xref: /openbmc/qemu/hw/arm/omap1.c (revision 7f6c3d1a)
1 /*
2  * TI OMAP processors emulation.
3  *
4  * Copyright (C) 2006-2008 Andrzej Zaborowski  <balrog@zabor.org>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 or
9  * (at your option) version 3 of the License.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License along
17  * with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/error-report.h"
22 #include "qemu/main-loop.h"
23 #include "qapi/error.h"
24 #include "qemu-common.h"
25 #include "cpu.h"
26 #include "exec/address-spaces.h"
27 #include "hw/boards.h"
28 #include "hw/hw.h"
29 #include "hw/irq.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/arm/boot.h"
32 #include "hw/arm/omap.h"
33 #include "sysemu/blockdev.h"
34 #include "sysemu/sysemu.h"
35 #include "hw/arm/soc_dma.h"
36 #include "sysemu/qtest.h"
37 #include "sysemu/reset.h"
38 #include "sysemu/runstate.h"
39 #include "qemu/range.h"
40 #include "hw/sysbus.h"
41 #include "qemu/cutils.h"
42 #include "qemu/bcd.h"
43 
44 static inline void omap_log_badwidth(const char *funcname, hwaddr addr, int sz)
45 {
46     qemu_log_mask(LOG_GUEST_ERROR, "%s: %d-bit register %#08" HWADDR_PRIx "\n",
47                   funcname, 8 * sz, addr);
48 }
49 
50 /* Should signal the TCMI/GPMC */
51 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
52 {
53     uint8_t ret;
54 
55     omap_log_badwidth(__func__, addr, 1);
56     cpu_physical_memory_read(addr, &ret, 1);
57     return ret;
58 }
59 
60 void omap_badwidth_write8(void *opaque, hwaddr addr,
61                 uint32_t value)
62 {
63     uint8_t val8 = value;
64 
65     omap_log_badwidth(__func__, addr, 1);
66     cpu_physical_memory_write(addr, &val8, 1);
67 }
68 
69 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
70 {
71     uint16_t ret;
72 
73     omap_log_badwidth(__func__, addr, 2);
74     cpu_physical_memory_read(addr, &ret, 2);
75     return ret;
76 }
77 
78 void omap_badwidth_write16(void *opaque, hwaddr addr,
79                 uint32_t value)
80 {
81     uint16_t val16 = value;
82 
83     omap_log_badwidth(__func__, addr, 2);
84     cpu_physical_memory_write(addr, &val16, 2);
85 }
86 
87 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
88 {
89     uint32_t ret;
90 
91     omap_log_badwidth(__func__, addr, 4);
92     cpu_physical_memory_read(addr, &ret, 4);
93     return ret;
94 }
95 
96 void omap_badwidth_write32(void *opaque, hwaddr addr,
97                 uint32_t value)
98 {
99     omap_log_badwidth(__func__, addr, 4);
100     cpu_physical_memory_write(addr, &value, 4);
101 }
102 
103 /* MPU OS timers */
104 struct omap_mpu_timer_s {
105     MemoryRegion iomem;
106     qemu_irq irq;
107     omap_clk clk;
108     uint32_t val;
109     int64_t time;
110     QEMUTimer *timer;
111     QEMUBH *tick;
112     int64_t rate;
113     int it_ena;
114 
115     int enable;
116     int ptv;
117     int ar;
118     int st;
119     uint32_t reset_val;
120 };
121 
122 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
123 {
124     uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
125 
126     if (timer->st && timer->enable && timer->rate)
127         return timer->val - muldiv64(distance >> (timer->ptv + 1),
128                                      timer->rate, NANOSECONDS_PER_SECOND);
129     else
130         return timer->val;
131 }
132 
133 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
134 {
135     timer->val = omap_timer_read(timer);
136     timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
137 }
138 
139 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
140 {
141     int64_t expires;
142 
143     if (timer->enable && timer->st && timer->rate) {
144         timer->val = timer->reset_val;	/* Should skip this on clk enable */
145         expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
146                            NANOSECONDS_PER_SECOND, timer->rate);
147 
148         /* If timer expiry would be sooner than in about 1 ms and
149          * auto-reload isn't set, then fire immediately.  This is a hack
150          * to make systems like PalmOS run in acceptable time.  PalmOS
151          * sets the interval to a very low value and polls the status bit
152          * in a busy loop when it wants to sleep just a couple of CPU
153          * ticks.  */
154         if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
155             timer_mod(timer->timer, timer->time + expires);
156         } else {
157             qemu_bh_schedule(timer->tick);
158         }
159     } else
160         timer_del(timer->timer);
161 }
162 
163 static void omap_timer_fire(void *opaque)
164 {
165     struct omap_mpu_timer_s *timer = opaque;
166 
167     if (!timer->ar) {
168         timer->val = 0;
169         timer->st = 0;
170     }
171 
172     if (timer->it_ena)
173         /* Edge-triggered irq */
174         qemu_irq_pulse(timer->irq);
175 }
176 
177 static void omap_timer_tick(void *opaque)
178 {
179     struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
180 
181     omap_timer_sync(timer);
182     omap_timer_fire(timer);
183     omap_timer_update(timer);
184 }
185 
186 static void omap_timer_clk_update(void *opaque, int line, int on)
187 {
188     struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
189 
190     omap_timer_sync(timer);
191     timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
192     omap_timer_update(timer);
193 }
194 
195 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
196 {
197     omap_clk_adduser(timer->clk,
198                     qemu_allocate_irq(omap_timer_clk_update, timer, 0));
199     timer->rate = omap_clk_getrate(timer->clk);
200 }
201 
202 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
203                                     unsigned size)
204 {
205     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
206 
207     if (size != 4) {
208         return omap_badwidth_read32(opaque, addr);
209     }
210 
211     switch (addr) {
212     case 0x00:	/* CNTL_TIMER */
213         return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
214 
215     case 0x04:	/* LOAD_TIM */
216         break;
217 
218     case 0x08:	/* READ_TIM */
219         return omap_timer_read(s);
220     }
221 
222     OMAP_BAD_REG(addr);
223     return 0;
224 }
225 
226 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
227                                  uint64_t value, unsigned size)
228 {
229     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
230 
231     if (size != 4) {
232         omap_badwidth_write32(opaque, addr, value);
233         return;
234     }
235 
236     switch (addr) {
237     case 0x00:	/* CNTL_TIMER */
238         omap_timer_sync(s);
239         s->enable = (value >> 5) & 1;
240         s->ptv = (value >> 2) & 7;
241         s->ar = (value >> 1) & 1;
242         s->st = value & 1;
243         omap_timer_update(s);
244         return;
245 
246     case 0x04:	/* LOAD_TIM */
247         s->reset_val = value;
248         return;
249 
250     case 0x08:	/* READ_TIM */
251         OMAP_RO_REG(addr);
252         break;
253 
254     default:
255         OMAP_BAD_REG(addr);
256     }
257 }
258 
259 static const MemoryRegionOps omap_mpu_timer_ops = {
260     .read = omap_mpu_timer_read,
261     .write = omap_mpu_timer_write,
262     .endianness = DEVICE_LITTLE_ENDIAN,
263 };
264 
265 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
266 {
267     timer_del(s->timer);
268     s->enable = 0;
269     s->reset_val = 31337;
270     s->val = 0;
271     s->ptv = 0;
272     s->ar = 0;
273     s->st = 0;
274     s->it_ena = 1;
275 }
276 
277 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
278                 hwaddr base,
279                 qemu_irq irq, omap_clk clk)
280 {
281     struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
282 
283     s->irq = irq;
284     s->clk = clk;
285     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
286     s->tick = qemu_bh_new(omap_timer_fire, s);
287     omap_mpu_timer_reset(s);
288     omap_timer_clk_setup(s);
289 
290     memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
291                           "omap-mpu-timer", 0x100);
292 
293     memory_region_add_subregion(system_memory, base, &s->iomem);
294 
295     return s;
296 }
297 
298 /* Watchdog timer */
299 struct omap_watchdog_timer_s {
300     struct omap_mpu_timer_s timer;
301     MemoryRegion iomem;
302     uint8_t last_wr;
303     int mode;
304     int free;
305     int reset;
306 };
307 
308 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
309                                    unsigned size)
310 {
311     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
312 
313     if (size != 2) {
314         return omap_badwidth_read16(opaque, addr);
315     }
316 
317     switch (addr) {
318     case 0x00:	/* CNTL_TIMER */
319         return (s->timer.ptv << 9) | (s->timer.ar << 8) |
320                 (s->timer.st << 7) | (s->free << 1);
321 
322     case 0x04:	/* READ_TIMER */
323         return omap_timer_read(&s->timer);
324 
325     case 0x08:	/* TIMER_MODE */
326         return s->mode << 15;
327     }
328 
329     OMAP_BAD_REG(addr);
330     return 0;
331 }
332 
333 static void omap_wd_timer_write(void *opaque, hwaddr addr,
334                                 uint64_t value, unsigned size)
335 {
336     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
337 
338     if (size != 2) {
339         omap_badwidth_write16(opaque, addr, value);
340         return;
341     }
342 
343     switch (addr) {
344     case 0x00:	/* CNTL_TIMER */
345         omap_timer_sync(&s->timer);
346         s->timer.ptv = (value >> 9) & 7;
347         s->timer.ar = (value >> 8) & 1;
348         s->timer.st = (value >> 7) & 1;
349         s->free = (value >> 1) & 1;
350         omap_timer_update(&s->timer);
351         break;
352 
353     case 0x04:	/* LOAD_TIMER */
354         s->timer.reset_val = value & 0xffff;
355         break;
356 
357     case 0x08:	/* TIMER_MODE */
358         if (!s->mode && ((value >> 15) & 1))
359             omap_clk_get(s->timer.clk);
360         s->mode |= (value >> 15) & 1;
361         if (s->last_wr == 0xf5) {
362             if ((value & 0xff) == 0xa0) {
363                 if (s->mode) {
364                     s->mode = 0;
365                     omap_clk_put(s->timer.clk);
366                 }
367             } else {
368                 /* XXX: on T|E hardware somehow this has no effect,
369                  * on Zire 71 it works as specified.  */
370                 s->reset = 1;
371                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
372             }
373         }
374         s->last_wr = value & 0xff;
375         break;
376 
377     default:
378         OMAP_BAD_REG(addr);
379     }
380 }
381 
382 static const MemoryRegionOps omap_wd_timer_ops = {
383     .read = omap_wd_timer_read,
384     .write = omap_wd_timer_write,
385     .endianness = DEVICE_NATIVE_ENDIAN,
386 };
387 
388 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
389 {
390     timer_del(s->timer.timer);
391     if (!s->mode)
392         omap_clk_get(s->timer.clk);
393     s->mode = 1;
394     s->free = 1;
395     s->reset = 0;
396     s->timer.enable = 1;
397     s->timer.it_ena = 1;
398     s->timer.reset_val = 0xffff;
399     s->timer.val = 0;
400     s->timer.st = 0;
401     s->timer.ptv = 0;
402     s->timer.ar = 0;
403     omap_timer_update(&s->timer);
404 }
405 
406 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
407                 hwaddr base,
408                 qemu_irq irq, omap_clk clk)
409 {
410     struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
411 
412     s->timer.irq = irq;
413     s->timer.clk = clk;
414     s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
415     omap_wd_timer_reset(s);
416     omap_timer_clk_setup(&s->timer);
417 
418     memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
419                           "omap-wd-timer", 0x100);
420     memory_region_add_subregion(memory, base, &s->iomem);
421 
422     return s;
423 }
424 
425 /* 32-kHz timer */
426 struct omap_32khz_timer_s {
427     struct omap_mpu_timer_s timer;
428     MemoryRegion iomem;
429 };
430 
431 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
432                                    unsigned size)
433 {
434     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
435     int offset = addr & OMAP_MPUI_REG_MASK;
436 
437     if (size != 4) {
438         return omap_badwidth_read32(opaque, addr);
439     }
440 
441     switch (offset) {
442     case 0x00:	/* TVR */
443         return s->timer.reset_val;
444 
445     case 0x04:	/* TCR */
446         return omap_timer_read(&s->timer);
447 
448     case 0x08:	/* CR */
449         return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
450 
451     default:
452         break;
453     }
454     OMAP_BAD_REG(addr);
455     return 0;
456 }
457 
458 static void omap_os_timer_write(void *opaque, hwaddr addr,
459                                 uint64_t value, unsigned size)
460 {
461     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
462     int offset = addr & OMAP_MPUI_REG_MASK;
463 
464     if (size != 4) {
465         omap_badwidth_write32(opaque, addr, value);
466         return;
467     }
468 
469     switch (offset) {
470     case 0x00:	/* TVR */
471         s->timer.reset_val = value & 0x00ffffff;
472         break;
473 
474     case 0x04:	/* TCR */
475         OMAP_RO_REG(addr);
476         break;
477 
478     case 0x08:	/* CR */
479         s->timer.ar = (value >> 3) & 1;
480         s->timer.it_ena = (value >> 2) & 1;
481         if (s->timer.st != (value & 1) || (value & 2)) {
482             omap_timer_sync(&s->timer);
483             s->timer.enable = value & 1;
484             s->timer.st = value & 1;
485             omap_timer_update(&s->timer);
486         }
487         break;
488 
489     default:
490         OMAP_BAD_REG(addr);
491     }
492 }
493 
494 static const MemoryRegionOps omap_os_timer_ops = {
495     .read = omap_os_timer_read,
496     .write = omap_os_timer_write,
497     .endianness = DEVICE_NATIVE_ENDIAN,
498 };
499 
500 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
501 {
502     timer_del(s->timer.timer);
503     s->timer.enable = 0;
504     s->timer.it_ena = 0;
505     s->timer.reset_val = 0x00ffffff;
506     s->timer.val = 0;
507     s->timer.st = 0;
508     s->timer.ptv = 0;
509     s->timer.ar = 1;
510 }
511 
512 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
513                 hwaddr base,
514                 qemu_irq irq, omap_clk clk)
515 {
516     struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
517 
518     s->timer.irq = irq;
519     s->timer.clk = clk;
520     s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
521     omap_os_timer_reset(s);
522     omap_timer_clk_setup(&s->timer);
523 
524     memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
525                           "omap-os-timer", 0x800);
526     memory_region_add_subregion(memory, base, &s->iomem);
527 
528     return s;
529 }
530 
531 /* Ultra Low-Power Device Module */
532 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
533                                   unsigned size)
534 {
535     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
536     uint16_t ret;
537 
538     if (size != 2) {
539         return omap_badwidth_read16(opaque, addr);
540     }
541 
542     switch (addr) {
543     case 0x14:	/* IT_STATUS */
544         ret = s->ulpd_pm_regs[addr >> 2];
545         s->ulpd_pm_regs[addr >> 2] = 0;
546         qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
547         return ret;
548 
549     case 0x18:	/* Reserved */
550     case 0x1c:	/* Reserved */
551     case 0x20:	/* Reserved */
552     case 0x28:	/* Reserved */
553     case 0x2c:	/* Reserved */
554         OMAP_BAD_REG(addr);
555         /* fall through */
556     case 0x00:	/* COUNTER_32_LSB */
557     case 0x04:	/* COUNTER_32_MSB */
558     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
559     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
560     case 0x10:	/* GAUGING_CTRL */
561     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
562     case 0x30:	/* CLOCK_CTRL */
563     case 0x34:	/* SOFT_REQ */
564     case 0x38:	/* COUNTER_32_FIQ */
565     case 0x3c:	/* DPLL_CTRL */
566     case 0x40:	/* STATUS_REQ */
567         /* XXX: check clk::usecount state for every clock */
568     case 0x48:	/* LOCL_TIME */
569     case 0x4c:	/* APLL_CTRL */
570     case 0x50:	/* POWER_CTRL */
571         return s->ulpd_pm_regs[addr >> 2];
572     }
573 
574     OMAP_BAD_REG(addr);
575     return 0;
576 }
577 
578 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
579                 uint16_t diff, uint16_t value)
580 {
581     if (diff & (1 << 4))				/* USB_MCLK_EN */
582         omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
583     if (diff & (1 << 5))				/* DIS_USB_PVCI_CLK */
584         omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
585 }
586 
