .write = omap_uwire_write,
2281     .endianness = DEVICE_NATIVE_ENDIAN,
2282 };
2283 
2284 static void omap_uwire_reset(struct omap_uwire_s *s)
2285 {
2286     s->control = 0;
2287     s->setup[0] = 0;
2288     s->setup[1] = 0;
2289     s->setup[2] = 0;
2290     s->setup[3] = 0;
2291     s->setup[4] = 0;
2292 }
2293 
2294 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2295                                             hwaddr base,
2296                                             qemu_irq txirq, qemu_irq rxirq,
2297                                             qemu_irq dma,
2298                                             omap_clk clk)
2299 {
2300     struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2301 
2302     s->txirq = txirq;
2303     s->rxirq = rxirq;
2304     s->txdrq = dma;
2305     omap_uwire_reset(s);
2306 
2307     memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2308     memory_region_add_subregion(system_memory, base, &s->iomem);
2309 
2310     return s;
2311 }
2312 
2313 void omap_uwire_attach(struct omap_uwire_s *s,
2314                 uWireSlave *slave, int chipselect)
2315 {
2316     if (chipselect < 0 || chipselect > 3) {
2317         error_report("%s: Bad chipselect %i", __func__, chipselect);
2318         exit(-1);
2319     }
2320 
2321     s->chip[chipselect] = slave;
2322 }
2323 
2324 /* Pseudonoise Pulse-Width Light Modulator */
2325 struct omap_pwl_s {
2326     MemoryRegion iomem;
2327     uint8_t output;
2328     uint8_t level;
2329     uint8_t enable;
2330     int clk;
2331 };
2332 
2333 static void omap_pwl_update(struct omap_pwl_s *s)
2334 {
2335     int output = (s->clk && s->enable) ? s->level : 0;
2336 
2337     if (output != s->output) {
2338         s->output = output;
2339         printf("%s: Backlight now at %i/256\n", __func__, output);
2340     }
2341 }
2342 
2343 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2344                               unsigned size)
2345 {
2346     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2347     int offset = addr & OMAP_MPUI_REG_MASK;
2348 
2349     if (size != 1) {
2350         return omap_badwidth_read8(opaque, addr);
2351     }
2352 
2353     switch (offset) {
2354     case 0x00:	/* PWL_LEVEL */
2355         return s->level;
2356     case 0x04:	/* PWL_CTRL */
2357         return s->enable;
2358     }
2359     OMAP_BAD_REG(addr);
2360     return 0;
2361 }
2362 
2363 static void omap_pwl_write(void *opaque, hwaddr addr,
2364                            uint64_t value, unsigned size)
2365 {
2366     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2367     int offset = addr & OMAP_MPUI_REG_MASK;
2368 
2369     if (size != 1) {
2370         omap_badwidth_write8(opaque, addr, value);
2371         return;
2372     }
2373 
2374     switch (offset) {
2375     case 0x00:	/* PWL_LEVEL */
2376         s->level = value;
2377         omap_pwl_update(s);
2378         break;
2379     case 0x04:	/* PWL_CTRL */
2380         s->enable = value & 1;
2381         omap_pwl_update(s);
2382         break;
2383     default:
2384         OMAP_BAD_REG(addr);
2385         return;
2386     }
2387 }
2388 
2389 static const MemoryRegionOps omap_pwl_ops = {
2390     .read = omap_pwl_read,
2391     .write = omap_pwl_write,
2392     .endianness = DEVICE_NATIVE_ENDIAN,
2393 };
2394 
2395 static void omap_pwl_reset(struct omap_pwl_s *s)
2396 {
2397     s->output = 0;
2398     s->level = 0;
2399     s->enable = 0;
2400     s->clk = 1;
2401     omap_pwl_update(s);
2402 }
2403 
2404 static void omap_pwl_clk_update(void *opaque, int line, int on)
2405 {
2406     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2407 
2408     s->clk = on;
2409     omap_pwl_update(s);
2410 }
2411 
2412 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2413                                         hwaddr base,
2414                                         omap_clk clk)
2415 {
2416     struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2417 
2418     omap_pwl_reset(s);
2419 
2420     memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2421                           "omap-pwl", 0x800);
2422     memory_region_add_subregion(system_memory, base, &s->iomem);
2423 
2424     omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2425     return s;
2426 }
2427 
2428 /* Pulse-Width Tone module */
2429 struct omap_pwt_s {
2430     MemoryRegion iomem;
2431     uint8_t frc;
2432     uint8_t vrc;
2433     uint8_t gcr;
2434     omap_clk clk;
2435 };
2436 
2437 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2438                               unsigned size)
2439 {
2440     struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2441     int offset = addr & OMAP_MPUI_REG_MASK;
2442 
2443     if (size != 1) {
2444         return omap_badwidth_read8(opaque, addr);
2445     }
2446 
2447     switch (offset) {
2448     case 0x00:	/* FRC */
2449         return s->frc;
2450     case 0x04:	/* VCR */
2451         return s->vrc;
2452     case 0x08:	/* GCR */
2453         return s->gcr;
2454     }
2455     OMAP_BAD_REG(addr);
2456     return 0;
2457 }
2458 
2459 static void omap_pwt_write(void *opaque, hwaddr addr,
2460                            uint64_t value, unsigned size)
2461 {
2462     struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2463     int offset = addr & OMAP_MPUI_REG_MASK;
2464 
2465     if (size != 1) {
2466         omap_badwidth_write8(opaque, addr, value);
2467         return;
2468     }
2469 
2470     switch (offset) {
2471     case 0x00:	/* FRC */
2472         s->frc = value & 0x3f;
2473         break;
2474     case 0x04:	/* VRC */
2475         if ((value ^ s->vrc) & 1) {
2476             if (value & 1)
2477                 printf("%s: %iHz buzz on\n", __func__, (int)
2478                                 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2479                                 ((omap_clk_getrate(s->clk) >> 3) /
2480                                  /* Pre-multiplexer divider */
2481                                  ((s->gcr & 2) ? 1 : 154) /
2482                                  /* Octave multiplexer */
2483                                  (2 << (value & 3)) *
2484                                  /* 101/107 divider */
2485                                  ((value & (1 << 2)) ? 101 : 107) *
2486                                  /*  49/55 divider */
2487                                  ((value & (1 << 3)) ?  49 : 55) *
2488                                  /*  50/63 divider */
