xref: /openbmc/qemu/hw/arm/omap1.c (revision 4be74634)
1 /*
2  * TI OMAP processors emulation.
3  *
4  * Copyright (C) 2006-2008 Andrzej Zaborowski  <balrog@zabor.org>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 or
9  * (at your option) version 3 of the License.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License along
17  * with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "hw/hw.h"
20 #include "hw/arm/arm.h"
21 #include "hw/arm/omap.h"
22 #include "sysemu/sysemu.h"
23 #include "hw/arm/soc_dma.h"
24 #include "sysemu/block-backend.h"
25 #include "sysemu/blockdev.h"
26 #include "qemu/range.h"
27 #include "hw/sysbus.h"
28 
29 /* Should signal the TCMI/GPMC */
30 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
31 {
32     uint8_t ret;
33 
34     OMAP_8B_REG(addr);
35     cpu_physical_memory_read(addr, &ret, 1);
36     return ret;
37 }
38 
39 void omap_badwidth_write8(void *opaque, hwaddr addr,
40                 uint32_t value)
41 {
42     uint8_t val8 = value;
43 
44     OMAP_8B_REG(addr);
45     cpu_physical_memory_write(addr, &val8, 1);
46 }
47 
48 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
49 {
50     uint16_t ret;
51 
52     OMAP_16B_REG(addr);
53     cpu_physical_memory_read(addr, &ret, 2);
54     return ret;
55 }
56 
57 void omap_badwidth_write16(void *opaque, hwaddr addr,
58                 uint32_t value)
59 {
60     uint16_t val16 = value;
61 
62     OMAP_16B_REG(addr);
63     cpu_physical_memory_write(addr, &val16, 2);
64 }
65 
66 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
67 {
68     uint32_t ret;
69 
70     OMAP_32B_REG(addr);
71     cpu_physical_memory_read(addr, &ret, 4);
72     return ret;
73 }
74 
75 void omap_badwidth_write32(void *opaque, hwaddr addr,
76                 uint32_t value)
77 {
78     OMAP_32B_REG(addr);
79     cpu_physical_memory_write(addr, &value, 4);
80 }
81 
82 /* MPU OS timers */
83 struct omap_mpu_timer_s {
84     MemoryRegion iomem;
85     qemu_irq irq;
86     omap_clk clk;
87     uint32_t val;
88     int64_t time;
89     QEMUTimer *timer;
90     QEMUBH *tick;
91     int64_t rate;
92     int it_ena;
93 
94     int enable;
95     int ptv;
96     int ar;
97     int st;
98     uint32_t reset_val;
99 };
100 
101 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
102 {
103     uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
104 
105     if (timer->st && timer->enable && timer->rate)
106         return timer->val - muldiv64(distance >> (timer->ptv + 1),
107                                      timer->rate, get_ticks_per_sec());
108     else
109         return timer->val;
110 }
111 
112 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
113 {
114     timer->val = omap_timer_read(timer);
115     timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
116 }
117 
118 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
119 {
120     int64_t expires;
121 
122     if (timer->enable && timer->st && timer->rate) {
123         timer->val = timer->reset_val;	/* Should skip this on clk enable */
124         expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
125                            get_ticks_per_sec(), timer->rate);
126 
127         /* If timer expiry would be sooner than in about 1 ms and
128          * auto-reload isn't set, then fire immediately.  This is a hack
129          * to make systems like PalmOS run in acceptable time.  PalmOS
130          * sets the interval to a very low value and polls the status bit
131          * in a busy loop when it wants to sleep just a couple of CPU
132          * ticks.  */
133         if (expires > (get_ticks_per_sec() >> 10) || timer->ar)
134             timer_mod(timer->timer, timer->time + expires);
135         else
136             qemu_bh_schedule(timer->tick);
137     } else
138         timer_del(timer->timer);
139 }
140 
141 static void omap_timer_fire(void *opaque)
142 {
143     struct omap_mpu_timer_s *timer = opaque;
144 
145     if (!timer->ar) {
146         timer->val = 0;
147         timer->st = 0;
148     }
149 
150     if (timer->it_ena)
151         /* Edge-triggered irq */
152         qemu_irq_pulse(timer->irq);
153 }
154 
155 static void omap_timer_tick(void *opaque)
156 {
157     struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
158 
159     omap_timer_sync(timer);
160     omap_timer_fire(timer);
161     omap_timer_update(timer);
162 }
163 
164 static void omap_timer_clk_update(void *opaque, int line, int on)
165 {
166     struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
167 
168     omap_timer_sync(timer);
169     timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
170     omap_timer_update(timer);
171 }
172 
173 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
174 {
175     omap_clk_adduser(timer->clk,
176                     qemu_allocate_irq(omap_timer_clk_update, timer, 0));
177     timer->rate = omap_clk_getrate(timer->clk);
178 }
179 
180 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
181                                     unsigned size)
182 {
183     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
184 
185     if (size != 4) {
186         return omap_badwidth_read32(opaque, addr);
187     }
188 
189     switch (addr) {
190     case 0x00:	/* CNTL_TIMER */
191         return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
192 
193     case 0x04:	/* LOAD_TIM */
194         break;
195 
196     case 0x08:	/* READ_TIM */
197         return omap_timer_read(s);
198     }
199 
200     OMAP_BAD_REG(addr);
201     return 0;
202 }
203 
204 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
205                                  uint64_t value, unsigned size)
206 {
207     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
208 
209     if (size != 4) {
210         return omap_badwidth_write32(opaque, addr, value);
211     }
212 
213     switch (addr) {
214     case 0x00:	/* CNTL_TIMER */
215         omap_timer_sync(s);
216         s->enable = (value >> 5) & 1;
217         s->ptv = (value >> 2) & 7;
218         s->ar = (value >> 1) & 1;
219         s->st = value & 1;
220         omap_timer_update(s);
221         return;
222 
223     case 0x04:	/* LOAD_TIM */
224         s->reset_val = value;
225         return;
226 
227     case 0x08:	/* READ_TIM */
228         OMAP_RO_REG(addr);
229         break;
230 
231     default:
232         OMAP_BAD_REG(addr);
233     }
234 }
235 
236 static const MemoryRegionOps omap_mpu_timer_ops = {
237     .read = omap_mpu_timer_read,
238     .write = omap_mpu_timer_write,
239     .endianness = DEVICE_LITTLE_ENDIAN,
240 };
241 
242 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
243 {
244     timer_del(s->timer);
245     s->enable = 0;
246     s->reset_val = 31337;
247     s->val = 0;
248     s->ptv = 0;
249     s->ar = 0;
250     s->st = 0;
251     s->it_ena = 1;
252 }
253 
254 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
255                 hwaddr base,
256                 qemu_irq irq, omap_clk clk)
257 {
258     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
259             g_malloc0(sizeof(struct omap_mpu_timer_s));
260 
261     s->irq = irq;
262     s->clk = clk;
263     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
264     s->tick = qemu_bh_new(omap_timer_fire, s);
265     omap_mpu_timer_reset(s);
266     omap_timer_clk_setup(s);
267 
268     memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
269                           "omap-mpu-timer", 0x100);
270 
271     memory_region_add_subregion(system_memory, base, &s->iomem);
272 
273     return s;
274 }
275 
276 /* Watchdog timer */
277 struct omap_watchdog_timer_s {
278     struct omap_mpu_timer_s timer;
279     MemoryRegion iomem;
280     uint8_t last_wr;
281     int mode;
282     int free;
283     int reset;
284 };
285 
286 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
287                                    unsigned size)
288 {
289     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
290 
291     if (size != 2) {
292         return omap_badwidth_read16(opaque, addr);
293     }
294 
295     switch (addr) {
296     case 0x00:	/* CNTL_TIMER */
297         return (s->timer.ptv << 9) | (s->timer.ar << 8) |
298                 (s->timer.st << 7) | (s->free << 1);
299 
300     case 0x04:	/* READ_TIMER */
301         return omap_timer_read(&s->timer);
302 
303     case 0x08:	/* TIMER_MODE */
304         return s->mode << 15;
305     }
306 
307     OMAP_BAD_REG(addr);
308     return 0;
309 }
310 
311 static void omap_wd_timer_write(void *opaque, hwaddr addr,
312                                 uint64_t value, unsigned size)
313 {
314     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
315 
316     if (size != 2) {
317         return omap_badwidth_write16(opaque, addr, value);
318     }
319 
320     switch (addr) {
321     case 0x00:	/* CNTL_TIMER */
322         omap_timer_sync(&s->timer);
323         s->timer.ptv = (value >> 9) & 7;
324         s->timer.ar = (value >> 8) & 1;
325         s->timer.st = (value >> 7) & 1;
326         s->free = (value >> 1) & 1;
327         omap_timer_update(&s->timer);
328         break;
329 
330     case 0x04:	/* LOAD_TIMER */
331         s->timer.reset_val = value & 0xffff;
332         break;
333 
334     case 0x08:	/* TIMER_MODE */
335         if (!s->mode && ((value >> 15) & 1))
336             omap_clk_get(s->timer.clk);
337         s->mode |= (value >> 15) & 1;
338         if (s->last_wr == 0xf5) {
339             if ((value & 0xff) == 0xa0) {
340                 if (s->mode) {
341                     s->mode = 0;
342                     omap_clk_put(s->timer.clk);
343                 }
344             } else {
345                 /* XXX: on T|E hardware somehow this has no effect,
346                  * on Zire 71 it works as specified.  */
347                 s->reset = 1;
348                 qemu_system_reset_request();
349             }
350         }
351         s->last_wr = value & 0xff;
352         break;
353 
354     default:
355         OMAP_BAD_REG(addr);
356     }
357 }
358 
359 static const MemoryRegionOps omap_wd_timer_ops = {
360     .read = omap_wd_timer_read,
361     .write = omap_wd_timer_write,
362     .endianness = DEVICE_NATIVE_ENDIAN,
363 };
364 
365 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
366 {
367     timer_del(s->timer.timer);
368     if (!s->mode)
369         omap_clk_get(s->timer.clk);
370     s->mode = 1;
371     s->free = 1;
372     s->reset = 0;
373     s->timer.enable = 1;
374     s->timer.it_ena = 1;
375     s->timer.reset_val = 0xffff;
376     s->timer.val = 0;
377     s->timer.st = 0;
378     s->timer.ptv = 0;
379     s->timer.ar = 0;
380     omap_timer_update(&s->timer);
381 }
382 
383 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
384                 hwaddr base,
385                 qemu_irq irq, omap_clk clk)
386 {
387     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
388             g_malloc0(sizeof(struct omap_watchdog_timer_s));
389 
390     s->timer.irq = irq;
391     s->timer.clk = clk;
392     s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
393     omap_wd_timer_reset(s);
394     omap_timer_clk_setup(&s->timer);
395 
396     memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
397                           "omap-wd-timer", 0x100);
398     memory_region_add_subregion(memory, base, &s->iomem);
399 
400     return s;
401 }
402 
403 /* 32-kHz timer */
404 struct omap_32khz_timer_s {
405     struct omap_mpu_timer_s timer;
406     MemoryRegion iomem;
407 };
408 
409 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
410                                    unsigned size)
411 {
412     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
413     int offset = addr & OMAP_MPUI_REG_MASK;
414 
415     if (size != 4) {
416         return omap_badwidth_read32(opaque, addr);
417     }
418 
419     switch (offset) {
420     case 0x00:	/* TVR */
421         return s->timer.reset_val;
422 
423     case 0x04:	/* TCR */
424         return omap_timer_read(&s->timer);
425 
426     case 0x08:	/* CR */
427         return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
428 
429     default:
430         break;
431     }
432     OMAP_BAD_REG(addr);
433     return 0;
434 }
435 
436 static void omap_os_timer_write(void *opaque, hwaddr addr,
437                                 uint64_t value, unsigned size)
438 {
439     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
440     int offset = addr & OMAP_MPUI_REG_MASK;
441 
442     if (size != 4) {
443         return omap_badwidth_write32(opaque, addr, value);
444     }
445 
446     switch (offset) {
447     case 0x00:	/* TVR */
448         s->timer.reset_val = value & 0x00ffffff;
449         break;
450 
451     case 0x04:	/* TCR */
452         OMAP_RO_REG(addr);
453         break;
454 
455     case 0x08:	/* CR */
456         s->timer.ar = (value >> 3) & 1;
457         s->timer.it_ena = (value >> 2) & 1;
458         if (s->timer.st != (value & 1) || (value & 2)) {
459             omap_timer_sync(&s->timer);
460             s->timer.enable = value & 1;
461             s->timer.st = value & 1;
462             omap_timer_update(&s->timer);
463         }
464         break;
465 
466     default:
467         OMAP_BAD_REG(addr);
468     }
469 }
470 
471 static const MemoryRegionOps omap_os_timer_ops = {
472     .read = omap_os_timer_read,
473     .write = omap_os_timer_write,
474     .endianness = DEVICE_NATIVE_ENDIAN,
475 };
476 
477 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
478 {
479     timer_del(s->timer.timer);
480     s->timer.enable = 0;
481     s->timer.it_ena = 0;
482     s->timer.reset_val = 0x00ffffff;
483     s->timer.val = 0;
484     s->timer.st = 0;
485     s->timer.ptv = 0;
486     s->timer.ar = 1;
487 }
488 
489 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
490                 hwaddr base,
491                 qemu_irq irq, omap_clk clk)
492 {
493     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
494             g_malloc0(sizeof(struct omap_32khz_timer_s));
495 
496     s->timer.irq = irq;
497     s->timer.clk = clk;
498     s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
499     omap_os_timer_reset(s);
500     omap_timer_clk_setup(&s->timer);
501 
502     memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
503                           "omap-os-timer", 0x800);
504     memory_region_add_subregion(memory, base, &s->iomem);
505 
506     return s;
507 }
508 
509 /* Ultra Low-Power Device Module */
510 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
511                                   unsigned size)
512 {
513     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
514     uint16_t ret;
515 
516     if (size != 2) {
517         return omap_badwidth_read16(opaque, addr);
518     }
519 
520     switch (addr) {
521     case 0x14:	/* IT_STATUS */
522         ret = s->ulpd_pm_regs[addr >> 2];
523         s->ulpd_pm_regs[addr >> 2] = 0;
524         qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
525         return ret;
526 
527     case 0x18:	/* Reserved */
528     case 0x1c:	/* Reserved */
529     case 0x20:	/* Reserved */
530     case 0x28:	/* Reserved */
531     case 0x2c:	/* Reserved */
532         OMAP_BAD_REG(addr);
533         /* fall through */
534     case 0x00:	/* COUNTER_32_LSB */
535     case 0x04:	/* COUNTER_32_MSB */
536     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
537     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
538     case 0x10:	/* GAUGING_CTRL */
539     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
540     case 0x30:	/* CLOCK_CTRL */
541     case 0x34:	/* SOFT_REQ */
542     case 0x38:	/* COUNTER_32_FIQ */
543     case 0x3c:	/* DPLL_CTRL */
544     case 0x40:	/* STATUS_REQ */
545         /* XXX: check clk::usecount state for every clock */
546     case 0x48:	/* LOCL_TIME */
547     case 0x4c:	/* APLL_CTRL */
548     case 0x50:	/* POWER_CTRL */
549         return s->ulpd_pm_regs[addr >> 2];
550     }
551 
552     OMAP_BAD_REG(addr);
553     return 0;
554 }
555 
556 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
557                 uint16_t diff, uint16_t value)
558 {
559     if (diff & (1 << 4))				/* USB_MCLK_EN */
560         omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
561     if (diff & (1 << 5))				/* DIS_USB_PVCI_CLK */
562         omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
563 }
564 
565 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
566                 uint16_t diff, uint16_t value)
567 {
568     if (diff & (1 << 0))				/* SOFT_DPLL_REQ */
569         omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
570     if (diff & (1 << 1))				/* SOFT_COM_REQ */
571         omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
572     if (diff & (1 << 2))				/* SOFT_SDW_REQ */
573         omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
574     if (diff & (1 << 3))				/* SOFT_USB_REQ */
575         omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
576 }
577 
