xref: /openbmc/qemu/hw/arm/omap1.c (revision 4771d756f46219762477aaeaaef9bd215e3d5c60)
1 /*
2  * TI OMAP processors emulation.
3  *
4  * Copyright (C) 2006-2008 Andrzej Zaborowski  <balrog@zabor.org>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 or
9  * (at your option) version 3 of the License.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License along
17  * with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qapi/error.h"
22 #include "qemu-common.h"
23 #include "cpu.h"
24 #include "hw/boards.h"
25 #include "hw/hw.h"
26 #include "hw/arm/arm.h"
27 #include "hw/arm/omap.h"
28 #include "sysemu/sysemu.h"
29 #include "hw/arm/soc_dma.h"
30 #include "sysemu/block-backend.h"
31 #include "sysemu/blockdev.h"
32 #include "qemu/range.h"
33 #include "hw/sysbus.h"
34 
35 /* Should signal the TCMI/GPMC */
36 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
37 {
38     uint8_t ret;
39 
40     OMAP_8B_REG(addr);
41     cpu_physical_memory_read(addr, &ret, 1);
42     return ret;
43 }
44 
45 void omap_badwidth_write8(void *opaque, hwaddr addr,
46                 uint32_t value)
47 {
48     uint8_t val8 = value;
49 
50     OMAP_8B_REG(addr);
51     cpu_physical_memory_write(addr, &val8, 1);
52 }
53 
54 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
55 {
56     uint16_t ret;
57 
58     OMAP_16B_REG(addr);
59     cpu_physical_memory_read(addr, &ret, 2);
60     return ret;
61 }
62 
63 void omap_badwidth_write16(void *opaque, hwaddr addr,
64                 uint32_t value)
65 {
66     uint16_t val16 = value;
67 
68     OMAP_16B_REG(addr);
69     cpu_physical_memory_write(addr, &val16, 2);
70 }
71 
72 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
73 {
74     uint32_t ret;
75 
76     OMAP_32B_REG(addr);
77     cpu_physical_memory_read(addr, &ret, 4);
78     return ret;
79 }
80 
81 void omap_badwidth_write32(void *opaque, hwaddr addr,
82                 uint32_t value)
83 {
84     OMAP_32B_REG(addr);
85     cpu_physical_memory_write(addr, &value, 4);
86 }
87 
88 /* MPU OS timers */
89 struct omap_mpu_timer_s {
90     MemoryRegion iomem;
91     qemu_irq irq;
92     omap_clk clk;
93     uint32_t val;
94     int64_t time;
95     QEMUTimer *timer;
96     QEMUBH *tick;
97     int64_t rate;
98     int it_ena;
99 
100     int enable;
101     int ptv;
102     int ar;
103     int st;
104     uint32_t reset_val;
105 };
106 
107 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
108 {
109     uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
110 
111     if (timer->st && timer->enable && timer->rate)
112         return timer->val - muldiv64(distance >> (timer->ptv + 1),
113                                      timer->rate, get_ticks_per_sec());
114     else
115         return timer->val;
116 }
117 
118 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
119 {
120     timer->val = omap_timer_read(timer);
121     timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
122 }
123 
124 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
125 {
126     int64_t expires;
127 
128     if (timer->enable && timer->st && timer->rate) {
129         timer->val = timer->reset_val;	/* Should skip this on clk enable */
130         expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
131                            get_ticks_per_sec(), timer->rate);
132 
133         /* If timer expiry would be sooner than in about 1 ms and
134          * auto-reload isn't set, then fire immediately.  This is a hack
135          * to make systems like PalmOS run in acceptable time.  PalmOS
136          * sets the interval to a very low value and polls the status bit
137          * in a busy loop when it wants to sleep just a couple of CPU
138          * ticks.  */
139         if (expires > (get_ticks_per_sec() >> 10) || timer->ar)
140             timer_mod(timer->timer, timer->time + expires);
141         else
142             qemu_bh_schedule(timer->tick);
143     } else
144         timer_del(timer->timer);
145 }
146 
147 static void omap_timer_fire(void *opaque)
148 {
149     struct omap_mpu_timer_s *timer = opaque;
150 
151     if (!timer->ar) {
152         timer->val = 0;
153         timer->st = 0;
154     }
155 
156     if (timer->it_ena)
157         /* Edge-triggered irq */
158         qemu_irq_pulse(timer->irq);
159 }
160 
161 static void omap_timer_tick(void *opaque)
162 {
163     struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
164 
165     omap_timer_sync(timer);
166     omap_timer_fire(timer);
167     omap_timer_update(timer);
168 }
169 
170 static void omap_timer_clk_update(void *opaque, int line, int on)
171 {
172     struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
173 
174     omap_timer_sync(timer);
175     timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
176     omap_timer_update(timer);
177 }
178 
179 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
180 {