587 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
588                 uint16_t diff, uint16_t value)
589 {
590     if (diff & (1 << 0))				/* SOFT_DPLL_REQ */
591         omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
592     if (diff & (1 << 1))				/* SOFT_COM_REQ */
593         omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
594     if (diff & (1 << 2))				/* SOFT_SDW_REQ */
595         omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
596     if (diff & (1 << 3))				/* SOFT_USB_REQ */
597         omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
598 }
599 
600 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
601                                uint64_t value, unsigned size)
602 {
603     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
604     int64_t now, ticks;
605     int div, mult;
606     static const int bypass_div[4] = { 1, 2, 4, 4 };
607     uint16_t diff;
608 
609     if (size != 2) {
610         omap_badwidth_write16(opaque, addr, value);
611         return;
612     }
613 
614     switch (addr) {
615     case 0x00:	/* COUNTER_32_LSB */
616     case 0x04:	/* COUNTER_32_MSB */
617     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
618     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
619     case 0x14:	/* IT_STATUS */
620     case 0x40:	/* STATUS_REQ */
621         OMAP_RO_REG(addr);
622         break;
623 
624     case 0x10:	/* GAUGING_CTRL */
625         /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
626         if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
627             now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
628 
629             if (value & 1)
630                 s->ulpd_gauge_start = now;
631             else {
632                 now -= s->ulpd_gauge_start;
633 
634                 /* 32-kHz ticks */
635                 ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
636                 s->ulpd_pm_regs[0x00 >> 2] = (ticks >>  0) & 0xffff;
637                 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
638                 if (ticks >> 32)	/* OVERFLOW_32K */
639                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
640 
641                 /* High frequency ticks */
642                 ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
643                 s->ulpd_pm_regs[0x08 >> 2] = (ticks >>  0) & 0xffff;
644                 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
645                 if (ticks >> 32)	/* OVERFLOW_HI_FREQ */
646                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
647 
648                 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0;	/* IT_GAUGING */
649                 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
650             }
651         }
652         s->ulpd_pm_regs[addr >> 2] = value;
653         break;
654 
655     case 0x18:	/* Reserved */
656     case 0x1c:	/* Reserved */
657     case 0x20:	/* Reserved */
658     case 0x28:	/* Reserved */
659     case 0x2c:	/* Reserved */
660         OMAP_BAD_REG(addr);
661         /* fall through */
662     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
663     case 0x38:	/* COUNTER_32_FIQ */
664     case 0x48:	/* LOCL_TIME */
665     case 0x50:	/* POWER_CTRL */
666         s->ulpd_pm_regs[addr >> 2] = value;
667         break;
668 
669     case 0x30:	/* CLOCK_CTRL */
670         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
671         s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
672         omap_ulpd_clk_update(s, diff, value);
673         break;
674 
675     case 0x34:	/* SOFT_REQ */
676         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
677         s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
678         omap_ulpd_req_update(s, diff, value);
679         break;
680 
681     case 0x3c:	/* DPLL_CTRL */
682         /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
683          * omitted altogether, probably a typo.  */
684         /* This register has identical semantics with DPLL(1:3) control
685          * registers, see omap_dpll_write() */
686         diff = s->ulpd_pm_regs[addr >> 2] & value;
687         s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
688         if (diff & (0x3ff << 2)) {
689             if (value & (1 << 4)) {			/* PLL_ENABLE */
690                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
691                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
692             } else {
693                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
694                 mult = 1;
695             }
696             omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
697         }
698 
699         /* Enter the desired mode.  */
700         s->ulpd_pm_regs[addr >> 2] =
701                 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
702                 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
703 
704         /* Act as if the lock is restored.  */
705         s->ulpd_pm_regs[addr >> 2] |= 2;
706         break;
707 
708     case 0x4c:	/* APLL_CTRL */
709         diff = s->ulpd_pm_regs[addr >> 2] & value;
710         s->ulpd_pm_regs[addr >> 2] = value & 0xf;
711         if (diff & (1 << 0))				/* APLL_NDPLL_SWITCH */
712             omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
713                                     (value & (1 << 0)) ? "apll" : "dpll4"));
714         break;
715 
716     default:
717         OMAP_BAD_REG(addr);
718     }
719 }
720 
721 static const MemoryRegionOps omap_ulpd_pm_ops = {
722     .read = omap_ulpd_pm_read,
723     .write = omap_ulpd_pm_write,
724     .endianness = DEVICE_NATIVE_ENDIAN,
725 };
726 
727 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
728 {
729     mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
730     mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
731     mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
732     mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
733     mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
734     mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
735     mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
736     mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
737     mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
738     mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
739     mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
740     omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
741     mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
742     omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
743     mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
744     mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
745     mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
746     mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
747     mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
748     mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
749     mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
750     omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
751     omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
752 }
753 
754 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
755                 hwaddr base,
756                 struct omap_mpu_state_s *mpu)
757 {
758     memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
759                           "omap-ulpd-pm", 0x800);
760     memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
761     omap_ulpd_pm_reset(mpu);
762 }
763 
764 /* OMAP Pin Configuration */
765 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
766                                   unsigned size)
767 {
768     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
769 
770     if (size != 4) {
771         return omap_badwidth_read32(opaque, addr);
772     }
773 
774     switch (addr) {
775     case 0x00:	/* FUNC_MUX_CTRL_0 */
776     case 0x04:	/* FUNC_MUX_CTRL_1 */
777     case 0x08:	/* FUNC_MUX_CTRL_2 */
778         return s->func_mux_ctrl[addr >> 2];
779 
780     case 0x0c:	/* COMP_MODE_CTRL_0 */
781         return s->comp_mode_ctrl[0];
782 
783     case 0x10:	/* FUNC_MUX_CTRL_3 */
784     case 0x14:	/* FUNC_MUX_CTRL_4 */
785     case 0x18:	/* FUNC_MUX_CTRL_5 */
786     case 0x1c:	/* FUNC_MUX_CTRL_6 */
787     case 0x20:	/* FUNC_MUX_CTRL_7 */
788     case 0x24:	/* FUNC_MUX_CTRL_8 */
789     case 0x28:	/* FUNC_MUX_CTRL_9 */
790     case 0x2c:	/* FUNC_MUX_CTRL_A */
791     case 0x30:	/* FUNC_MUX_CTRL_B */
792     case 0x34:	/* FUNC_MUX_CTRL_C */
793     case 0x38:	/* FUNC_MUX_CTRL_D */
794         return s->func_mux_ctrl[(addr >> 2) - 1];
795 
796     case 0x40:	/* PULL_DWN_CTRL_0 */
797     case 0x44:	/* PULL_DWN_CTRL_1 */
798     case 0x48:	/* PULL_DWN_CTRL_2 */
799     case 0x4c:	/* PULL_DWN_CTRL_3 */
800         return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
801 
802     case 0x50:	/* GATE_INH_CTRL_0 */
803         return s->gate_inh_ctrl[0];
804 
805     case 0x60:	/* VOLTAGE_CTRL_0 */
806         return s->voltage_ctrl[0];
807 
808     case 0x70:	/* TEST_DBG_CTRL_0 */
809         return s->test_dbg_ctrl[0];
810 
811     case 0x80:	/* MOD_CONF_CTRL_0 */
812         return s->mod_conf_ctrl[0];
813     }
814 
815     OMAP_BAD_REG(addr);
816     return 0;
817 }
818 
819 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
820                 uint32_t diff, uint32_t value)
821 {
822     if (s->compat1509) {
823         if (diff & (1 << 9))			/* BLUETOOTH */
824             omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
825                             (~value >> 9) & 1);
826         if (diff & (1 << 7))			/* USB.CLKO */
827             omap_clk_onoff(omap_findclk(s, "usb.clko"),
828                             (value >> 7) & 1);
829     }
830 }
831 
832 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
833                 uint32_t diff, uint32_t value)
834 {
835     if (s->compat1509) {
836         if (diff & (1U << 31)) {
837             /* MCBSP3_CLK_HIZ_DI */
838             omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
839         }
840         if (diff & (1 << 1)) {
841             /* CLK32K */
842             omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
843         }
844     }
845 }
846 
847 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
848                 uint32_t diff, uint32_t value)
849 {
850     if (diff & (1U << 31)) {
851         /* CONF_MOD_UART3_CLK_MODE_R */
852         omap_clk_reparent(omap_findclk(s, "uart3_ck"),
853                           omap_findclk(s, ((value >> 31) & 1) ?
854                                        "ck_48m" : "armper_ck"));
855     }
856     if (diff & (1 << 30))			/* CONF_MOD_UART2_CLK_MODE_R */
857          omap_clk_reparent(omap_findclk(s, "uart2_ck"),
858                          omap_findclk(s, ((value >> 30) & 1) ?
859                                  "ck_48m" : "armper_ck"));
860     if (diff & (1 << 29))			/* CONF_MOD_UART1_CLK_MODE_R */
861          omap_clk_reparent(omap_findclk(s, "uart1_ck"),
862                          omap_findclk(s, ((value >> 29) & 1) ?
863                                  "ck_48m" : "armper_ck"));
864     if (diff & (1 << 23))			/* CONF_MOD_MMC_SD_CLK_REQ_R */
865          omap_clk_reparent(omap_findclk(s, "mmc_ck"),
866                          omap_findclk(s, ((value >> 23) & 1) ?
867                                  "ck_48m" : "armper_ck"));
868     if (diff & (1 << 12))			/* CONF_MOD_COM_MCLK_12_48_S */
869          omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
870                          omap_findclk(s, ((value >> 12) & 1) ?
871                                  "ck_48m" : "armper_ck"));
872     if (diff & (1 << 9))			/* CONF_MOD_USB_HOST_HHC_UHO */
873          omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
874 }
875 
876 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
877                                uint64_t value, unsigned size)
878 {
879     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
880     uint32_t diff;
881 
882     if (size != 4) {
883         omap_badwidth_write32(opaque, addr, value);
884         return;
885     }
886 
887     switch (addr) {
888     case 0x00:	/* FUNC_MUX_CTRL_0 */
889         diff = s->func_mux_ctrl[addr >> 2] ^ value;
890         s->func_mux_ctrl[addr >> 2] = value;
891         omap_pin_funcmux0_update(s, diff, value);
892         return;
893 
894     case 0x04:	/* FUNC_MUX_CTRL_1 */
895         diff = s->func_mux_ctrl[addr >> 2] ^ value;
896         s->func_mux_ctrl[addr >> 2] = value;
897         omap_pin_funcmux1_update(s, diff, value);
898         return;
899 
900     case 0x08:	/* FUNC_MUX_CTRL_2 */
901         s->func_mux_ctrl[addr >> 2] = value;
902         return;
903 
904     case 0x0c:	/* COMP_MODE_CTRL_0 */
905         s->comp_mode_ctrl[0] = value;
906         s->compat1509 = (value != 0x0000eaef);
907         omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
908         omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
909         return;
910 
911     case 0x10:	/* FUNC_MUX_CTRL_3 */
912     case 0x14:	/* FUNC_MUX_CTRL_4 */
913     case 0x18:	/* FUNC_MUX_CTRL_5 */
914     case 0x1c:	/* FUNC_MUX_CTRL_6 */
915     case 0x20:	/* FUNC_MUX_CTRL_7 */
916     case 0x24:	/* FUNC_MUX_CTRL_8 */
917     case 0x28:	/* FUNC_MUX_CTRL_9 */
918     case 0x2c:	/* FUNC_MUX_CTRL_A */
919     case 0x30:	/* FUNC_MUX_CTRL_B */
920     case 0x34:	/* FUNC_MUX_CTRL_C */
921     case 0x38:	/* FUNC_MUX_CTRL_D */
922         s->func_mux_ctrl[(addr >> 2) - 1] = value;
923         return;
924 
925     case 0x40:	/* PULL_DWN_CTRL_0 */
926     case 0x44:	/* PULL_DWN_CTRL_1 */
927     case 0x48:	/* PULL_DWN_CTRL_2 */
928     case 0x4c:	/* PULL_DWN_CTRL_3 */
929         s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
930         return;
931 
932     case 0x50:	/* GATE_INH_CTRL_0 */
933         s->gate_inh_ctrl[0] = value;
934         return;
935 
936     case 0x60:	/* VOLTAGE_CTRL_0 */
937         s->voltage_ctrl[0] = value;
938         return;
939 
940     case 0x70:	/* TEST_DBG_CTRL_0 */
941         s->test_dbg_ctrl[0] = value;
942         return;
943 
944     case 0x80:	/* MOD_CONF_CTRL_0 */
945         diff = s->mod_conf_ctrl[0] ^ value;
946         s->mod_conf_ctrl[0] = value;
947         omap_pin_modconf1_update(s, diff, value);
948         return;
949 
950     default:
951         OMAP_BAD_REG(addr);
952     }
953 }
954 
955 static const MemoryRegionOps omap_pin_cfg_ops = {
956     .read = omap_pin_cfg_read,
957     .write = omap_pin_cfg_write,
958     .endianness = DEVICE_NATIVE_ENDIAN,
959 };
960 
961 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
962 {
963     /* Start in Compatibility Mode.  */
964     mpu->compat1509 = 1;
965     omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
966     omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
967     omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
968     memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
969     memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
970     memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
971     memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
972     memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
973     memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
974     memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
975 }
976 
977 static void omap_pin_cfg_init(MemoryRegion *system_memory,
978                 hwaddr base,
979                 struct omap_mpu_state_s *mpu)
980 {
981     memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
982                           "omap-pin-cfg", 0x800);
983     memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
984     omap_pin_cfg_reset(mpu);
985 }
986 
987 /* Device Identification, Die Identification */
988 static uint64_t omap_id_read(void *opaque, hwaddr addr,
989                              unsigned size)
990 {
991     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
992 
993     if (size != 4) {
994         return omap_badwidth_read32(opaque, addr);
995     }
996 
997     switch (addr) {
998     case 0xfffe1800:	/* DIE_ID_LSB */
999         return 0xc9581f0e;
1000     case 0xfffe1804:	/* DIE_ID_MSB */
1001         return 0xa8858bfa;
1002 
1003     case 0xfffe2000:	/* PRODUCT_ID_LSB */
1004         return 0x00aaaafc;
1005     case 0xfffe2004:	/* PRODUCT_ID_MSB */
1006         return 0xcafeb574;
1007 
1008     case 0xfffed400:	/* JTAG_ID_LSB */
1009         switch (s->mpu_model) {
1010         case omap310:
1011             return 0x03310315;
1012         case omap1510:
1013             return 0x03310115;
1014         default:
1015             hw_error("%s: bad mpu model\n", __func__);
1016         }
1017         break;
1018 
1019     case 0xfffed404:	/* JTAG_ID_MSB */
1020         switch (s->mpu_model) {
1021         case omap310:
1022             return 0xfb57402f;
1023         case omap1510:
1024             return 0xfb47002f;
1025         default:
1026             hw_error("%s: bad mpu model\n", __func__);
1027         }
1028         break;
1029     }
1030 
1031     OMAP_BAD_REG(addr);
1032     return 0;
1033 }
1034 
1035 static void omap_id_write(void *opaque, hwaddr addr,
1036                           uint64_t value, unsigned size)
1037 {
1038     if (size != 4) {
1039         omap_badwidth_write32(opaque, addr, value);
1040         return;
1041     }
1042 
1043     OMAP_BAD_REG(addr);
1044 }
1045 
1046 static const MemoryRegionOps omap_id_ops = {
1047     .read = omap_id_read,
1048     .write = omap_id_write,
1049     .endianness = DEVICE_NATIVE_ENDIAN,
1050 };
1051 
1052 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1053 {
1054     memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1055                           "omap-id", 0x100000000ULL);
1056     memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1057                              0xfffe1800, 0x800);
1058     memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1059     memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1060                              0xfffed400, 0x100);
1061     memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1062     if (!cpu_is_omap15xx(mpu)) {
1063         memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1064                                  &mpu->id_iomem, 0xfffe2000, 0x800);
1065         memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1066     }
1067 }
1068 
1069 /* MPUI Control (Dummy) */
1070 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1071                                unsigned size)
1072 {
1073     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1074 
1075     if (size != 4) {
1076         return omap_badwidth_read32(opaque, addr);
1077     }
1078 
1079     switch (addr) {
1080     case 0x00:	/* CTRL */
1081         return s->mpui_ctrl;
1082     case 0x04:	/* DEBUG_ADDR */
1083         return 0x01ffffff;
1084     case 0x08:	/* DEBUG_DATA */
1085         return 0xffffffff;
1086     case 0x0c:	/* DEBUG_FLAG */
1087         return 0x00000800;
1088     case 0x10:	/* STATUS */
1089         return 0x00000000;
1090 
1091     /* Not in OMAP310 */
1092     case 0x14:	/* DSP_STATUS */
1093     case 0x18:	/* DSP_BOOT_CONFIG */
1094         return 0x00000000;
1095     case 0x1c:	/* DSP_MPUI_CONFIG */
1096         return 0x0000ffff;
1097     }
1098 
1099     OMAP_BAD_REG(addr);
1100     return 0;
1101 }
1102 
1103 static void omap_mpui_write(void *opaque, hwaddr addr,
1104                             uint64_t value, unsigned size)
1105 {
1106     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1107 
1108     if (size != 4) {
1109         omap_badwidth_write32(opaque, addr, value);
1110         return;
1111     }
1112 
1113     switch (addr) {
1114     case 0x00:	/* CTRL */
1115         s->mpui_ctrl = value & 0x007fffff;
1116         break;
1117 
1118     case 0x04:	/* DEBUG_ADDR */
1119     case 0x08:	/* DEBUG_DATA */
1120     case 0x0c:	/* DEBUG_FLAG */
1121     case 0x10:	/* STATUS */
1122     /* Not in OMAP310 */
1123     case 0x14:	/* DSP_STATUS */
1124         OMAP_RO_REG(addr);
1125         break;
1126     case 0x18:	/* DSP_BOOT_CONFIG */
1127     case 0x1c:	/* DSP_MPUI_CONFIG */
1128         break;
1129 
1130     default:
1131         OMAP_BAD_REG(addr);
1132     }
1133 }
1134 
1135 static const MemoryRegionOps omap_mpui_ops = {
1136     .read = omap_mpui_read,
1137     .write = omap_mpui_write,
1138     .endianness = DEVICE_NATIVE_ENDIAN,
1139 };
1140 
1141 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1142 {
1143     s->mpui_ctrl = 0x0003ff1b;
1144 }
1145 
1146 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1147                 struct omap_mpu_state_s *mpu)
1148 {
1149     memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1150                           "omap-mpui", 0x100);
1151     memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1152 
1153     omap_mpui_reset(mpu);
1154 }
1155 
1156 /* TIPB Bridges */
1157 struct omap_tipb_bridge_s {
1158     qemu_irq abort;
1159     MemoryRegion iomem;
1160 
1161     int width_intr;
1162     uint16_t control;
1163     uint16_t alloc;
1164     uint16_t buffer;
1165     uint16_t enh_control;
1166 };
1167 
1168 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1169                                       unsigned size)
1170 {
1171     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1172 
1173     if (size < 2) {
1174         return omap_badwidth_read16(opaque, addr);
1175     }
1176 
1177     switch (addr) {
1178     case 0x00:	/* TIPB_CNTL */
1179         return s->control;
1180     case 0x04:	/* TIPB_BUS_ALLOC */
1181         return s->alloc;
1182     case 0x08:	/* MPU_TIPB_CNTL */
1183         return s->buffer;
1184     case 0x0c:	/* ENHANCED_TIPB_CNTL */
1185         return s->enh_control;
1186     case 0x10:	/* ADDRESS_DBG */
1187     case 0x14:	/* DATA_DEBUG_LOW */
1188     case 0x18:	/* DATA_DEBUG_HIGH */
1189         return 0xffff;
1190     case 0x1c:	/* DEBUG_CNTR_SIG */
1191         return 0x00f8;
1192     }
1193 
1194     OMAP_BAD_REG(addr);
1195     return 0;
1196 }
1197 
1198 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1199                                    uint64_t value, unsigned size)
1200 {
1201     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1202 
1203     if (size < 2) {
1204         omap_badwidth_write16(opaque, addr, value);
1205         return;
1206     }
1207 
1208     switch (addr) {
1209     case 0x00:	/* TIPB_CNTL */
1210         s->control = value & 0xffff;
1211         break;
1212 
1213     case 0x04:	/* TIPB_BUS_ALLOC */
1214         s->alloc = value & 0x003f;
1215         break;
1216 
1217     case 0x08:	/* MPU_TIPB_CNTL */
1218         s->buffer = value & 0x0003;
1219         break;
1220 
1221     case 0x0c:	/* ENHANCED_TIPB_CNTL */
1222         s->width_intr = !(value & 2);
1223         s->enh_control = value & 0x000f;
1224         break;
1225 
1226     case 0x10:	/* ADDRESS_DBG */
1227     case 0x14:	/* DATA_DEBUG_LOW */
1228     case 0x18:	/* DATA_DEBUG_HIGH */
1229     case 0x1c:	/* DEBUG_CNTR_SIG */
1230         OMAP_RO_REG(addr);
1231         break;
1232 
1233     default:
1234         OMAP_BAD_REG(addr);
1235     }
1236 }
1237 
1238 static const MemoryRegionOps omap_tipb_bridge_ops = {
1239     .read = omap_tipb_bridge_read,
1240     .write = omap_tipb_bridge_write,
1241     .endianness = DEVICE_NATIVE_ENDIAN,
1242 };
1243 
1244 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1245 {
1246     s->control = 0xffff;
1247     s->alloc = 0x0009;
1248     s->buffer = 0x0000;
1249     s->enh_control = 0x000f;
1250 }
1251 
1252 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1253     MemoryRegion *memory, hwaddr base,
1254     qemu_irq abort_irq, omap_clk clk)
1255 {
1256     struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1257 
1258     s->abort = abort_irq;
1259     omap_tipb_bridge_reset(s);
1260 
1261     memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1262                           "omap-tipb-bridge", 0x100);
1263     memory_region_add_subregion(memory, base, &s->iomem);
1264 
1265     return s;
1266 }
1267 
1268 /* Dummy Traffic Controller's Memory Interface */
1269 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1270                                unsigned size)
1271 {
1272     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1273     uint32_t ret;
1274 
1275     if (size != 4) {
1276         return omap_badwidth_read32(opaque, addr);
1277     }
1278 
1279     switch (addr) {
1280     case 0x00:	/* IMIF_PRIO */
1281     case 0x04:	/* EMIFS_PRIO */
1282     case 0x08:	/* EMIFF_PRIO */
1283     case 0x0c:	/* EMIFS_CONFIG */
1284     case 0x10:	/* EMIFS_CS0_CONFIG */
1285     case 0x14:	/* EMIFS_CS1_CONFIG */
1286     case 0x18:	/* EMIFS_CS2_CONFIG */
1287     case 0x1c:	/* EMIFS_CS3_CONFIG */
1288     case 0x24:	/* EMIFF_MRS */
1289     case 0x28:	/* TIMEOUT1 */
1290     case 0x2c:	/* TIMEOUT2 */
1291     case 0x30:	/* TIMEOUT3 */
1292     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
1293     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
1294         return s->tcmi_regs[addr >> 2];
1295 
1296     case 0x20:	/* EMIFF_SDRAM_CONFIG */
1297         ret = s->tcmi_regs[addr >> 2];
1298         s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1299         /* XXX: We can try using the VGA_DIRTY flag for this */
1300         return ret;
1301     }
1302 
1303     OMAP_BAD_REG(addr);
1304     return 0;
1305 }
1306 
1307 static void omap_tcmi_write(void *opaque, hwaddr addr,
1308                             uint64_t value, unsigned size)
1309 {
1310     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1311 
1312     if (size != 4) {
1313         omap_badwidth_write32(opaque, addr, value);
1314         return;
1315     }
1316 
1317     switch (addr) {
1318     case 0x00:	/* IMIF_PRIO */
1319     case 0x04:	/* EMIFS_PRIO */
1320     case 0x08:	/* EMIFF_PRIO */
1321     case 0x10:	/* EMIFS_CS0_CONFIG */
1322     case 0x14:	/* EMIFS_CS1_CONFIG */
1323     case 0x18:	/* EMIFS_CS2_CONFIG */
1324     case 0x1c:	/* EMIFS_CS3_CONFIG */
1325     case 0x20:	/* EMIFF_SDRAM_CONFIG */
1326     case 0x24:	/* EMIFF_MRS */
1327     case 0x28:	/* TIMEOUT1 */
1328     case 0x2c:	/* TIMEOUT2 */
1329     case 0x30:	/* TIMEOUT3 */
1330     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
1331     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
1332         s->tcmi_regs[addr >> 2] = value;
1333         break;
1334     case 0x0c:	/* EMIFS_CONFIG */
1335         s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1336         break;
1337 
1338     default:
1339         OMAP_BAD_REG(addr);
1340     }
1341 }
1342 
1343 static const MemoryRegionOps omap_tcmi_ops = {
1344     .read = omap_tcmi_read,
1345     .write = omap_tcmi_write,
1346     .endianness = DEVICE_NATIVE_ENDIAN,
1347 };
1348 
1349 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1350 {
1351     mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1352     mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1353     mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1354     mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1355     mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1356     mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1357     mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1358     mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1359     mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1360     mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1361     mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1362     mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1363     mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1364     mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1365     mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1366 }
1367 
1368 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1369                 struct omap_mpu_state_s *mpu)
1370 {
1371     memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1372                           "omap-tcmi", 0x100);
1373     memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1374     omap_tcmi_reset(mpu);
1375 }
1376 
1377 /* Digital phase-locked loops control */
1378 struct dpll_ctl_s {
1379     MemoryRegion iomem;
1380     uint16_t mode;
1381     omap_clk dpll;
1382 };
1383 
1384 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1385                                unsigned size)
1386 {
1387     struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1388 
1389     if (size != 2) {
1390         return omap_badwidth_read16(opaque, addr);
1391     }
1392 
1393     if (addr == 0x00)	/* CTL_REG */
1394         return s->mode;
1395 
1396     OMAP_BAD_REG(addr);
1397     return 0;
1398 }
1399 
1400 static void omap_dpll_write(void *opaque, hwaddr addr,
1401                             uint64_t value, unsigned size)
1402 {
1403     struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1404     uint16_t diff;
1405     static const int bypass_div[4] = { 1, 2, 4, 4 };
1406     int div, mult;
1407 
1408     if (size != 2) {
1409         omap_badwidth_write16(opaque, addr, value);
1410         return;
1411     }
1412 
1413     if (addr == 0x00) {	/* CTL_REG */
1414         /* See omap_ulpd_pm_write() too */
1415         diff = s->mode & value;
1416         s->mode = value & 0x2fff;
1417         if (diff & (0x3ff << 2)) {
1418             if (value & (1 << 4)) {			/* PLL_ENABLE */
1419                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
1420                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
1421             } else {
1422                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
1423                 mult = 1;
1424             }
1425             omap_clk_setrate(s->dpll, div, mult);
1426         }
1427 
1428         /* Enter the desired mode.  */
1429         s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1430 
1431         /* Act as if the lock is restored.  */
1432         s->mode |= 2;
1433     } else {
1434         OMAP_BAD_REG(addr);
1435     }
1436 }
1437 
1438 static const MemoryRegionOps omap_dpll_ops = {
1439     .read = omap_dpll_read,
1440     .write = omap_dpll_write,
1441     .endianness = DEVICE_NATIVE_ENDIAN,
1442 };
1443 
1444 static void omap_dpll_reset(struct dpll_ctl_s *s)
1445 {
1446     s->mode = 0x2002;
1447     omap_clk_setrate(s->dpll, 1, 1);
1448 }
1449 
1450 static struct dpll_ctl_s  *omap_dpll_init(MemoryRegion *memory,
1451                            hwaddr base, omap_clk clk)
1452 {
1453     struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1454     memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1455 
1456     s->dpll = clk;
1457     omap_dpll_reset(s);
1458 
1459     memory_region_add_subregion(memory, base, &s->iomem);
1460     return s;
1461 }
1462 
1463 /* MPU Clock/Reset/Power Mode Control */
1464 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1465                                unsigned size)
1466 {
1467     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1468 
1469     if (size != 2) {
1470         return omap_badwidth_read16(opaque, addr);
1471     }
1472 
1473     switch (addr) {
1474     case 0x00:	/* ARM_CKCTL */
1475         return s->clkm.arm_ckctl;
1476 
1477     case 0x04:	/* ARM_IDLECT1 */
1478         return s->clkm.arm_idlect1;
1479 
1480     case 0x08:	/* ARM_IDLECT2 */
1481         return s->clkm.arm_idlect2;
1482 
1483     case 0x0c:	/* ARM_EWUPCT */
1484         return s->clkm.arm_ewupct;
1485 
1486     case 0x10:	/* ARM_RSTCT1 */
1487         return s->clkm.arm_rstct1;
1488 
1489     case 0x14:	/* ARM_RSTCT2 */
1490         return s->clkm.arm_rstct2;
1491 
1492     case 0x18:	/* ARM_SYSST */
1493         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1494 
1495     case 0x1c:	/* ARM_CKOUT1 */
1496         return s->clkm.arm_ckout1;
1497 
1498     case 0x20:	/* ARM_CKOUT2 */
1499         break;
1500     }
1501 
1502     OMAP_BAD_REG(addr);
1503     return 0;
1504 }
1505 
1506 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1507                 uint16_t diff, uint16_t value)
1508 {
1509     omap_clk clk;
1510 
1511     if (diff & (1 << 14)) {				/* ARM_INTHCK_SEL */
1512         if (value & (1 << 14))
1513             /* Reserved */;
1514         else {
1515             clk = omap_findclk(s, "arminth_ck");
1516             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1517         }
1518     }
1519     if (diff & (1 << 12)) {				/* ARM_TIMXO */
1520         clk = omap_findclk(s, "armtim_ck");
1521         if (value & (1 << 12))
1522             omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1523         else
1524             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1525     }
1526     /* XXX: en_dspck */
1527     if (diff & (3 << 10)) {				/* DSPMMUDIV */
1528         clk = omap_findclk(s, "dspmmu_ck");
1529         omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1530     }
1531     if (diff & (3 << 8)) {				/* TCDIV */
1532         clk = omap_findclk(s, "tc_ck");
1533         omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1534     }
1535     if (diff & (3 << 6)) {				/* DSPDIV */
1536         clk = omap_findclk(s, "dsp_ck");
1537         omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1538     }
1539     if (diff & (3 << 4)) {				/* ARMDIV */
1540         clk = omap_findclk(s, "arm_ck");
1541         omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1542     }
1543     if (diff & (3 << 2)) {				/* LCDDIV */
1544         clk = omap_findclk(s, "lcd_ck");
1545         omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1546     }
1547     if (diff & (3 << 0)) {				/* PERDIV */
1548         clk = omap_findclk(s, "armper_ck");
1549         omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1550     }
1551 }