578 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
579                                uint64_t value, unsigned size)
580 {
581     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
582     int64_t now, ticks;
583     int div, mult;
584     static const int bypass_div[4] = { 1, 2, 4, 4 };
585     uint16_t diff;
586 
587     if (size != 2) {
588         return omap_badwidth_write16(opaque, addr, value);
589     }
590 
591     switch (addr) {
592     case 0x00:	/* COUNTER_32_LSB */
593     case 0x04:	/* COUNTER_32_MSB */
594     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
595     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
596     case 0x14:	/* IT_STATUS */
597     case 0x40:	/* STATUS_REQ */
598         OMAP_RO_REG(addr);
599         break;
600 
601     case 0x10:	/* GAUGING_CTRL */
602         /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
603         if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
604             now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
605 
606             if (value & 1)
607                 s->ulpd_gauge_start = now;
608             else {
609                 now -= s->ulpd_gauge_start;
610 
611                 /* 32-kHz ticks */
612                 ticks = muldiv64(now, 32768, get_ticks_per_sec());
613                 s->ulpd_pm_regs[0x00 >> 2] = (ticks >>  0) & 0xffff;
614                 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
615                 if (ticks >> 32)	/* OVERFLOW_32K */
616                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
617 
618                 /* High frequency ticks */
619                 ticks = muldiv64(now, 12000000, get_ticks_per_sec());
620                 s->ulpd_pm_regs[0x08 >> 2] = (ticks >>  0) & 0xffff;
621                 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
622                 if (ticks >> 32)	/* OVERFLOW_HI_FREQ */
623                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
624 
625                 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0;	/* IT_GAUGING */
626                 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
627             }
628         }
629         s->ulpd_pm_regs[addr >> 2] = value;
630         break;
631 
632     case 0x18:	/* Reserved */
633     case 0x1c:	/* Reserved */
634     case 0x20:	/* Reserved */
635     case 0x28:	/* Reserved */
636     case 0x2c:	/* Reserved */
637         OMAP_BAD_REG(addr);
638         /* fall through */
639     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
640     case 0x38:	/* COUNTER_32_FIQ */
641     case 0x48:	/* LOCL_TIME */
642     case 0x50:	/* POWER_CTRL */
643         s->ulpd_pm_regs[addr >> 2] = value;
644         break;
645 
646     case 0x30:	/* CLOCK_CTRL */
647         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
648         s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
649         omap_ulpd_clk_update(s, diff, value);
650         break;
651 
652     case 0x34:	/* SOFT_REQ */
653         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
654         s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
655         omap_ulpd_req_update(s, diff, value);
656         break;
657 
658     case 0x3c:	/* DPLL_CTRL */
659         /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
660          * omitted altogether, probably a typo.  */
661         /* This register has identical semantics with DPLL(1:3) control
662          * registers, see omap_dpll_write() */
663         diff = s->ulpd_pm_regs[addr >> 2] & value;
664         s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
665         if (diff & (0x3ff << 2)) {
666             if (value & (1 << 4)) {			/* PLL_ENABLE */
667                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
668                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
669             } else {
670                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
671                 mult = 1;
672             }
673             omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
674         }
675 
676         /* Enter the desired mode.  */
677         s->ulpd_pm_regs[addr >> 2] =
678                 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
679                 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
680 
681         /* Act as if the lock is restored.  */
682         s->ulpd_pm_regs[addr >> 2] |= 2;
683         break;
684 
685     case 0x4c:	/* APLL_CTRL */
686         diff = s->ulpd_pm_regs[addr >> 2] & value;
687         s->ulpd_pm_regs[addr >> 2] = value & 0xf;
688         if (diff & (1 << 0))				/* APLL_NDPLL_SWITCH */
689             omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
690                                     (value & (1 << 0)) ? "apll" : "dpll4"));
691         break;
692 
693     default:
694         OMAP_BAD_REG(addr);
695     }
696 }
697 
698 static const MemoryRegionOps omap_ulpd_pm_ops = {
699     .read = omap_ulpd_pm_read,
700     .write = omap_ulpd_pm_write,
701     .endianness = DEVICE_NATIVE_ENDIAN,
702 };
703 
704 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
705 {
706     mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
707     mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
708     mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
709     mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
710     mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
711     mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
712     mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
713     mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
714     mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
715     mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
716     mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
717     omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
718     mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
719     omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
720     mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
721     mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
722     mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
723     mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
724     mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
725     mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
726     mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
727     omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
728     omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
729 }
730 
731 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
732                 hwaddr base,
733                 struct omap_mpu_state_s *mpu)
734 {
735     memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
736                           "omap-ulpd-pm", 0x800);
737     memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
738     omap_ulpd_pm_reset(mpu);
739 }
740 
741 /* OMAP Pin Configuration */
742 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
743                                   unsigned size)
744 {
745     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
746 
747     if (size != 4) {
748         return omap_badwidth_read32(opaque, addr);
749     }
750 
751     switch (addr) {
752     case 0x00:	/* FUNC_MUX_CTRL_0 */
753     case 0x04:	/* FUNC_MUX_CTRL_1 */
754     case 0x08:	/* FUNC_MUX_CTRL_2 */
755         return s->func_mux_ctrl[addr >> 2];
756 
757     case 0x0c:	/* COMP_MODE_CTRL_0 */
758         return s->comp_mode_ctrl[0];
759 
760     case 0x10:	/* FUNC_MUX_CTRL_3 */
761     case 0x14:	/* FUNC_MUX_CTRL_4 */
762     case 0x18:	/* FUNC_MUX_CTRL_5 */
763     case 0x1c:	/* FUNC_MUX_CTRL_6 */
764     case 0x20:	/* FUNC_MUX_CTRL_7 */
765     case 0x24:	/* FUNC_MUX_CTRL_8 */
766     case 0x28:	/* FUNC_MUX_CTRL_9 */
767     case 0x2c:	/* FUNC_MUX_CTRL_A */
768     case 0x30:	/* FUNC_MUX_CTRL_B */
769     case 0x34:	/* FUNC_MUX_CTRL_C */
770     case 0x38:	/* FUNC_MUX_CTRL_D */
771         return s->func_mux_ctrl[(addr >> 2) - 1];
772 
773     case 0x40:	/* PULL_DWN_CTRL_0 */
774     case 0x44:	/* PULL_DWN_CTRL_1 */
775     case 0x48:	/* PULL_DWN_CTRL_2 */
776     case 0x4c:	/* PULL_DWN_CTRL_3 */
777         return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
778 
779     case 0x50:	/* GATE_INH_CTRL_0 */
780         return s->gate_inh_ctrl[0];
781 
782     case 0x60:	/* VOLTAGE_CTRL_0 */
783         return s->voltage_ctrl[0];
784 
785     case 0x70:	/* TEST_DBG_CTRL_0 */
786         return s->test_dbg_ctrl[0];
787 
788     case 0x80:	/* MOD_CONF_CTRL_0 */
789         return s->mod_conf_ctrl[0];
790     }
791 
792     OMAP_BAD_REG(addr);
793     return 0;
794 }
795 
796 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
797                 uint32_t diff, uint32_t value)
798 {
799     if (s->compat1509) {
800         if (diff & (1 << 9))			/* BLUETOOTH */
801             omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
802                             (~value >> 9) & 1);
803         if (diff & (1 << 7))			/* USB.CLKO */
804             omap_clk_onoff(omap_findclk(s, "usb.clko"),
805                             (value >> 7) & 1);
806     }
807 }
808 
809 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
810                 uint32_t diff, uint32_t value)
811 {
812     if (s->compat1509) {
813         if (diff & (1U << 31)) {
814             /* MCBSP3_CLK_HIZ_DI */
815             omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
816         }
817         if (diff & (1 << 1)) {
818             /* CLK32K */
819             omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
820         }
821     }
822 }
823 
824 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
825                 uint32_t diff, uint32_t value)
826 {
827     if (diff & (1U << 31)) {
828         /* CONF_MOD_UART3_CLK_MODE_R */
829         omap_clk_reparent(omap_findclk(s, "uart3_ck"),
830                           omap_findclk(s, ((value >> 31) & 1) ?
831                                        "ck_48m" : "armper_ck"));
832     }
833     if (diff & (1 << 30))			/* CONF_MOD_UART2_CLK_MODE_R */
834          omap_clk_reparent(omap_findclk(s, "uart2_ck"),
835                          omap_findclk(s, ((value >> 30) & 1) ?
836                                  "ck_48m" : "armper_ck"));
837     if (diff & (1 << 29))			/* CONF_MOD_UART1_CLK_MODE_R */
838          omap_clk_reparent(omap_findclk(s, "uart1_ck"),
839                          omap_findclk(s, ((value >> 29) & 1) ?
840                                  "ck_48m" : "armper_ck"));
841     if (diff & (1 << 23))			/* CONF_MOD_MMC_SD_CLK_REQ_R */
842          omap_clk_reparent(omap_findclk(s, "mmc_ck"),
843                          omap_findclk(s, ((value >> 23) & 1) ?
844                                  "ck_48m" : "armper_ck"));
845     if (diff & (1 << 12))			/* CONF_MOD_COM_MCLK_12_48_S */
846          omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
847                          omap_findclk(s, ((value >> 12) & 1) ?
848                                  "ck_48m" : "armper_ck"));
849     if (diff & (1 << 9))			/* CONF_MOD_USB_HOST_HHC_UHO */
850          omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
851 }
852 
853 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
854                                uint64_t value, unsigned size)
855 {
856     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
857     uint32_t diff;
858 
859     if (size != 4) {
860         return omap_badwidth_write32(opaque, addr, value);
861     }
862 
863     switch (addr) {
864     case 0x00:	/* FUNC_MUX_CTRL_0 */
865         diff = s->func_mux_ctrl[addr >> 2] ^ value;
866         s->func_mux_ctrl[addr >> 2] = value;
867         omap_pin_funcmux0_update(s, diff, value);
868         return;
869 
870     case 0x04:	/* FUNC_MUX_CTRL_1 */
871         diff = s->func_mux_ctrl[addr >> 2] ^ value;
872         s->func_mux_ctrl[addr >> 2] = value;
873         omap_pin_funcmux1_update(s, diff, value);
874         return;
875 
876     case 0x08:	/* FUNC_MUX_CTRL_2 */
877         s->func_mux_ctrl[addr >> 2] = value;
878         return;
879 
880     case 0x0c:	/* COMP_MODE_CTRL_0 */
881         s->comp_mode_ctrl[0] = value;
882         s->compat1509 = (value != 0x0000eaef);
883         omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
884         omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
885         return;
886 
887     case 0x10:	/* FUNC_MUX_CTRL_3 */
888     case 0x14:	/* FUNC_MUX_CTRL_4 */
889     case 0x18:	/* FUNC_MUX_CTRL_5 */
890     case 0x1c:	/* FUNC_MUX_CTRL_6 */
891     case 0x20:	/* FUNC_MUX_CTRL_7 */
892     case 0x24:	/* FUNC_MUX_CTRL_8 */
893     case 0x28:	/* FUNC_MUX_CTRL_9 */
894     case 0x2c:	/* FUNC_MUX_CTRL_A */
895     case 0x30:	/* FUNC_MUX_CTRL_B */
896     case 0x34:	/* FUNC_MUX_CTRL_C */
897     case 0x38:	/* FUNC_MUX_CTRL_D */
898         s->func_mux_ctrl[(addr >> 2) - 1] = value;
899         return;
900 
901     case 0x40:	/* PULL_DWN_CTRL_0 */
902     case 0x44:	/* PULL_DWN_CTRL_1 */
903     case 0x48:	/* PULL_DWN_CTRL_2 */
904     case 0x4c:	/* PULL_DWN_CTRL_3 */
905         s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
906         return;
907 
908     case 0x50:	/* GATE_INH_CTRL_0 */
909         s->gate_inh_ctrl[0] = value;
910         return;
911 
912     case 0x60:	/* VOLTAGE_CTRL_0 */
913         s->voltage_ctrl[0] = value;
914         return;
915 
916     case 0x70:	/* TEST_DBG_CTRL_0 */
917         s->test_dbg_ctrl[0] = value;
918         return;
919 
920     case 0x80:	/* MOD_CONF_CTRL_0 */
921         diff = s->mod_conf_ctrl[0] ^ value;
922         s->mod_conf_ctrl[0] = value;
923         omap_pin_modconf1_update(s, diff, value);
924         return;
925 
926     default:
927         OMAP_BAD_REG(addr);
928     }
929 }
930 
931 static const MemoryRegionOps omap_pin_cfg_ops = {
932     .read = omap_pin_cfg_read,
933     .write = omap_pin_cfg_write,
934     .endianness = DEVICE_NATIVE_ENDIAN,
935 };
936 
937 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
938 {
939     /* Start in Compatibility Mode.  */
940     mpu->compat1509 = 1;
941     omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
942     omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
943     omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
944     memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
945     memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
946     memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
947     memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
948     memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
949     memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
950     memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
951 }
952 
953 static void omap_pin_cfg_init(MemoryRegion *system_memory,
954                 hwaddr base,
955                 struct omap_mpu_state_s *mpu)
956 {
957     memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
958                           "omap-pin-cfg", 0x800);
959     memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
960     omap_pin_cfg_reset(mpu);
961 }
962 
963 /* Device Identification, Die Identification */
964 static uint64_t omap_id_read(void *opaque, hwaddr addr,
965                              unsigned size)
966 {
967     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
968 
969     if (size != 4) {
970         return omap_badwidth_read32(opaque, addr);
971     }
972 
973     switch (addr) {
974     case 0xfffe1800:	/* DIE_ID_LSB */
975         return 0xc9581f0e;
976     case 0xfffe1804:	/* DIE_ID_MSB */
977         return 0xa8858bfa;
978 
979     case 0xfffe2000:	/* PRODUCT_ID_LSB */
980         return 0x00aaaafc;
981     case 0xfffe2004:	/* PRODUCT_ID_MSB */
982         return 0xcafeb574;
983 
984     case 0xfffed400:	/* JTAG_ID_LSB */
985         switch (s->mpu_model) {
986         case omap310:
987             return 0x03310315;
988         case omap1510:
989             return 0x03310115;
990         default:
991             hw_error("%s: bad mpu model\n", __FUNCTION__);
992         }
993         break;
994 
995     case 0xfffed404:	/* JTAG_ID_MSB */
996         switch (s->mpu_model) {
997         case omap310:
998             return 0xfb57402f;
999         case omap1510:
1000             return 0xfb47002f;
1001         default:
1002             hw_error("%s: bad mpu model\n", __FUNCTION__);
1003         }
1004         break;
1005     }
1006 
1007     OMAP_BAD_REG(addr);
1008     return 0;
1009 }
1010 
1011 static void omap_id_write(void *opaque, hwaddr addr,
1012                           uint64_t value, unsigned size)
1013 {
1014     if (size != 4) {
1015         return omap_badwidth_write32(opaque, addr, value);
1016     }
1017 
1018     OMAP_BAD_REG(addr);
1019 }
1020 
1021 static const MemoryRegionOps omap_id_ops = {
1022     .read = omap_id_read,
1023     .write = omap_id_write,