2489                                  ((value & (1 << 4)) ?  50 : 63) *
2490                                  /*  80/127 divider */
2491                                  ((value & (1 << 5)) ?  80 : 127) /
2492                                  (107 * 55 * 63 * 127)));
2493             else
2494                 printf("%s: silence!\n", __func__);
2495         }
2496         s->vrc = value & 0x7f;
2497         break;
2498     case 0x08:	/* GCR */
2499         s->gcr = value & 3;
2500         break;
2501     default:
2502         OMAP_BAD_REG(addr);
2503         return;
2504     }
2505 }
2506 
2507 static const MemoryRegionOps omap_pwt_ops = {
2508     .read =omap_pwt_read,
2509     .write = omap_pwt_write,
2510     .endianness = DEVICE_NATIVE_ENDIAN,
2511 };
2512 
2513 static void omap_pwt_reset(struct omap_pwt_s *s)
2514 {
2515     s->frc = 0;
2516     s->vrc = 0;
2517     s->gcr = 0;
2518 }
2519 
2520 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2521                                         hwaddr base,
2522                                         omap_clk clk)
2523 {
2524     struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2525     s->clk = clk;
2526     omap_pwt_reset(s);
2527 
2528     memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2529                           "omap-pwt", 0x800);
2530     memory_region_add_subregion(system_memory, base, &s->iomem);
2531     return s;
2532 }
2533 
2534 /* Real-time Clock module */
2535 struct omap_rtc_s {
2536     MemoryRegion iomem;
2537     qemu_irq irq;
2538     qemu_irq alarm;
2539     QEMUTimer *clk;
2540 
2541     uint8_t interrupts;
2542     uint8_t status;
2543     int16_t comp_reg;
2544     int running;
2545     int pm_am;
2546     int auto_comp;
2547     int round;
2548     struct tm alarm_tm;
2549     time_t alarm_ti;
2550 
2551     struct tm current_tm;
2552     time_t ti;
2553     uint64_t tick;
2554 };
2555 
2556 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2557 {
2558     /* s->alarm is level-triggered */
2559     qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2560 }
2561 
2562 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2563 {
2564     s->alarm_ti = mktimegm(&s->alarm_tm);
2565     if (s->alarm_ti == -1)
2566         printf("%s: conversion failed\n", __func__);
2567 }
2568 
2569 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2570                               unsigned size)
2571 {
2572     struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2573     int offset = addr & OMAP_MPUI_REG_MASK;
2574     uint8_t i;
2575 
2576     if (size != 1) {
2577         return omap_badwidth_read8(opaque, addr);
2578     }
2579 
2580     switch (offset) {
2581     case 0x00:	/* SECONDS_REG */
2582         return to_bcd(s->current_tm.tm_sec);
2583 
2584     case 0x04:	/* MINUTES_REG */
2585         return to_bcd(s->current_tm.tm_min);
2586 
2587     case 0x08:	/* HOURS_REG */
2588         if (s->pm_am)
2589             return ((s->current_tm.tm_hour > 11) << 7) |
2590                     to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2591         else
2592             return to_bcd(s->current_tm.tm_hour);
2593 
2594     case 0x0c:	/* DAYS_REG */
2595         return to_bcd(s->current_tm.tm_mday);
2596 
2597     case 0x10:	/* MONTHS_REG */
2598         return to_bcd(s->current_tm.tm_mon + 1);
2599 
2600     case 0x14:	/* YEARS_REG */
2601         return to_bcd(s->current_tm.tm_year % 100);
2602 
2603     case 0x18:	/* WEEK_REG */
2604         return s->current_tm.tm_wday;
2605 
2606     case 0x20:	/* ALARM_SECONDS_REG */
2607         return to_bcd(s->alarm_tm.tm_sec);
2608 
2609     case 0x24:	/* ALARM_MINUTES_REG */
2610         return to_bcd(s->alarm_tm.tm_min);
2611 
2612     case 0x28:	/* ALARM_HOURS_REG */
2613         if (s->pm_am)
2614             return ((s->alarm_tm.tm_hour > 11) << 7) |
2615                     to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2616         else
2617             return to_bcd(s->alarm_tm.tm_hour);
2618 
2619     case 0x2c:	/* ALARM_DAYS_REG */
2620         return to_bcd(s->alarm_tm.tm_mday);
2621 
2622     case 0x30:	/* ALARM_MONTHS_REG */
2623         return to_bcd(s->alarm_tm.tm_mon + 1);
2624 
2625     case 0x34:	/* ALARM_YEARS_REG */
2626         return to_bcd(s->alarm_tm.tm_year % 100);
2627 
2628     case 0x40:	/* RTC_CTRL_REG */
2629         return (s->pm_am << 3) | (s->auto_comp << 2) |
2630                 (s->round << 1) | s->running;
2631 
2632     case 0x44:	/* RTC_STATUS_REG */
2633         i = s->status;
2634         s->status &= ~0x3d;
2635         return i;
2636 
2637     case 0x48:	/* RTC_INTERRUPTS_REG */
2638         return s->interrupts;
2639 
2640     case 0x4c:	/* RTC_COMP_LSB_REG */
2641         return ((uint16_t) s->comp_reg) & 0xff;
2642 
2643     case 0x50:	/* RTC_COMP_MSB_REG */
2644         return ((uint16_t) s->comp_reg) >> 8;
2645     }
2646 
2647     OMAP_BAD_REG(addr);
2648     return 0;
2649 }
2650 
2651 static void omap_rtc_write(void *opaque, hwaddr addr,
2652                            uint64_t value, unsigned size)
2653 {
2654     struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2655     int offset = addr & OMAP_MPUI_REG_MASK;
2656     struct tm new_tm;
2657     time_t ti[2];
2658 
2659     if (size != 1) {
2660         omap_badwidth_write8(opaque, addr, value);
2661         return;
2662     }
2663 
2664     switch (offset) {
2665     case 0x00:	/* SECONDS_REG */
2666 #ifdef ALMDEBUG
2667         printf("RTC SEC_REG <-- %02x\n", value);
2668 #endif
2669         s->ti -= s->current_tm.tm_sec;
2670         s->ti += from_bcd(value);
2671         return;
2672 
2673     case 0x04:	/* MINUTES_REG */
2674 #ifdef ALMDEBUG
2675         printf("RTC MIN_REG <-- %02x\n", value);
2676 #endif
2677         s->ti -= s->current_tm.tm_min * 60;
2678         s->ti += from_bcd(value) * 60;
2679         return;
2680 
2681     case 0x08:	/* HOURS_REG */
2682 #ifdef ALMDEBUG
2683         printf("RTC HRS_REG <-- %02x\n", value);
2684 #endif
2685         s->ti -= s->current_tm.tm_hour * 3600;
2686         if (s->pm_am) {
2687             s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2688             s->ti += ((value >> 7) & 1) * 43200;
2689         } else
2690             s->ti += from_bcd(value & 0x3f) * 3600;
2691         return;
2692 
2693     case 0x0c:	/* DAYS_REG */
2694 #ifdef ALMDEBUG
2695         printf("RTC DAY_REG <-- %02x\n", value);
2696 #endif
2697         s->ti -= s->current_tm.tm_mday * 86400;
2698         s->ti += from_bcd(value) * 86400;