181     omap_clk_adduser(timer->clk,
182                     qemu_allocate_irq(omap_timer_clk_update, timer, 0));
183     timer->rate = omap_clk_getrate(timer->clk);
184 }
185 
186 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
187                                     unsigned size)
188 {
189     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
190 
191     if (size != 4) {
192         return omap_badwidth_read32(opaque, addr);
193     }
194 
195     switch (addr) {
196     case 0x00:	/* CNTL_TIMER */
197         return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
198 
199     case 0x04:	/* LOAD_TIM */
200         break;
201 
202     case 0x08:	/* READ_TIM */
203         return omap_timer_read(s);
204     }
205 
206     OMAP_BAD_REG(addr);
207     return 0;
208 }
209 
210 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
211                                  uint64_t value, unsigned size)
212 {
213     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
214 
215     if (size != 4) {
216         omap_badwidth_write32(opaque, addr, value);
217         return;
218     }
219 
220     switch (addr) {
221     case 0x00:	/* CNTL_TIMER */
222         omap_timer_sync(s);
223         s->enable = (value >> 5) & 1;
224         s->ptv = (value >> 2) & 7;
225         s->ar = (value >> 1) & 1;
226         s->st = value & 1;
227         omap_timer_update(s);
228         return;
229 
230     case 0x04:	/* LOAD_TIM */
231         s->reset_val = value;
232         return;
233 
234     case 0x08:	/* READ_TIM */
235         OMAP_RO_REG(addr);
236         break;
237 
238     default:
239         OMAP_BAD_REG(addr);
240     }
241 }
242 
243 static const MemoryRegionOps omap_mpu_timer_ops = {
244     .read = omap_mpu_timer_read,
245     .write = omap_mpu_timer_write,
246     .endianness = DEVICE_LITTLE_ENDIAN,
247 };
248 
249 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
250 {
251     timer_del(s->timer);
252     s->enable = 0;
253     s->reset_val = 31337;
254     s->val = 0;
255     s->ptv = 0;
256     s->ar = 0;
257     s->st = 0;
258     s->it_ena = 1;
259 }
260 
261 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
262                 hwaddr base,
263                 qemu_irq irq, omap_clk clk)
264 {
265     struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
266 
267     s->irq = irq;
268     s->clk = clk;
269     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
270     s->tick = qemu_bh_new(omap_timer_fire, s);
271     omap_mpu_timer_reset(s);
272     omap_timer_clk_setup(s);
273 
274     memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
275                           "omap-mpu-timer", 0x100);
276 
277     memory_region_add_subregion(system_memory, base, &s->iomem);
278 
279     return s;
280 }
281 
282 /* Watchdog timer */
283 struct omap_watchdog_timer_s {
284     struct omap_mpu_timer_s timer;
285     MemoryRegion iomem;
286     uint8_t last_wr;
287     int mode;
288     int free;
289     int reset;
290 };
291 
292 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
293                                    unsigned size)
294 {
295     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
296 
297     if (size != 2) {
298         return omap_badwidth_read16(opaque, addr);
299     }
300 
301     switch (addr) {
302     case 0x00:	/* CNTL_TIMER */
303         return (s->timer.ptv << 9) | (s->timer.ar << 8) |
304                 (s->timer.st << 7) | (s->free << 1);
305 
306     case 0x04:	/* READ_TIMER */
307         return omap_timer_read(&s->timer);
308 
309     case 0x08:	/* TIMER_MODE */
310         return s->mode << 15;
311     }
312 
313     OMAP_BAD_REG(addr);
314     return 0;
315 }
316 
317 static void omap_wd_timer_write(void *opaque, hwaddr addr,
318                                 uint64_t value, unsigned size)
319 {
320     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
321 
322     if (size != 2) {
323         omap_badwidth_write16(opaque, addr, value);
324         return;
325     }
326 
327     switch (addr) {
328     case 0x00:	/* CNTL_TIMER */
329         omap_timer_sync(&s->timer);
330         s->timer.ptv = (value >> 9) & 7;
331         s->timer.ar = (value >> 8) & 1;
332         s->timer.st = (value >> 7) & 1;
333         s->free = (value >> 1) & 1;
334         omap_timer_update(&s->timer);
335         break;
336 
337     case 0x04:	/* LOAD_TIMER */
338         s->timer.reset_val = value & 0xffff;
339         break;
340 
341     case 0x08:	/* TIMER_MODE */
342         if (!s->mode && ((value >> 15) & 1))
343             omap_clk_get(s->timer.clk);
344         s->mode |= (value >> 15) & 1;
345         if (s->last_wr == 0xf5) {
346             if ((value & 0xff) == 0xa0) {
347                 if (s->mode) {
348                     s->mode = 0;
349                     omap_clk_put(s->timer.clk);
350                 }
351             } else {