1024     .endianness = DEVICE_NATIVE_ENDIAN,
1025 };
1026 
1027 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1028 {
1029     memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1030                           "omap-id", 0x100000000ULL);
1031     memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1032                              0xfffe1800, 0x800);
1033     memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1034     memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1035                              0xfffed400, 0x100);
1036     memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1037     if (!cpu_is_omap15xx(mpu)) {
1038         memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1039                                  &mpu->id_iomem, 0xfffe2000, 0x800);
1040         memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1041     }
1042 }
1043 
1044 /* MPUI Control (Dummy) */
1045 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1046                                unsigned size)
1047 {
1048     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1049 
1050     if (size != 4) {
1051         return omap_badwidth_read32(opaque, addr);
1052     }
1053 
1054     switch (addr) {
1055     case 0x00:	/* CTRL */
1056         return s->mpui_ctrl;
1057     case 0x04:	/* DEBUG_ADDR */
1058         return 0x01ffffff;
1059     case 0x08:	/* DEBUG_DATA */
1060         return 0xffffffff;
1061     case 0x0c:	/* DEBUG_FLAG */
1062         return 0x00000800;
1063     case 0x10:	/* STATUS */
1064         return 0x00000000;
1065 
1066     /* Not in OMAP310 */
1067     case 0x14:	/* DSP_STATUS */
1068     case 0x18:	/* DSP_BOOT_CONFIG */
1069         return 0x00000000;
1070     case 0x1c:	/* DSP_MPUI_CONFIG */
1071         return 0x0000ffff;
1072     }
1073 
1074     OMAP_BAD_REG(addr);
1075     return 0;
1076 }
1077 
1078 static void omap_mpui_write(void *opaque, hwaddr addr,
1079                             uint64_t value, unsigned size)
1080 {
1081     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1082 
1083     if (size != 4) {
1084         return omap_badwidth_write32(opaque, addr, value);
1085     }
1086 
1087     switch (addr) {
1088     case 0x00:	/* CTRL */
1089         s->mpui_ctrl = value & 0x007fffff;
1090         break;
1091 
1092     case 0x04:	/* DEBUG_ADDR */
1093     case 0x08:	/* DEBUG_DATA */
1094     case 0x0c:	/* DEBUG_FLAG */
1095     case 0x10:	/* STATUS */
1096     /* Not in OMAP310 */
1097     case 0x14:	/* DSP_STATUS */
1098         OMAP_RO_REG(addr);
1099         break;
1100     case 0x18:	/* DSP_BOOT_CONFIG */
1101     case 0x1c:	/* DSP_MPUI_CONFIG */
1102         break;
1103 
1104     default:
1105         OMAP_BAD_REG(addr);
1106     }
1107 }
1108 
1109 static const MemoryRegionOps omap_mpui_ops = {
1110     .read = omap_mpui_read,
1111     .write = omap_mpui_write,
1112     .endianness = DEVICE_NATIVE_ENDIAN,
1113 };
1114 
1115 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1116 {
1117     s->mpui_ctrl = 0x0003ff1b;
1118 }
1119 
1120 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1121                 struct omap_mpu_state_s *mpu)
1122 {
1123     memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1124                           "omap-mpui", 0x100);
1125     memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1126 
1127     omap_mpui_reset(mpu);
1128 }
1129 
1130 /* TIPB Bridges */
1131 struct omap_tipb_bridge_s {
1132     qemu_irq abort;
1133     MemoryRegion iomem;
1134 
1135     int width_intr;
1136     uint16_t control;
1137     uint16_t alloc;
1138     uint16_t buffer;
1139     uint16_t enh_control;
1140 };
1141 
1142 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1143                                       unsigned size)
1144 {
1145     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1146 
1147     if (size < 2) {
1148         return omap_badwidth_read16(opaque, addr);
1149     }
1150 
1151     switch (addr) {
1152     case 0x00:	/* TIPB_CNTL */
1153         return s->control;
1154     case 0x04:	/* TIPB_BUS_ALLOC */
1155         return s->alloc;
1156     case 0x08:	/* MPU_TIPB_CNTL */
1157         return s->buffer;
1158     case 0x0c:	/* ENHANCED_TIPB_CNTL */
1159         return s->enh_control;
1160     case 0x10:	/* ADDRESS_DBG */
1161     case 0x14:	/* DATA_DEBUG_LOW */
1162     case 0x18:	/* DATA_DEBUG_HIGH */
1163         return 0xffff;
1164     case 0x1c:	/* DEBUG_CNTR_SIG */
1165         return 0x00f8;
1166     }
1167 
1168     OMAP_BAD_REG(addr);
1169     return 0;
1170 }
1171 
1172 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1173                                    uint64_t value, unsigned size)
1174 {
1175     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1176 
1177     if (size < 2) {
1178         return omap_badwidth_write16(opaque, addr, value);
1179     }
1180 
1181     switch (addr) {
1182     case 0x00:	/* TIPB_CNTL */
1183         s->control = value & 0xffff;
1184         break;
1185 
1186     case 0x04:	/* TIPB_BUS_ALLOC */
1187         s->alloc = value & 0x003f;
1188         break;
1189 
1190     case 0x08:	/* MPU_TIPB_CNTL */
1191         s->buffer = value & 0x0003;
1192         break;
1193 
1194     case 0x0c:	/* ENHANCED_TIPB_CNTL */
1195         s->width_intr = !(value & 2);
1196         s->enh_control = value & 0x000f;
1197         break;
1198 
1199     case 0x10:	/* ADDRESS_DBG */
1200     case 0x14:	/* DATA_DEBUG_LOW */
1201     case 0x18:	/* DATA_DEBUG_HIGH */
1202     case 0x1c:	/* DEBUG_CNTR_SIG */
1203         OMAP_RO_REG(addr);
1204         break;
1205 
1206     default:
1207         OMAP_BAD_REG(addr);
1208     }
1209 }
1210 
1211 static const MemoryRegionOps omap_tipb_bridge_ops = {
1212     .read = omap_tipb_bridge_read,
1213     .write = omap_tipb_bridge_write,
1214     .endianness = DEVICE_NATIVE_ENDIAN,
1215 };
1216 
1217 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1218 {
1219     s->control = 0xffff;
1220     s->alloc = 0x0009;
1221     s->buffer = 0x0000;
1222     s->enh_control = 0x000f;
1223 }
1224 
1225 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1226     MemoryRegion *memory, hwaddr base,
1227     qemu_irq abort_irq, omap_clk clk)
1228 {
1229     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
1230             g_malloc0(sizeof(struct omap_tipb_bridge_s));
1231 
1232     s->abort = abort_irq;
1233     omap_tipb_bridge_reset(s);
1234 
1235     memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1236                           "omap-tipb-bridge", 0x100);
1237     memory_region_add_subregion(memory, base, &s->iomem);
1238 
1239     return s;
1240 }
1241 
1242 /* Dummy Traffic Controller's Memory Interface */
1243 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1244                                unsigned size)
1245 {
1246     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1247     uint32_t ret;
1248 
1249     if (size != 4) {
1250         return omap_badwidth_read32(opaque, addr);
1251     }
1252 
1253     switch (addr) {
1254     case 0x00:	/* IMIF_PRIO */
1255     case 0x04:	/* EMIFS_PRIO */
1256     case 0x08:	/* EMIFF_PRIO */
1257     case 0x0c:	/* EMIFS_CONFIG */
1258     case 0x10:	/* EMIFS_CS0_CONFIG */
1259     case 0x14:	/* EMIFS_CS1_CONFIG */
1260     case 0x18:	/* EMIFS_CS2_CONFIG */
1261     case 0x1c:	/* EMIFS_CS3_CONFIG */
1262     case 0x24:	/* EMIFF_MRS */
1263     case 0x28:	/* TIMEOUT1 */
1264     case 0x2c:	/* TIMEOUT2 */
1265     case 0x30:	/* TIMEOUT3 */
1266     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
1267     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
1268         return s->tcmi_regs[addr >> 2];
1269 
1270     case 0x20:	/* EMIFF_SDRAM_CONFIG */
1271         ret = s->tcmi_regs[addr >> 2];
1272         s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1273         /* XXX: We can try using the VGA_DIRTY flag for this */
1274         return ret;
1275     }
1276 
1277     OMAP_BAD_REG(addr);
1278     return 0;
1279 }
1280 
1281 static void omap_tcmi_write(void *opaque, hwaddr addr,
1282                             uint64_t value, unsigned size)
1283 {
1284     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1285 
1286     if (size != 4) {
1287         return omap_badwidth_write32(opaque, addr, value);
1288     }
1289 
1290     switch (addr) {
1291     case 0x00:	/* IMIF_PRIO */
1292     case 0x04:	/* EMIFS_PRIO */
1293     case 0x08:	/* EMIFF_PRIO */
1294     case 0x10:	/* EMIFS_CS0_CONFIG */
1295     case 0x14:	/* EMIFS_CS1_CONFIG */
1296     case 0x18:	/* EMIFS_CS2_CONFIG */
1297     case 0x1c:	/* EMIFS_CS3_CONFIG */
1298     case 0x20:	/* EMIFF_SDRAM_CONFIG */
1299     case 0x24:	/* EMIFF_MRS */
1300     case 0x28:	/* TIMEOUT1 */
1301     case 0x2c:	/* TIMEOUT2 */
1302     case 0x30:	/* TIMEOUT3 */
1303     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
1304     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
1305         s->tcmi_regs[addr >> 2] = value;
1306         break;
1307     case 0x0c:	/* EMIFS_CONFIG */
1308         s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1309         break;
1310 
1311     default:
1312         OMAP_BAD_REG(addr);
1313     }
1314 }
1315 
1316 static const MemoryRegionOps omap_tcmi_ops = {
1317     .read = omap_tcmi_read,
1318     .write = omap_tcmi_write,
1319     .endianness = DEVICE_NATIVE_ENDIAN,
1320 };
1321 
1322 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1323 {
1324     mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1325     mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1326     mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1327     mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1328     mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1329     mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1330     mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1331     mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1332     mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1333     mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1334     mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1335     mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1336     mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1337     mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1338     mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1339 }
1340 
1341 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1342                 struct omap_mpu_state_s *mpu)
1343 {
1344     memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1345                           "omap-tcmi", 0x100);
1346     memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1347     omap_tcmi_reset(mpu);
1348 }
1349 
1350 /* Digital phase-locked loops control */
1351 struct dpll_ctl_s {
1352     MemoryRegion iomem;
1353     uint16_t mode;
1354     omap_clk dpll;
1355 };
1356 
1357 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1358                                unsigned size)
1359 {
1360     struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1361 
1362     if (size != 2) {
1363         return omap_badwidth_read16(opaque, addr);
1364     }
1365 
1366     if (addr == 0x00)	/* CTL_REG */
1367         return s->mode;
1368 
1369     OMAP_BAD_REG(addr);
1370     return 0;
1371 }
1372 
1373 static void omap_dpll_write(void *opaque, hwaddr addr,
1374                             uint64_t value, unsigned size)
1375 {
1376     struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1377     uint16_t diff;
1378     static const int bypass_div[4] = { 1, 2, 4, 4 };
1379     int div, mult;
1380 
1381     if (size != 2) {
1382         return omap_badwidth_write16(opaque, addr, value);
1383     }
1384 
1385     if (addr == 0x00) {	/* CTL_REG */
1386         /* See omap_ulpd_pm_write() too */
1387         diff = s->mode & value;
1388         s->mode = value & 0x2fff;
1389         if (diff & (0x3ff << 2)) {
1390             if (value & (1 << 4)) {			/* PLL_ENABLE */
1391                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
1392                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
1393             } else {
1394                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
1395                 mult = 1;
1396             }
1397             omap_clk_setrate(s->dpll, div, mult);
1398         }
1399 
1400         /* Enter the desired mode.  */
1401         s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1402 
1403         /* Act as if the lock is restored.  */
1404         s->mode |= 2;
1405     } else {
1406         OMAP_BAD_REG(addr);
1407     }
1408 }
1409 
1410 static const MemoryRegionOps omap_dpll_ops = {
1411     .read = omap_dpll_read,
1412     .write = omap_dpll_write,
1413     .endianness = DEVICE_NATIVE_ENDIAN,
1414 };
1415 
1416 static void omap_dpll_reset(struct dpll_ctl_s *s)
1417 {
1418     s->mode = 0x2002;
1419     omap_clk_setrate(s->dpll, 1, 1);
1420 }
1421 
1422 static struct dpll_ctl_s  *omap_dpll_init(MemoryRegion *memory,
1423                            hwaddr base, omap_clk clk)
1424 {
1425     struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1426     memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1427 
1428     s->dpll = clk;
1429     omap_dpll_reset(s);
1430 
1431     memory_region_add_subregion(memory, base, &s->iomem);
1432     return s;
1433 }
1434 
1435 /* MPU Clock/Reset/Power Mode Control */
1436 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1437                                unsigned size)
1438 {
1439     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1440 
1441     if (size != 2) {
1442         return omap_badwidth_read16(opaque, addr);
1443     }
1444 
1445     switch (addr) {
1446     case 0x00:	/* ARM_CKCTL */
1447         return s->clkm.arm_ckctl;
1448 
1449     case 0x04:	/* ARM_IDLECT1 */
1450         return s->clkm.arm_idlect1;
1451 
1452     case 0x08:	/* ARM_IDLECT2 */
1453         return s->clkm.arm_idlect2;
1454 
1455     case 0x0c:	/* ARM_EWUPCT */
1456         return s->clkm.arm_ewupct;
1457 
1458     case 0x10:	/* ARM_RSTCT1 */
1459         return s->clkm.arm_rstct1;
1460 
1461     case 0x14:	/* ARM_RSTCT2 */
1462         return s->clkm.arm_rstct2;
1463 
1464     case 0x18:	/* ARM_SYSST */
1465         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1466 
1467     case 0x1c:	/* ARM_CKOUT1 */
1468         return s->clkm.arm_ckout1;
1469 
1470     case 0x20:	/* ARM_CKOUT2 */
1471         break;
1472     }
1473 
1474     OMAP_BAD_REG(addr);
1475     return 0;
1476 }
1477 
1478 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1479                 uint16_t diff, uint16_t value)
1480 {
1481     omap_clk clk;
1482 
1483     if (diff & (1 << 14)) {				/* ARM_INTHCK_SEL */
1484         if (value & (1 << 14))
1485             /* Reserved */;
1486         else {
1487             clk = omap_findclk(s, "arminth_ck");
1488             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1489         }
1490     }
1491     if (diff & (1 << 12)) {				/* ARM_TIMXO */
1492         clk = omap_findclk(s, "armtim_ck");
1493         if (value & (1 << 12))
1494             omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1495         else
1496             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1497     }
1498     /* XXX: en_dspck */
1499     if (diff & (3 << 10)) {				/* DSPMMUDIV */
1500         clk = omap_findclk(s, "dspmmu_ck");
1501         omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1502     }
1503     if (diff & (3 << 8)) {				/* TCDIV */
1504         clk = omap_findclk(s, "tc_ck");
1505         omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1506     }
1507     if (diff & (3 << 6)) {				/* DSPDIV */
1508         clk = omap_findclk(s, "dsp_ck");
1509         omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1510     }
1511     if (diff & (3 << 4)) {				/* ARMDIV */
1512         clk = omap_findclk(s, "arm_ck");
1513         omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1514     }
1515     if (diff & (3 << 2)) {				/* LCDDIV */
1516         clk = omap_findclk(s, "lcd_ck");
1517         omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1518     }
1519     if (diff & (3 << 0)) {				/* PERDIV */
1520         clk = omap_findclk(s, "armper_ck");
1521         omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1522     }
1523 }
1524 
1525 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1526                 uint16_t diff, uint16_t value)
1527 {
1528     omap_clk clk;
1529 
1530     if (value & (1 << 11)) {                            /* SETARM_IDLE */
1531         cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1532     }
1533     if (!(value & (1 << 10)))				/* WKUP_MODE */
1534         qemu_system_shutdown_request();	/* XXX: disable wakeup from IRQ */
1535 
1536 #define SET_CANIDLE(clock, bit)				\
1537     if (diff & (1 << bit)) {				\
1538         clk = omap_findclk(s, clock);			\
1539         omap_clk_canidle(clk, (value >> bit) & 1);	\