2699         return;
2700 
2701     case 0x10:	/* MONTHS_REG */
2702 #ifdef ALMDEBUG
2703         printf("RTC MTH_REG <-- %02x\n", value);
2704 #endif
2705         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2706         new_tm.tm_mon = from_bcd(value);
2707         ti[0] = mktimegm(&s->current_tm);
2708         ti[1] = mktimegm(&new_tm);
2709 
2710         if (ti[0] != -1 && ti[1] != -1) {
2711             s->ti -= ti[0];
2712             s->ti += ti[1];
2713         } else {
2714             /* A less accurate version */
2715             s->ti -= s->current_tm.tm_mon * 2592000;
2716             s->ti += from_bcd(value) * 2592000;
2717         }
2718         return;
2719 
2720     case 0x14:	/* YEARS_REG */
2721 #ifdef ALMDEBUG
2722         printf("RTC YRS_REG <-- %02x\n", value);
2723 #endif
2724         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2725         new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2726         ti[0] = mktimegm(&s->current_tm);
2727         ti[1] = mktimegm(&new_tm);
2728 
2729         if (ti[0] != -1 && ti[1] != -1) {
2730             s->ti -= ti[0];
2731             s->ti += ti[1];
2732         } else {
2733             /* A less accurate version */
2734             s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2735             s->ti += (time_t)from_bcd(value) * 31536000;
2736         }
2737         return;
2738 
2739     case 0x18:	/* WEEK_REG */
2740         return;	/* Ignored */
2741 
2742     case 0x20:	/* ALARM_SECONDS_REG */
2743 #ifdef ALMDEBUG
2744         printf("ALM SEC_REG <-- %02x\n", value);
2745 #endif
2746         s->alarm_tm.tm_sec = from_bcd(value);
2747         omap_rtc_alarm_update(s);
2748         return;
2749 
2750     case 0x24:	/* ALARM_MINUTES_REG */
2751 #ifdef ALMDEBUG
2752         printf("ALM MIN_REG <-- %02x\n", value);
2753 #endif
2754         s->alarm_tm.tm_min = from_bcd(value);
2755         omap_rtc_alarm_update(s);
2756         return;
2757 
2758     case 0x28:	/* ALARM_HOURS_REG */
2759 #ifdef ALMDEBUG
2760         printf("ALM HRS_REG <-- %02x\n", value);
2761 #endif
2762         if (s->pm_am)
2763             s->alarm_tm.tm_hour =
2764                     ((from_bcd(value & 0x3f)) % 12) +
2765                     ((value >> 7) & 1) * 12;
2766         else
2767             s->alarm_tm.tm_hour = from_bcd(value);
2768         omap_rtc_alarm_update(s);
2769         return;
2770 
2771     case 0x2c:	/* ALARM_DAYS_REG */
2772 #ifdef ALMDEBUG
2773         printf("ALM DAY_REG <-- %02x\n", value);
2774 #endif
2775         s->alarm_tm.tm_mday = from_bcd(value);
2776         omap_rtc_alarm_update(s);
2777         return;
2778 
2779     case 0x30:	/* ALARM_MONTHS_REG */
2780 #ifdef ALMDEBUG
2781         printf("ALM MON_REG <-- %02x\n", value);
2782 #endif
2783         s->alarm_tm.tm_mon = from_bcd(value);
2784         omap_rtc_alarm_update(s);
2785         return;
2786 
2787     case 0x34:	/* ALARM_YEARS_REG */
2788 #ifdef ALMDEBUG
2789         printf("ALM YRS_REG <-- %02x\n", value);
2790 #endif
2791         s->alarm_tm.tm_year = from_bcd(value);
2792         omap_rtc_alarm_update(s);
2793         return;
2794 
2795     case 0x40:	/* RTC_CTRL_REG */
2796 #ifdef ALMDEBUG
2797         printf("RTC CONTROL <-- %02x\n", value);
2798 #endif
2799         s->pm_am = (value >> 3) & 1;
2800         s->auto_comp = (value >> 2) & 1;
2801         s->round = (value >> 1) & 1;
2802         s->running = value & 1;
2803         s->status &= 0xfd;
2804         s->status |= s->running << 1;
2805         return;
2806 
2807     case 0x44:	/* RTC_STATUS_REG */
2808 #ifdef ALMDEBUG
2809         printf("RTC STATUSL <-- %02x\n", value);
2810 #endif
2811         s->status &= ~((value & 0xc0) ^ 0x80);
2812         omap_rtc_interrupts_update(s);
2813         return;
2814 
2815     case 0x48:	/* RTC_INTERRUPTS_REG */
2816 #ifdef ALMDEBUG
2817         printf("RTC INTRS <-- %02x\n", value);
2818 #endif
2819         s->interrupts = value;
2820         return;
2821 
2822     case 0x4c:	/* RTC_COMP_LSB_REG */
2823 #ifdef ALMDEBUG
2824         printf("RTC COMPLSB <-- %02x\n", value);
2825 #endif
2826         s->comp_reg &= 0xff00;
2827         s->comp_reg |= 0x00ff & value;
2828         return;
2829 
2830     case 0x50:	/* RTC_COMP_MSB_REG */
2831 #ifdef ALMDEBUG
2832         printf("RTC COMPMSB <-- %02x\n", value);
2833 #endif
2834         s->comp_reg &= 0x00ff;
2835         s->comp_reg |= 0xff00 & (value << 8);
2836         return;
2837 
2838     default:
2839         OMAP_BAD_REG(addr);
2840         return;
2841     }
2842 }
2843 
2844 static const MemoryRegionOps omap_rtc_ops = {
2845     .read = omap_rtc_read,
2846     .write = omap_rtc_write,
2847     .endianness = DEVICE_NATIVE_ENDIAN,
2848 };
2849 
2850 static void omap_rtc_tick(void *opaque)
2851 {
2852     struct omap_rtc_s *s = opaque;
2853 
2854     if (s->round) {
2855         /* Round to nearest full minute.  */
2856         if (s->current_tm.tm_sec < 30)
2857             s->ti -= s->current_tm.tm_sec;
2858         else
2859             s->ti += 60 - s->current_tm.tm_sec;
2860 
2861         s->round = 0;
2862     }
2863 
2864     localtime_r(&s->ti, &s->current_tm);
2865 
2866     if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2867         s->status |= 0x40;
2868         omap_rtc_interrupts_update(s);
2869     }
2870 
2871     if (s->interrupts & 0x04)
2872         switch (s->interrupts & 3) {
2873         case 0:
2874             s->status |= 0x04;
2875             qemu_irq_pulse(s->irq);
2876             break;
2877         case 1:
2878             if (s->current_tm.tm_sec)
2879                 break;
2880             s->status |= 0x08;
2881             qemu_irq_pulse(s->irq);
2882             break;
2883         case 2:
2884             if (s->current_tm.tm_sec || s->current_tm.tm_min)
2885                 break;
2886             s->status |= 0x10;
2887             qemu_irq_pulse(s->irq);
2888             break;
2889         case 3:
2890             if (s->current_tm.tm_sec ||
2891                             s->current_tm.tm_min || s->current_tm.tm_hour)
2892                 break;
2893             s->status |= 0x20;
2894             qemu_irq_pulse(s->irq);
2895             break;
2896         }
2897 
2898     /* Move on */
2899     if (s->running)
2900         s->ti ++;
2901     s->tick += 1000;
2902 
2903     /*
2904      * Every full hour add a rough approximation of the compensation
2905      * register to the 32kHz Timer (which drives the RTC) value.