1552 
1553 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1554                 uint16_t diff, uint16_t value)
1555 {
1556     omap_clk clk;
1557 
1558     if (value & (1 << 11)) {                            /* SETARM_IDLE */
1559         cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1560     }
1561     if (!(value & (1 << 10))) {                         /* WKUP_MODE */
1562         /* XXX: disable wakeup from IRQ */
1563         qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1564     }
1565 
1566 #define SET_CANIDLE(clock, bit)				\
1567     if (diff & (1 << bit)) {				\
1568         clk = omap_findclk(s, clock);			\
1569         omap_clk_canidle(clk, (value >> bit) & 1);	\
1570     }
1571     SET_CANIDLE("mpuwd_ck", 0)				/* IDLWDT_ARM */
1572     SET_CANIDLE("armxor_ck", 1)				/* IDLXORP_ARM */
1573     SET_CANIDLE("mpuper_ck", 2)				/* IDLPER_ARM */
1574     SET_CANIDLE("lcd_ck", 3)				/* IDLLCD_ARM */
1575     SET_CANIDLE("lb_ck", 4)				/* IDLLB_ARM */
1576     SET_CANIDLE("hsab_ck", 5)				/* IDLHSAB_ARM */
1577     SET_CANIDLE("tipb_ck", 6)				/* IDLIF_ARM */
1578     SET_CANIDLE("dma_ck", 6)				/* IDLIF_ARM */
1579     SET_CANIDLE("tc_ck", 6)				/* IDLIF_ARM */
1580     SET_CANIDLE("dpll1", 7)				/* IDLDPLL_ARM */
1581     SET_CANIDLE("dpll2", 7)				/* IDLDPLL_ARM */
1582     SET_CANIDLE("dpll3", 7)				/* IDLDPLL_ARM */
1583     SET_CANIDLE("mpui_ck", 8)				/* IDLAPI_ARM */
1584     SET_CANIDLE("armtim_ck", 9)				/* IDLTIM_ARM */
1585 }
1586 
1587 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1588                 uint16_t diff, uint16_t value)
1589 {
1590     omap_clk clk;
1591 
1592 #define SET_ONOFF(clock, bit)				\
1593     if (diff & (1 << bit)) {				\
1594         clk = omap_findclk(s, clock);			\
1595         omap_clk_onoff(clk, (value >> bit) & 1);	\
1596     }
1597     SET_ONOFF("mpuwd_ck", 0)				/* EN_WDTCK */
1598     SET_ONOFF("armxor_ck", 1)				/* EN_XORPCK */
1599     SET_ONOFF("mpuper_ck", 2)				/* EN_PERCK */
1600     SET_ONOFF("lcd_ck", 3)				/* EN_LCDCK */
1601     SET_ONOFF("lb_ck", 4)				/* EN_LBCK */
1602     SET_ONOFF("hsab_ck", 5)				/* EN_HSABCK */
1603     SET_ONOFF("mpui_ck", 6)				/* EN_APICK */
1604     SET_ONOFF("armtim_ck", 7)				/* EN_TIMCK */
1605     SET_CANIDLE("dma_ck", 8)				/* DMACK_REQ */
1606     SET_ONOFF("arm_gpio_ck", 9)				/* EN_GPIOCK */
1607     SET_ONOFF("lbfree_ck", 10)				/* EN_LBFREECK */
1608 }
1609 
1610 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1611                 uint16_t diff, uint16_t value)
1612 {
1613     omap_clk clk;
1614 
1615     if (diff & (3 << 4)) {				/* TCLKOUT */
1616         clk = omap_findclk(s, "tclk_out");
1617         switch ((value >> 4) & 3) {
1618         case 1:
1619             omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1620             omap_clk_onoff(clk, 1);
1621             break;
1622         case 2:
1623             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1624             omap_clk_onoff(clk, 1);
1625             break;
1626         default:
1627             omap_clk_onoff(clk, 0);
1628         }
1629     }
1630     if (diff & (3 << 2)) {				/* DCLKOUT */
1631         clk = omap_findclk(s, "dclk_out");
1632         switch ((value >> 2) & 3) {
1633         case 0:
1634             omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1635             break;
1636         case 1:
1637             omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1638             break;
1639         case 2:
1640             omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1641             break;
1642         case 3:
1643             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1644             break;
1645         }
1646     }
1647     if (diff & (3 << 0)) {				/* ACLKOUT */
1648         clk = omap_findclk(s, "aclk_out");
1649         switch ((value >> 0) & 3) {
1650         case 1:
1651             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1652             omap_clk_onoff(clk, 1);
1653             break;
1654         case 2:
1655             omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1656             omap_clk_onoff(clk, 1);
1657             break;
1658         case 3:
1659             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1660             omap_clk_onoff(clk, 1);
1661             break;
1662         default:
1663             omap_clk_onoff(clk, 0);
1664         }
1665     }
1666 }
1667 
1668 static void omap_clkm_write(void *opaque, hwaddr addr,
1669                             uint64_t value, unsigned size)
1670 {
1671     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1672     uint16_t diff;
1673     omap_clk clk;
1674     static const char *clkschemename[8] = {
1675         "fully synchronous", "fully asynchronous", "synchronous scalable",
1676         "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1677     };
1678 
1679     if (size != 2) {
1680         omap_badwidth_write16(opaque, addr, value);
1681         return;
1682     }
1683 
1684     switch (addr) {
1685     case 0x00:	/* ARM_CKCTL */
1686         diff = s->clkm.arm_ckctl ^ value;
1687         s->clkm.arm_ckctl = value & 0x7fff;
1688         omap_clkm_ckctl_update(s, diff, value);
1689         return;
1690 
1691     case 0x04:	/* ARM_IDLECT1 */
1692         diff = s->clkm.arm_idlect1 ^ value;
1693         s->clkm.arm_idlect1 = value & 0x0fff;
1694         omap_clkm_idlect1_update(s, diff, value);
1695         return;
1696 
1697     case 0x08:	/* ARM_IDLECT2 */
1698         diff = s->clkm.arm_idlect2 ^ value;
1699         s->clkm.arm_idlect2 = value & 0x07ff;
1700         omap_clkm_idlect2_update(s, diff, value);
1701         return;
1702 
1703     case 0x0c:	/* ARM_EWUPCT */
1704         s->clkm.arm_ewupct = value & 0x003f;
1705         return;
1706 
1707     case 0x10:	/* ARM_RSTCT1 */
1708         diff = s->clkm.arm_rstct1 ^ value;
1709         s->clkm.arm_rstct1 = value & 0x0007;
1710         if (value & 9) {
1711             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1712             s->clkm.cold_start = 0xa;
1713         }
1714         if (diff & ~value & 4) {				/* DSP_RST */
1715             omap_mpui_reset(s);
1716             omap_tipb_bridge_reset(s->private_tipb);
1717             omap_tipb_bridge_reset(s->public_tipb);
1718         }
1719         if (diff & 2) {						/* DSP_EN */
1720             clk = omap_findclk(s, "dsp_ck");
1721             omap_clk_canidle(clk, (~value >> 1) & 1);
1722         }
1723         return;
1724 
1725     case 0x14:	/* ARM_RSTCT2 */
1726         s->clkm.arm_rstct2 = value & 0x0001;
1727         return;
1728 
1729     case 0x18:	/* ARM_SYSST */
1730         if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1731             s->clkm.clocking_scheme = (value >> 11) & 7;
1732             printf("%s: clocking scheme set to %s\n", __func__,
1733                    clkschemename[s->clkm.clocking_scheme]);
1734         }
1735         s->clkm.cold_start &= value & 0x3f;
1736         return;
1737 
1738     case 0x1c:	/* ARM_CKOUT1 */
1739         diff = s->clkm.arm_ckout1 ^ value;
1740         s->clkm.arm_ckout1 = value & 0x003f;
1741         omap_clkm_ckout1_update(s, diff, value);
1742         return;
1743 
1744     case 0x20:	/* ARM_CKOUT2 */
1745     default:
1746         OMAP_BAD_REG(addr);
1747     }
1748 }
1749 
1750 static const MemoryRegionOps omap_clkm_ops = {
1751     .read = omap_clkm_read,
1752     .write = omap_clkm_write,
1753     .endianness = DEVICE_NATIVE_ENDIAN,
1754 };
1755 
1756 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1757                                  unsigned size)
1758 {
1759     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1760     CPUState *cpu = CPU(s->cpu);
1761 
1762     if (size != 2) {
1763         return omap_badwidth_read16(opaque, addr);
1764     }
1765 
1766     switch (addr) {
1767     case 0x04:	/* DSP_IDLECT1 */
1768         return s->clkm.dsp_idlect1;
1769 
1770     case 0x08:	/* DSP_IDLECT2 */
1771         return s->clkm.dsp_idlect2;
1772 
1773     case 0x14:	/* DSP_RSTCT2 */
1774         return s->clkm.dsp_rstct2;
1775 
1776     case 0x18:	/* DSP_SYSST */
1777         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1778                 (cpu->halted << 6);      /* Quite useless... */
1779     }
1780 
1781     OMAP_BAD_REG(addr);
1782     return 0;
1783 }
1784 
1785 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1786                 uint16_t diff, uint16_t value)
1787 {
1788     omap_clk clk;
1789 
1790     SET_CANIDLE("dspxor_ck", 1);			/* IDLXORP_DSP */
1791 }
1792 
1793 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1794                 uint16_t diff, uint16_t value)
1795 {
1796     omap_clk clk;
1797 
1798     SET_ONOFF("dspxor_ck", 1);				/* EN_XORPCK */
1799 }
1800 
1801 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1802                               uint64_t value, unsigned size)
1803 {
1804     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1805     uint16_t diff;
1806 
1807     if (size != 2) {
1808         omap_badwidth_write16(opaque, addr, value);
1809         return;
1810     }
1811 
1812     switch (addr) {
1813     case 0x04:	/* DSP_IDLECT1 */
1814         diff = s->clkm.dsp_idlect1 ^ value;
1815         s->clkm.dsp_idlect1 = value & 0x01f7;
1816         omap_clkdsp_idlect1_update(s, diff, value);
1817         break;
1818 
1819     case 0x08:	/* DSP_IDLECT2 */
1820         s->clkm.dsp_idlect2 = value & 0x0037;
1821         diff = s->clkm.dsp_idlect1 ^ value;
1822         omap_clkdsp_idlect2_update(s, diff, value);
1823         break;
1824 
1825     case 0x14:	/* DSP_RSTCT2 */
1826         s->clkm.dsp_rstct2 = value & 0x0001;
1827         break;
1828 
1829     case 0x18:	/* DSP_SYSST */
1830         s->clkm.cold_start &= value & 0x3f;
1831         break;
1832 
1833     default:
1834         OMAP_BAD_REG(addr);
1835     }
1836 }
1837 
1838 static const MemoryRegionOps omap_clkdsp_ops = {
1839     .read = omap_clkdsp_read,
1840     .write = omap_clkdsp_write,
1841     .endianness = DEVICE_NATIVE_ENDIAN,
1842 };
1843 
1844 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1845 {
1846     if (s->wdt && s->wdt->reset)
1847         s->clkm.cold_start = 0x6;
1848     s->clkm.clocking_scheme = 0;
1849     omap_clkm_ckctl_update(s, ~0, 0x3000);
1850     s->clkm.arm_ckctl = 0x3000;
1851     omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1852     s->clkm.arm_idlect1 = 0x0400;
1853     omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1854     s->clkm.arm_idlect2 = 0x0100;
1855     s->clkm.arm_ewupct = 0x003f;
1856     s->clkm.arm_rstct1 = 0x0000;
1857     s->clkm.arm_rstct2 = 0x0000;
1858     s->clkm.arm_ckout1 = 0x0015;
1859     s->clkm.dpll1_mode = 0x2002;
1860     omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1861     s->clkm.dsp_idlect1 = 0x0040;
1862     omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1863     s->clkm.dsp_idlect2 = 0x0000;
1864     s->clkm.dsp_rstct2 = 0x0000;
1865 }
1866 
1867 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1868                 hwaddr dsp_base, struct omap_mpu_state_s *s)
1869 {
1870     memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1871                           "omap-clkm", 0x100);
1872     memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1873                           "omap-clkdsp", 0x1000);
1874 
1875     s->clkm.arm_idlect1 = 0x03ff;
1876     s->clkm.arm_idlect2 = 0x0100;
1877     s->clkm.dsp_idlect1 = 0x0002;
1878     omap_clkm_reset(s);
1879     s->clkm.cold_start = 0x3a;
1880 
1881     memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1882     memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1883 }
1884 
1885 /* MPU I/O */
1886 struct omap_mpuio_s {
1887     qemu_irq irq;
1888     qemu_irq kbd_irq;
1889     qemu_irq *in;
1890     qemu_irq handler[16];
1891     qemu_irq wakeup;
1892     MemoryRegion iomem;
1893 
1894     uint16_t inputs;
1895     uint16_t outputs;
1896     uint16_t dir;
1897     uint16_t edge;
1898     uint16_t mask;
1899     uint16_t ints;
1900 
1901     uint16_t debounce;
1902     uint16_t latch;
1903     uint8_t event;
1904 
1905     uint8_t buttons[5];
1906     uint8_t row_latch;
1907     uint8_t cols;
1908     int kbd_mask;
1909     int clk;
1910 };
1911 
1912 static void omap_mpuio_set(void *opaque, int line, int level)
1913 {
1914     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1915     uint16_t prev = s->inputs;
1916 
1917     if (level)
1918         s->inputs |= 1 << line;
1919     else
1920         s->inputs &= ~(1 << line);
1921 
1922     if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1923         if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1924             s->ints |= 1 << line;
1925             qemu_irq_raise(s->irq);
1926             /* TODO: wakeup */
1927         }
1928         if ((s->event & (1 << 0)) &&		/* SET_GPIO_EVENT_MODE */
1929                 (s->event >> 1) == line)	/* PIN_SELECT */
1930             s->latch = s->inputs;
1931     }
1932 }
1933 
1934 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1935 {
1936     int i;
1937     uint8_t *row, rows = 0, cols = ~s->cols;
1938 
1939     for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1940         if (*row & cols)
1941             rows |= i;
1942 
1943     qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1944     s->row_latch = ~rows;
1945 }
1946 
1947 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1948                                 unsigned size)
1949 {
1950     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1951     int offset = addr & OMAP_MPUI_REG_MASK;
1952     uint16_t ret;
1953 
1954     if (size != 2) {
1955         return omap_badwidth_read16(opaque, addr);
1956     }
1957 
1958     switch (offset) {
1959     case 0x00:	/* INPUT_LATCH */
1960         return s->inputs;
1961 
1962     case 0x04:	/* OUTPUT_REG */
1963         return s->outputs;
1964 
1965     case 0x08:	/* IO_CNTL */
1966         return s->dir;
1967 
1968     case 0x10:	/* KBR_LATCH */
1969         return s->row_latch;
1970 
1971     case 0x14:	/* KBC_REG */
1972         return s->cols;
1973 
1974     case 0x18:	/* GPIO_EVENT_MODE_REG */
1975         return s->event;
1976 
1977     case 0x1c:	/* GPIO_INT_EDGE_REG */
1978         return s->edge;
1979 
1980     case 0x20:	/* KBD_INT */
1981         return (~s->row_latch & 0x1f) && !s->kbd_mask;
1982 
1983     case 0x24:	/* GPIO_INT */
1984         ret = s->ints;
1985         s->ints &= s->mask;
1986         if (ret)
1987             qemu_irq_lower(s->irq);
1988         return ret;
1989 
1990     case 0x28:	/* KBD_MASKIT */
1991         return s->kbd_mask;
1992 
1993     case 0x2c:	/* GPIO_MASKIT */
1994         return s->mask;
1995 
1996     case 0x30:	/* GPIO_DEBOUNCING_REG */
1997         return s->debounce;
1998 
1999     case 0x34:	/* GPIO_LATCH_REG */
2000         return s->latch;
2001     }
2002 
2003     OMAP_BAD_REG(addr);
2004     return 0;
2005 }
2006 
2007 static void omap_mpuio_write(void *opaque, hwaddr addr,
2008                              uint64_t value, unsigned size)
2009 {
2010     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2011     int offset = addr & OMAP_MPUI_REG_MASK;
2012     uint16_t diff;
2013     int ln;
2014 
2015     if (size != 2) {
2016         omap_badwidth_write16(opaque, addr, value);
2017         return;
2018     }
2019 
2020     switch (offset) {
2021     case 0x04:	/* OUTPUT_REG */
2022         diff = (s->outputs ^ value) & ~s->dir;
2023         s->outputs = value;
2024         while ((ln = ctz32(diff)) != 32) {
2025             if (s->handler[ln])
2026                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2027             diff &= ~(1 << ln);
2028         }
2029         break;
2030 
2031     case 0x08:	/* IO_CNTL */
2032         diff = s->outputs & (s->dir ^ value);
2033         s->dir = value;
2034 
2035         value = s->outputs & ~s->dir;
2036         while ((ln = ctz32(diff)) != 32) {
2037             if (s->handler[ln])
2038                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2039             diff &= ~(1 << ln);
2040         }
2041         break;
2042 
2043     case 0x14:	/* KBC_REG */
2044         s->cols = value;
2045         omap_mpuio_kbd_update(s);
2046         break;
2047 
2048     case 0x18:	/* GPIO_EVENT_MODE_REG */
2049         s->event = value & 0x1f;
2050         break;
2051 
2052     case 0x1c:	/* GPIO_INT_EDGE_REG */
2053         s->edge = value;
2054         break;
2055 
2056     case 0x28:	/* KBD_MASKIT */
2057         s->kbd_mask = value & 1;
2058         omap_mpuio_kbd_update(s);
2059         break;
2060 
2061     case 0x2c:	/* GPIO_MASKIT */
2062         s->mask = value;
2063         break;
2064 
2065     case 0x30:	/* GPIO_DEBOUNCING_REG */
2066         s->debounce = value & 0x1ff;
2067         break;
2068 
2069     case 0x00:	/* INPUT_LATCH */
2070     case 0x10:	/* KBR_LATCH */
2071     case 0x20:	/* KBD_INT */
2072     case 0x24:	/* GPIO_INT */