1540     }
1541     SET_CANIDLE("mpuwd_ck", 0)				/* IDLWDT_ARM */
1542     SET_CANIDLE("armxor_ck", 1)				/* IDLXORP_ARM */
1543     SET_CANIDLE("mpuper_ck", 2)				/* IDLPER_ARM */
1544     SET_CANIDLE("lcd_ck", 3)				/* IDLLCD_ARM */
1545     SET_CANIDLE("lb_ck", 4)				/* IDLLB_ARM */
1546     SET_CANIDLE("hsab_ck", 5)				/* IDLHSAB_ARM */
1547     SET_CANIDLE("tipb_ck", 6)				/* IDLIF_ARM */
1548     SET_CANIDLE("dma_ck", 6)				/* IDLIF_ARM */
1549     SET_CANIDLE("tc_ck", 6)				/* IDLIF_ARM */
1550     SET_CANIDLE("dpll1", 7)				/* IDLDPLL_ARM */
1551     SET_CANIDLE("dpll2", 7)				/* IDLDPLL_ARM */
1552     SET_CANIDLE("dpll3", 7)				/* IDLDPLL_ARM */
1553     SET_CANIDLE("mpui_ck", 8)				/* IDLAPI_ARM */
1554     SET_CANIDLE("armtim_ck", 9)				/* IDLTIM_ARM */
1555 }
1556 
1557 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1558                 uint16_t diff, uint16_t value)
1559 {
1560     omap_clk clk;
1561 
1562 #define SET_ONOFF(clock, bit)				\
1563     if (diff & (1 << bit)) {				\
1564         clk = omap_findclk(s, clock);			\
1565         omap_clk_onoff(clk, (value >> bit) & 1);	\
1566     }
1567     SET_ONOFF("mpuwd_ck", 0)				/* EN_WDTCK */
1568     SET_ONOFF("armxor_ck", 1)				/* EN_XORPCK */
1569     SET_ONOFF("mpuper_ck", 2)				/* EN_PERCK */
1570     SET_ONOFF("lcd_ck", 3)				/* EN_LCDCK */
1571     SET_ONOFF("lb_ck", 4)				/* EN_LBCK */
1572     SET_ONOFF("hsab_ck", 5)				/* EN_HSABCK */
1573     SET_ONOFF("mpui_ck", 6)				/* EN_APICK */
1574     SET_ONOFF("armtim_ck", 7)				/* EN_TIMCK */
1575     SET_CANIDLE("dma_ck", 8)				/* DMACK_REQ */
1576     SET_ONOFF("arm_gpio_ck", 9)				/* EN_GPIOCK */
1577     SET_ONOFF("lbfree_ck", 10)				/* EN_LBFREECK */
1578 }
1579 
1580 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1581                 uint16_t diff, uint16_t value)
1582 {
1583     omap_clk clk;
1584 
1585     if (diff & (3 << 4)) {				/* TCLKOUT */
1586         clk = omap_findclk(s, "tclk_out");
1587         switch ((value >> 4) & 3) {
1588         case 1:
1589             omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1590             omap_clk_onoff(clk, 1);
1591             break;
1592         case 2:
1593             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1594             omap_clk_onoff(clk, 1);
1595             break;
1596         default:
1597             omap_clk_onoff(clk, 0);
1598         }
1599     }
1600     if (diff & (3 << 2)) {				/* DCLKOUT */
1601         clk = omap_findclk(s, "dclk_out");
1602         switch ((value >> 2) & 3) {
1603         case 0:
1604             omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1605             break;
1606         case 1:
1607             omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1608             break;
1609         case 2:
1610             omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1611             break;
1612         case 3:
1613             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1614             break;
1615         }
1616     }
1617     if (diff & (3 << 0)) {				/* ACLKOUT */
1618         clk = omap_findclk(s, "aclk_out");
1619         switch ((value >> 0) & 3) {
1620         case 1:
1621             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1622             omap_clk_onoff(clk, 1);
1623             break;
1624         case 2:
1625             omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1626             omap_clk_onoff(clk, 1);
1627             break;
1628         case 3:
1629             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1630             omap_clk_onoff(clk, 1);
1631             break;
1632         default:
1633             omap_clk_onoff(clk, 0);
1634         }
1635     }
1636 }
1637 
1638 static void omap_clkm_write(void *opaque, hwaddr addr,
1639                             uint64_t value, unsigned size)
1640 {
1641     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1642     uint16_t diff;
1643     omap_clk clk;
1644     static const char *clkschemename[8] = {
1645         "fully synchronous", "fully asynchronous", "synchronous scalable",
1646         "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1647     };
1648 
1649     if (size != 2) {
1650         return omap_badwidth_write16(opaque, addr, value);
1651     }
1652 
1653     switch (addr) {
1654     case 0x00:	/* ARM_CKCTL */
1655         diff = s->clkm.arm_ckctl ^ value;
1656         s->clkm.arm_ckctl = value & 0x7fff;
1657         omap_clkm_ckctl_update(s, diff, value);
1658         return;
1659 
1660     case 0x04:	/* ARM_IDLECT1 */
1661         diff = s->clkm.arm_idlect1 ^ value;
1662         s->clkm.arm_idlect1 = value & 0x0fff;
1663         omap_clkm_idlect1_update(s, diff, value);
1664         return;
1665 
1666     case 0x08:	/* ARM_IDLECT2 */
1667         diff = s->clkm.arm_idlect2 ^ value;
1668         s->clkm.arm_idlect2 = value & 0x07ff;
1669         omap_clkm_idlect2_update(s, diff, value);
1670         return;
1671 
1672     case 0x0c:	/* ARM_EWUPCT */
1673         s->clkm.arm_ewupct = value & 0x003f;
1674         return;
1675 
1676     case 0x10:	/* ARM_RSTCT1 */
1677         diff = s->clkm.arm_rstct1 ^ value;
1678         s->clkm.arm_rstct1 = value & 0x0007;
1679         if (value & 9) {
1680             qemu_system_reset_request();
1681             s->clkm.cold_start = 0xa;
1682         }
1683         if (diff & ~value & 4) {				/* DSP_RST */
1684             omap_mpui_reset(s);
1685             omap_tipb_bridge_reset(s->private_tipb);
1686             omap_tipb_bridge_reset(s->public_tipb);
1687         }
1688         if (diff & 2) {						/* DSP_EN */
1689             clk = omap_findclk(s, "dsp_ck");
1690             omap_clk_canidle(clk, (~value >> 1) & 1);
1691         }
1692         return;
1693 
1694     case 0x14:	/* ARM_RSTCT2 */
1695         s->clkm.arm_rstct2 = value & 0x0001;
1696         return;
1697 
1698     case 0x18:	/* ARM_SYSST */
1699         if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1700             s->clkm.clocking_scheme = (value >> 11) & 7;
1701             printf("%s: clocking scheme set to %s\n", __FUNCTION__,
1702                             clkschemename[s->clkm.clocking_scheme]);
1703         }
1704         s->clkm.cold_start &= value & 0x3f;
1705         return;
1706 
1707     case 0x1c:	/* ARM_CKOUT1 */
1708         diff = s->clkm.arm_ckout1 ^ value;
1709         s->clkm.arm_ckout1 = value & 0x003f;
1710         omap_clkm_ckout1_update(s, diff, value);
1711         return;
1712 
1713     case 0x20:	/* ARM_CKOUT2 */
1714     default:
1715         OMAP_BAD_REG(addr);
1716     }
1717 }
1718 
1719 static const MemoryRegionOps omap_clkm_ops = {
1720     .read = omap_clkm_read,
1721     .write = omap_clkm_write,
1722     .endianness = DEVICE_NATIVE_ENDIAN,
1723 };
1724 
1725 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1726                                  unsigned size)
1727 {
1728     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1729     CPUState *cpu = CPU(s->cpu);
1730 
1731     if (size != 2) {
1732         return omap_badwidth_read16(opaque, addr);
1733     }
1734 
1735     switch (addr) {
1736     case 0x04:	/* DSP_IDLECT1 */
1737         return s->clkm.dsp_idlect1;
1738 
1739     case 0x08:	/* DSP_IDLECT2 */
1740         return s->clkm.dsp_idlect2;
1741 
1742     case 0x14:	/* DSP_RSTCT2 */
1743         return s->clkm.dsp_rstct2;
1744 
1745     case 0x18:	/* DSP_SYSST */
1746         cpu = CPU(s->cpu);
1747         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1748                 (cpu->halted << 6);      /* Quite useless... */
1749     }
1750 
1751     OMAP_BAD_REG(addr);
1752     return 0;
1753 }
1754 
1755 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1756                 uint16_t diff, uint16_t value)
1757 {
1758     omap_clk clk;
1759 
1760     SET_CANIDLE("dspxor_ck", 1);			/* IDLXORP_DSP */
1761 }
1762 
1763 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1764                 uint16_t diff, uint16_t value)
1765 {
1766     omap_clk clk;
1767 
1768     SET_ONOFF("dspxor_ck", 1);				/* EN_XORPCK */
1769 }
1770 
1771 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1772                               uint64_t value, unsigned size)
1773 {
1774     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1775     uint16_t diff;
1776 
1777     if (size != 2) {
1778         return omap_badwidth_write16(opaque, addr, value);
1779     }
1780 
1781     switch (addr) {
1782     case 0x04:	/* DSP_IDLECT1 */
1783         diff = s->clkm.dsp_idlect1 ^ value;
1784         s->clkm.dsp_idlect1 = value & 0x01f7;
1785         omap_clkdsp_idlect1_update(s, diff, value);
1786         break;
1787 
1788     case 0x08:	/* DSP_IDLECT2 */
1789         s->clkm.dsp_idlect2 = value & 0x0037;
1790         diff = s->clkm.dsp_idlect1 ^ value;
1791         omap_clkdsp_idlect2_update(s, diff, value);
1792         break;
1793 
1794     case 0x14:	/* DSP_RSTCT2 */
1795         s->clkm.dsp_rstct2 = value & 0x0001;
1796         break;
1797 
1798     case 0x18:	/* DSP_SYSST */
1799         s->clkm.cold_start &= value & 0x3f;
1800         break;
1801 
1802     default:
1803         OMAP_BAD_REG(addr);
1804     }
1805 }
1806 
1807 static const MemoryRegionOps omap_clkdsp_ops = {
1808     .read = omap_clkdsp_read,
1809     .write = omap_clkdsp_write,
1810     .endianness = DEVICE_NATIVE_ENDIAN,
1811 };
1812 
1813 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1814 {
1815     if (s->wdt && s->wdt->reset)
1816         s->clkm.cold_start = 0x6;
1817     s->clkm.clocking_scheme = 0;
1818     omap_clkm_ckctl_update(s, ~0, 0x3000);
1819     s->clkm.arm_ckctl = 0x3000;
1820     omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1821     s->clkm.arm_idlect1 = 0x0400;
1822     omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1823     s->clkm.arm_idlect2 = 0x0100;
1824     s->clkm.arm_ewupct = 0x003f;
1825     s->clkm.arm_rstct1 = 0x0000;
1826     s->clkm.arm_rstct2 = 0x0000;
1827     s->clkm.arm_ckout1 = 0x0015;
1828     s->clkm.dpll1_mode = 0x2002;
1829     omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1830     s->clkm.dsp_idlect1 = 0x0040;
1831     omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1832     s->clkm.dsp_idlect2 = 0x0000;
1833     s->clkm.dsp_rstct2 = 0x0000;
1834 }
1835 
1836 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1837                 hwaddr dsp_base, struct omap_mpu_state_s *s)
1838 {
1839     memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1840                           "omap-clkm", 0x100);
1841     memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1842                           "omap-clkdsp", 0x1000);
1843 
1844     s->clkm.arm_idlect1 = 0x03ff;
1845     s->clkm.arm_idlect2 = 0x0100;
1846     s->clkm.dsp_idlect1 = 0x0002;
1847     omap_clkm_reset(s);
1848     s->clkm.cold_start = 0x3a;
1849 
1850     memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1851     memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1852 }
1853 
1854 /* MPU I/O */
1855 struct omap_mpuio_s {
1856     qemu_irq irq;
1857     qemu_irq kbd_irq;
1858     qemu_irq *in;
1859     qemu_irq handler[16];
1860     qemu_irq wakeup;
1861     MemoryRegion iomem;
1862 
1863     uint16_t inputs;
1864     uint16_t outputs;
1865     uint16_t dir;
1866     uint16_t edge;
1867     uint16_t mask;
1868     uint16_t ints;
1869 
1870     uint16_t debounce;
1871     uint16_t latch;
1872     uint8_t event;
1873 
1874     uint8_t buttons[5];
1875     uint8_t row_latch;
1876     uint8_t cols;
1877     int kbd_mask;
1878     int clk;
1879 };
1880 
1881 static void omap_mpuio_set(void *opaque, int line, int level)
1882 {
1883     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1884     uint16_t prev = s->inputs;
1885 
1886     if (level)
1887         s->inputs |= 1 << line;
1888     else
1889         s->inputs &= ~(1 << line);
1890 
1891     if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1892         if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1893             s->ints |= 1 << line;
1894             qemu_irq_raise(s->irq);
1895             /* TODO: wakeup */
1896         }
1897         if ((s->event & (1 << 0)) &&		/* SET_GPIO_EVENT_MODE */
1898                 (s->event >> 1) == line)	/* PIN_SELECT */
1899             s->latch = s->inputs;
1900     }
1901 }
1902 
1903 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1904 {
1905     int i;
1906     uint8_t *row, rows = 0, cols = ~s->cols;
1907 
1908     for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1909         if (*row & cols)
1910             rows |= i;
1911 
1912     qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1913     s->row_latch = ~rows;
1914 }
1915 
1916 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1917                                 unsigned size)
1918 {
1919     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1920     int offset = addr & OMAP_MPUI_REG_MASK;
1921     uint16_t ret;
1922 
1923     if (size != 2) {
1924         return omap_badwidth_read16(opaque, addr);
1925     }
1926 
1927     switch (offset) {
1928     case 0x00:	/* INPUT_LATCH */
1929         return s->inputs;
1930 
1931     case 0x04:	/* OUTPUT_REG */
1932         return s->outputs;
1933 
1934     case 0x08:	/* IO_CNTL */
1935         return s->dir;
1936 
1937     case 0x10:	/* KBR_LATCH */
1938         return s->row_latch;
1939 
1940     case 0x14:	/* KBC_REG */
1941         return s->cols;
1942 
1943     case 0x18:	/* GPIO_EVENT_MODE_REG */
1944         return s->event;
1945 
1946     case 0x1c:	/* GPIO_INT_EDGE_REG */
1947         return s->edge;
1948 
1949     case 0x20:	/* KBD_INT */
1950         return (~s->row_latch & 0x1f) && !s->kbd_mask;
1951 
1952     case 0x24:	/* GPIO_INT */
1953         ret = s->ints;
1954         s->ints &= s->mask;
1955         if (ret)
1956             qemu_irq_lower(s->irq);
1957         return ret;
1958 
1959     case 0x28:	/* KBD_MASKIT */
1960         return s->kbd_mask;
1961 
1962     case 0x2c:	/* GPIO_MASKIT */
1963         return s->mask;
1964 
1965     case 0x30:	/* GPIO_DEBOUNCING_REG */
1966         return s->debounce;
1967 
1968     case 0x34:	/* GPIO_LATCH_REG */
1969         return s->latch;
1970     }
1971 
1972     OMAP_BAD_REG(addr);
1973     return 0;
1974 }
1975 
1976 static void omap_mpuio_write(void *opaque, hwaddr addr,
1977                              uint64_t value, unsigned size)
1978 {
1979     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1980     int offset = addr & OMAP_MPUI_REG_MASK;
1981     uint16_t diff;
1982     int ln;
1983 
1984     if (size != 2) {
1985         return omap_badwidth_write16(opaque, addr, value);
1986     }
1987 
1988     switch (offset) {
1989     case 0x04:	/* OUTPUT_REG */
1990         diff = (s->outputs ^ value) & ~s->dir;
1991         s->outputs = value;
1992         while ((ln = ffs(diff))) {
1993             ln --;
1994             if (s->handler[ln])
1995                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
1996             diff &= ~(1 << ln);
1997         }
1998         break;
1999 
2000     case 0x08:	/* IO_CNTL */
2001         diff = s->outputs & (s->dir ^ value);
2002         s->dir = value;
2003 
2004         value = s->outputs & ~s->dir;
2005         while ((ln = ffs(diff))) {
2006             ln --;
2007             if (s->handler[ln])
2008                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2009             diff &= ~(1 << ln);
2010         }
2011         break;
2012 
2013     case 0x14:	/* KBC_REG */
2014         s->cols = value;
2015         omap_mpuio_kbd_update(s);
2016         break;
2017 
2018     case 0x18:	/* GPIO_EVENT_MODE_REG */
2019         s->event = value & 0x1f;
2020         break;
2021 
2022     case 0x1c:	/* GPIO_INT_EDGE_REG */
2023         s->edge = value;
2024         break;
2025 
2026     case 0x28:	/* KBD_MASKIT */
2027         s->kbd_mask = value & 1;
2028         omap_mpuio_kbd_update(s);
2029         break;
2030 
2031     case 0x2c:	/* GPIO_MASKIT */
2032         s->mask = value;
2033         break;
2034 
2035     case 0x30:	/* GPIO_DEBOUNCING_REG */
2036         s->debounce = value & 0x1ff;
2037         break;
2038 
2039     case 0x00:	/* INPUT_LATCH */
2040     case 0x10:	/* KBR_LATCH */
2041     case 0x20:	/* KBD_INT */
2042     case 0x24:	/* GPIO_INT */
2043     case 0x34:	/* GPIO_LATCH_REG */
2044         OMAP_RO_REG(addr);
2045         return;
2046 
2047     default:
2048         OMAP_BAD_REG(addr);
2049         return;
2050     }
2051 }
2052 
2053 static const MemoryRegionOps omap_mpuio_ops  = {
2054     .read = omap_mpuio_read,
2055     .write = omap_mpuio_write,
2056     .endianness = DEVICE_NATIVE_ENDIAN,
2057 };
2058 
2059 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2060 {
2061     s->inputs = 0;
2062     s->outputs = 0;
2063     s->dir = ~0;
2064     s->event = 0;
2065     s->edge = 0;
2066     s->kbd_mask = 0;
2067     s->mask = 0;
2068     s->debounce = 0;
2069     s->latch = 0;
2070     s->ints = 0;