2906      */
2907     if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2908         s->tick += s->comp_reg * 1000 / 32768;
2909 
2910     timer_mod(s->clk, s->tick);
2911 }
2912 
2913 static void omap_rtc_reset(struct omap_rtc_s *s)
2914 {
2915     struct tm tm;
2916 
2917     s->interrupts = 0;
2918     s->comp_reg = 0;
2919     s->running = 0;
2920     s->pm_am = 0;
2921     s->auto_comp = 0;
2922     s->round = 0;
2923     s->tick = qemu_clock_get_ms(rtc_clock);
2924     memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2925     s->alarm_tm.tm_mday = 0x01;
2926     s->status = 1 << 7;
2927     qemu_get_timedate(&tm, 0);
2928     s->ti = mktimegm(&tm);
2929 
2930     omap_rtc_alarm_update(s);
2931     omap_rtc_tick(s);
2932 }
2933 
2934 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2935                                         hwaddr base,
2936                                         qemu_irq timerirq, qemu_irq alarmirq,
2937                                         omap_clk clk)
2938 {
2939     struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2940 
2941     s->irq = timerirq;
2942     s->alarm = alarmirq;
2943     s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2944 
2945     omap_rtc_reset(s);
2946 
2947     memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2948                           "omap-rtc", 0x800);
2949     memory_region_add_subregion(system_memory, base, &s->iomem);
2950 
2951     return s;
2952 }
2953 
2954 /* Multi-channel Buffered Serial Port interfaces */
2955 struct omap_mcbsp_s {
2956     MemoryRegion iomem;
2957     qemu_irq txirq;
2958     qemu_irq rxirq;
2959     qemu_irq txdrq;
2960     qemu_irq rxdrq;
2961 
2962     uint16_t spcr[2];
2963     uint16_t rcr[2];
2964     uint16_t xcr[2];
2965     uint16_t srgr[2];
2966     uint16_t mcr[2];
2967     uint16_t pcr;
2968     uint16_t rcer[8];
2969     uint16_t xcer[8];
2970     int tx_rate;
2971     int rx_rate;
2972     int tx_req;
2973     int rx_req;
2974 
2975     I2SCodec *codec;
2976     QEMUTimer *source_timer;
2977     QEMUTimer *sink_timer;
2978 };
2979 
2980 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2981 {
2982     int irq;
2983 
2984     switch ((s->spcr[0] >> 4) & 3) {			/* RINTM */
2985     case 0:
2986         irq = (s->spcr[0] >> 1) & 1;			/* RRDY */
2987         break;
2988     case 3:
2989         irq = (s->spcr[0] >> 3) & 1;			/* RSYNCERR */
2990         break;
2991     default:
2992         irq = 0;
2993         break;
2994     }
2995 
2996     if (irq)
2997         qemu_irq_pulse(s->rxirq);
2998 
2999     switch ((s->spcr[1] >> 4) & 3) {			/* XINTM */
3000     case 0:
3001         irq = (s->spcr[1] >> 1) & 1;			/* XRDY */
3002         break;
3003     case 3:
3004         irq = (s->spcr[1] >> 3) & 1;			/* XSYNCERR */
3005         break;
3006     default:
3007         irq = 0;
3008         break;
3009     }
3010 
3011     if (irq)
3012         qemu_irq_pulse(s->txirq);
3013 }
3014 
3015 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3016 {
3017     if ((s->spcr[0] >> 1) & 1)				/* RRDY */
3018         s->spcr[0] |= 1 << 2;				/* RFULL */
3019     s->spcr[0] |= 1 << 1;				/* RRDY */
3020     qemu_irq_raise(s->rxdrq);
3021     omap_mcbsp_intr_update(s);
3022 }
3023 
3024 static void omap_mcbsp_source_tick(void *opaque)
3025 {
3026     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3027     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3028 
3029     if (!s->rx_rate)
3030         return;
3031     if (s->rx_req)
3032         printf("%s: Rx FIFO overrun\n", __func__);
3033 
3034     s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3035 
3036     omap_mcbsp_rx_newdata(s);
3037     timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3038                    NANOSECONDS_PER_SECOND);
3039 }
3040 
3041 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3042 {
3043     if (!s->codec || !s->codec->rts)
3044         omap_mcbsp_source_tick(s);
3045     else if (s->codec->in.len) {
3046         s->rx_req = s->codec->in.len;
3047         omap_mcbsp_rx_newdata(s);
3048     }
3049 }
3050 
3051 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3052 {
3053     timer_del(s->source_timer);
3054 }
3055 
3056 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3057 {
3058     s->spcr[0] &= ~(1 << 1);				/* RRDY */
3059     qemu_irq_lower(s->rxdrq);
3060     omap_mcbsp_intr_update(s);
3061 }
3062 
3063 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3064 {
3065     s->spcr[1] |= 1 << 1;				/* XRDY */
3066     qemu_irq_raise(s->txdrq);
3067     omap_mcbsp_intr_update(s);
3068 }
3069 
3070 static void omap_mcbsp_sink_tick(void *opaque)
3071 {
3072     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3073     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3074 
3075     if (!s->tx_rate)
3076         return;
3077     if (s->tx_req)
3078         printf("%s: Tx FIFO underrun\n", __func__);
3079 
3080     s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3081 
3082     omap_mcbsp_tx_newdata(s);
3083     timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3084                    NANOSECONDS_PER_SECOND);
3085 }
3086 
3087 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3088 {
3089     if (!s->codec || !s->codec->cts)
3090         omap_mcbsp_sink_tick(s);
3091     else if (s->codec->out.size) {
3092         s->tx_req = s->codec->out.size;
3093         omap_mcbsp_tx_newdata(s);
3094     }
3095 }
3096 
3097 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3098 {
3099     s->spcr[1] &= ~(1 << 1);				/* XRDY */
3100     qemu_irq_lower(s->txdrq);
3101     omap_mcbsp_intr_update(s);
3102     if (s->codec && s->codec->cts)
3103         s->codec->tx_swallow(s->codec->opaque);
3104 }
3105 
3106 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3107 {
3108     s->tx_req = 0;
3109     omap_mcbsp_tx_done(s);
3110     timer_del(s->sink_timer);
3111 }
3112 
3113 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3114 {
3115     int prev_rx_rate, prev_tx_rate;
3116     int rx_rate = 0, tx_rate = 0;
3117     int cpu_rate = 1500000;	/* XXX */
3118 
3119     /* TODO: check CLKSTP bit */
3120     if (s->spcr[1] & (1 << 6)) {			/* GRST */
3121         if (s->spcr[0] & (1 << 0)) {			/* RRST */
3122             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
3123                             (s->pcr & (1 << 8))) {	/* CLKRM */
3124                 if (~s->pcr & (1 << 7))			/* SCLKME */
3125                     rx_rate = cpu_rate /
3126                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
3127             } else
3128                 if (s->codec)
3129                     rx_rate = s->codec->rx_rate;
3130         }
3131 
3132         if (s->spcr[1] & (1 << 0)) {			/* XRST */
3133             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
3134                             (s->pcr & (1 << 9))) {	/* CLKXM */
3135                 if (~s->pcr & (1 << 7))			/* SCLKME */
3136                     tx_rate = cpu_rate /
3137                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
3138             } else
3139                 if (s->codec)
3140                     tx_rate = s->codec->tx_rate;
3141         }
3142     }
3143     prev_tx_rate = s->tx_rate;
3144     prev_rx_rate = s->rx_rate;
3145     s->tx_rate = tx_rate;
3146     s->rx_rate = rx_rate;
3147 
3148     if (s->codec)
3149         s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3150 
3151     if (!prev_tx_rate && tx_rate)
3152         omap_mcbsp_tx_start(s);
3153     else if (s->tx_rate && !tx_rate)
3154         omap_mcbsp_tx_stop(s);
3155 
3156     if (!prev_rx_rate && rx_rate)
3157         omap_mcbsp_rx_start(s);
3158     else if (prev_tx_rate && !tx_rate)
3159         omap_mcbsp_rx_stop(s);
3160 }
3161 
3162 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3163                                 unsigned size)
3164 {
3165     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3166     int offset = addr & OMAP_MPUI_REG_MASK;
3167     uint16_t ret;
3168 
3169     if (size != 2) {
3170         return omap_badwidth_read16(opaque, addr);
3171     }
3172 
3173     switch (offset) {
3174     case 0x00:	/* DRR2 */
3175         if (((s->rcr[0] >> 5) & 7) < 3)			/* RWDLEN1 */
3176             return 0x0000;
3177         /* Fall through.  */
3178     case 0x02:	/* DRR1 */
3179         if (s->rx_req < 2) {
3180             printf("%s: Rx FIFO underrun\n", __func__);