352                 /* XXX: on T|E hardware somehow this has no effect,
353                  * on Zire 71 it works as specified.  */
354                 s->reset = 1;
355                 qemu_system_reset_request();
356             }
357         }
358         s->last_wr = value & 0xff;
359         break;
360 
361     default:
362         OMAP_BAD_REG(addr);
363     }
364 }
365 
366 static const MemoryRegionOps omap_wd_timer_ops = {
367     .read = omap_wd_timer_read,
368     .write = omap_wd_timer_write,
369     .endianness = DEVICE_NATIVE_ENDIAN,
370 };
371 
372 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
373 {
374     timer_del(s->timer.timer);
375     if (!s->mode)
376         omap_clk_get(s->timer.clk);
377     s->mode = 1;
378     s->free = 1;
379     s->reset = 0;
380     s->timer.enable = 1;
381     s->timer.it_ena = 1;
382     s->timer.reset_val = 0xffff;
383     s->timer.val = 0;
384     s->timer.st = 0;
385     s->timer.ptv = 0;
386     s->timer.ar = 0;
387     omap_timer_update(&s->timer);
388 }
389 
390 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
391                 hwaddr base,
392                 qemu_irq irq, omap_clk clk)
393 {
394     struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
395 
396     s->timer.irq = irq;
397     s->timer.clk = clk;
398     s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
399     omap_wd_timer_reset(s);
400     omap_timer_clk_setup(&s->timer);
401 
402     memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
403                           "omap-wd-timer", 0x100);
404     memory_region_add_subregion(memory, base, &s->iomem);
405 
406     return s;
407 }
408 
409 /* 32-kHz timer */
410 struct omap_32khz_timer_s {
411     struct omap_mpu_timer_s timer;
412     MemoryRegion iomem;
413 };
414 
415 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
416                                    unsigned size)
417 {
418     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
419     int offset = addr & OMAP_MPUI_REG_MASK;
420 
421     if (size != 4) {
422         return omap_badwidth_read32(opaque, addr);
423     }
424 
425     switch (offset) {
426     case 0x00:	/* TVR */
427         return s->timer.reset_val;
428 
429     case 0x04:	/* TCR */
430         return omap_timer_read(&s->timer);
431 
432     case 0x08:	/* CR */
433         return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
434 
435     default:
436         break;
437     }
438     OMAP_BAD_REG(addr);
439     return 0;
440 }
441 
442 static void omap_os_timer_write(void *opaque, hwaddr addr,
443                                 uint64_t value, unsigned size)
444 {
445     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
446     int offset = addr & OMAP_MPUI_REG_MASK;
447 
448     if (size != 4) {
449         omap_badwidth_write32(opaque, addr, value);
450         return;
451     }
452 
453     switch (offset) {
454     case 0x00:	/* TVR */
455         s->timer.reset_val = value & 0x00ffffff;
456         break;
457 
458     case 0x04:	/* TCR */
459         OMAP_RO_REG(addr);
460         break;
461 
462     case 0x08:	/* CR */
463         s->timer.ar = (value >> 3) & 1;
464         s->timer.it_ena = (value >> 2) & 1;
465         if (s->timer.st != (value & 1) || (value & 2)) {
466             omap_timer_sync(&s->timer);
467             s->timer.enable = value & 1;
468             s->timer.st = value & 1;
469             omap_timer_update(&s->timer);
470         }
471         break;
472 
473     default:
474         OMAP_BAD_REG(addr);
475     }
476 }
477 
478 static const MemoryRegionOps omap_os_timer_ops = {
479     .read = omap_os_timer_read,
480     .write = omap_os_timer_write,
481     .endianness = DEVICE_NATIVE_ENDIAN,
482 };
483 
484 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
485 {
486     timer_del(s->timer.timer);
487     s->timer.enable = 0;
488     s->timer.it_ena = 0;
489     s->timer.reset_val = 0x00ffffff;
490     s->timer.val = 0;
491     s->timer.st = 0;
492     s->timer.ptv = 0;
493     s->timer.ar = 1;
494 }
495 
496 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
497                 hwaddr base,
498                 qemu_irq irq, omap_clk clk)
499 {
500     struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
501 
502     s->timer.irq = irq;
503     s->timer.clk = clk;
504     s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
505     omap_os_timer_reset(s);
506     omap_timer_clk_setup(&s->timer);
507 
508     memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
509                           "omap-os-timer", 0x800);
510     memory_region_add_subregion(memory, base, &s->iomem);
511 
512     return s;
513 }
514 
515 /* Ultra Low-Power Device Module */
516 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
517                                   unsigned size)
518 {
519     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