2071     s->row_latch = 0x1f;
2072     s->clk = 1;
2073 }
2074 
2075 static void omap_mpuio_onoff(void *opaque, int line, int on)
2076 {
2077     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2078 
2079     s->clk = on;
2080     if (on)
2081         omap_mpuio_kbd_update(s);
2082 }
2083 
2084 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2085                 hwaddr base,
2086                 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2087                 omap_clk clk)
2088 {
2089     struct omap_mpuio_s *s = (struct omap_mpuio_s *)
2090             g_malloc0(sizeof(struct omap_mpuio_s));
2091 
2092     s->irq = gpio_int;
2093     s->kbd_irq = kbd_int;
2094     s->wakeup = wakeup;
2095     s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2096     omap_mpuio_reset(s);
2097 
2098     memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2099                           "omap-mpuio", 0x800);
2100     memory_region_add_subregion(memory, base, &s->iomem);
2101 
2102     omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2103 
2104     return s;
2105 }
2106 
2107 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2108 {
2109     return s->in;
2110 }
2111 
2112 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2113 {
2114     if (line >= 16 || line < 0)
2115         hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
2116     s->handler[line] = handler;
2117 }
2118 
2119 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2120 {
2121     if (row >= 5 || row < 0)
2122         hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
2123 
2124     if (down)
2125         s->buttons[row] |= 1 << col;
2126     else
2127         s->buttons[row] &= ~(1 << col);
2128 
2129     omap_mpuio_kbd_update(s);
2130 }
2131 
2132 /* MicroWire Interface */
2133 struct omap_uwire_s {
2134     MemoryRegion iomem;
2135     qemu_irq txirq;
2136     qemu_irq rxirq;
2137     qemu_irq txdrq;
2138 
2139     uint16_t txbuf;
2140     uint16_t rxbuf;
2141     uint16_t control;
2142     uint16_t setup[5];
2143 
2144     uWireSlave *chip[4];
2145 };
2146 
2147 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2148 {
2149     int chipselect = (s->control >> 10) & 3;		/* INDEX */
2150     uWireSlave *slave = s->chip[chipselect];
2151 
2152     if ((s->control >> 5) & 0x1f) {			/* NB_BITS_WR */
2153         if (s->control & (1 << 12))			/* CS_CMD */
2154             if (slave && slave->send)
2155                 slave->send(slave->opaque,
2156                                 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2157         s->control &= ~(1 << 14);			/* CSRB */
2158         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2159          * a DRQ.  When is the level IRQ supposed to be reset?  */
2160     }
2161 
2162     if ((s->control >> 0) & 0x1f) {			/* NB_BITS_RD */
2163         if (s->control & (1 << 12))			/* CS_CMD */
2164             if (slave && slave->receive)
2165                 s->rxbuf = slave->receive(slave->opaque);
2166         s->control |= 1 << 15;				/* RDRB */
2167         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2168          * a DRQ.  When is the level IRQ supposed to be reset?  */
2169     }
2170 }
2171 
2172 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2173                                 unsigned size)
2174 {
2175     struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2176     int offset = addr & OMAP_MPUI_REG_MASK;
2177 
2178     if (size != 2) {
2179         return omap_badwidth_read16(opaque, addr);
2180     }
2181 
2182     switch (offset) {
2183     case 0x00:	/* RDR */
2184         s->control &= ~(1 << 15);			/* RDRB */
2185         return s->rxbuf;
2186 
2187     case 0x04:	/* CSR */
2188         return s->control;
2189 
2190     case 0x08:	/* SR1 */
2191         return s->setup[0];
2192     case 0x0c:	/* SR2 */
2193         return s->setup[1];
2194     case 0x10:	/* SR3 */
2195         return s->setup[2];
2196     case 0x14:	/* SR4 */
2197         return s->setup[3];
2198     case 0x18:	/* SR5 */
2199         return s->setup[4];
2200     }
2201 
2202     OMAP_BAD_REG(addr);
2203     return 0;
2204 }
2205 
2206 static void omap_uwire_write(void *opaque, hwaddr addr,
2207                              uint64_t value, unsigned size)
2208 {
2209     struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2210     int offset = addr & OMAP_MPUI_REG_MASK;
2211 
2212     if (size != 2) {
2213         return omap_badwidth_write16(opaque, addr, value);
2214     }
2215 
2216     switch (offset) {
2217     case 0x00:	/* TDR */
2218         s->txbuf = value;				/* TD */
2219         if ((s->setup[4] & (1 << 2)) &&			/* AUTO_TX_EN */
2220                         ((s->setup[4] & (1 << 3)) ||	/* CS_TOGGLE_TX_EN */
2221                          (s->control & (1 << 12)))) {	/* CS_CMD */
2222             s->control |= 1 << 14;			/* CSRB */
2223             omap_uwire_transfer_start(s);
2224         }
2225         break;
2226 
2227     case 0x04:	/* CSR */
2228         s->control = value & 0x1fff;
2229         if (value & (1 << 13))				/* START */
2230             omap_uwire_transfer_start(s);
2231         break;
2232 
2233     case 0x08:	/* SR1 */
2234         s->setup[0] = value & 0x003f;
2235         break;
2236 
2237     case 0x0c:	/* SR2 */
2238         s->setup[1] = value & 0x0fc0;
2239         break;
2240 
2241     case 0x10:	/* SR3 */
2242         s->setup[2] = value & 0x0003;
2243         break;
2244 
2245     case 0x14:	/* SR4 */
2246         s->setup[3] = value & 0x0001;
2247         break;
2248 
2249     case 0x18:	/* SR5 */
2250         s->setup[4] = value & 0x000f;
2251         break;
2252 
2253     default:
2254         OMAP_BAD_REG(addr);
2255         return;
2256     }
2257 }
2258 
2259 static const MemoryRegionOps omap_uwire_ops = {
2260     .read = omap_uwire_read,
2261     .write = omap_uwire_write,
2262     .endianness = DEVICE_NATIVE_ENDIAN,
2263 };
2264 
2265 static void omap_uwire_reset(struct omap_uwire_s *s)
2266 {
2267     s->control = 0;
2268     s->setup[0] = 0;
2269     s->setup[1] = 0;
2270     s->setup[2] = 0;
2271     s->setup[3] = 0;
2272     s->setup[4] = 0;
2273 }
2274 
2275 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2276                                             hwaddr base,
2277                                             qemu_irq txirq, qemu_irq rxirq,
2278                                             qemu_irq dma,
2279                                             omap_clk clk)
2280 {
2281     struct omap_uwire_s *s = (struct omap_uwire_s *)
2282             g_malloc0(sizeof(struct omap_uwire_s));
2283 
2284     s->txirq = txirq;
2285     s->rxirq = rxirq;
2286     s->txdrq = dma;
2287     omap_uwire_reset(s);
2288 
2289     memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2290     memory_region_add_subregion(system_memory, base, &s->iomem);
2291 
2292     return s;
2293 }
2294 
2295 void omap_uwire_attach(struct omap_uwire_s *s,
2296                 uWireSlave *slave, int chipselect)
2297 {
2298     if (chipselect < 0 || chipselect > 3) {
2299         fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
2300         exit(-1);
2301     }
2302 
2303     s->chip[chipselect] = slave;
2304 }
2305 
2306 /* Pseudonoise Pulse-Width Light Modulator */
2307 struct omap_pwl_s {
2308     MemoryRegion iomem;
2309     uint8_t output;
2310     uint8_t level;
2311     uint8_t enable;
2312     int clk;
2313 };
2314 
2315 static void omap_pwl_update(struct omap_pwl_s *s)
2316 {
2317     int output = (s->clk && s->enable) ? s->level : 0;
2318 
2319     if (output != s->output) {
2320         s->output = output;
2321         printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
2322     }
2323 }
2324 
2325 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2326                               unsigned size)
2327 {
2328     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2329     int offset = addr & OMAP_MPUI_REG_MASK;
2330 
2331     if (size != 1) {
2332         return omap_badwidth_read8(opaque, addr);
2333     }
2334 
2335     switch (offset) {
2336     case 0x00:	/* PWL_LEVEL */
2337         return s->level;
2338     case 0x04:	/* PWL_CTRL */
2339         return s->enable;
2340     }
2341     OMAP_BAD_REG(addr);
2342     return 0;
2343 }
2344 
2345 static void omap_pwl_write(void *opaque, hwaddr addr,
2346                            uint64_t value, unsigned size)
2347 {
2348     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2349     int offset = addr & OMAP_MPUI_REG_MASK;
2350 
2351     if (size != 1) {
2352         return omap_badwidth_write8(opaque, addr, value);
2353     }
2354 
2355     switch (offset) {
2356     case 0x00:	/* PWL_LEVEL */
2357         s->level = value;
2358         omap_pwl_update(s);
2359         break;
2360     case 0x04:	/* PWL_CTRL */
2361         s->enable = value & 1;
2362         omap_pwl_update(s);
2363         break;
2364     default:
2365         OMAP_BAD_REG(addr);
2366         return;
2367     }
2368 }
2369 
2370 static const MemoryRegionOps omap_pwl_ops = {
2371     .read = omap_pwl_read,
2372     .write = omap_pwl_write,
2373     .endianness = DEVICE_NATIVE_ENDIAN,
2374 };
2375 
2376 static void omap_pwl_reset(struct omap_pwl_s *s)
2377 {
2378     s->output = 0;
2379     s->level = 0;
2380     s->enable = 0;
2381     s->clk = 1;
2382     omap_pwl_update(s);
2383 }
2384 
2385 static void omap_pwl_clk_update(void *opaque, int line, int on)
2386 {
2387     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2388 
2389     s->clk = on;
2390     omap_pwl_update(s);
2391 }
2392 
2393 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2394                                         hwaddr base,
2395                                         omap_clk clk)
2396 {
2397     struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2398 
2399     omap_pwl_reset(s);
2400 
2401     memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2402                           "omap-pwl", 0x800);
2403     memory_region_add_subregion(system_memory, base, &s->iomem);
2404 
2405     omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2406     return s;
2407 }
2408 
2409 /* Pulse-Width Tone module */
2410 struct omap_pwt_s {
2411     MemoryRegion iomem;
2412     uint8_t frc;
2413     uint8_t vrc;
2414     uint8_t gcr;
2415     omap_clk clk;
2416 };
2417 
2418 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2419                               unsigned size)
2420 {
2421     struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2422     int offset = addr & OMAP_MPUI_REG_MASK;
2423 
2424     if (size != 1) {
2425         return omap_badwidth_read8(opaque, addr);
2426     }
2427 
2428     switch (offset) {
2429     case 0x00:	/* FRC */
2430         return s->frc;
2431     case 0x04:	/* VCR */
2432         return s->vrc;
2433     case 0x08:	/* GCR */
2434         return s->gcr;
2435     }
2436     OMAP_BAD_REG(addr);
2437     return 0;
2438 }
2439 
2440 static void omap_pwt_write(void *opaque, hwaddr addr,
2441                            uint64_t value, unsigned size)
2442 {
2443     struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2444     int offset = addr & OMAP_MPUI_REG_MASK;
2445 
2446     if (size != 1) {
2447         return omap_badwidth_write8(opaque, addr, value);
2448     }
2449 
2450     switch (offset) {
2451     case 0x00:	/* FRC */
2452         s->frc = value & 0x3f;
2453         break;
2454     case 0x04:	/* VRC */
2455         if ((value ^ s->vrc) & 1) {
2456             if (value & 1)
2457                 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
2458                                 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2459                                 ((omap_clk_getrate(s->clk) >> 3) /
2460                                  /* Pre-multiplexer divider */
2461                                  ((s->gcr & 2) ? 1 : 154) /
2462                                  /* Octave multiplexer */
2463                                  (2 << (value & 3)) *
2464                                  /* 101/107 divider */
2465                                  ((value & (1 << 2)) ? 101 : 107) *
2466                                  /*  49/55 divider */
2467                                  ((value & (1 << 3)) ?  49 : 55) *
2468                                  /*  50/63 divider */
2469                                  ((value & (1 << 4)) ?  50 : 63) *
2470                                  /*  80/127 divider */
2471                                  ((value & (1 << 5)) ?  80 : 127) /
2472                                  (107 * 55 * 63 * 127)));
2473             else
2474                 printf("%s: silence!\n", __FUNCTION__);
2475         }
2476         s->vrc = value & 0x7f;
2477         break;
2478     case 0x08:	/* GCR */
2479         s->gcr = value & 3;
2480         break;
2481     default:
2482         OMAP_BAD_REG(addr);
2483         return;
2484     }
2485 }
2486 
2487 static const MemoryRegionOps omap_pwt_ops = {
2488     .read =omap_pwt_read,
2489     .write = omap_pwt_write,
2490     .endianness = DEVICE_NATIVE_ENDIAN,
2491 };
2492 
2493 static void omap_pwt_reset(struct omap_pwt_s *s)
2494 {
2495     s->frc = 0;
2496     s->vrc = 0;
2497     s->gcr = 0;
2498 }
2499 
2500 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2501                                         hwaddr base,
2502                                         omap_clk clk)
2503 {
2504     struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2505     s->clk = clk;
2506     omap_pwt_reset(s);
2507 
2508     memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2509                           "omap-pwt", 0x800);
2510     memory_region_add_subregion(system_memory, base, &s->iomem);
2511     return s;
2512 }
2513 
2514 /* Real-time Clock module */
2515 struct omap_rtc_s {
2516     MemoryRegion iomem;
2517     qemu_irq irq;
2518     qemu_irq alarm;
2519     QEMUTimer *clk;
2520 
2521     uint8_t interrupts;
2522     uint8_t status;
2523     int16_t comp_reg;
2524     int running;
2525     int pm_am;
2526     int auto_comp;
2527     int round;
2528     struct tm alarm_tm;
2529     time_t alarm_ti;
2530 
2531     struct tm current_tm;
2532     time_t ti;
2533     uint64_t tick;
2534 };
2535 
2536 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2537 {
2538     /* s->alarm is level-triggered */
2539     qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2540 }
2541 
2542 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2543 {
2544     s->alarm_ti = mktimegm(&s->alarm_tm);
2545     if (s->alarm_ti == -1)
2546         printf("%s: conversion failed\n", __FUNCTION__);
2547 }
2548 
2549 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2550                               unsigned size)
2551 {
2552     struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2553     int offset = addr & OMAP_MPUI_REG_MASK;
2554     uint8_t i;
2555 
2556     if (size != 1) {
2557         return omap_badwidth_read8(opaque, addr);
2558     }
2559 
2560     switch (offset) {
2561     case 0x00:	/* SECONDS_REG */
2562         return to_bcd(s->current_tm.tm_sec);
2563 
2564     case 0x04:	/* MINUTES_REG */
2565         return to_bcd(s->current_tm.tm_min);
2566 
2567     case 0x08:	/* HOURS_REG */
2568         if (s->pm_am)
2569             return ((s->current_tm.tm_hour > 11) << 7) |
2570                     to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2571         else
2572             return to_bcd(s->current_tm.tm_hour);
2573 
2574     case 0x0c:	/* DAYS_REG */
2575         return to_bcd(s->current_tm.tm_mday);
2576 
2577     case 0x10:	/* MONTHS_REG */
2578         return to_bcd(s->current_tm.tm_mon + 1);
2579 
2580     case 0x14:	/* YEARS_REG */
2581         return to_bcd(s->current_tm.tm_year % 100);
2582 
2583     case 0x18:	/* WEEK_REG */
2584         return s->current_tm.tm_wday;
2585 
2586     case 0x20:	/* ALARM_SECONDS_REG */
2587         return to_bcd(s->alarm_tm.tm_sec);
2588 
2589     case 0x24:	/* ALARM_MINUTES_REG */
2590         return to_bcd(s->alarm_tm.tm_min);
2591 
2592     case 0x28:	/* ALARM_HOURS_REG */
2593         if (s->pm_am)
2594             return ((s->alarm_tm.tm_hour > 11) << 7) |
2595                     to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2596         else
2597             return to_bcd(s->alarm_tm.tm_hour);
2598 
2599     case 0x2c:	/* ALARM_DAYS_REG */
2600         return to_bcd(s->alarm_tm.tm_mday);
2601 
2602     case 0x30:	/* ALARM_MONTHS_REG */
2603         return to_bcd(s->alarm_tm.tm_mon + 1);
2604 
2605     case 0x34:	/* ALARM_YEARS_REG */
2606         return to_bcd(s->alarm_tm.tm_year % 100);
2607 
2608     case 0x40:	/* RTC_CTRL_REG */
2609         return (s->pm_am << 3) | (s->auto_comp << 2) |
2610                 (s->round << 1) | s->running;
2611 
2612     case 0x44:	/* RTC_STATUS_REG */
2613         i = s->status;
2614         s->status &= ~0x3d;
2615         return i;
2616 
2617     case 0x48:	/* RTC_INTERRUPTS_REG */