3181             omap_mcbsp_rx_done(s);
3182         } else {
3183             s->tx_req -= 2;
3184             if (s->codec && s->codec->in.len >= 2) {
3185                 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3186                 ret |= s->codec->in.fifo[s->codec->in.start ++];
3187                 s->codec->in.len -= 2;
3188             } else
3189                 ret = 0x0000;
3190             if (!s->tx_req)
3191                 omap_mcbsp_rx_done(s);
3192             return ret;
3193         }
3194         return 0x0000;
3195 
3196     case 0x04:	/* DXR2 */
3197     case 0x06:	/* DXR1 */
3198         return 0x0000;
3199 
3200     case 0x08:	/* SPCR2 */
3201         return s->spcr[1];
3202     case 0x0a:	/* SPCR1 */
3203         return s->spcr[0];
3204     case 0x0c:	/* RCR2 */
3205         return s->rcr[1];
3206     case 0x0e:	/* RCR1 */
3207         return s->rcr[0];
3208     case 0x10:	/* XCR2 */
3209         return s->xcr[1];
3210     case 0x12:	/* XCR1 */
3211         return s->xcr[0];
3212     case 0x14:	/* SRGR2 */
3213         return s->srgr[1];
3214     case 0x16:	/* SRGR1 */
3215         return s->srgr[0];
3216     case 0x18:	/* MCR2 */
3217         return s->mcr[1];
3218     case 0x1a:	/* MCR1 */
3219         return s->mcr[0];
3220     case 0x1c:	/* RCERA */
3221         return s->rcer[0];
3222     case 0x1e:	/* RCERB */
3223         return s->rcer[1];
3224     case 0x20:	/* XCERA */
3225         return s->xcer[0];
3226     case 0x22:	/* XCERB */
3227         return s->xcer[1];
3228     case 0x24:	/* PCR0 */
3229         return s->pcr;
3230     case 0x26:	/* RCERC */
3231         return s->rcer[2];
3232     case 0x28:	/* RCERD */
3233         return s->rcer[3];
3234     case 0x2a:	/* XCERC */
3235         return s->xcer[2];
3236     case 0x2c:	/* XCERD */
3237         return s->xcer[3];
3238     case 0x2e:	/* RCERE */
3239         return s->rcer[4];
3240     case 0x30:	/* RCERF */
3241         return s->rcer[5];
3242     case 0x32:	/* XCERE */
3243         return s->xcer[4];
3244     case 0x34:	/* XCERF */
3245         return s->xcer[5];
3246     case 0x36:	/* RCERG */
3247         return s->rcer[6];
3248     case 0x38:	/* RCERH */
3249         return s->rcer[7];
3250     case 0x3a:	/* XCERG */
3251         return s->xcer[6];
3252     case 0x3c:	/* XCERH */
3253         return s->xcer[7];
3254     }
3255 
3256     OMAP_BAD_REG(addr);
3257     return 0;
3258 }
3259 
3260 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3261                 uint32_t value)
3262 {
3263     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3264     int offset = addr & OMAP_MPUI_REG_MASK;
3265 
3266     switch (offset) {
3267     case 0x00:	/* DRR2 */
3268     case 0x02:	/* DRR1 */
3269         OMAP_RO_REG(addr);
3270         return;
3271 
3272     case 0x04:	/* DXR2 */
3273         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
3274             return;
3275         /* Fall through.  */
3276     case 0x06:	/* DXR1 */
3277         if (s->tx_req > 1) {
3278             s->tx_req -= 2;
3279             if (s->codec && s->codec->cts) {
3280                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3281                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3282             }
3283             if (s->tx_req < 2)
3284                 omap_mcbsp_tx_done(s);
3285         } else
3286             printf("%s: Tx FIFO overrun\n", __func__);
3287         return;
3288 
3289     case 0x08:	/* SPCR2 */
3290         s->spcr[1] &= 0x0002;
3291         s->spcr[1] |= 0x03f9 & value;
3292         s->spcr[1] |= 0x0004 & (value << 2);		/* XEMPTY := XRST */
3293         if (~value & 1)					/* XRST */
3294             s->spcr[1] &= ~6;
3295         omap_mcbsp_req_update(s);
3296         return;
3297     case 0x0a:	/* SPCR1 */
3298         s->spcr[0] &= 0x0006;
3299         s->spcr[0] |= 0xf8f9 & value;
3300         if (value & (1 << 15))				/* DLB */
3301             printf("%s: Digital Loopback mode enable attempt\n", __func__);
3302         if (~value & 1) {				/* RRST */
3303             s->spcr[0] &= ~6;
3304             s->rx_req = 0;
3305             omap_mcbsp_rx_done(s);
3306         }
3307         omap_mcbsp_req_update(s);
3308         return;
3309 
3310     case 0x0c:	/* RCR2 */
3311         s->rcr[1] = value & 0xffff;
3312         return;
3313     case 0x0e:	/* RCR1 */
3314         s->rcr[0] = value & 0x7fe0;
3315         return;
3316     case 0x10:	/* XCR2 */
3317         s->xcr[1] = value & 0xffff;
3318         return;
3319     case 0x12:	/* XCR1 */
3320         s->xcr[0] = value & 0x7fe0;
3321         return;
3322     case 0x14:	/* SRGR2 */
3323         s->srgr[1] = value & 0xffff;
3324         omap_mcbsp_req_update(s);
3325         return;
3326     case 0x16:	/* SRGR1 */
3327         s->srgr[0] = value & 0xffff;
3328         omap_mcbsp_req_update(s);
3329         return;
3330     case 0x18:	/* MCR2 */
3331         s->mcr[1] = value & 0x03e3;
3332         if (value & 3)					/* XMCM */
3333             printf("%s: Tx channel selection mode enable attempt\n", __func__);
3334         return;
3335     case 0x1a:	/* MCR1 */
3336         s->mcr[0] = value & 0x03e1;
3337         if (value & 1)					/* RMCM */
3338             printf("%s: Rx channel selection mode enable attempt\n", __func__);
3339         return;
3340     case 0x1c:	/* RCERA */
3341         s->rcer[0] = value & 0xffff;
3342         return;
3343     case 0x1e:	/* RCERB */
3344         s->rcer[1] = value & 0xffff;
3345         return;
3346     case 0x20:	/* XCERA */
3347         s->xcer[0] = value & 0xffff;
3348         return;
3349     case 0x22:	/* XCERB */
3350         s->xcer[1] = value & 0xffff;
3351         return;
3352     case 0x24:	/* PCR0 */
3353         s->pcr = value & 0x7faf;
3354         return;
3355     case 0x26:	/* RCERC */
3356         s->rcer[2] = value & 0xffff;
3357         return;
3358     case 0x28:	/* RCERD */
3359         s->rcer[3] = value & 0xffff;
3360         return;
3361     case 0x2a:	/* XCERC */
3362         s->xcer[2] = value & 0xffff;
3363         return;
3364     case 0x2c:	/* XCERD */
3365         s->xcer[3] = value & 0xffff;
3366         return;
3367     case 0x2e:	/* RCERE */
3368         s->rcer[4] = value & 0xffff;
3369         return;
3370     case 0x30:	/* RCERF */
3371         s->rcer[5] = value & 0xffff;
3372         return;
3373     case 0x32:	/* XCERE */
3374         s->xcer[4] = value & 0xffff;
3375         return;
3376     case 0x34:	/* XCERF */
3377         s->xcer[5] = value & 0xffff;
3378         return;
3379     case 0x36:	/* RCERG */
3380         s->rcer[6] = value & 0xffff;
3381         return;
3382     case 0x38:	/* RCERH */
3383         s->rcer[7] = value & 0xffff;
3384         return;
3385     case 0x3a:	/* XCERG */
3386         s->xcer[6] = value & 0xffff;
3387         return;
3388     case 0x3c:	/* XCERH */
3389         s->xcer[7] = value & 0xffff;
3390         return;
3391     }
3392 
3393     OMAP_BAD_REG(addr);
3394 }
3395 
3396 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3397                 uint32_t value)
3398 {
3399     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3400     int offset = addr & OMAP_MPUI_REG_MASK;
3401 
3402     if (offset == 0x04) {				/* DXR */
3403         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
3404             return;
3405         if (s->tx_req > 3) {
3406             s->tx_req -= 4;
3407             if (s->codec && s->codec->cts) {
3408                 s->codec->out.fifo[s->codec->out.len ++] =
3409                         (value >> 24) & 0xff;
3410                 s->codec->out.fifo[s->codec->out.len ++] =
3411                         (value >> 16) & 0xff;
3412                 s->codec->out.fifo[s->codec->out.len ++] =
3413                         (value >> 8) & 0xff;
3414                 s->codec->out.fifo[s->codec->out.len ++] =
3415                         (value >> 0) & 0xff;
3416             }
3417             if (s->tx_req < 4)
3418                 omap_mcbsp_tx_done(s);
3419         } else
3420             printf("%s: Tx FIFO overrun\n", __func__);
3421         return;
3422     }
3423 
3424     omap_badwidth_write16(opaque, addr, value);
3425 }
3426 
3427 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3428                              uint64_t value, unsigned size)
3429 {
3430     switch (size) {
3431     case 2:
3432         omap_mcbsp_writeh(opaque, addr, value);
3433         break;
3434     case 4:
3435         omap_mcbsp_writew(opaque, addr, value);
3436         break;
3437     default:
3438         omap_badwidth_write16(opaque, addr, value);
3439     }
3440 }
3441 
3442 static const MemoryRegionOps omap_mcbsp_ops = {
3443     .read = omap_mcbsp_read,
3444     .write = omap_mcbsp_write,
3445     .endianness = DEVICE_NATIVE_ENDIAN,
3446 };
3447 
3448 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3449 {
3450     memset(&s->spcr, 0, sizeof(s->spcr));
3451     memset(&s->rcr, 0, sizeof(s->rcr));
3452     memset(&s->xcr, 0, sizeof(s->xcr));
3453     s->srgr[0] = 0x0001;
3454     s->srgr[1] = 0x2000;
3455     memset(&s->mcr, 0, sizeof(s->mcr));
3456     memset(&s->pcr, 0, sizeof(s->pcr));
3457     memset(&s->rcer, 0, sizeof(s->rcer));
3458     memset(&s->xcer, 0, sizeof(s->xcer));
3459     s->tx_req = 0;
3460     s->rx_req = 0;
3461     s->tx_rate = 0;
3462     s->rx_rate = 0;
3463     timer_del(s->source_timer);
3464     timer_del(s->sink_timer);
3465 }
3466 
3467 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3468                                             hwaddr base,
3469                                             qemu_irq txirq, qemu_irq rxirq,
3470                                             qemu_irq *dma, omap_clk clk)
3471 {
3472     struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
3473 
3474     s->txirq = txirq;
3475     s->rxirq = rxirq;
3476     s->txdrq = dma[0];
3477     s->rxdrq = dma[1];
3478     s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3479     s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3480     omap_mcbsp_reset(s);
3481 
3482     memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3483     memory_region_add_subregion(system_memory, base, &s->iomem);
3484 
3485     return s;
3486 }
3487 
3488 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3489 {
3490     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3491 
3492     if (s->rx_rate) {
3493         s->rx_req = s->codec->in.len;
3494         omap_mcbsp_rx_newdata(s);
3495     }
3496 }
3497 
3498 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3499 {
3500     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3501 
3502     if (s->tx_rate) {
3503         s->tx_req = s->codec->out.size;
3504         omap_mcbsp_tx_newdata(s);
3505     }
3506 }
3507 
3508 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3509 {
3510     s->codec = slave;
3511     slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3512     slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3513 }
3514 
3515 /* LED Pulse Generators */
3516 struct omap_lpg_s {
3517     MemoryRegion iomem;
3518     QEMUTimer *tm;
3519 
3520     uint8_t control;
3521     uint8_t power;
3522     int64_t on;
3523     int64_t period;
3524     int clk;
3525     int cycle;
3526 };
3527 
3528 static void omap_lpg_tick(void *opaque)
3529 {
3530     struct omap_lpg_s *s = opaque;
3531 
3532     if (s->cycle)
3533         timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3534     else
3535         timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3536 
3537     s->cycle = !s->cycle;
3538     printf("%s: LED is %s\n", __func__, s->cycle ? "on" : "off");
3539 }
3540 
3541 static void omap_lpg_update(struct omap_lpg_s *s)
3542 {
3543     int64_t on, period = 1, ticks = 1000;
3544     static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3545 
3546     if (~s->control & (1 << 6))					/* LPGRES */
3547         on = 0;
3548     else if (s->control & (1 << 7))				/* PERM_ON */
3549         on = period;
3550     else {
3551         period = muldiv64(ticks, per[s->control & 7],		/* PERCTRL */
3552                         256 / 32);
3553         on = (s->clk && s->power) ? muldiv64(ticks,
3554                         per[(s->control >> 3) & 7], 256) : 0;	/* ONCTRL */
3555     }
3556 
3557     timer_del(s->tm);
3558     if (on == period && s->on < s->period)
3559         printf("%s: LED is on\n", __func__);
3560     else if (on == 0 && s->on)
3561         printf("%s: LED is off\n", __func__);
3562     else if (on && (on != s->on || period != s->period)) {
3563         s->cycle = 0;
3564         s->on = on;
3565         s->period = period;
3566         omap_lpg_tick(s);
3567         return;
3568     }
3569 
3570     s->on = on;
3571     s->period = period;
3572 }
3573 
3574 static void omap_lpg_reset(struct omap_lpg_s *s)
3575 {
3576     s->control = 0x00;
3577     s->power = 0x00;
3578     s->clk = 1;
3579     omap_lpg_update(s);
3580 }
3581 
3582 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3583                               unsigned size)
3584 {
3585     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3586     int offset = addr & OMAP_MPUI_REG_MASK;
3587 
3588     if (size != 1) {
3589         return omap_badwidth_read8(opaque, addr);
3590     }
3591 
3592     switch (offset) {
3593     case 0x00:	/* LCR */
3594         return s->control;
3595 
3596     case 0x04:	/* PMR */
3597         return s->power;
3598     }
3599 
3600     OMAP_BAD_REG(addr);
3601     return 0;
3602 }
3603 
3604 static void omap_lpg_write(void *opaque, hwaddr addr,
3605                            uint64_t value, unsigned size)
3606 {
3607     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3608     int offset = addr & OMAP_MPUI_REG_MASK;
3609 
3610     if (size != 1) {
3611         omap_badwidth_write8(opaque, addr, value);
3612         return;
3613     }
3614 
3615     switch (offset) {
3616     case 0x00:	/* LCR */
3617         if (~value & (1 << 6))					/* LPGRES */
3618             omap_lpg_reset(s);
3619         s->control = value & 0xff;
3620         omap_lpg_update(s);
3621         return;
3622 
3623     case 0x04:	/* PMR */
3624         s->power = value & 0x01;
3625         omap_lpg_update(s);
3626         return;
3627 
3628     default:
3629         OMAP_BAD_REG(addr);
3630         return;
3631     }
3632 }
3633 
3634 static const MemoryRegionOps omap_lpg_ops = {
3635     .read = omap_lpg_read,
3636     .write = omap_lpg_write,
3637     .endianness = DEVICE_NATIVE_ENDIAN,
3638 };
3639 
3640 static void omap_lpg_clk_update(void *opaque, int line, int on)
3641 {
3642     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3643 
3644     s->clk = on;
3645     omap_lpg_update(s);
3646 }
3647 
3648 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3649                                         hwaddr base, omap_clk clk)
3650 {
3651     struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
3652 
3653     s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3654 
3655     omap_lpg_reset(s);
3656 
3657     memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3658     memory_region_add_subregion(system_memory, base, &s->iomem);
3659 
3660     omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3661 
3662     return s;
3663 }
3664 
3665 /* MPUI Peripheral Bridge configuration */
3666 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3667                                   unsigned size)
3668 {
3669     if (size != 2) {
3670         return omap_badwidth_read16(opaque, addr);
3671     }
3672 
3673     if (addr == OMAP_MPUI_BASE)	/* CMR */
3674         return 0xfe4d;
3675 
3676     OMAP_BAD_REG(addr);
3677     return 0;
3678 }
3679 
3680 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3681                                uint64_t value, unsigned size)
3682 {
3683     /* FIXME: infinite loop */
3684     omap_badwidth_write16(opaque, addr, value);
3685 }
3686 
3687 static const MemoryRegionOps omap_mpui_io_ops = {
3688     .read = omap_mpui_io_read,
3689     .write = omap_mpui_io_write,
3690     .endianness = DEVICE_NATIVE_ENDIAN,
3691 };
3692 
3693 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3694                                struct omap_mpu_state_s *mpu)
3695 {
3696     memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3697                           "omap-mpui-io", 0x7fff);
3698     memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3699                                 &mpu->mpui_io_iomem);
3700 }
3701 
3702 /* General chip reset */
3703 static void omap1_mpu_reset(void *opaque)
3704 {
3705     struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3706 
3707     omap_dma_reset(mpu->dma);
3708     omap_mpu_timer_reset(mpu->timer[0]);
3709     omap_mpu_timer_reset(mpu->timer[1]);