2073     case 0x34:	/* GPIO_LATCH_REG */
2074         OMAP_RO_REG(addr);
2075         return;
2076 
2077     default:
2078         OMAP_BAD_REG(addr);
2079         return;
2080     }
2081 }
2082 
2083 static const MemoryRegionOps omap_mpuio_ops  = {
2084     .read = omap_mpuio_read,
2085     .write = omap_mpuio_write,
2086     .endianness = DEVICE_NATIVE_ENDIAN,
2087 };
2088 
2089 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2090 {
2091     s->inputs = 0;
2092     s->outputs = 0;
2093     s->dir = ~0;
2094     s->event = 0;
2095     s->edge = 0;
2096     s->kbd_mask = 0;
2097     s->mask = 0;
2098     s->debounce = 0;
2099     s->latch = 0;
2100     s->ints = 0;
2101     s->row_latch = 0x1f;
2102     s->clk = 1;
2103 }
2104 
2105 static void omap_mpuio_onoff(void *opaque, int line, int on)
2106 {
2107     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2108 
2109     s->clk = on;
2110     if (on)
2111         omap_mpuio_kbd_update(s);
2112 }
2113 
2114 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2115                 hwaddr base,
2116                 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2117                 omap_clk clk)
2118 {
2119     struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2120 
2121     s->irq = gpio_int;
2122     s->kbd_irq = kbd_int;
2123     s->wakeup = wakeup;
2124     s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2125     omap_mpuio_reset(s);
2126 
2127     memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2128                           "omap-mpuio", 0x800);
2129     memory_region_add_subregion(memory, base, &s->iomem);
2130 
2131     omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2132 
2133     return s;
2134 }
2135 
2136 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2137 {
2138     return s->in;
2139 }
2140 
2141 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2142 {
2143     if (line >= 16 || line < 0)
2144         hw_error("%s: No GPIO line %i\n", __func__, line);
2145     s->handler[line] = handler;
2146 }
2147 
2148 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2149 {
2150     if (row >= 5 || row < 0)
2151         hw_error("%s: No key %i-%i\n", __func__, col, row);
2152 
2153     if (down)
2154         s->buttons[row] |= 1 << col;
2155     else
2156         s->buttons[row] &= ~(1 << col);
2157 
2158     omap_mpuio_kbd_update(s);
2159 }
2160 
2161 /* MicroWire Interface */
2162 struct omap_uwire_s {
2163     MemoryRegion iomem;
2164     qemu_irq txirq;
2165     qemu_irq rxirq;
2166     qemu_irq txdrq;
2167 
2168     uint16_t txbuf;
2169     uint16_t rxbuf;
2170     uint16_t control;
2171     uint16_t setup[5];
2172 
2173     uWireSlave *chip[4];
2174 };
2175 
2176 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2177 {
2178     int chipselect = (s->control >> 10) & 3;		/* INDEX */
2179     uWireSlave *slave = s->chip[chipselect];
2180 
2181     if ((s->control >> 5) & 0x1f) {			/* NB_BITS_WR */
2182         if (s->control & (1 << 12))			/* CS_CMD */
2183             if (slave && slave->send)
2184                 slave->send(slave->opaque,
2185                                 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2186         s->control &= ~(1 << 14);			/* CSRB */
2187         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2188          * a DRQ.  When is the level IRQ supposed to be reset?  */
2189     }
2190 
2191     if ((s->control >> 0) & 0x1f) {			/* NB_BITS_RD */
2192         if (s->control & (1 << 12))			/* CS_CMD */
2193             if (slave && slave->receive)
2194                 s->rxbuf = slave->receive(slave->opaque);
2195         s->control |= 1 << 15;				/* RDRB */
2196         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2197          * a DRQ.  When is the level IRQ supposed to be reset?  */
2198     }
2199 }
2200 
2201 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2202                                 unsigned size)
2203 {
2204     struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2205     int offset = addr & OMAP_MPUI_REG_MASK;
2206 
2207     if (size != 2) {
2208         return omap_badwidth_read16(opaque, addr);
2209     }
2210 
2211     switch (offset) {
2212     case 0x00:	/* RDR */
2213         s->control &= ~(1 << 15);			/* RDRB */
2214         return s->rxbuf;
2215 
2216     case 0x04:	/* CSR */
2217         return s->control;
2218 
2219     case 0x08:	/* SR1 */
2220         return s->setup[0];
2221     case 0x0c:	/* SR2 */
2222         return s->setup[1];
2223     case 0x10:	/* SR3 */
2224         return s->setup[2];
2225     case 0x14:	/* SR4 */
2226         return s->setup[3];
2227     case 0x18:	/* SR5 */
2228         return s->setup[4];
2229     }
2230 
2231     OMAP_BAD_REG(addr);
2232     return 0;
2233 }
2234 
2235 static void omap_uwire_write(void *opaque, hwaddr addr,
2236                              uint64_t value, unsigned size)
2237 {
2238     struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2239     int offset = addr & OMAP_MPUI_REG_MASK;
2240 
2241     if (size != 2) {
2242         omap_badwidth_write16(opaque, addr, value);
2243         return;
2244     }
2245 
2246     switch (offset) {
2247     case 0x00:	/* TDR */
2248         s->txbuf = value;				/* TD */
2249         if ((s->setup[4] & (1 << 2)) &&			/* AUTO_TX_EN */
2250                         ((s->setup[4] & (1 << 3)) ||	/* CS_TOGGLE_TX_EN */
2251                          (s->control & (1 << 12)))) {	/* CS_CMD */
2252             s->control |= 1 << 14;			/* CSRB */
2253             omap_uwire_transfer_start(s);
2254         }
2255         break;
2256 
2257     case 0x04:	/* CSR */
2258         s->control = value & 0x1fff;
2259         if (value & (1 << 13))				/* START */
2260             omap_uwire_transfer_start(s);
2261         break;
2262 
2263     case 0x08:	/* SR1 */
2264         s->setup[0] = value & 0x003f;
2265         break;
2266 
2267     case 0x0c:	/* SR2 */
2268         s->setup[1] = value & 0x0fc0;
2269         break;
2270 
2271     case 0x10:	/* SR3 */
2272         s->setup[2] = value & 0x0003;
2273         break;
2274 
2275     case 0x14:	/* SR4 */
2276         s->setup[3] = value & 0x0001;
2277         break;
2278 
2279     case 0x18:	/* SR5 */
2280         s->setup[4] = value & 0x000f;
2281         break;
2282 
2283     default:
2284         OMAP_BAD_REG(addr);
2285         return;
2286     }
2287 }
2288 
2289 static const MemoryRegionOps omap_uwire_ops = {
2290     .read = omap_uwire_read,
2291     .write = omap_uwire_write,
2292     .endianness = DEVICE_NATIVE_ENDIAN,
2293 };
2294 
2295 static void omap_uwire_reset(struct omap_uwire_s *s)
2296 {
2297     s->control = 0;
2298     s->setup[0] = 0;
2299     s->setup[1] = 0;
2300     s->setup[2] = 0;
2301     s->setup[3] = 0;
2302     s->setup[4] = 0;
2303 }
2304 
2305 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2306                                             hwaddr base,
2307                                             qemu_irq txirq, qemu_irq rxirq,
2308                                             qemu_irq dma,
2309                                             omap_clk clk)
2310 {
2311     struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2312 
2313     s->txirq = txirq;
2314     s->rxirq = rxirq;
2315     s->txdrq = dma;
2316     omap_uwire_reset(s);
2317 
2318     memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2319     memory_region_add_subregion(system_memory, base, &s->iomem);
2320 
2321     return s;
2322 }
2323 
2324 void omap_uwire_attach(struct omap_uwire_s *s,
2325                 uWireSlave *slave, int chipselect)
2326 {
2327     if (chipselect < 0 || chipselect > 3) {
2328         error_report("%s: Bad chipselect %i", __func__, chipselect);
2329         exit(-1);
2330     }
2331 
2332     s->chip[chipselect] = slave;
2333 }
2334 
2335 /* Pseudonoise Pulse-Width Light Modulator */
2336 struct omap_pwl_s {
2337     MemoryRegion iomem;
2338     uint8_t output;
2339     uint8_t level;
2340     uint8_t enable;
2341     int clk;
2342 };
2343 
2344 static void omap_pwl_update(struct omap_pwl_s *s)
2345 {
2346     int output = (s->clk && s->enable) ? s->level : 0;
2347 
2348     if (output != s->output) {
2349         s->output = output;
2350         printf("%s: Backlight now at %i/256\n", __func__, output);
2351     }
2352 }
2353 
2354 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2355                               unsigned size)
2356 {
2357     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2358     int offset = addr & OMAP_MPUI_REG_MASK;
2359 
2360     if (size != 1) {
2361         return omap_badwidth_read8(opaque, addr);
2362     }
2363 
2364     switch (offset) {
2365     case 0x00:	/* PWL_LEVEL */
2366         return s->level;
2367     case 0x04:	/* PWL_CTRL */
2368         return s->enable;
2369     }
2370     OMAP_BAD_REG(addr);
2371     return 0;
2372 }
2373 
2374 static void omap_pwl_write(void *opaque, hwaddr addr,
2375                            uint64_t value, unsigned size)
2376 {
2377     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2378     int offset = addr & OMAP_MPUI_REG_MASK;
2379 
2380     if (size != 1) {
2381         omap_badwidth_write8(opaque, addr, value);
2382         return;
2383     }
2384 
2385     switch (offset) {
2386     case 0x00:	/* PWL_LEVEL */
2387         s->level = value;
2388         omap_pwl_update(s);
2389         break;
2390     case 0x04:	/* PWL_CTRL */
2391         s->enable = value & 1;
2392         omap_pwl_update(s);
2393         break;
2394     default:
2395         OMAP_BAD_REG(addr);
2396         return;
2397     }
2398 }
2399 
2400 static const MemoryRegionOps omap_pwl_ops = {
2401     .read = omap_pwl_read,
2402     .write = omap_pwl_write,
2403     .endianness = DEVICE_NATIVE_ENDIAN,
2404 };
2405 
2406 static void omap_pwl_reset(struct omap_pwl_s *s)
2407 {
2408     s->output = 0;
2409     s->level = 0;
2410     s->enable = 0;
2411     s->clk = 1;
2412     omap_pwl_update(s);
2413 }
2414 
2415 static void omap_pwl_clk_update(void *opaque, int line, int on)
2416 {
2417     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2418 
2419     s->clk = on;
2420     omap_pwl_update(s);
2421 }
2422 
2423 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2424                                         hwaddr base,
2425                                         omap_clk clk)
2426 {
2427     struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2428 
2429     omap_pwl_reset(s);
2430 
2431     memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2432                           "omap-pwl", 0x800);
2433     memory_region_add_subregion(system_memory, base, &s->iomem);
2434 
2435     omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2436     return s;
2437 }
2438 
2439 /* Pulse-Width Tone module */
2440 struct omap_pwt_s {
2441     MemoryRegion iomem;
2442     uint8_t frc;
2443     uint8_t vrc;
2444     uint8_t gcr;
2445     omap_clk clk;
2446 };
2447 
2448 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2449                               unsigned size)
2450 {
2451     struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2452     int offset = addr & OMAP_MPUI_REG_MASK;
2453 
2454     if (size != 1) {
2455         return omap_badwidth_read8(opaque, addr);
2456     }
2457 
2458     switch (offset) {
2459     case 0x00:	/* FRC */
2460         return s->frc;
2461     case 0x04:	/* VCR */
2462         return s->vrc;
2463     case 0x08:	/* GCR */
2464         return s->gcr;
2465     }
2466     OMAP_BAD_REG(addr);
2467     return 0;
2468 }
2469 
2470 static void omap_pwt_write(void *opaque, hwaddr addr,
2471                            uint64_t value, unsigned size)
2472 {
2473     struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2474     int offset = addr & OMAP_MPUI_REG_MASK;
2475 
2476     if (size != 1) {
2477         omap_badwidth_write8(opaque, addr, value);
2478         return;
2479     }
2480 
2481     switch (offset) {
2482     case 0x00:	/* FRC */
2483         s->frc = value & 0x3f;
2484         break;
2485     case 0x04:	/* VRC */
2486         if ((value ^ s->vrc) & 1) {
2487             if (value & 1)
2488                 printf("%s: %iHz buzz on\n", __func__, (int)
2489                                 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2490                                 ((omap_clk_getrate(s->clk) >> 3) /
2491                                  /* Pre-multiplexer divider */
2492                                  ((s->gcr & 2) ? 1 : 154) /
2493                                  /* Octave multiplexer */
2494                                  (2 << (value & 3)) *
2495                                  /* 101/107 divider */
2496                                  ((value & (1 << 2)) ? 101 : 107) *
2497                                  /*  49/55 divider */
2498                                  ((value & (1 << 3)) ?  49 : 55) *
2499                                  /*  50/63 divider */
2500                                  ((value & (1 << 4)) ?  50 : 63) *
2501                                  /*  80/127 divider */
2502                                  ((value & (1 << 5)) ?  80 : 127) /
2503                                  (107 * 55 * 63 * 127)));
2504             else
2505                 printf("%s: silence!\n", __func__);
2506         }
2507         s->vrc = value & 0x7f;
2508         break;
2509     case 0x08:	/* GCR */
2510         s->gcr = value & 3;
2511         break;
2512     default:
2513         OMAP_BAD_REG(addr);
2514         return;
2515     }
2516 }
2517 
2518 static const MemoryRegionOps omap_pwt_ops = {
2519     .read =omap_pwt_read,
2520     .write = omap_pwt_write,
2521     .endianness = DEVICE_NATIVE_ENDIAN,
2522 };
2523 
2524 static void omap_pwt_reset(struct omap_pwt_s *s)
2525 {
2526     s->frc = 0;
2527     s->vrc = 0;
2528     s->gcr = 0;
2529 }
2530 
2531 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2532                                         hwaddr base,
2533                                         omap_clk clk)
2534 {
2535     struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2536     s->clk = clk;
2537     omap_pwt_reset(s);
2538 
2539     memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2540                           "omap-pwt", 0x800);
2541     memory_region_add_subregion(system_memory, base, &s->iomem);
2542     return s;
2543 }
2544 
2545 /* Real-time Clock module */
2546 struct omap_rtc_s {
2547     MemoryRegion iomem;
2548     qemu_irq irq;
2549     qemu_irq alarm;
2550     QEMUTimer *clk;
2551 
2552     uint8_t interrupts;
2553     uint8_t status;
2554     int16_t comp_reg;
2555     int running;
2556     int pm_am;
2557     int auto_comp;
2558     int round;
2559     struct tm alarm_tm;
2560     time_t alarm_ti;
2561 
2562     struct tm current_tm;
2563     time_t ti;
2564     uint64_t tick;
2565 };
2566 
2567 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2568 {
2569     /* s->alarm is level-triggered */
2570     qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2571 }
2572 
2573 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2574 {
2575     s->alarm_ti = mktimegm(&s->alarm_tm);
2576     if (s->alarm_ti == -1)
2577         printf("%s: conversion failed\n", __func__);
2578 }
2579 
2580 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2581                               unsigned size)
2582 {
2583     struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2584     int offset = addr & OMAP_MPUI_REG_MASK;
2585     uint8_t i;
2586 
2587     if (size != 1) {
2588         return omap_badwidth_read8(opaque, addr);
2589     }
2590 
2591     switch (offset) {
2592     case 0x00:	/* SECONDS_REG */
2593         return to_bcd(s->current_tm.tm_sec);
2594 
2595     case 0x04:	/* MINUTES_REG */
2596         return to_bcd(s->current_tm.tm_min);
2597 
2598     case 0x08:	/* HOURS_REG */
2599         if (s->pm_am)
2600             return ((s->current_tm.tm_hour > 11) << 7) |
2601                     to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2602         else
2603             return to_bcd(s->current_tm.tm_hour);
2604 
2605     case 0x0c:	/* DAYS_REG */
2606         return to_bcd(s->current_tm.tm_mday);
2607 
2608     case 0x10:	/* MONTHS_REG */
2609         return to_bcd(s->current_tm.tm_mon + 1);
2610 
2611     case 0x14:	/* YEARS_REG */
2612         return to_bcd(s->current_tm.tm_year % 100);
2613 
2614     case 0x18:	/* WEEK_REG */
2615         return s->current_tm.tm_wday;
2616 
2617     case 0x20:	/* ALARM_SECONDS_REG */
2618         return to_bcd(s->alarm_tm.tm_sec);
2619 
2620     case 0x24:	/* ALARM_MINUTES_REG */
2621         return to_bcd(s->alarm_tm.tm_min);
2622 
2623     case 0x28:	/* ALARM_HOURS_REG */
2624         if (s->pm_am)
2625             return ((s->alarm_tm.tm_hour > 11) << 7) |
2626                     to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2627         else
2628             return to_bcd(s->alarm_tm.tm_hour);
2629 
2630     case 0x2c:	/* ALARM_DAYS_REG */