2618         return s->interrupts;
2619 
2620     case 0x4c:	/* RTC_COMP_LSB_REG */
2621         return ((uint16_t) s->comp_reg) & 0xff;
2622 
2623     case 0x50:	/* RTC_COMP_MSB_REG */
2624         return ((uint16_t) s->comp_reg) >> 8;
2625     }
2626 
2627     OMAP_BAD_REG(addr);
2628     return 0;
2629 }
2630 
2631 static void omap_rtc_write(void *opaque, hwaddr addr,
2632                            uint64_t value, unsigned size)
2633 {
2634     struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2635     int offset = addr & OMAP_MPUI_REG_MASK;
2636     struct tm new_tm;
2637     time_t ti[2];
2638 
2639     if (size != 1) {
2640         return omap_badwidth_write8(opaque, addr, value);
2641     }
2642 
2643     switch (offset) {
2644     case 0x00:	/* SECONDS_REG */
2645 #ifdef ALMDEBUG
2646         printf("RTC SEC_REG <-- %02x\n", value);
2647 #endif
2648         s->ti -= s->current_tm.tm_sec;
2649         s->ti += from_bcd(value);
2650         return;
2651 
2652     case 0x04:	/* MINUTES_REG */
2653 #ifdef ALMDEBUG
2654         printf("RTC MIN_REG <-- %02x\n", value);
2655 #endif
2656         s->ti -= s->current_tm.tm_min * 60;
2657         s->ti += from_bcd(value) * 60;
2658         return;
2659 
2660     case 0x08:	/* HOURS_REG */
2661 #ifdef ALMDEBUG
2662         printf("RTC HRS_REG <-- %02x\n", value);
2663 #endif
2664         s->ti -= s->current_tm.tm_hour * 3600;
2665         if (s->pm_am) {
2666             s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2667             s->ti += ((value >> 7) & 1) * 43200;
2668         } else
2669             s->ti += from_bcd(value & 0x3f) * 3600;
2670         return;
2671 
2672     case 0x0c:	/* DAYS_REG */
2673 #ifdef ALMDEBUG
2674         printf("RTC DAY_REG <-- %02x\n", value);
2675 #endif
2676         s->ti -= s->current_tm.tm_mday * 86400;
2677         s->ti += from_bcd(value) * 86400;
2678         return;
2679 
2680     case 0x10:	/* MONTHS_REG */
2681 #ifdef ALMDEBUG
2682         printf("RTC MTH_REG <-- %02x\n", value);
2683 #endif
2684         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2685         new_tm.tm_mon = from_bcd(value);
2686         ti[0] = mktimegm(&s->current_tm);
2687         ti[1] = mktimegm(&new_tm);
2688 
2689         if (ti[0] != -1 && ti[1] != -1) {
2690             s->ti -= ti[0];
2691             s->ti += ti[1];
2692         } else {
2693             /* A less accurate version */
2694             s->ti -= s->current_tm.tm_mon * 2592000;
2695             s->ti += from_bcd(value) * 2592000;
2696         }
2697         return;
2698 
2699     case 0x14:	/* YEARS_REG */
2700 #ifdef ALMDEBUG
2701         printf("RTC YRS_REG <-- %02x\n", value);
2702 #endif
2703         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2704         new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2705         ti[0] = mktimegm(&s->current_tm);
2706         ti[1] = mktimegm(&new_tm);
2707 
2708         if (ti[0] != -1 && ti[1] != -1) {
2709             s->ti -= ti[0];
2710             s->ti += ti[1];
2711         } else {
2712             /* A less accurate version */
2713             s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2714             s->ti += (time_t)from_bcd(value) * 31536000;
2715         }
2716         return;
2717 
2718     case 0x18:	/* WEEK_REG */
2719         return;	/* Ignored */
2720 
2721     case 0x20:	/* ALARM_SECONDS_REG */
2722 #ifdef ALMDEBUG
2723         printf("ALM SEC_REG <-- %02x\n", value);
2724 #endif
2725         s->alarm_tm.tm_sec = from_bcd(value);
2726         omap_rtc_alarm_update(s);
2727         return;
2728 
2729     case 0x24:	/* ALARM_MINUTES_REG */
2730 #ifdef ALMDEBUG
2731         printf("ALM MIN_REG <-- %02x\n", value);
2732 #endif
2733         s->alarm_tm.tm_min = from_bcd(value);
2734         omap_rtc_alarm_update(s);
2735         return;
2736 
2737     case 0x28:	/* ALARM_HOURS_REG */
2738 #ifdef ALMDEBUG
2739         printf("ALM HRS_REG <-- %02x\n", value);
2740 #endif
2741         if (s->pm_am)
2742             s->alarm_tm.tm_hour =
2743                     ((from_bcd(value & 0x3f)) % 12) +
2744                     ((value >> 7) & 1) * 12;
2745         else
2746             s->alarm_tm.tm_hour = from_bcd(value);
2747         omap_rtc_alarm_update(s);
2748         return;
2749 
2750     case 0x2c:	/* ALARM_DAYS_REG */
2751 #ifdef ALMDEBUG
2752         printf("ALM DAY_REG <-- %02x\n", value);
2753 #endif
2754         s->alarm_tm.tm_mday = from_bcd(value);
2755         omap_rtc_alarm_update(s);
2756         return;
2757 
2758     case 0x30:	/* ALARM_MONTHS_REG */
2759 #ifdef ALMDEBUG
2760         printf("ALM MON_REG <-- %02x\n", value);
2761 #endif
2762         s->alarm_tm.tm_mon = from_bcd(value);
2763         omap_rtc_alarm_update(s);
2764         return;
2765 
2766     case 0x34:	/* ALARM_YEARS_REG */
2767 #ifdef ALMDEBUG
2768         printf("ALM YRS_REG <-- %02x\n", value);
2769 #endif
2770         s->alarm_tm.tm_year = from_bcd(value);
2771         omap_rtc_alarm_update(s);
2772         return;
2773 
2774     case 0x40:	/* RTC_CTRL_REG */
2775 #ifdef ALMDEBUG
2776         printf("RTC CONTROL <-- %02x\n", value);
2777 #endif
2778         s->pm_am = (value >> 3) & 1;
2779         s->auto_comp = (value >> 2) & 1;
2780         s->round = (value >> 1) & 1;
2781         s->running = value & 1;
2782         s->status &= 0xfd;
2783         s->status |= s->running << 1;
2784         return;
2785 
2786     case 0x44:	/* RTC_STATUS_REG */
2787 #ifdef ALMDEBUG
2788         printf("RTC STATUSL <-- %02x\n", value);
2789 #endif
2790         s->status &= ~((value & 0xc0) ^ 0x80);
2791         omap_rtc_interrupts_update(s);
2792         return;
2793 
2794     case 0x48:	/* RTC_INTERRUPTS_REG */
2795 #ifdef ALMDEBUG
2796         printf("RTC INTRS <-- %02x\n", value);
2797 #endif
2798         s->interrupts = value;
2799         return;
2800 
2801     case 0x4c:	/* RTC_COMP_LSB_REG */
2802 #ifdef ALMDEBUG
2803         printf("RTC COMPLSB <-- %02x\n", value);
2804 #endif
2805         s->comp_reg &= 0xff00;
2806         s->comp_reg |= 0x00ff & value;
2807         return;
2808 
2809     case 0x50:	/* RTC_COMP_MSB_REG */
2810 #ifdef ALMDEBUG
2811         printf("RTC COMPMSB <-- %02x\n", value);
2812 #endif
2813         s->comp_reg &= 0x00ff;
2814         s->comp_reg |= 0xff00 & (value << 8);
2815         return;
2816 
2817     default:
2818         OMAP_BAD_REG(addr);
2819         return;
2820     }
2821 }
2822 
2823 static const MemoryRegionOps omap_rtc_ops = {
2824     .read = omap_rtc_read,
2825     .write = omap_rtc_write,
2826     .endianness = DEVICE_NATIVE_ENDIAN,
2827 };
2828 
2829 static void omap_rtc_tick(void *opaque)
2830 {
2831     struct omap_rtc_s *s = opaque;
2832 
2833     if (s->round) {
2834         /* Round to nearest full minute.  */
2835         if (s->current_tm.tm_sec < 30)
2836             s->ti -= s->current_tm.tm_sec;
2837         else
2838             s->ti += 60 - s->current_tm.tm_sec;
2839 
2840         s->round = 0;
2841     }
2842 
2843     localtime_r(&s->ti, &s->current_tm);
2844 
2845     if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2846         s->status |= 0x40;
2847         omap_rtc_interrupts_update(s);
2848     }
2849 
2850     if (s->interrupts & 0x04)
2851         switch (s->interrupts & 3) {
2852         case 0:
2853             s->status |= 0x04;
2854             qemu_irq_pulse(s->irq);
2855             break;
2856         case 1:
2857             if (s->current_tm.tm_sec)
2858                 break;
2859             s->status |= 0x08;
2860             qemu_irq_pulse(s->irq);
2861             break;
2862         case 2:
2863             if (s->current_tm.tm_sec || s->current_tm.tm_min)
2864                 break;
2865             s->status |= 0x10;
2866             qemu_irq_pulse(s->irq);
2867             break;
2868         case 3:
2869             if (s->current_tm.tm_sec ||
2870                             s->current_tm.tm_min || s->current_tm.tm_hour)
2871                 break;
2872             s->status |= 0x20;
2873             qemu_irq_pulse(s->irq);
2874             break;
2875         }
2876 
2877     /* Move on */
2878     if (s->running)
2879         s->ti ++;
2880     s->tick += 1000;
2881 
2882     /*
2883      * Every full hour add a rough approximation of the compensation
2884      * register to the 32kHz Timer (which drives the RTC) value.
2885      */
2886     if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2887         s->tick += s->comp_reg * 1000 / 32768;
2888 
2889     timer_mod(s->clk, s->tick);
2890 }
2891 
2892 static void omap_rtc_reset(struct omap_rtc_s *s)
2893 {
2894     struct tm tm;
2895 
2896     s->interrupts = 0;
2897     s->comp_reg = 0;
2898     s->running = 0;
2899     s->pm_am = 0;
2900     s->auto_comp = 0;
2901     s->round = 0;
2902     s->tick = qemu_clock_get_ms(rtc_clock);
2903     memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2904     s->alarm_tm.tm_mday = 0x01;
2905     s->status = 1 << 7;
2906     qemu_get_timedate(&tm, 0);
2907     s->ti = mktimegm(&tm);
2908 
2909     omap_rtc_alarm_update(s);
2910     omap_rtc_tick(s);
2911 }
2912 
2913 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2914                                         hwaddr base,
2915                                         qemu_irq timerirq, qemu_irq alarmirq,
2916                                         omap_clk clk)
2917 {
2918     struct omap_rtc_s *s = (struct omap_rtc_s *)
2919             g_malloc0(sizeof(struct omap_rtc_s));
2920 
2921     s->irq = timerirq;
2922     s->alarm = alarmirq;
2923     s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2924 
2925     omap_rtc_reset(s);
2926 
2927     memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2928                           "omap-rtc", 0x800);
2929     memory_region_add_subregion(system_memory, base, &s->iomem);
2930 
2931     return s;
2932 }
2933 
2934 /* Multi-channel Buffered Serial Port interfaces */
2935 struct omap_mcbsp_s {
2936     MemoryRegion iomem;
2937     qemu_irq txirq;
2938     qemu_irq rxirq;
2939     qemu_irq txdrq;
2940     qemu_irq rxdrq;
2941 
2942     uint16_t spcr[2];
2943     uint16_t rcr[2];
2944     uint16_t xcr[2];
2945     uint16_t srgr[2];
2946     uint16_t mcr[2];
2947     uint16_t pcr;
2948     uint16_t rcer[8];
2949     uint16_t xcer[8];
2950     int tx_rate;
2951     int rx_rate;
2952     int tx_req;
2953     int rx_req;
2954 
2955     I2SCodec *codec;
2956     QEMUTimer *source_timer;
2957     QEMUTimer *sink_timer;
2958 };
2959 
2960 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2961 {
2962     int irq;
2963 
2964     switch ((s->spcr[0] >> 4) & 3) {			/* RINTM */
2965     case 0:
2966         irq = (s->spcr[0] >> 1) & 1;			/* RRDY */
2967         break;
2968     case 3:
2969         irq = (s->spcr[0] >> 3) & 1;			/* RSYNCERR */
2970         break;
2971     default:
2972         irq = 0;
2973         break;
2974     }
2975 
2976     if (irq)
2977         qemu_irq_pulse(s->rxirq);
2978 
2979     switch ((s->spcr[1] >> 4) & 3) {			/* XINTM */
2980     case 0:
2981         irq = (s->spcr[1] >> 1) & 1;			/* XRDY */
2982         break;
2983     case 3:
2984         irq = (s->spcr[1] >> 3) & 1;			/* XSYNCERR */
2985         break;
2986     default:
2987         irq = 0;
2988         break;
2989     }
2990 
2991     if (irq)
2992         qemu_irq_pulse(s->txirq);
2993 }
2994 
2995 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
2996 {
2997     if ((s->spcr[0] >> 1) & 1)				/* RRDY */
2998         s->spcr[0] |= 1 << 2;				/* RFULL */
2999     s->spcr[0] |= 1 << 1;				/* RRDY */
3000     qemu_irq_raise(s->rxdrq);
3001     omap_mcbsp_intr_update(s);
3002 }
3003 
3004 static void omap_mcbsp_source_tick(void *opaque)
3005 {
3006     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3007     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3008 
3009     if (!s->rx_rate)
3010         return;
3011     if (s->rx_req)
3012         printf("%s: Rx FIFO overrun\n", __FUNCTION__);
3013 
3014     s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3015 
3016     omap_mcbsp_rx_newdata(s);
3017     timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3018                    get_ticks_per_sec());
3019 }
3020 
3021 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3022 {
3023     if (!s->codec || !s->codec->rts)
3024         omap_mcbsp_source_tick(s);
3025     else if (s->codec->in.len) {
3026         s->rx_req = s->codec->in.len;
3027         omap_mcbsp_rx_newdata(s);
3028     }
3029 }
3030 
3031 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3032 {
3033     timer_del(s->source_timer);
3034 }
3035 
3036 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3037 {
3038     s->spcr[0] &= ~(1 << 1);				/* RRDY */
3039     qemu_irq_lower(s->rxdrq);
3040     omap_mcbsp_intr_update(s);
3041 }
3042 
3043 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3044 {
3045     s->spcr[1] |= 1 << 1;				/* XRDY */
3046     qemu_irq_raise(s->txdrq);
3047     omap_mcbsp_intr_update(s);
3048 }
3049 
3050 static void omap_mcbsp_sink_tick(void *opaque)
3051 {
3052     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3053     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3054 
3055     if (!s->tx_rate)
3056         return;
3057     if (s->tx_req)
3058         printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3059 
3060     s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3061 
3062     omap_mcbsp_tx_newdata(s);
3063     timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3064                    get_ticks_per_sec());
3065 }
3066 
3067 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3068 {
3069     if (!s->codec || !s->codec->cts)
3070         omap_mcbsp_sink_tick(s);
3071     else if (s->codec->out.size) {
3072         s->tx_req = s->codec->out.size;
3073         omap_mcbsp_tx_newdata(s);
3074     }
3075 }
3076 
3077 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3078 {
3079     s->spcr[1] &= ~(1 << 1);				/* XRDY */
3080     qemu_irq_lower(s->txdrq);
3081     omap_mcbsp_intr_update(s);
3082     if (s->codec && s->codec->cts)
3083         s->codec->tx_swallow(s->codec->opaque);
3084 }
3085 
3086 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3087 {
3088     s->tx_req = 0;
3089     omap_mcbsp_tx_done(s);
3090     timer_del(s->sink_timer);
3091 }
3092 
3093 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3094 {
3095     int prev_rx_rate, prev_tx_rate;
3096     int rx_rate = 0, tx_rate = 0;
3097     int cpu_rate = 1500000;	/* XXX */
3098 
3099     /* TODO: check CLKSTP bit */
3100     if (s->spcr[1] & (1 << 6)) {			/* GRST */
3101         if (s->spcr[0] & (1 << 0)) {			/* RRST */
3102             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
3103                             (s->pcr & (1 << 8))) {	/* CLKRM */
3104                 if (~s->pcr & (1 << 7))			/* SCLKME */
3105                     rx_rate = cpu_rate /
3106                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
3107             } else
3108                 if (s->codec)
3109                     rx_rate = s->codec->rx_rate;
3110         }
3111 
3112         if (s->spcr[1] & (1 << 0)) {			/* XRST */
3113             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
3114                             (s->pcr & (1 << 9))) {	/* CLKXM */
3115                 if (~s->pcr & (1 << 7))			/* SCLKME */
3116                     tx_rate = cpu_rate /
3117                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
3118             } else
3119                 if (s->codec)
3120                     tx_rate = s->codec->tx_rate;
3121         }
3122     }
3123     prev_tx_rate = s->tx_rate;
3124     prev_rx_rate = s->rx_rate;
3125     s->tx_rate = tx_rate;
3126     s->rx_rate = rx_rate;
3127 
3128     if (s->codec)
3129         s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3130 
3131     if (!prev_tx_rate && tx_rate)
3132         omap_mcbsp_tx_start(s);
3133     else if (s->tx_rate && !tx_rate)
3134         omap_mcbsp_tx_stop(s);
3135 
3136     if (!prev_rx_rate && rx_rate)
3137         omap_mcbsp_rx_start(s);
3138     else if (prev_tx_rate && !tx_rate)
3139         omap_mcbsp_rx_stop(s);
3140 }
3141 
3142 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3143                                 unsigned size)
3144 {
3145     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3146     int offset = addr & OMAP_MPUI_REG_MASK;
3147     uint16_t ret;
3148 
3149     if (size != 2) {
3150         return omap_badwidth_read16(opaque, addr);
3151     }
3152 
3153     switch (offset) {
3154     case 0x00:	/* DRR2 */
3155         if (((s->rcr[0] >> 5) & 7) < 3)			/* RWDLEN1 */
3156             return 0x0000;
3157         /* Fall through.  */
3158     case 0x02:	/* DRR1 */
3159         if (s->rx_req < 2) {
3160             printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3161             omap_mcbsp_rx_done(s);
3162         } else {
3163             s->tx_req -= 2;