3710     omap_mpu_timer_reset(mpu->timer[2]);
3711     omap_wd_timer_reset(mpu->wdt);
3712     omap_os_timer_reset(mpu->os_timer);
3713     omap_lcdc_reset(mpu->lcd);
3714     omap_ulpd_pm_reset(mpu);
3715     omap_pin_cfg_reset(mpu);
3716     omap_mpui_reset(mpu);
3717     omap_tipb_bridge_reset(mpu->private_tipb);
3718     omap_tipb_bridge_reset(mpu->public_tipb);
3719     omap_dpll_reset(mpu->dpll[0]);
3720     omap_dpll_reset(mpu->dpll[1]);
3721     omap_dpll_reset(mpu->dpll[2]);
3722     omap_uart_reset(mpu->uart[0]);
3723     omap_uart_reset(mpu->uart[1]);
3724     omap_uart_reset(mpu->uart[2]);
3725     omap_mmc_reset(mpu->mmc);
3726     omap_mpuio_reset(mpu->mpuio);
3727     omap_uwire_reset(mpu->microwire);
3728     omap_pwl_reset(mpu->pwl);
3729     omap_pwt_reset(mpu->pwt);
3730     omap_rtc_reset(mpu->rtc);
3731     omap_mcbsp_reset(mpu->mcbsp1);
3732     omap_mcbsp_reset(mpu->mcbsp2);
3733     omap_mcbsp_reset(mpu->mcbsp3);
3734     omap_lpg_reset(mpu->led[0]);
3735     omap_lpg_reset(mpu->led[1]);
3736     omap_clkm_reset(mpu);
3737     cpu_reset(CPU(mpu->cpu));
3738 }
3739 
3740 static const struct omap_map_s {
3741     hwaddr phys_dsp;
3742     hwaddr phys_mpu;
3743     uint32_t size;
3744     const char *name;
3745 } omap15xx_dsp_mm[] = {
3746     /* Strobe 0 */
3747     { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" },		/* CS0 */
3748     { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" },		/* CS1 */
3749     { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" },		/* CS3 */
3750     { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" },	/* CS4 */
3751     { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" },	/* CS5 */
3752     { 0xe1013000, 0xfffb3000, 0x800, "uWire" },			/* CS6 */
3753     { 0xe1013800, 0xfffb3800, 0x800, "I^2C" },			/* CS7 */
3754     { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" },		/* CS8 */
3755     { 0xe1014800, 0xfffb4800, 0x800, "RTC" },			/* CS9 */
3756     { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" },			/* CS10 */
3757     { 0xe1015800, 0xfffb5800, 0x800, "PWL" },			/* CS11 */
3758     { 0xe1016000, 0xfffb6000, 0x800, "PWT" },			/* CS12 */
3759     { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" },		/* CS14 */
3760     { 0xe1017800, 0xfffb7800, 0x800, "MMC" },			/* CS15 */
3761     { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" },		/* CS18 */
3762     { 0xe1019800, 0xfffb9800, 0x800, "UART3" },			/* CS19 */
3763     { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" },		/* CS25 */
3764     /* Strobe 1 */
3765     { 0xe101e000, 0xfffce000, 0x800, "GPIOs" },			/* CS28 */
3766 
3767     { 0 }
3768 };
3769 
3770 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3771                                    const struct omap_map_s *map)
3772 {
3773     MemoryRegion *io;
3774 
3775     for (; map->phys_dsp; map ++) {
3776         io = g_new(MemoryRegion, 1);
3777         memory_region_init_alias(io, NULL, map->name,
3778                                  system_memory, map->phys_mpu, map->size);
3779         memory_region_add_subregion(system_memory, map->phys_dsp, io);
3780     }
3781 }
3782 
3783 void omap_mpu_wakeup(void *opaque, int irq, int req)
3784 {
3785     struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3786     CPUState *cpu = CPU(mpu->cpu);
3787 
3788     if (cpu->halted) {
3789         cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3790     }
3791 }
3792 
3793 static const struct dma_irq_map omap1_dma_irq_map[] = {
3794     { 0, OMAP_INT_DMA_CH0_6 },
3795     { 0, OMAP_INT_DMA_CH1_7 },
3796     { 0, OMAP_INT_DMA_CH2_8 },
3797     { 0, OMAP_INT_DMA_CH3 },
3798     { 0, OMAP_INT_DMA_CH4 },
3799     { 0, OMAP_INT_DMA_CH5 },
3800     { 1, OMAP_INT_1610_DMA_CH6 },
3801     { 1, OMAP_INT_1610_DMA_CH7 },
3802     { 1, OMAP_INT_1610_DMA_CH8 },
3803     { 1, OMAP_INT_1610_DMA_CH9 },
3804     { 1, OMAP_INT_1610_DMA_CH10 },
3805     { 1, OMAP_INT_1610_DMA_CH11 },
3806     { 1, OMAP_INT_1610_DMA_CH12 },
3807     { 1, OMAP_INT_1610_DMA_CH13 },
3808     { 1, OMAP_INT_1610_DMA_CH14 },
3809     { 1, OMAP_INT_1610_DMA_CH15 }
3810 };
3811 
3812 /* DMA ports for OMAP1 */
3813 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3814                 hwaddr addr)
3815 {
3816     return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3817 }
3818 
3819 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3820                 hwaddr addr)
3821 {
3822     return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3823                              addr);
3824 }
3825 
3826 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3827                 hwaddr addr)
3828 {
3829     return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3830 }
3831 
3832 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3833                 hwaddr addr)
3834 {
3835     return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3836 }
3837 
3838 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3839                 hwaddr addr)
3840 {
3841     return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3842 }
3843 
3844 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3845                 hwaddr addr)
3846 {
3847     return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3848 }
3849 
3850 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3851                 unsigned long sdram_size,
3852                 const char *cpu_type)
3853 {
3854     int i;
3855     struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
3856     qemu_irq dma_irqs[6];
3857     DriveInfo *dinfo;
3858     SysBusDevice *busdev;
3859 
3860     /* Core */
3861     s->mpu_model = omap310;
3862     s->cpu = ARM_CPU(cpu_create(cpu_type));
3863     s->sdram_size = sdram_size;
3864     s->sram_size = OMAP15XX_SRAM_SIZE;
3865 
3866     s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3867 
3868     /* Clocks */
3869     omap_clk_init(s);
3870 
3871     /* Memory-mapped stuff */
3872     memory_region_allocate_system_memory(&s->emiff_ram, NULL, "omap1.dram",
3873                                          s->sdram_size);
3874     memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3875     memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3876                            &error_fatal);
3877     memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3878 
3879     omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3880 
3881     s->ih[0] = qdev_create(NULL, "omap-intc");
3882     qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3883     qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3884     qdev_init_nofail(s->ih[0]);
3885     busdev = SYS_BUS_DEVICE(s->ih[0]);
3886     sysbus_connect_irq(busdev, 0,
3887                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3888     sysbus_connect_irq(busdev, 1,
3889                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3890     sysbus_mmio_map(busdev, 0, 0xfffecb00);
3891     s->ih[1] = qdev_create(NULL, "omap-intc");
3892     qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3893     qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3894     qdev_init_nofail(s->ih[1]);
3895     busdev = SYS_BUS_DEVICE(s->ih[1]);
3896     sysbus_connect_irq(busdev, 0,
3897                        qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3898     /* The second interrupt controller's FIQ output is not wired up */
3899     sysbus_mmio_map(busdev, 0, 0xfffe0000);
3900 
3901     for (i = 0; i < 6; i++) {
3902         dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3903                                        omap1_dma_irq_map[i].intr);
3904     }
3905     s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3906                            qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3907                            s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3908 
3909     s->port[emiff    ].addr_valid = omap_validate_emiff_addr;
3910     s->port[emifs    ].addr_valid = omap_validate_emifs_addr;
3911     s->port[imif     ].addr_valid = omap_validate_imif_addr;
3912     s->port[tipb     ].addr_valid = omap_validate_tipb_addr;
3913     s->port[local    ].addr_valid = omap_validate_local_addr;
3914     s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3915 
3916     /* Register SDRAM and SRAM DMA ports for fast transfers.  */
3917     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3918                          OMAP_EMIFF_BASE, s->sdram_size);