2631         return to_bcd(s->alarm_tm.tm_mday);
2632 
2633     case 0x30:	/* ALARM_MONTHS_REG */
2634         return to_bcd(s->alarm_tm.tm_mon + 1);
2635 
2636     case 0x34:	/* ALARM_YEARS_REG */
2637         return to_bcd(s->alarm_tm.tm_year % 100);
2638 
2639     case 0x40:	/* RTC_CTRL_REG */
2640         return (s->pm_am << 3) | (s->auto_comp << 2) |
2641                 (s->round << 1) | s->running;
2642 
2643     case 0x44:	/* RTC_STATUS_REG */
2644         i = s->status;
2645         s->status &= ~0x3d;
2646         return i;
2647 
2648     case 0x48:	/* RTC_INTERRUPTS_REG */
2649         return s->interrupts;
2650 
2651     case 0x4c:	/* RTC_COMP_LSB_REG */
2652         return ((uint16_t) s->comp_reg) & 0xff;
2653 
2654     case 0x50:	/* RTC_COMP_MSB_REG */
2655         return ((uint16_t) s->comp_reg) >> 8;
2656     }
2657 
2658     OMAP_BAD_REG(addr);
2659     return 0;
2660 }
2661 
2662 static void omap_rtc_write(void *opaque, hwaddr addr,
2663                            uint64_t value, unsigned size)
2664 {
2665     struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2666     int offset = addr & OMAP_MPUI_REG_MASK;
2667     struct tm new_tm;
2668     time_t ti[2];
2669 
2670     if (size != 1) {
2671         omap_badwidth_write8(opaque, addr, value);
2672         return;
2673     }
2674 
2675     switch (offset) {
2676     case 0x00:	/* SECONDS_REG */
2677 #ifdef ALMDEBUG
2678         printf("RTC SEC_REG <-- %02x\n", value);
2679 #endif
2680         s->ti -= s->current_tm.tm_sec;
2681         s->ti += from_bcd(value);
2682         return;
2683 
2684     case 0x04:	/* MINUTES_REG */
2685 #ifdef ALMDEBUG
2686         printf("RTC MIN_REG <-- %02x\n", value);
2687 #endif
2688         s->ti -= s->current_tm.tm_min * 60;
2689         s->ti += from_bcd(value) * 60;
2690         return;
2691 
2692     case 0x08:	/* HOURS_REG */
2693 #ifdef ALMDEBUG
2694         printf("RTC HRS_REG <-- %02x\n", value);
2695 #endif
2696         s->ti -= s->current_tm.tm_hour * 3600;
2697         if (s->pm_am) {
2698             s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2699             s->ti += ((value >> 7) & 1) * 43200;
2700         } else
2701             s->ti += from_bcd(value & 0x3f) * 3600;
2702         return;
2703 
2704     case 0x0c:	/* DAYS_REG */
2705 #ifdef ALMDEBUG
2706         printf("RTC DAY_REG <-- %02x\n", value);
2707 #endif
2708         s->ti -= s->current_tm.tm_mday * 86400;
2709         s->ti += from_bcd(value) * 86400;
2710         return;
2711 
2712     case 0x10:	/* MONTHS_REG */
2713 #ifdef ALMDEBUG
2714         printf("RTC MTH_REG <-- %02x\n", value);
2715 #endif
2716         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2717         new_tm.tm_mon = from_bcd(value);
2718         ti[0] = mktimegm(&s->current_tm);
2719         ti[1] = mktimegm(&new_tm);
2720 
2721         if (ti[0] != -1 && ti[1] != -1) {
2722             s->ti -= ti[0];
2723             s->ti += ti[1];
2724         } else {
2725             /* A less accurate version */
2726             s->ti -= s->current_tm.tm_mon * 2592000;
2727             s->ti += from_bcd(value) * 2592000;
2728         }
2729         return;
2730 
2731     case 0x14:	/* YEARS_REG */
2732 #ifdef ALMDEBUG
2733         printf("RTC YRS_REG <-- %02x\n", value);
2734 #endif
2735         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2736         new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2737         ti[0] = mktimegm(&s->current_tm);
2738         ti[1] = mktimegm(&new_tm);
2739 
2740         if (ti[0] != -1 && ti[1] != -1) {
2741             s->ti -= ti[0];
2742             s->ti += ti[1];
2743         } else {
2744             /* A less accurate version */
2745             s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2746             s->ti += (time_t)from_bcd(value) * 31536000;
2747         }
2748         return;
2749 
2750     case 0x18:	/* WEEK_REG */
2751         return;	/* Ignored */
2752 
2753     case 0x20:	/* ALARM_SECONDS_REG */
2754 #ifdef ALMDEBUG
2755         printf("ALM SEC_REG <-- %02x\n", value);
2756 #endif
2757         s->alarm_tm.tm_sec = from_bcd(value);
2758         omap_rtc_alarm_update(s);
2759         return;
2760 
2761     case 0x24:	/* ALARM_MINUTES_REG */
2762 #ifdef ALMDEBUG
2763         printf("ALM MIN_REG <-- %02x\n", value);
2764 #endif
2765         s->alarm_tm.tm_min = from_bcd(value);
2766         omap_rtc_alarm_update(s);
2767         return;
2768 
2769     case 0x28:	/* ALARM_HOURS_REG */
2770 #ifdef ALMDEBUG
2771         printf("ALM HRS_REG <-- %02x\n", value);
2772 #endif
2773         if (s->pm_am)
2774             s->alarm_tm.tm_hour =
2775                     ((from_bcd(value & 0x3f)) % 12) +
2776                     ((value >> 7) & 1) * 12;
2777         else
2778             s->alarm_tm.tm_hour = from_bcd(value);
2779         omap_rtc_alarm_update(s);
2780         return;
2781 
2782     case 0x2c:	/* ALARM_DAYS_REG */
2783 #ifdef ALMDEBUG
2784         printf("ALM DAY_REG <-- %02x\n", value);
2785 #endif
2786         s->alarm_tm.tm_mday = from_bcd(value);
2787         omap_rtc_alarm_update(s);
2788         return;
2789 
2790     case 0x30:	/* ALARM_MONTHS_REG */
2791 #ifdef ALMDEBUG
2792         printf("ALM MON_REG <-- %02x\n", value);
2793 #endif
2794         s->alarm_tm.tm_mon = from_bcd(value);
2795         omap_rtc_alarm_update(s);
2796         return;
2797 
2798     case 0x34:	/* ALARM_YEARS_REG */
2799 #ifdef ALMDEBUG
2800         printf("ALM YRS_REG <-- %02x\n", value);
2801 #endif
2802         s->alarm_tm.tm_year = from_bcd(value);
2803         omap_rtc_alarm_update(s);
2804         return;
2805 
2806     case 0x40:	/* RTC_CTRL_REG */
2807 #ifdef ALMDEBUG
2808         printf("RTC CONTROL <-- %02x\n", value);
2809 #endif
2810         s->pm_am = (value >> 3) & 1;
2811         s->auto_comp = (value >> 2) & 1;
2812         s->round = (value >> 1) & 1;
2813         s->running = value & 1;
2814         s->status &= 0xfd;
2815         s->status |= s->running << 1;
2816         return;
2817 
2818     case 0x44:	/* RTC_STATUS_REG */
2819 #ifdef ALMDEBUG
2820         printf("RTC STATUSL <-- %02x\n", value);
2821 #endif
2822         s->status &= ~((value & 0xc0) ^ 0x80);
2823         omap_rtc_interrupts_update(s);
2824         return;
2825 
2826     case 0x48:	/* RTC_INTERRUPTS_REG */
2827 #ifdef ALMDEBUG
2828         printf("RTC INTRS <-- %02x\n", value);
2829 #endif
2830         s->interrupts = value;
2831         return;
2832 
2833     case 0x4c:	/* RTC_COMP_LSB_REG */
2834 #ifdef ALMDEBUG
2835         printf("RTC COMPLSB <-- %02x\n", value);
2836 #endif
2837         s->comp_reg &= 0xff00;
2838         s->comp_reg |= 0x00ff & value;
2839         return;
2840 
2841     case 0x50:	/* RTC_COMP_MSB_REG */
2842 #ifdef ALMDEBUG
2843         printf("RTC COMPMSB <-- %02x\n", value);
2844 #endif
2845         s->comp_reg &= 0x00ff;
2846         s->comp_reg |= 0xff00 & (value << 8);
2847         return;
2848 
2849     default:
2850         OMAP_BAD_REG(addr);
2851         return;
2852     }
2853 }
2854 
2855 static const MemoryRegionOps omap_rtc_ops = {
2856     .read = omap_rtc_read,
2857     .write = omap_rtc_write,
2858     .endianness = DEVICE_NATIVE_ENDIAN,
2859 };
2860 
2861 static void omap_rtc_tick(void *opaque)
2862 {
2863     struct omap_rtc_s *s = opaque;
2864 
2865     if (s->round) {
2866         /* Round to nearest full minute.  */
2867         if (s->current_tm.tm_sec < 30)
2868             s->ti -= s->current_tm.tm_sec;
2869         else
2870             s->ti += 60 - s->current_tm.tm_sec;
2871 
2872         s->round = 0;
2873     }
2874 
2875     localtime_r(&s->ti, &s->current_tm);
2876 
2877     if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2878         s->status |= 0x40;
2879         omap_rtc_interrupts_update(s);
2880     }
2881 
2882     if (s->interrupts & 0x04)
2883         switch (s->interrupts & 3) {
2884         case 0:
2885             s->status |= 0x04;
2886             qemu_irq_pulse(s->irq);
2887             break;
2888         case 1:
2889             if (s->current_tm.tm_sec)
2890                 break;
2891             s->status |= 0x08;
2892             qemu_irq_pulse(s->irq);
2893             break;
2894         case 2:
2895             if (s->current_tm.tm_sec || s->current_tm.tm_min)
2896                 break;
2897             s->status |= 0x10;
2898             qemu_irq_pulse(s->irq);
2899             break;
2900         case 3:
2901             if (s->current_tm.tm_sec ||
2902                             s->current_tm.tm_min || s->current_tm.tm_hour)
2903                 break;
2904             s->status |= 0x20;
2905             qemu_irq_pulse(s->irq);
2906             break;
2907         }
2908 
2909     /* Move on */
2910     if (s->running)
2911         s->ti ++;
2912     s->tick += 1000;
2913 
2914     /*
2915      * Every full hour add a rough approximation of the compensation
2916      * register to the 32kHz Timer (which drives the RTC) value.
2917      */
2918     if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2919         s->tick += s->comp_reg * 1000 / 32768;
2920 
2921     timer_mod(s->clk, s->tick);
2922 }
2923 
2924 static void omap_rtc_reset(struct omap_rtc_s *s)
2925 {
2926     struct tm tm;
2927 
2928     s->interrupts = 0;
2929     s->comp_reg = 0;
2930     s->running = 0;
2931     s->pm_am = 0;
2932     s->auto_comp = 0;
2933     s->round = 0;
2934     s->tick = qemu_clock_get_ms(rtc_clock);
2935     memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2936     s->alarm_tm.tm_mday = 0x01;
2937     s->status = 1 << 7;
2938     qemu_get_timedate(&tm, 0);
2939     s->ti = mktimegm(&tm);
2940 
2941     omap_rtc_alarm_update(s);
2942     omap_rtc_tick(s);
2943 }
2944 
2945 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2946                                         hwaddr base,
2947                                         qemu_irq timerirq, qemu_irq alarmirq,
2948                                         omap_clk clk)
2949 {
2950     struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2951 
2952     s->irq = timerirq;
2953     s->alarm = alarmirq;
2954     s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2955 
2956     omap_rtc_reset(s);
2957 
2958     memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2959                           "omap-rtc", 0x800);
2960     memory_region_add_subregion(system_memory, base, &s->iomem);
2961 
2962     return s;
2963 }
2964 
2965 /* Multi-channel Buffered Serial Port interfaces */
2966 struct omap_mcbsp_s {
2967     MemoryRegion iomem;
2968     qemu_irq txirq;
2969     qemu_irq rxirq;
2970     qemu_irq txdrq;
2971     qemu_irq rxdrq;
2972 
2973     uint16_t spcr[2];
2974     uint16_t rcr[2];
2975     uint16_t xcr[2];
2976     uint16_t srgr[2];
2977     uint16_t mcr[2];
2978     uint16_t pcr;
2979     uint16_t rcer[8];
2980     uint16_t xcer[8];
2981     int tx_rate;
2982     int rx_rate;
2983     int tx_req;
2984     int rx_req;
2985 
2986     I2SCodec *codec;
2987     QEMUTimer *source_timer;
2988     QEMUTimer *sink_timer;
2989 };
2990 
2991 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2992 {
2993     int irq;
2994 
2995     switch ((s->spcr[0] >> 4) & 3) {			/* RINTM */
2996     case 0:
2997         irq = (s->spcr[0] >> 1) & 1;			/* RRDY */
2998         break;
2999     case 3:
3000         irq = (s->spcr[0] >> 3) & 1;			/* RSYNCERR */
3001         break;
3002     default:
3003         irq = 0;
3004         break;
3005     }
3006 
3007     if (irq)
3008         qemu_irq_pulse(s->rxirq);
3009 
3010     switch ((s->spcr[1] >> 4) & 3) {			/* XINTM */
3011     case 0:
3012         irq = (s->spcr[1] >> 1) & 1;			/* XRDY */
3013         break;
3014     case 3:
3015         irq = (s->spcr[1] >> 3) & 1;			/* XSYNCERR */
3016         break;
3017     default:
3018         irq = 0;
3019         break;
3020     }
3021 
3022     if (irq)
3023         qemu_irq_pulse(s->txirq);
3024 }
3025 
3026 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3027 {
3028     if ((s->spcr[0] >> 1) & 1)				/* RRDY */
3029         s->spcr[0] |= 1 << 2;				/* RFULL */
3030     s->spcr[0] |= 1 << 1;				/* RRDY */
3031     qemu_irq_raise(s->rxdrq);
3032     omap_mcbsp_intr_update(s);
3033 }
3034 
3035 static void omap_mcbsp_source_tick(void *opaque)
3036 {
3037     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3038     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3039 
3040     if (!s->rx_rate)
3041         return;
3042     if (s->rx_req)
3043         printf("%s: Rx FIFO overrun\n", __func__);
3044 
3045     s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3046 
3047     omap_mcbsp_rx_newdata(s);
3048     timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3049                    NANOSECONDS_PER_SECOND);
3050 }
3051 
3052 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3053 {
3054     if (!s->codec || !s->codec->rts)
3055         omap_mcbsp_source_tick(s);
3056     else if (s->codec->in.len) {
3057         s->rx_req = s->codec->in.len;
3058         omap_mcbsp_rx_newdata(s);
3059     }
3060 }
3061 
3062 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3063 {
3064     timer_del(s->source_timer);
3065 }
3066 
3067 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3068 {
3069     s->spcr[0] &= ~(1 << 1);				/* RRDY */
3070     qemu_irq_lower(s->rxdrq);
3071     omap_mcbsp_intr_update(s);
3072 }
3073 
3074 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3075 {
3076     s->spcr[1] |= 1 << 1;				/* XRDY */
3077     qemu_irq_raise(s->txdrq);
3078     omap_mcbsp_intr_update(s);
3079 }
3080 
3081 static void omap_mcbsp_sink_tick(void *opaque)
3082 {
3083     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3084     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3085 
3086     if (!s->tx_rate)
3087         return;
3088     if (s->tx_req)
3089         printf("%s: Tx FIFO underrun\n", __func__);
3090 
3091     s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3092 
3093     omap_mcbsp_tx_newdata(s);
3094     timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3095                    NANOSECONDS_PER_SECOND);
3096 }
3097 
3098 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3099 {
3100     if (!s->codec || !s->codec->cts)
3101         omap_mcbsp_sink_tick(s);
3102     else if (s->codec->out.size) {
3103         s->tx_req = s->codec->out.size;
3104         omap_mcbsp_tx_newdata(s);
3105     }
3106 }
3107 
3108 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3109 {
3110     s->spcr[1] &= ~(1 << 1);				/* XRDY */
3111     qemu_irq_lower(s->txdrq);
3112     omap_mcbsp_intr_update(s);
3113     if (s->codec && s->codec->cts)
3114         s->codec->tx_swallow(s->codec->opaque);
3115 }
3116 
3117 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3118 {
3119     s->tx_req = 0;
3120     omap_mcbsp_tx_done(s);
3121     timer_del(s->sink_timer);
3122 }
3123 
3124 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3125 {
3126     int prev_rx_rate, prev_tx_rate;
3127     int rx_rate = 0, tx_rate = 0;
3128     int cpu_rate = 1500000;	/* XXX */
3129 
3130     /* TODO: check CLKSTP bit */
3131     if (s->spcr[1] & (1 << 6)) {			/* GRST */
3132         if (s->spcr[0] & (1 << 0)) {			/* RRST */
3133             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
3134                             (s->pcr & (1 << 8))) {	/* CLKRM */
3135                 if (~s->pcr & (1 << 7))			/* SCLKME */
3136                     rx_rate = cpu_rate /
3137                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
3138             } else
3139                 if (s->codec)
3140                     rx_rate = s->codec->rx_rate;
3141         }
3142 
3143         if (s->spcr[1] & (1 << 0)) {			/* XRST */
3144             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
3145                             (s->pcr & (1 << 9))) {	/* CLKXM */
3146                 if (~s->pcr & (1 << 7))			/* SCLKME */
3147                     tx_rate = cpu_rate /
3148                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
3149             } else
3150                 if (s->codec)
3151                     tx_rate = s->codec->tx_rate;
3152         }
3153     }
3154     prev_tx_rate = s->tx_rate;
3155     prev_rx_rate = s->rx_rate;
3156     s->tx_rate = tx_rate;
3157     s->rx_rate = rx_rate;
3158 
3159     if (s->codec)
3160         s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3161 
3162     if (!prev_tx_rate && tx_rate)
3163         omap_mcbsp_tx_start(s);
3164     else if (s->tx_rate && !tx_rate)
3165         omap_mcbsp_tx_stop(s);
3166 
3167     if (!prev_rx_rate && rx_rate)
3168         omap_mcbsp_rx_start(s);
3169     else if (prev_tx_rate && !tx_rate)
3170         omap_mcbsp_rx_stop(s);
3171 }
3172 
3173 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3174                                 unsigned size)
3175 {
3176     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3177     int offset = addr & OMAP_MPUI_REG_MASK;
3178     uint16_t ret;
3179 