3164             if (s->codec && s->codec->in.len >= 2) {
3165                 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3166                 ret |= s->codec->in.fifo[s->codec->in.start ++];
3167                 s->codec->in.len -= 2;
3168             } else
3169                 ret = 0x0000;
3170             if (!s->tx_req)
3171                 omap_mcbsp_rx_done(s);
3172             return ret;
3173         }
3174         return 0x0000;
3175 
3176     case 0x04:	/* DXR2 */
3177     case 0x06:	/* DXR1 */
3178         return 0x0000;
3179 
3180     case 0x08:	/* SPCR2 */
3181         return s->spcr[1];
3182     case 0x0a:	/* SPCR1 */
3183         return s->spcr[0];
3184     case 0x0c:	/* RCR2 */
3185         return s->rcr[1];
3186     case 0x0e:	/* RCR1 */
3187         return s->rcr[0];
3188     case 0x10:	/* XCR2 */
3189         return s->xcr[1];
3190     case 0x12:	/* XCR1 */
3191         return s->xcr[0];
3192     case 0x14:	/* SRGR2 */
3193         return s->srgr[1];
3194     case 0x16:	/* SRGR1 */
3195         return s->srgr[0];
3196     case 0x18:	/* MCR2 */
3197         return s->mcr[1];
3198     case 0x1a:	/* MCR1 */
3199         return s->mcr[0];
3200     case 0x1c:	/* RCERA */
3201         return s->rcer[0];
3202     case 0x1e:	/* RCERB */
3203         return s->rcer[1];
3204     case 0x20:	/* XCERA */
3205         return s->xcer[0];
3206     case 0x22:	/* XCERB */
3207         return s->xcer[1];
3208     case 0x24:	/* PCR0 */
3209         return s->pcr;
3210     case 0x26:	/* RCERC */
3211         return s->rcer[2];
3212     case 0x28:	/* RCERD */
3213         return s->rcer[3];
3214     case 0x2a:	/* XCERC */
3215         return s->xcer[2];
3216     case 0x2c:	/* XCERD */
3217         return s->xcer[3];
3218     case 0x2e:	/* RCERE */
3219         return s->rcer[4];
3220     case 0x30:	/* RCERF */
3221         return s->rcer[5];
3222     case 0x32:	/* XCERE */
3223         return s->xcer[4];
3224     case 0x34:	/* XCERF */
3225         return s->xcer[5];
3226     case 0x36:	/* RCERG */
3227         return s->rcer[6];
3228     case 0x38:	/* RCERH */
3229         return s->rcer[7];
3230     case 0x3a:	/* XCERG */
3231         return s->xcer[6];
3232     case 0x3c:	/* XCERH */
3233         return s->xcer[7];
3234     }
3235 
3236     OMAP_BAD_REG(addr);
3237     return 0;
3238 }
3239 
3240 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3241                 uint32_t value)
3242 {
3243     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3244     int offset = addr & OMAP_MPUI_REG_MASK;
3245 
3246     switch (offset) {
3247     case 0x00:	/* DRR2 */
3248     case 0x02:	/* DRR1 */
3249         OMAP_RO_REG(addr);
3250         return;
3251 
3252     case 0x04:	/* DXR2 */
3253         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
3254             return;
3255         /* Fall through.  */
3256     case 0x06:	/* DXR1 */
3257         if (s->tx_req > 1) {
3258             s->tx_req -= 2;
3259             if (s->codec && s->codec->cts) {
3260                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3261                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3262             }
3263             if (s->tx_req < 2)
3264                 omap_mcbsp_tx_done(s);
3265         } else
3266             printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3267         return;
3268 
3269     case 0x08:	/* SPCR2 */
3270         s->spcr[1] &= 0x0002;
3271         s->spcr[1] |= 0x03f9 & value;
3272         s->spcr[1] |= 0x0004 & (value << 2);		/* XEMPTY := XRST */
3273         if (~value & 1)					/* XRST */
3274             s->spcr[1] &= ~6;
3275         omap_mcbsp_req_update(s);
3276         return;
3277     case 0x0a:	/* SPCR1 */
3278         s->spcr[0] &= 0x0006;
3279         s->spcr[0] |= 0xf8f9 & value;
3280         if (value & (1 << 15))				/* DLB */
3281             printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
3282         if (~value & 1) {				/* RRST */
3283             s->spcr[0] &= ~6;
3284             s->rx_req = 0;
3285             omap_mcbsp_rx_done(s);
3286         }
3287         omap_mcbsp_req_update(s);
3288         return;
3289 
3290     case 0x0c:	/* RCR2 */
3291         s->rcr[1] = value & 0xffff;
3292         return;
3293     case 0x0e:	/* RCR1 */
3294         s->rcr[0] = value & 0x7fe0;
3295         return;
3296     case 0x10:	/* XCR2 */
3297         s->xcr[1] = value & 0xffff;
3298         return;
3299     case 0x12:	/* XCR1 */
3300         s->xcr[0] = value & 0x7fe0;
3301         return;
3302     case 0x14:	/* SRGR2 */
3303         s->srgr[1] = value & 0xffff;
3304         omap_mcbsp_req_update(s);
3305         return;
3306     case 0x16:	/* SRGR1 */
3307         s->srgr[0] = value & 0xffff;
3308         omap_mcbsp_req_update(s);
3309         return;
3310     case 0x18:	/* MCR2 */
3311         s->mcr[1] = value & 0x03e3;
3312         if (value & 3)					/* XMCM */
3313             printf("%s: Tx channel selection mode enable attempt\n",
3314                             __FUNCTION__);
3315         return;
3316     case 0x1a:	/* MCR1 */
3317         s->mcr[0] = value & 0x03e1;
3318         if (value & 1)					/* RMCM */
3319             printf("%s: Rx channel selection mode enable attempt\n",
3320                             __FUNCTION__);
3321         return;
3322     case 0x1c:	/* RCERA */
3323         s->rcer[0] = value & 0xffff;
3324         return;
3325     case 0x1e:	/* RCERB */
3326         s->rcer[1] = value & 0xffff;
3327         return;
3328     case 0x20:	/* XCERA */
3329         s->xcer[0] = value & 0xffff;
3330         return;
3331     case 0x22:	/* XCERB */
3332         s->xcer[1] = value & 0xffff;
3333         return;
3334     case 0x24:	/* PCR0 */
3335         s->pcr = value & 0x7faf;
3336         return;
3337     case 0x26:	/* RCERC */
3338         s->rcer[2] = value & 0xffff;
3339         return;
3340     case 0x28:	/* RCERD */
3341         s->rcer[3] = value & 0xffff;
3342         return;
3343     case 0x2a:	/* XCERC */
3344         s->xcer[2] = value & 0xffff;
3345         return;
3346     case 0x2c:	/* XCERD */
3347         s->xcer[3] = value & 0xffff;
3348         return;
3349     case 0x2e:	/* RCERE */
3350         s->rcer[4] = value & 0xffff;
3351         return;
3352     case 0x30:	/* RCERF */
3353         s->rcer[5] = value & 0xffff;
3354         return;
3355     case 0x32:	/* XCERE */
3356         s->xcer[4] = value & 0xffff;
3357         return;
3358     case 0x34:	/* XCERF */
3359         s->xcer[5] = value & 0xffff;
3360         return;
3361     case 0x36:	/* RCERG */
3362         s->rcer[6] = value & 0xffff;
3363         return;
3364     case 0x38:	/* RCERH */
3365         s->rcer[7] = value & 0xffff;
3366         return;
3367     case 0x3a:	/* XCERG */
3368         s->xcer[6] = value & 0xffff;
3369         return;
3370     case 0x3c:	/* XCERH */
3371         s->xcer[7] = value & 0xffff;
3372         return;
3373     }
3374 
3375     OMAP_BAD_REG(addr);
3376 }
3377 
3378 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3379                 uint32_t value)
3380 {
3381     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3382     int offset = addr & OMAP_MPUI_REG_MASK;
3383 
3384     if (offset == 0x04) {				/* DXR */
3385         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
3386             return;
3387         if (s->tx_req > 3) {
3388             s->tx_req -= 4;
3389             if (s->codec && s->codec->cts) {
3390                 s->codec->out.fifo[s->codec->out.len ++] =
3391                         (value >> 24) & 0xff;
3392                 s->codec->out.fifo[s->codec->out.len ++] =
3393                         (value >> 16) & 0xff;
3394                 s->codec->out.fifo[s->codec->out.len ++] =
3395                         (value >> 8) & 0xff;
3396                 s->codec->out.fifo[s->codec->out.len ++] =
3397                         (value >> 0) & 0xff;
3398             }
3399             if (s->tx_req < 4)
3400                 omap_mcbsp_tx_done(s);
3401         } else
3402             printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3403         return;
3404     }
3405 
3406     omap_badwidth_write16(opaque, addr, value);
3407 }
3408 
3409 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3410                              uint64_t value, unsigned size)
3411 {
3412     switch (size) {
3413     case 2: return omap_mcbsp_writeh(opaque, addr, value);
3414     case 4: return omap_mcbsp_writew(opaque, addr, value);
3415     default: return omap_badwidth_write16(opaque, addr, value);
3416     }
3417 }
3418 
3419 static const MemoryRegionOps omap_mcbsp_ops = {
3420     .read = omap_mcbsp_read,
3421     .write = omap_mcbsp_write,
3422     .endianness = DEVICE_NATIVE_ENDIAN,
3423 };
3424 
3425 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3426 {
3427     memset(&s->spcr, 0, sizeof(s->spcr));
3428     memset(&s->rcr, 0, sizeof(s->rcr));
3429     memset(&s->xcr, 0, sizeof(s->xcr));
3430     s->srgr[0] = 0x0001;
3431     s->srgr[1] = 0x2000;
3432     memset(&s->mcr, 0, sizeof(s->mcr));
3433     memset(&s->pcr, 0, sizeof(s->pcr));
3434     memset(&s->rcer, 0, sizeof(s->rcer));
3435     memset(&s->xcer, 0, sizeof(s->xcer));
3436     s->tx_req = 0;
3437     s->rx_req = 0;
3438     s->tx_rate = 0;
3439     s->rx_rate = 0;
3440     timer_del(s->source_timer);
3441     timer_del(s->sink_timer);
3442 }
3443 
3444 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3445                                             hwaddr base,
3446                                             qemu_irq txirq, qemu_irq rxirq,
3447                                             qemu_irq *dma, omap_clk clk)
3448 {
3449     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *)
3450             g_malloc0(sizeof(struct omap_mcbsp_s));
3451 
3452     s->txirq = txirq;
3453     s->rxirq = rxirq;
3454     s->txdrq = dma[0];
3455     s->rxdrq = dma[1];
3456     s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3457     s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3458     omap_mcbsp_reset(s);
3459 
3460     memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3461     memory_region_add_subregion(system_memory, base, &s->iomem);
3462 
3463     return s;
3464 }
3465 
3466 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3467 {
3468     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3469 
3470     if (s->rx_rate) {
3471         s->rx_req = s->codec->in.len;
3472         omap_mcbsp_rx_newdata(s);
3473     }
3474 }
3475 
3476 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3477 {
3478     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3479 
3480     if (s->tx_rate) {
3481         s->tx_req = s->codec->out.size;
3482         omap_mcbsp_tx_newdata(s);
3483     }
3484 }
3485 
3486 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3487 {
3488     s->codec = slave;
3489     slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3490     slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3491 }
3492 
3493 /* LED Pulse Generators */
3494 struct omap_lpg_s {
3495     MemoryRegion iomem;
3496     QEMUTimer *tm;
3497 
3498     uint8_t control;
3499     uint8_t power;
3500     int64_t on;
3501     int64_t period;
3502     int clk;
3503     int cycle;
3504 };
3505 
3506 static void omap_lpg_tick(void *opaque)
3507 {
3508     struct omap_lpg_s *s = opaque;
3509 
3510     if (s->cycle)
3511         timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3512     else
3513         timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3514 
3515     s->cycle = !s->cycle;
3516     printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
3517 }
3518 
3519 static void omap_lpg_update(struct omap_lpg_s *s)
3520 {
3521     int64_t on, period = 1, ticks = 1000;
3522     static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3523 
3524     if (~s->control & (1 << 6))					/* LPGRES */
3525         on = 0;
3526     else if (s->control & (1 << 7))				/* PERM_ON */
3527         on = period;
3528     else {
3529         period = muldiv64(ticks, per[s->control & 7],		/* PERCTRL */
3530                         256 / 32);
3531         on = (s->clk && s->power) ? muldiv64(ticks,
3532                         per[(s->control >> 3) & 7], 256) : 0;	/* ONCTRL */
3533     }
3534 
3535     timer_del(s->tm);
3536     if (on == period && s->on < s->period)
3537         printf("%s: LED is on\n", __FUNCTION__);
3538     else if (on == 0 && s->on)
3539         printf("%s: LED is off\n", __FUNCTION__);
3540     else if (on && (on != s->on || period != s->period)) {
3541         s->cycle = 0;
3542         s->on = on;
3543         s->period = period;
3544         omap_lpg_tick(s);
3545         return;
3546     }
3547 
3548     s->on = on;
3549     s->period = period;
3550 }
3551 
3552 static void omap_lpg_reset(struct omap_lpg_s *s)
3553 {
3554     s->control = 0x00;
3555     s->power = 0x00;
3556     s->clk = 1;
3557     omap_lpg_update(s);
3558 }
3559 
3560 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3561                               unsigned size)
3562 {
3563     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3564     int offset = addr & OMAP_MPUI_REG_MASK;
3565 
3566     if (size != 1) {
3567         return omap_badwidth_read8(opaque, addr);
3568     }
3569 
3570     switch (offset) {
3571     case 0x00:	/* LCR */
3572         return s->control;
3573 
3574     case 0x04:	/* PMR */
3575         return s->power;
3576     }
3577 
3578     OMAP_BAD_REG(addr);
3579     return 0;
3580 }
3581 
3582 static void omap_lpg_write(void *opaque, hwaddr addr,
3583                            uint64_t value, unsigned size)
3584 {
3585     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3586     int offset = addr & OMAP_MPUI_REG_MASK;
3587 
3588     if (size != 1) {
3589         return omap_badwidth_write8(opaque, addr, value);
3590     }
3591 
3592     switch (offset) {
3593     case 0x00:	/* LCR */
3594         if (~value & (1 << 6))					/* LPGRES */
3595             omap_lpg_reset(s);
3596         s->control = value & 0xff;
3597         omap_lpg_update(s);
3598         return;
3599 
3600     case 0x04:	/* PMR */
3601         s->power = value & 0x01;
3602         omap_lpg_update(s);
3603         return;
3604 
3605     default:
3606         OMAP_BAD_REG(addr);
3607         return;
3608     }
3609 }
3610 
3611 static const MemoryRegionOps omap_lpg_ops = {
3612     .read = omap_lpg_read,
3613     .write = omap_lpg_write,
3614     .endianness = DEVICE_NATIVE_ENDIAN,
3615 };
3616 
3617 static void omap_lpg_clk_update(void *opaque, int line, int on)
3618 {
3619     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3620 
3621     s->clk = on;
3622     omap_lpg_update(s);
3623 }
3624 
3625 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3626                                         hwaddr base, omap_clk clk)
3627 {
3628     struct omap_lpg_s *s = (struct omap_lpg_s *)
3629             g_malloc0(sizeof(struct omap_lpg_s));
3630 
3631     s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3632 
3633     omap_lpg_reset(s);
3634 
3635     memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3636     memory_region_add_subregion(system_memory, base, &s->iomem);
3637 
3638     omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3639 
3640     return s;
3641 }
3642 
3643 /* MPUI Peripheral Bridge configuration */
3644 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3645                                   unsigned size)
3646 {
3647     if (size != 2) {
3648         return omap_badwidth_read16(opaque, addr);
3649     }
3650 
3651     if (addr == OMAP_MPUI_BASE)	/* CMR */
3652         return 0xfe4d;
3653 
3654     OMAP_BAD_REG(addr);
3655     return 0;
3656 }
3657 
3658 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3659                                uint64_t value, unsigned size)
3660 {
3661     /* FIXME: infinite loop */
3662     omap_badwidth_write16(opaque, addr, value);
3663 }
3664 
3665 static const MemoryRegionOps omap_mpui_io_ops = {
3666     .read = omap_mpui_io_read,
3667     .write = omap_mpui_io_write,
3668     .endianness = DEVICE_NATIVE_ENDIAN,
3669 };
3670 
3671 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3672                                struct omap_mpu_state_s *mpu)
3673 {
3674     memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3675                           "omap-mpui-io", 0x7fff);
3676     memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3677                                 &mpu->mpui_io_iomem);
3678 }
3679 
3680 /* General chip reset */
3681 static void omap1_mpu_reset(void *opaque)
3682 {
3683     struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3684 
3685     omap_dma_reset(mpu->dma);
3686     omap_mpu_timer_reset(mpu->timer[0]);
3687     omap_mpu_timer_reset(mpu->timer[1]);
3688     omap_mpu_timer_reset(mpu->timer[2]);
3689     omap_wd_timer_reset(mpu->wdt);
3690     omap_os_timer_reset(mpu->os_timer);
3691     omap_lcdc_reset(mpu->lcd);
3692     omap_ulpd_pm_reset(mpu);