3919     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3920                          OMAP_IMIF_BASE, s->sram_size);
3921 
3922     s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3923                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3924                     omap_findclk(s, "mputim_ck"));
3925     s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3926                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3927                     omap_findclk(s, "mputim_ck"));
3928     s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3929                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3930                     omap_findclk(s, "mputim_ck"));
3931 
3932     s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3933                     qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3934                     omap_findclk(s, "armwdt_ck"));
3935 
3936     s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3937                     qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3938                     omap_findclk(s, "clk32-kHz"));
3939 
3940     s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3941                             qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3942                             omap_dma_get_lcdch(s->dma),
3943                             omap_findclk(s, "lcd_ck"));
3944 
3945     omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3946     omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3947     omap_id_init(system_memory, s);
3948 
3949     omap_mpui_init(system_memory, 0xfffec900, s);
3950 
3951     s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3952                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3953                     omap_findclk(s, "tipb_ck"));
3954     s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3955                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3956                     omap_findclk(s, "tipb_ck"));
3957 
3958     omap_tcmi_init(system_memory, 0xfffecc00, s);
3959 
3960     s->uart[0] = omap_uart_init(0xfffb0000,
3961                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3962                     omap_findclk(s, "uart1_ck"),
3963                     omap_findclk(s, "uart1_ck"),
3964                     s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3965                     "uart1",
3966                     serial_hd(0));
3967     s->uart[1] = omap_uart_init(0xfffb0800,
3968                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3969                     omap_findclk(s, "uart2_ck"),
3970                     omap_findclk(s, "uart2_ck"),
3971                     s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3972                     "uart2",
3973                     serial_hd(0) ? serial_hd(1) : NULL);
3974     s->uart[2] = omap_uart_init(0xfffb9800,
3975                                 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3976                     omap_findclk(s, "uart3_ck"),
3977                     omap_findclk(s, "uart3_ck"),
3978                     s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3979                     "uart3",
3980                     serial_hd(0) && serial_hd(1) ? serial_hd(2) : NULL);
3981 
3982     s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3983                                 omap_findclk(s, "dpll1"));
3984     s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3985                                 omap_findclk(s, "dpll2"));
3986     s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3987                                 omap_findclk(s, "dpll3"));
3988 
3989     dinfo = drive_get(IF_SD, 0, 0);
3990     if (!dinfo) {
3991         error_report("missing SecureDigital device");
3992         exit(1);
3993     }
3994     s->mmc = omap_mmc_init(0xfffb7800, system_memory,
3995                            blk_by_legacy_dinfo(dinfo),
3996                            qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
3997                            &s->drq[OMAP_DMA_MMC_TX],
3998                     omap_findclk(s, "mmc_ck"));
3999 
4000     s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4001                                qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4002                                qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4003                                s->wakeup, omap_findclk(s, "clk32-kHz"));
4004 
4005     s->gpio = qdev_create(NULL, "omap-gpio");
4006     qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4007     qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
4008     qdev_init_nofail(s->gpio);
4009     sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4010                        qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4011     sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4012 
4013     s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4014                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4015                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4016                     s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4017 
4018     s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4019                            omap_findclk(s, "armxor_ck"));
4020     s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4021                            omap_findclk(s, "armxor_ck"));
4022 
4023     s->i2c[0] = qdev_create(NULL, "omap_i2c");
4024     qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4025     qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4026     qdev_init_nofail(s->i2c[0]);
4027     busdev = SYS_BUS_DEVICE(s->i2c[0]);
4028     sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4029     sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4030     sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4031     sysbus_mmio_map(busdev, 0, 0xfffb3800);
4032 
4033     s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4034                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4035                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4036                     omap_findclk(s, "clk32-kHz"));
4037 
4038     s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4039                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4040                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4041                     &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4042     s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4043                                 qdev_get_gpio_in(s->ih[0],
4044                                                  OMAP_INT_310_McBSP2_TX),
4045                                 qdev_get_gpio_in(s->ih[0],
4046                                                  OMAP_INT_310_McBSP2_RX),
4047                     &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4048     s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4049                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4050                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4051                     &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4052 
4053     s->led[0] = omap_lpg_init(system_memory,
4054                               0xfffbd000, omap_findclk(s, "clk32-kHz"));
4055     s->led[1] = omap_lpg_init(system_memory,
4056                               0xfffbd800, omap_findclk(s, "clk32-kHz"));
4057 
4058     /* Register mappings not currenlty implemented:
4059      * MCSI2 Comm	fffb2000 - fffb27ff (not mapped on OMAP310)
4060      * MCSI1 Bluetooth	fffb2800 - fffb2fff (not mapped on OMAP310)
4061      * USB W2FC		fffb4000 - fffb47ff
4062      * Camera Interface	fffb6800 - fffb6fff
4063      * USB Host		fffba000 - fffba7ff
4064      * FAC		fffba800 - fffbafff
4065      * HDQ/1-Wire	fffbc000 - fffbc7ff
4066      * TIPB switches	fffbc800 - fffbcfff
4067      * Mailbox		fffcf000 - fffcf7ff
4068      * Local bus IF	fffec100 - fffec1ff
4069      * Local bus MMU	fffec200 - fffec2ff
4070      * DSP MMU		fffed200 - fffed2ff
4071      */
4072 
4073     omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4074     omap_setup_mpui_io(system_memory, s);
4075 
4076     qemu_register_reset(omap1_mpu_reset, s);
4077 
4078     return s;
4079 }
4080