520     uint16_t ret;
521 
522     if (size != 2) {
523         return omap_badwidth_read16(opaque, addr);
524     }
525 
526     switch (addr) {
527     case 0x14:	/* IT_STATUS */
528         ret = s->ulpd_pm_regs[addr >> 2];
529         s->ulpd_pm_regs[addr >> 2] = 0;
530         qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
531         return ret;
532 
533     case 0x18:	/* Reserved */
534     case 0x1c:	/* Reserved */
535     case 0x20:	/* Reserved */
536     case 0x28:	/* Reserved */
537     case 0x2c:	/* Reserved */
538         OMAP_BAD_REG(addr);
539         /* fall through */
540     case 0x00:	/* COUNTER_32_LSB */
541     case 0x04:	/* COUNTER_32_MSB */
542     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
543     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
544     case 0x10:	/* GAUGING_CTRL */
545     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
546     case 0x30:	/* CLOCK_CTRL */
547     case 0x34:	/* SOFT_REQ */
548     case 0x38:	/* COUNTER_32_FIQ */
549     case 0x3c:	/* DPLL_CTRL */
550     case 0x40:	/* STATUS_REQ */
551         /* XXX: check clk::usecount state for every clock */
552     case 0x48:	/* LOCL_TIME */
553     case 0x4c:	/* APLL_CTRL */
554     case 0x50:	/* POWER_CTRL */
555         return s->ulpd_pm_regs[addr >> 2];
556     }
557 
558     OMAP_BAD_REG(addr);
559     return 0;
560 }
561 
562 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
563                 uint16_t diff, uint16_t value)
564 {
565     if (diff & (1 << 4))				/* USB_MCLK_EN */
566         omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
567     if (diff & (1 << 5))				/* DIS_USB_PVCI_CLK */
568         omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
569 }
570 
571 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
572                 uint16_t diff, uint16_t value)
573 {
574     if (diff & (1 << 0))				/* SOFT_DPLL_REQ */
575         omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
576     if (diff & (1 << 1))				/* SOFT_COM_REQ */
577         omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
578     if (diff & (1 << 2))				/* SOFT_SDW_REQ */
579         omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
580     if (diff & (1 << 3))				/* SOFT_USB_REQ */
581         omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
582 }
583 
584 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
585                                uint64_t value, unsigned size)
586 {
587     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
588     int64_t now, ticks;
589     int div, mult;
590     static const int bypass_div[4] = { 1, 2, 4, 4 };
591     uint16_t diff;
592 
593     if (size != 2) {
594         omap_badwidth_write16(opaque, addr, value);
595         return;
596     }
597 
598     switch (addr) {
599     case 0x00:	/* COUNTER_32_LSB */
600     case 0x04:	/* COUNTER_32_MSB */
601     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
602     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
603     case 0x14:	/* IT_STATUS */
604     case 0x40:	/* STATUS_REQ */
605         OMAP_RO_REG(addr);
606         break;
607 
608     case 0x10:	/* GAUGING_CTRL */
609         /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
610         if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
611             now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
612 
613             if (value & 1)
614                 s->ulpd_gauge_start = now;
615             else {
616                 now -= s->ulpd_gauge_start;
617 
618                 /* 32-kHz ticks */
619                 ticks = muldiv64(now, 32768, get_ticks_per_sec());
620                 s->ulpd_pm_regs[0x00 >> 2] = (ticks >>  0) & 0xffff;
621                 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
622                 if (ticks >> 32)	/* OVERFLOW_32K */
623                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
624 
625                 /* High frequency ticks */
626                 ticks = muldiv64(now, 12000000, get_ticks_per_sec());
627                 s->ulpd_pm_regs[0x08 >> 2] = (ticks >>  0) & 0xffff;
628                 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
629                 if (ticks >> 32)	/* OVERFLOW_HI_FREQ */
630                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
631 
632                 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0;	/* IT_GAUGING */
633                 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
634             }
635         }
636         s->ulpd_pm_regs[addr >> 2] = value;
637         break;
638 
639     case 0x18:	/* Reserved */
640     case 0x1c:	/* Reserved */
641     case 0x20:	/* Reserved */
642     case 0x28:	/* Reserved */
643     case 0x2c:	/* Reserved */
644         OMAP_BAD_REG(addr);
645         /* fall through */