3693     omap_pin_cfg_reset(mpu);
3694     omap_mpui_reset(mpu);
3695     omap_tipb_bridge_reset(mpu->private_tipb);
3696     omap_tipb_bridge_reset(mpu->public_tipb);
3697     omap_dpll_reset(mpu->dpll[0]);
3698     omap_dpll_reset(mpu->dpll[1]);
3699     omap_dpll_reset(mpu->dpll[2]);
3700     omap_uart_reset(mpu->uart[0]);
3701     omap_uart_reset(mpu->uart[1]);
3702     omap_uart_reset(mpu->uart[2]);
3703     omap_mmc_reset(mpu->mmc);
3704     omap_mpuio_reset(mpu->mpuio);
3705     omap_uwire_reset(mpu->microwire);
3706     omap_pwl_reset(mpu->pwl);
3707     omap_pwt_reset(mpu->pwt);
3708     omap_rtc_reset(mpu->rtc);
3709     omap_mcbsp_reset(mpu->mcbsp1);
3710     omap_mcbsp_reset(mpu->mcbsp2);
3711     omap_mcbsp_reset(mpu->mcbsp3);
3712     omap_lpg_reset(mpu->led[0]);
3713     omap_lpg_reset(mpu->led[1]);
3714     omap_clkm_reset(mpu);
3715     cpu_reset(CPU(mpu->cpu));
3716 }
3717 
3718 static const struct omap_map_s {
3719     hwaddr phys_dsp;
3720     hwaddr phys_mpu;
3721     uint32_t size;
3722     const char *name;
3723 } omap15xx_dsp_mm[] = {
3724     /* Strobe 0 */
3725     { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" },		/* CS0 */
3726     { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" },		/* CS1 */
3727     { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" },		/* CS3 */
3728     { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" },	/* CS4 */
3729     { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" },	/* CS5 */
3730     { 0xe1013000, 0xfffb3000, 0x800, "uWire" },			/* CS6 */
3731     { 0xe1013800, 0xfffb3800, 0x800, "I^2C" },			/* CS7 */
3732     { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" },		/* CS8 */
3733     { 0xe1014800, 0xfffb4800, 0x800, "RTC" },			/* CS9 */
3734     { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" },			/* CS10 */
3735     { 0xe1015800, 0xfffb5800, 0x800, "PWL" },			/* CS11 */
3736     { 0xe1016000, 0xfffb6000, 0x800, "PWT" },			/* CS12 */
3737     { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" },		/* CS14 */
3738     { 0xe1017800, 0xfffb7800, 0x800, "MMC" },			/* CS15 */
3739     { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" },		/* CS18 */
3740     { 0xe1019800, 0xfffb9800, 0x800, "UART3" },			/* CS19 */
3741     { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" },		/* CS25 */
3742     /* Strobe 1 */
3743     { 0xe101e000, 0xfffce000, 0x800, "GPIOs" },			/* CS28 */
3744 
3745     { 0 }
3746 };
3747 
3748 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3749                                    const struct omap_map_s *map)
3750 {
3751     MemoryRegion *io;
3752 
3753     for (; map->phys_dsp; map ++) {
3754         io = g_new(MemoryRegion, 1);
3755         memory_region_init_alias(io, NULL, map->name,
3756                                  system_memory, map->phys_mpu, map->size);
3757         memory_region_add_subregion(system_memory, map->phys_dsp, io);
3758     }
3759 }
3760 
3761 void omap_mpu_wakeup(void *opaque, int irq, int req)
3762 {
3763     struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3764     CPUState *cpu = CPU(mpu->cpu);
3765 
3766     if (cpu->halted) {
3767         cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3768     }
3769 }
3770 
3771 static const struct dma_irq_map omap1_dma_irq_map[] = {
3772     { 0, OMAP_INT_DMA_CH0_6 },
3773     { 0, OMAP_INT_DMA_CH1_7 },
3774     { 0, OMAP_INT_DMA_CH2_8 },
3775     { 0, OMAP_INT_DMA_CH3 },
3776     { 0, OMAP_INT_DMA_CH4 },
3777     { 0, OMAP_INT_DMA_CH5 },
3778     { 1, OMAP_INT_1610_DMA_CH6 },
3779     { 1, OMAP_INT_1610_DMA_CH7 },
3780     { 1, OMAP_INT_1610_DMA_CH8 },
3781     { 1, OMAP_INT_1610_DMA_CH9 },
3782     { 1, OMAP_INT_1610_DMA_CH10 },
3783     { 1, OMAP_INT_1610_DMA_CH11 },
3784     { 1, OMAP_INT_1610_DMA_CH12 },
3785     { 1, OMAP_INT_1610_DMA_CH13 },
3786     { 1, OMAP_INT_1610_DMA_CH14 },
3787     { 1, OMAP_INT_1610_DMA_CH15 }
3788 };
3789 
3790 /* DMA ports for OMAP1 */
3791 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3792                 hwaddr addr)
3793 {
3794     return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3795 }
3796 
3797 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3798                 hwaddr addr)
3799 {
3800     return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3801                              addr);
3802 }
3803 
3804 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3805                 hwaddr addr)
3806 {
3807     return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3808 }
3809 
3810 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3811                 hwaddr addr)
3812 {
3813     return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3814 }
3815 
3816 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3817                 hwaddr addr)
3818 {
3819     return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3820 }
3821 
3822 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3823                 hwaddr addr)
3824 {
3825     return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3826 }
3827 
3828 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3829                 unsigned long sdram_size,
3830                 const char *core)
3831 {
3832     int i;
3833     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
3834             g_malloc0(sizeof(struct omap_mpu_state_s));
3835     qemu_irq dma_irqs[6];
3836     DriveInfo *dinfo;
3837     SysBusDevice *busdev;
3838 
3839     if (!core)
3840         core = "ti925t";
3841 
3842     /* Core */
3843     s->mpu_model = omap310;
3844     s->cpu = cpu_arm_init(core);
3845     if (s->cpu == NULL) {
3846         fprintf(stderr, "Unable to find CPU definition\n");
3847         exit(1);
3848     }
3849     s->sdram_size = sdram_size;
3850     s->sram_size = OMAP15XX_SRAM_SIZE;
3851 
3852     s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3853 
3854     /* Clocks */
3855     omap_clk_init(s);
3856 
3857     /* Memory-mapped stuff */
3858     memory_region_init_ram(&s->emiff_ram, NULL, "omap1.dram", s->sdram_size,
3859                            &error_abort);
3860     vmstate_register_ram_global(&s->emiff_ram);
3861     memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3862     memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3863                            &error_abort);
3864     vmstate_register_ram_global(&s->imif_ram);
3865     memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3866 
3867     omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3868 
3869     s->ih[0] = qdev_create(NULL, "omap-intc");
3870     qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3871     qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3872     qdev_init_nofail(s->ih[0]);
3873     busdev = SYS_BUS_DEVICE(s->ih[0]);
3874     sysbus_connect_irq(busdev, 0,
3875                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3876     sysbus_connect_irq(busdev, 1,
3877                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3878     sysbus_mmio_map(busdev, 0, 0xfffecb00);
3879     s->ih[1] = qdev_create(NULL, "omap-intc");
3880     qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3881     qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3882     qdev_init_nofail(s->ih[1]);
3883     busdev = SYS_BUS_DEVICE(s->ih[1]);
3884     sysbus_connect_irq(busdev, 0,
3885                        qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3886     /* The second interrupt controller's FIQ output is not wired up */
3887     sysbus_mmio_map(busdev, 0, 0xfffe0000);
3888 
3889     for (i = 0; i < 6; i++) {
3890         dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3891                                        omap1_dma_irq_map[i].intr);
3892     }
3893     s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3894                            qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3895                            s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3896 
3897     s->port[emiff    ].addr_valid = omap_validate_emiff_addr;
3898     s->port[emifs    ].addr_valid = omap_validate_emifs_addr;
3899     s->port[imif     ].addr_valid = omap_validate_imif_addr;
3900     s->port[tipb     ].addr_valid = omap_validate_tipb_addr;
3901     s->port[local    ].addr_valid = omap_validate_local_addr;
3902     s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3903 
3904     /* Register SDRAM and SRAM DMA ports for fast transfers.  */
3905     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3906                          OMAP_EMIFF_BASE, s->sdram_size);
3907     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3908                          OMAP_IMIF_BASE, s->sram_size);
3909 
3910     s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3911                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3912                     omap_findclk(s, "mputim_ck"));
3913     s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3914                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3915                     omap_findclk(s, "mputim_ck"));
3916     s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3917                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3918                     omap_findclk(s, "mputim_ck"));
3919 
3920     s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3921                     qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3922                     omap_findclk(s, "armwdt_ck"));
3923 
3924     s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3925                     qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3926                     omap_findclk(s, "clk32-kHz"));
3927 
3928     s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3929                             qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3930                             omap_dma_get_lcdch(s->dma),
3931                             omap_findclk(s, "lcd_ck"));
3932 
3933     omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3934     omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3935     omap_id_init(system_memory, s);
3936 
3937     omap_mpui_init(system_memory, 0xfffec900, s);
3938 
3939     s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3940                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3941                     omap_findclk(s, "tipb_ck"));
3942     s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3943                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3944                     omap_findclk(s, "tipb_ck"));
3945 
3946     omap_tcmi_init(system_memory, 0xfffecc00, s);
3947 
3948     s->uart[0] = omap_uart_init(0xfffb0000,
3949                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3950                     omap_findclk(s, "uart1_ck"),
3951                     omap_findclk(s, "uart1_ck"),
3952                     s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3953                     "uart1",
3954                     serial_hds[0]);
3955     s->uart[1] = omap_uart_init(0xfffb0800,
3956                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3957                     omap_findclk(s, "uart2_ck"),
3958                     omap_findclk(s, "uart2_ck"),
3959                     s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3960                     "uart2",
3961                     serial_hds[0] ? serial_hds[1] : NULL);
3962     s->uart[2] = omap_uart_init(0xfffb9800,
3963                                 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3964                     omap_findclk(s, "uart3_ck"),
3965                     omap_findclk(s, "uart3_ck"),
3966                     s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3967                     "uart3",
3968                     serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
3969 
3970     s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3971                                 omap_findclk(s, "dpll1"));
3972     s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3973                                 omap_findclk(s, "dpll2"));
3974     s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3975                                 omap_findclk(s, "dpll3"));
3976 
3977     dinfo = drive_get(IF_SD, 0, 0);
3978     if (!dinfo) {
3979         fprintf(stderr, "qemu: missing SecureDigital device\n");
3980         exit(1);
3981     }
3982     s->mmc = omap_mmc_init(0xfffb7800, system_memory,
3983                            blk_by_legacy_dinfo(dinfo),
3984                            qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
3985                            &s->drq[OMAP_DMA_MMC_TX],
3986                     omap_findclk(s, "mmc_ck"));
3987 
3988     s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
3989                                qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
3990                                qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
3991                                s->wakeup, omap_findclk(s, "clk32-kHz"));
3992 
3993     s->gpio = qdev_create(NULL, "omap-gpio");
3994     qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
3995     qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
3996     qdev_init_nofail(s->gpio);
3997     sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
3998                        qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
3999     sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4000 
4001     s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4002                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4003                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4004                     s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4005 
4006     s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4007                            omap_findclk(s, "armxor_ck"));
4008     s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4009                            omap_findclk(s, "armxor_ck"));
4010 
4011     s->i2c[0] = qdev_create(NULL, "omap_i2c");
4012     qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4013     qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4014     qdev_init_nofail(s->i2c[0]);
4015     busdev = SYS_BUS_DEVICE(s->i2c[0]);
4016     sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4017     sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4018     sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4019     sysbus_mmio_map(busdev, 0, 0xfffb3800);
4020 
4021     s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4022                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4023                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4024                     omap_findclk(s, "clk32-kHz"));
4025 
4026     s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4027                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4028                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4029                     &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4030     s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4031                                 qdev_get_gpio_in(s->ih[0],
4032                                                  OMAP_INT_310_McBSP2_TX),
4033                                 qdev_get_gpio_in(s->ih[0],
4034                                                  OMAP_INT_310_McBSP2_RX),
4035                     &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4036     s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4037                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4038                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4039                     &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4040 
4041     s->led[0] = omap_lpg_init(system_memory,
4042                               0xfffbd000, omap_findclk(s, "clk32-kHz"));
4043     s->led[1] = omap_lpg_init(system_memory,
4044                               0xfffbd800, omap_findclk(s, "clk32-kHz"));
4045 
4046     /* Register mappings not currenlty implemented:
4047      * MCSI2 Comm	fffb2000 - fffb27ff (not mapped on OMAP310)
4048      * MCSI1 Bluetooth	fffb2800 - fffb2fff (not mapped on OMAP310)
4049      * USB W2FC		fffb4000 - fffb47ff
4050      * Camera Interface	fffb6800 - fffb6fff
4051      * USB Host		fffba000 - fffba7ff
4052      * FAC		fffba800 - fffbafff
4053      * HDQ/1-Wire	fffbc000 - fffbc7ff
4054      * TIPB switches	fffbc800 - fffbcfff
4055      * Mailbox		fffcf000 - fffcf7ff
4056      * Local bus IF	fffec100 - fffec1ff
4057      * Local bus MMU	fffec200 - fffec2ff
4058      * DSP MMU		fffed200 - fffed2ff
4059      */
4060 
4061     omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4062     omap_setup_mpui_io(system_memory, s);
4063 
4064     qemu_register_reset(omap1_mpu_reset, s);
4065 
4066     return s;
4067 }
4068