3180     if (size != 2) {
3181         return omap_badwidth_read16(opaque, addr);
3182     }
3183 
3184     switch (offset) {
3185     case 0x00:	/* DRR2 */
3186         if (((s->rcr[0] >> 5) & 7) < 3)			/* RWDLEN1 */
3187             return 0x0000;
3188         /* Fall through.  */
3189     case 0x02:	/* DRR1 */
3190         if (s->rx_req < 2) {
3191             printf("%s: Rx FIFO underrun\n", __func__);
3192             omap_mcbsp_rx_done(s);
3193         } else {
3194             s->tx_req -= 2;
3195             if (s->codec && s->codec->in.len >= 2) {
3196                 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3197                 ret |= s->codec->in.fifo[s->codec->in.start ++];
3198                 s->codec->in.len -= 2;
3199             } else
3200                 ret = 0x0000;
3201             if (!s->tx_req)
3202                 omap_mcbsp_rx_done(s);
3203             return ret;
3204         }
3205         return 0x0000;
3206 
3207     case 0x04:	/* DXR2 */
3208     case 0x06:	/* DXR1 */
3209         return 0x0000;
3210 
3211     case 0x08:	/* SPCR2 */
3212         return s->spcr[1];
3213     case 0x0a:	/* SPCR1 */
3214         return s->spcr[0];
3215     case 0x0c:	/* RCR2 */
3216         return s->rcr[1];
3217     case 0x0e:	/* RCR1 */
3218         return s->rcr[0];
3219     case 0x10:	/* XCR2 */
3220         return s->xcr[1];
3221     case 0x12:	/* XCR1 */
3222         return s->xcr[0];
3223     case 0x14:	/* SRGR2 */
3224         return s->srgr[1];
3225     case 0x16:	/* SRGR1 */
3226         return s->srgr[0];
3227     case 0x18:	/* MCR2 */
3228         return s->mcr[1];
3229     case 0x1a:	/* MCR1 */
3230         return s->mcr[0];
3231     case 0x1c:	/* RCERA */
3232         return s->rcer[0];
3233     case 0x1e:	/* RCERB */
3234         return s->rcer[1];
3235     case 0x20:	/* XCERA */
3236         return s->xcer[0];
3237     case 0x22:	/* XCERB */
3238         return s->xcer[1];
3239     case 0x24:	/* PCR0 */
3240         return s->pcr;
3241     case 0x26:	/* RCERC */
3242         return s->rcer[2];
3243     case 0x28:	/* RCERD */
3244         return s->rcer[3];
3245     case 0x2a:	/* XCERC */
3246         return s->xcer[2];
3247     case 0x2c:	/* XCERD */
3248         return s->xcer[3];
3249     case 0x2e:	/* RCERE */
3250         return s->rcer[4];
3251     case 0x30:	/* RCERF */
3252         return s->rcer[5];
3253     case 0x32:	/* XCERE */
3254         return s->xcer[4];
3255     case 0x34:	/* XCERF */
3256         return s->xcer[5];
3257     case 0x36:	/* RCERG */
3258         return s->rcer[6];
3259     case 0x38:	/* RCERH */
3260         return s->rcer[7];
3261     case 0x3a:	/* XCERG */
3262         return s->xcer[6];
3263     case 0x3c:	/* XCERH */
3264         return s->xcer[7];
3265     }
3266 
3267     OMAP_BAD_REG(addr);
3268     return 0;
3269 }
3270 
3271 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3272                 uint32_t value)
3273 {
3274     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3275     int offset = addr & OMAP_MPUI_REG_MASK;
3276 
3277     switch (offset) {
3278     case 0x00:	/* DRR2 */
3279     case 0x02:	/* DRR1 */
3280         OMAP_RO_REG(addr);
3281         return;
3282 
3283     case 0x04:	/* DXR2 */
3284         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
3285             return;
3286         /* Fall through.  */
3287     case 0x06:	/* DXR1 */
3288         if (s->tx_req > 1) {
3289             s->tx_req -= 2;
3290             if (s->codec && s->codec->cts) {
3291                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3292                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3293             }
3294             if (s->tx_req < 2)
3295                 omap_mcbsp_tx_done(s);
3296         } else
3297             printf("%s: Tx FIFO overrun\n", __func__);
3298         return;
3299 
3300     case 0x08:	/* SPCR2 */
3301         s->spcr[1] &= 0x0002;
3302         s->spcr[1] |= 0x03f9 & value;
3303         s->spcr[1] |= 0x0004 & (value << 2);		/* XEMPTY := XRST */
3304         if (~value & 1)					/* XRST */
3305             s->spcr[1] &= ~6;
3306         omap_mcbsp_req_update(s);
3307         return;
3308     case 0x0a:	/* SPCR1 */
3309         s->spcr[0] &= 0x0006;
3310         s->spcr[0] |= 0xf8f9 & value;
3311         if (value & (1 << 15))				/* DLB */
3312             printf("%s: Digital Loopback mode enable attempt\n", __func__);
3313         if (~value & 1) {				/* RRST */
3314             s->spcr[0] &= ~6;
3315             s->rx_req = 0;
3316             omap_mcbsp_rx_done(s);
3317         }
3318         omap_mcbsp_req_update(s);
3319         return;
3320 
3321     case 0x0c:	/* RCR2 */
3322         s->rcr[1] = value & 0xffff;
3323         return;
3324     case 0x0e:	/* RCR1 */
3325         s->rcr[0] = value & 0x7fe0;
3326         return;
3327     case 0x10:	/* XCR2 */
3328         s->xcr[1] = value & 0xffff;
3329         return;
3330     case 0x12:	/* XCR1 */
3331         s->xcr[0] = value & 0x7fe0;
3332         return;
3333     case 0x14:	/* SRGR2 */
3334         s->srgr[1] = value & 0xffff;
3335         omap_mcbsp_req_update(s);
3336         return;
3337     case 0x16:	/* SRGR1 */
3338         s->srgr[0] = value & 0xffff;
3339         omap_mcbsp_req_update(s);
3340         return;
3341     case 0x18:	/* MCR2 */
3342         s->mcr[1] = value & 0x03e3;
3343         if (value & 3)					/* XMCM */
3344             printf("%s: Tx channel selection mode enable attempt\n", __func__);
3345         return;
3346     case 0x1a:	/* MCR1 */
3347         s->mcr[0] = value & 0x03e1;
3348         if (value & 1)					/* RMCM */
3349             printf("%s: Rx channel selection mode enable attempt\n", __func__);
3350         return;
3351     case 0x1c:	/* RCERA */
3352         s->rcer[0] = value & 0xffff;
3353         return;
3354     case 0x1e:	/* RCERB */
3355         s->rcer[1] = value & 0xffff;
3356         return;
3357     case 0x20:	/* XCERA */
3358         s->xcer[0] = value & 0xffff;
3359         return;
3360     case 0x22:	/* XCERB */
3361         s->xcer[1] = value & 0xffff;
3362         return;
3363     case 0x24:	/* PCR0 */
3364         s->pcr = value & 0x7faf;
3365         return;
3366     case 0x26:	/* RCERC */
3367         s->rcer[2] = value & 0xffff;
3368         return;
3369     case 0x28:	/* RCERD */
3370         s->rcer[3] = value & 0xffff;
3371         return;
3372     case 0x2a:	/* XCERC */
3373         s->xcer[2] = value & 0xffff;
3374         return;
3375     case 0x2c:	/* XCERD */
3376         s->xcer[3] = value & 0xffff;
3377         return;
3378     case 0x2e:	/* RCERE */
3379         s->rcer[4] = value & 0xffff;
3380         return;
3381     case 0x30:	/* RCERF */
3382         s->rcer[5] = value & 0xffff;
3383         return;
3384     case 0x32:	/* XCERE */
3385         s->xcer[4] = value & 0xffff;
3386         return;
3387     case 0x34:	/* XCERF */
3388         s->xcer[5] = value & 0xffff;
3389         return;
3390     case 0x36:	/* RCERG */
3391         s->rcer[6] = value & 0xffff;
3392         return;
3393     case 0x38:	/* RCERH */
3394         s->rcer[7] = value & 0xffff;
3395         return;
3396     case 0x3a:	/* XCERG */
3397         s->xcer[6] = value & 0xffff;
3398         return;
3399     case 0x3c:	/* XCERH */
3400         s->xcer[7] = value & 0xffff;
3401         return;
3402     }
3403 
3404     OMAP_BAD_REG(addr);
3405 }
3406 
3407 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3408                 uint32_t value)
3409 {
3410     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3411     int offset = addr & OMAP_MPUI_REG_MASK;
3412 
3413     if (offset == 0x04) {				/* DXR */
3414         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
3415             return;
3416         if (s->tx_req > 3) {
3417             s->tx_req -= 4;
3418             if (s->codec && s->codec->cts) {
3419                 s->codec->out.fifo[s->codec->out.len ++] =
3420                         (value >> 24) & 0xff;
3421                 s->codec->out.fifo[s->codec->out.len ++] =
3422                         (value >> 16) & 0xff;
3423                 s->codec->out.fifo[s->codec->out.len ++] =
3424                         (value >> 8) & 0xff;
3425                 s->codec->out.fifo[s->codec->out.len ++] =
3426                         (value >> 0) & 0xff;
3427             }
3428             if (s->tx_req < 4)
3429                 omap_mcbsp_tx_done(s);
3430         } else
3431             printf("%s: Tx FIFO overrun\n", __func__);
3432         return;
3433     }
3434 
3435     omap_badwidth_write16(opaque, addr, value);
3436 }
3437 
3438 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3439                              uint64_t value, unsigned size)
3440 {
3441     switch (size) {
3442     case 2:
3443         omap_mcbsp_writeh(opaque, addr, value);
3444         break;
3445     case 4:
3446         omap_mcbsp_writew(opaque, addr, value);
3447         break;
3448     default:
3449         omap_badwidth_write16(opaque, addr, value);
3450     }
3451 }
3452 
3453 static const MemoryRegionOps omap_mcbsp_ops = {
3454     .read = omap_mcbsp_read,
3455     .write = omap_mcbsp_write,
3456     .endianness = DEVICE_NATIVE_ENDIAN,
3457 };
3458 
3459 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3460 {
3461     memset(&s->spcr, 0, sizeof(s->spcr));
3462     memset(&s->rcr, 0, sizeof(s->rcr));
3463     memset(&s->xcr, 0, sizeof(s->xcr));
3464     s->srgr[0] = 0x0001;
3465     s->srgr[1] = 0x2000;
3466     memset(&s->mcr, 0, sizeof(s->mcr));
3467     memset(&s->pcr, 0, sizeof(s->pcr));
3468     memset(&s->rcer, 0, sizeof(s->rcer));
3469     memset(&s->xcer, 0, sizeof(s->xcer));
3470     s->tx_req = 0;
3471     s->rx_req = 0;
3472     s->tx_rate = 0;
3473     s->rx_rate = 0;
3474     timer_del(s->source_timer);
3475     timer_del(s->sink_timer);
3476 }
3477 
3478 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3479                                             hwaddr base,
3480                                             qemu_irq txirq, qemu_irq rxirq,
3481                                             qemu_irq *dma, omap_clk clk)
3482 {
3483     struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
3484 
3485     s->txirq = txirq;
3486     s->rxirq = rxirq;
3487     s->txdrq = dma[0];
3488     s->rxdrq = dma[1];
3489     s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3490     s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3491     omap_mcbsp_reset(s);
3492 
3493     memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3494     memory_region_add_subregion(system_memory, base, &s->iomem);
3495 
3496     return s;
3497 }
3498 
3499 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3500 {
3501     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3502 
3503     if (s->rx_rate) {
3504         s->rx_req = s->codec->in.len;
3505         omap_mcbsp_rx_newdata(s);
3506     }
3507 }
3508 
3509 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3510 {
3511     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3512 
3513     if (s->tx_rate) {
3514         s->tx_req = s->codec->out.size;
3515         omap_mcbsp_tx_newdata(s);
3516     }
3517 }
3518 
3519 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3520 {
3521     s->codec = slave;
3522     slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3523     slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3524 }
3525 
3526 /* LED Pulse Generators */
3527 struct omap_lpg_s {
3528     MemoryRegion iomem;
3529     QEMUTimer *tm;
3530 
3531     uint8_t control;
3532     uint8_t power;
3533     int64_t on;
3534     int64_t period;
3535     int clk;
3536     int cycle;
3537 };
3538 
3539 static void omap_lpg_tick(void *opaque)
3540 {
3541     struct omap_lpg_s *s = opaque;
3542 
3543     if (s->cycle)
3544         timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3545     else
3546         timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3547 
3548     s->cycle = !s->cycle;
3549     printf("%s: LED is %s\n", __func__, s->cycle ? "on" : "off");
3550 }
3551 
3552 static void omap_lpg_update(struct omap_lpg_s *s)
3553 {
3554     int64_t on, period = 1, ticks = 1000;
3555     static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3556 
3557     if (~s->control & (1 << 6))					/* LPGRES */
3558         on = 0;
3559     else if (s->control & (1 << 7))				/* PERM_ON */
3560         on = period;
3561     else {
3562         period = muldiv64(ticks, per[s->control & 7],		/* PERCTRL */
3563                         256 / 32);
3564         on = (s->clk && s->power) ? muldiv64(ticks,
3565                         per[(s->control >> 3) & 7], 256) : 0;	/* ONCTRL */
3566     }
3567 
3568     timer_del(s->tm);
3569     if (on == period && s->on < s->period)
3570         printf("%s: LED is on\n", __func__);
3571     else if (on == 0 && s->on)
3572         printf("%s: LED is off\n", __func__);
3573     else if (on && (on != s->on || period != s->period)) {
3574         s->cycle = 0;
3575         s->on = on;
3576         s->period = period;
3577         omap_lpg_tick(s);
3578         return;
3579     }
3580 
3581     s->on = on;
3582     s->period = period;
3583 }
3584 
3585 static void omap_lpg_reset(struct omap_lpg_s *s)
3586 {
3587     s->control = 0x00;
3588     s->power = 0x00;
3589     s->clk = 1;
3590     omap_lpg_update(s);
3591 }
3592 
3593 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3594                               unsigned size)
3595 {
3596     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3597     int offset = addr & OMAP_MPUI_REG_MASK;
3598 
3599     if (size != 1) {
3600         return omap_badwidth_read8(opaque, addr);
3601     }
3602 
3603     switch (offset) {
3604     case 0x00:	/* LCR */
3605         return s->control;
3606 
3607     case 0x04:	/* PMR */
3608         return s->power;
3609     }
3610 
3611     OMAP_BAD_REG(addr);
3612     return 0;
3613 }
3614 
3615 static void omap_lpg_write(void *opaque, hwaddr addr,
3616                            uint64_t value, unsigned size)
3617 {
3618     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3619     int offset = addr & OMAP_MPUI_REG_MASK;
3620 
3621     if (size != 1) {
3622         omap_badwidth_write8(opaque, addr, value);
3623         return;
3624     }
3625 
3626     switch (offset) {
3627     case 0x00:	/* LCR */
3628         if (~value & (1 << 6))					/* LPGRES */
3629             omap_lpg_reset(s);
3630         s->control = value & 0xff;
3631         omap_lpg_update(s);
3632         return;
3633 
3634     case 0x04:	/* PMR */
3635         s->power = value & 0x01;
3636         omap_lpg_update(s);
3637         return;
3638 
3639     default:
3640         OMAP_BAD_REG(addr);
3641         return;
3642     }
3643 }
3644 
3645 static const MemoryRegionOps omap_lpg_ops = {
3646     .read = omap_lpg_read,
3647     .write = omap_lpg_write,
3648     .endianness = DEVICE_NATIVE_ENDIAN,
3649 };
3650 
3651 static void omap_lpg_clk_update(void *opaque, int line, int on)
3652 {
3653     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3654 
3655     s->clk = on;
3656     omap_lpg_update(s);
3657 }
3658 
3659 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3660                                         hwaddr base, omap_clk clk)
3661 {
3662     struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
3663 
3664     s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3665 
3666     omap_lpg_reset(s);
3667 
3668     memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3669     memory_region_add_subregion(system_memory, base, &s->iomem);
3670 
3671     omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3672 
3673     return s;
3674 }
3675 
3676 /* MPUI Peripheral Bridge configuration */
3677 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3678                                   unsigned size)
3679 {
3680     if (size != 2) {
3681         return omap_badwidth_read16(opaque, addr);
3682     }
3683 
3684     if (addr == OMAP_MPUI_BASE)	/* CMR */
3685         return 0xfe4d;
3686 
3687     OMAP_BAD_REG(addr);
3688     return 0;
3689 }
3690 
3691 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3692                                uint64_t value, unsigned size)
3693 {
3694     /* FIXME: infinite loop */
3695     omap_badwidth_write16(opaque, addr, value);
3696 }
3697 
3698 static const MemoryRegionOps omap_mpui_io_ops = {
3699     .read = omap_mpui_io_read,
3700     .write = omap_mpui_io_write,
3701     .endianness = DEVICE_NATIVE_ENDIAN,
3702 };
3703 
3704 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3705                                struct omap_mpu_state_s *mpu)
3706 {
3707     memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3708                           "omap-mpui-io", 0x7fff);
3709     memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3710                                 &mpu->mpui_io_iomem);
3711 }
3712 
3713 /* General chip reset */
3714 static void omap1_mpu_reset(void *opaque)
3715 {
3716     struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3717 
3718     omap_dma_reset(mpu->dma);
3719     omap_mpu_timer_reset(mpu->timer[0]);
3720     omap_mpu_timer_reset(mpu->timer[1]);
3721     omap_mpu_timer_reset(mpu->timer[2]);
3722     omap_wd_timer_reset(mpu->wdt);
3723     omap_os_timer_reset(mpu->os_timer);
3724     omap_lcdc_reset(mpu->lcd);
3725     omap_ulpd_pm_reset(mpu);
3726     omap_pin_cfg_reset(mpu);
3727     omap_mpui_reset(mpu);
3728     omap_tipb_bridge_reset(mpu->private_tipb);
3729     omap_tipb_bridge_reset(mpu->public_tipb);
3730     omap_dpll_reset(mpu->dpll[0]);
3731     omap_dpll_reset(mpu->dpll[1]);
3732     omap_dpll_reset(mpu->dpll[2]);
3733     omap_uart_reset(mpu->uart[0]);
3734     omap_uart_reset(mpu->uart[1]);
3735     omap_uart_reset(mpu->uart[2]);
3736     omap_mmc_reset(mpu->mmc);
3737     omap_mpuio_reset(mpu->mpuio);
3738     omap_uwire_reset(mpu->microwire);
3739     omap_pwl_reset(mpu->pwl);
3740     omap_pwt_reset(mpu->pwt);
3741     omap_rtc_reset(mpu->rtc);
3742     omap_mcbsp_reset(mpu->mcbsp1);
3743     omap_mcbsp_reset(mpu->mcbsp2);
3744     omap_mcbsp_reset(mpu->mcbsp3);
3745     omap_lpg_reset(mpu->led[0]);
3746     omap_lpg_reset(mpu->led[1]);
3747     omap_clkm_reset(mpu);
3748     cpu_reset(CPU(mpu->cpu));
3749 }
3750 
3751 static const struct omap_map_s {
3752     hwaddr phys_dsp;
3753     hwaddr phys_mpu;
3754     uint32_t size;
3755     const char *name;
3756 } omap15xx_dsp_mm[] = {
3757     /* Strobe 0 */
3758     { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" },		/* CS0 */
3759     { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" },		/* CS1 */
3760     { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" },		/* CS3 */
3761     { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" },	/* CS4 */
3762     { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" },	/* CS5 */
3763     { 0xe1013000, 0xfffb3000, 0x800, "uWire" },			/* CS6 */
3764     { 0xe1013800, 0xfffb3800, 0x800, "I^2C" },			/* CS7 */
3765     { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" },		/* CS8 */
3766     { 0xe1014800, 0xfffb4800, 0x800, "RTC" },			/* CS9 */
3767     { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" },			/* CS10 */
3768     { 0xe1015800, 0xfffb5800, 0x800, "PWL" },			/* CS11 */
3769     { 0xe1016000, 0xfffb6000, 0x800, "PWT" },			/* CS12 */
3770     { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" },		/* CS14 */
3771     { 0xe1017800, 0xfffb7800, 0x800, "MMC" },			/* CS15 */
3772     { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" },		/* CS18 */
3773     { 0xe1019800, 0xfffb9800, 0x800, "UART3" },			/* CS19 */
3774     { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" },		/* CS25 */
3775     /* Strobe 1 */
3776     { 0xe101e000, 0xfffce000, 0x800, "GPIOs" },			/* CS28 */
3777 
3778     { 0 }
3779 };
3780 
3781 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3782                                    const struct omap_map_s *map)
3783 {
3784     MemoryRegion *io;
3785 
3786     for (; map->phys_dsp; map ++) {
3787         io = g_new(MemoryRegion, 1);
3788         memory_region_init_alias(io, NULL, map->name,
3789                                  system_memory, map->phys_mpu, map->size);
3790         memory_region_add_subregion(system_memory, map->phys_dsp, io);
3791     }
3792 }
3793 
3794 void omap_mpu_wakeup(void *opaque, int irq, int req)
3795 {
3796     struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3797     CPUState *cpu = CPU(mpu->cpu);
3798 
3799     if (cpu->halted) {
3800         cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3801     }
3802 }
3803 
3804 static const struct dma_irq_map omap1_dma_irq_map[] = {
3805     { 0, OMAP_INT_DMA_CH0_6 },
3806     { 0, OMAP_INT_DMA_CH1_7 },
3807     { 0, OMAP_INT_DMA_CH2_8 },
3808     { 0, OMAP_INT_DMA_CH3 },
3809     { 0, OMAP_INT_DMA_CH4 },
3810     { 0, OMAP_INT_DMA_CH5 },
3811     { 1, OMAP_INT_1610_DMA_CH6 },
3812     { 1, OMAP_INT_1610_DMA_CH7 },
3813     { 1, OMAP_INT_1610_DMA_CH8 },
3814     { 1, OMAP_INT_1610_DMA_CH9 },
3815     { 1, OMAP_INT_1610_DMA_CH10 },
3816     { 1, OMAP_INT_1610_DMA_CH11 },
3817     { 1, OMAP_INT_1610_DMA_CH12 },
3818     { 1, OMAP_INT_1610_DMA_CH13 },
3819     { 1, OMAP_INT_1610_DMA_CH14 },
3820     { 1, OMAP_INT_1610_DMA_CH15 }
3821 };
3822 
3823 /* DMA ports for OMAP1 */
3824 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3825                 hwaddr addr)
3826 {
3827     return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3828 }
3829 
3830 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3831                 hwaddr addr)
3832 {
3833     return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3834                              addr);
3835 }
3836 
3837 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3838                 hwaddr addr)
3839 {
3840     return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3841 }
3842 
3843 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3844                 hwaddr addr)
3845 {
3846     return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3847 }
3848 
3849 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3850                 hwaddr addr)
3851 {
3852     return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3853 }
3854 
3855 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3856                 hwaddr addr)
3857 {
3858     return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3859 }
3860 
3861 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *dram,
3862                 const char *cpu_type)
3863 {
3864     int i;
3865     struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
3866     qemu_irq dma_irqs[6];
3867     DriveInfo *dinfo;
3868     SysBusDevice *busdev;
3869     MemoryRegion *system_memory = get_system_memory();
3870 
3871     /* Core */
3872     s->mpu_model = omap310;
3873     s->cpu = ARM_CPU(cpu_create(cpu_type));
3874     s->sdram_size = memory_region_size(dram);
3875     s->sram_size = OMAP15XX_SRAM_SIZE;
3876 
3877     s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3878 
3879     /* Clocks */
3880     omap_clk_init(s);
3881 
3882     /* Memory-mapped stuff */
3883     memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3884                            &error_fatal);
3885     memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3886 
3887     omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3888 
3889     s->ih[0] = qdev_new("omap-intc");
3890     qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3891     omap_intc_set_iclk(OMAP_INTC(s->ih[0]), omap_findclk(s, "arminth_ck"));
3892     busdev = SYS_BUS_DEVICE(s->ih[0]);
3893     sysbus_realize_and_unref(busdev, &error_fatal);
3894     sysbus_connect_irq(busdev, 0,
3895                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3896     sysbus_connect_irq(busdev, 1,
3897                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3898     sysbus_mmio_map(busdev, 0, 0xfffecb00);
3899     s->ih[1] = qdev_new("omap-intc");
3900     qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3901     omap_intc_set_iclk(OMAP_INTC(s->ih[1]), omap_findclk(s, "arminth_ck"));
3902     busdev = SYS_BUS_DEVICE(s->ih[1]);
3903     sysbus_realize_and_unref(busdev, &error_fatal);
3904     sysbus_connect_irq(busdev, 0,
3905                        qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3906     /* The second interrupt controller's FIQ output is not wired up */
3907     sysbus_mmio_map(busdev, 0, 0xfffe0000);
3908 
3909     for (i = 0; i < 6; i++) {
3910         dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3911                                        omap1_dma_irq_map[i].intr);
3912     }
3913     s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3914                            qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3915                            s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3916 
3917     s->port[emiff    ].addr_valid = omap_validate_emiff_addr;
3918     s->port[emifs    ].addr_valid = omap_validate_emifs_addr;
3919     s->port[imif     ].addr_valid = omap_validate_imif_addr;
3920     s->port[tipb     ].addr_valid = omap_validate_tipb_addr;
3921     s->port[local    ].addr_valid = omap_validate_local_addr;
3922     s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3923 
3924     /* Register SDRAM and SRAM DMA ports for fast transfers.  */
3925     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(dram),
3926                          OMAP_EMIFF_BASE, s->sdram_size);
3927     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3928                          OMAP_IMIF_BASE, s->sram_size);
3929 
3930     s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3931                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3932                     omap_findclk(s, "mputim_ck"));
3933     s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3934                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3935                     omap_findclk(s, "mputim_ck"));
3936     s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3937                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3938                     omap_findclk(s, "mputim_ck"));
3939 
3940     s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3941                     qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3942                     omap_findclk(s, "armwdt_ck"));
3943 
3944     s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3945                     qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3946                     omap_findclk(s, "clk32-kHz"));
3947 
3948     s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3949                             qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3950                             omap_dma_get_lcdch(s->dma),
3951                             omap_findclk(s, "lcd_ck"));
3952 
3953     omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3954     omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3955     omap_id_init(system_memory, s);
3956 
3957     omap_mpui_init(system_memory, 0xfffec900, s);
3958 
3959     s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3960                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3961                     omap_findclk(s, "tipb_ck"));
3962     s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3963                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3964                     omap_findclk(s, "tipb_ck"));
3965 
3966     omap_tcmi_init(system_memory, 0xfffecc00, s);
3967 
3968     s->uart[0] = omap_uart_init(0xfffb0000,
3969                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3970                     omap_findclk(s, "uart1_ck"),
3971                     omap_findclk(s, "uart1_ck"),
3972                     s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3973                     "uart1",
3974                     serial_hd(0));
3975     s->uart[1] = omap_uart_init(0xfffb0800,
3976                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3977                     omap_findclk(s, "uart2_ck"),
3978                     omap_findclk(s, "uart2_ck"),
3979                     s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3980                     "uart2",
3981                     serial_hd(0) ? serial_hd(1) : NULL);
3982     s->uart[2] = omap_uart_init(0xfffb9800,
3983                                 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3984                     omap_findclk(s, "uart3_ck"),
3985                     omap_findclk(s, "uart3_ck"),
3986                     s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3987                     "uart3",
3988                     serial_hd(0) && serial_hd(1) ? serial_hd(2) : NULL);
3989 
3990     s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3991                                 omap_findclk(s, "dpll1"));
3992     s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3993                                 omap_findclk(s, "dpll2"));
3994     s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3995                                 omap_findclk(s, "dpll3"));
3996 
3997     dinfo = drive_get(IF_SD, 0, 0);
3998     if (!dinfo && !qtest_enabled()) {
3999         warn_report("missing SecureDigital device");
4000     }
4001     s->mmc = omap_mmc_init(0xfffb7800, system_memory,
4002                            dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
4003                            qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
4004                            &s->drq[OMAP_DMA_MMC_TX],
4005                     omap_findclk(s, "mmc_ck"));
4006 
4007     s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4008                                qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4009                                qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4010                                s->wakeup, omap_findclk(s, "clk32-kHz"));
4011 
4012     s->gpio = qdev_new("omap-gpio");
4013     qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4014     omap_gpio_set_clk(OMAP1_GPIO(s->gpio), omap_findclk(s, "arm_gpio_ck"));
4015     sysbus_realize_and_unref(SYS_BUS_DEVICE(s->gpio), &error_fatal);
4016     sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4017                        qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4018     sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4019 
4020     s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4021                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4022                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4023                     s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4024 
4025     s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4026                            omap_findclk(s, "armxor_ck"));
4027     s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4028                            omap_findclk(s, "armxor_ck"));
4029 
4030     s->i2c[0] = qdev_new("omap_i2c");
4031     qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4032     omap_i2c_set_fclk(OMAP_I2C(s->i2c[0]), omap_findclk(s, "mpuper_ck"));
4033     busdev = SYS_BUS_DEVICE(s->i2c[0]);
4034     sysbus_realize_and_unref(busdev, &error_fatal);
4035     sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4036     sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4037     sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4038     sysbus_mmio_map(busdev, 0, 0xfffb3800);
4039 
4040     s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4041                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4042                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4043                     omap_findclk(s, "clk32-kHz"));
4044 
4045     s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4046                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4047                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4048                     &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4049     s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4050                                 qdev_get_gpio_in(s->ih[0],
4051                                                  OMAP_INT_310_McBSP2_TX),
4052                                 qdev_get_gpio_in(s->ih[0],
4053                                                  OMAP_INT_310_McBSP2_RX),
4054                     &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4055     s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4056                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4057                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4058                     &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4059 
4060     s->led[0] = omap_lpg_init(system_memory,
4061                               0xfffbd000, omap_findclk(s, "clk32-kHz"));
4062     s->led[1] = omap_lpg_init(system_memory,
4063                               0xfffbd800, omap_findclk(s, "clk32-kHz"));
4064 
4065     /* Register mappings not currenlty implemented:
4066      * MCSI2 Comm	fffb2000 - fffb27ff (not mapped on OMAP310)
4067      * MCSI1 Bluetooth	fffb2800 - fffb2fff (not mapped on OMAP310)
4068      * USB W2FC		fffb4000 - fffb47ff
4069      * Camera Interface	fffb6800 - fffb6fff
4070      * USB Host		fffba000 - fffba7ff
4071      * FAC		fffba800 - fffbafff
4072      * HDQ/1-Wire	fffbc000 - fffbc7ff
4073      * TIPB switches	fffbc800 - fffbcfff
4074      * Mailbox		fffcf000 - fffcf7ff
4075      * Local bus IF	fffec100 - fffec1ff
4076      * Local bus MMU	fffec200 - fffec2ff
4077      * DSP MMU		fffed200 - fffed2ff
4078      */
4079 
4080     omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4081     omap_setup_mpui_io(system_memory, s);
4082 
4083     qemu_register_reset(omap1_mpu_reset, s);
4084 
4085     return s;
4086 }
4087