646     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
647     case 0x38:	/* COUNTER_32_FIQ */
648     case 0x48:	/* LOCL_TIME */
649     case 0x50:	/* POWER_CTRL */
650         s->ulpd_pm_regs[addr >> 2] = value;
651         break;
652 
653     case 0x30:	/* CLOCK_CTRL */
654         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
655         s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
656         omap_ulpd_clk_update(s, diff, value);
657         break;
658 
659     case 0x34:	/* SOFT_REQ */
660         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
661         s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
662         omap_ulpd_req_update(s, diff, value);
663         break;
664 
665     case 0x3c:	/* DPLL_CTRL */
666         /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
667          * omitted altogether, probably a typo.  */
668         /* This register has identical semantics with DPLL(1:3) control
669          * registers, see omap_dpll_write() */
670         diff = s->ulpd_pm_regs[addr >> 2] & value;
671         s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
672         if (diff & (0x3ff << 2)) {
673             if (value & (1 << 4)) {			/* PLL_ENABLE */
674                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
675                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
676             } else {
677                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
678                 mult = 1;
679             }
680             omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
681         }
682 
683         /* Enter the desired mode.  */
684         s->ulpd_pm_regs[addr >> 2] =
685                 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
686                 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
687 
688         /* Act as if the lock is restored.  */
689         s->ulpd_pm_regs[addr >> 2] |= 2;
690         break;
691 
692     case 0x4c:	/* APLL_CTRL */
693         diff = s->ulpd_pm_regs[addr >> 2] & value;
694         s->ulpd_pm_regs[addr >> 2] = value & 0xf;
695         if (diff & (1 << 0))				/* APLL_NDPLL_SWITCH */
696             omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
697                                     (value & (1 << 0)) ? "apll" : "dpll4"));
698         break;
699 
700     default:
701         OMAP_BAD_REG(addr);
702     }
703 }
704 
705 static const MemoryRegionOps omap_ulpd_pm_ops = {
706     .read = omap_ulpd_pm_read,
707     .write = omap_ulpd_pm_write,
708     .endianness = DEVICE_NATIVE_ENDIAN,
709 };
710 
711 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
712 {
713     mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
714     mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
715     mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
716     mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
717     mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
718     mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
719     mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
720     mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
721     mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
722     mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
723     mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
724     omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
725     mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
726     omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
727     mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
728     mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
729     mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
730     mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
731     mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
732     mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
733     mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
734     omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
735     omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
736 }
737 
738 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
739                 hwaddr base,
740                 struct omap_mpu_state_s *mpu)
741 {
742     memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
743                           "omap-ulpd-pm", 0x800);
744     memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
745     omap_ulpd_pm_reset(mpu);
746 }
747 
748 /* OMAP Pin Configuration */
749 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
750                                   unsigned size)
751 {
752     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
753 
754     if (size != 4) {
755         return omap_badwidth_read32(opaque, addr);
756     }
757 
758     switch (addr) {
759     case 0x00:	/* FUNC_MUX_CTRL_0 */
760     case 0x04:	/* FUNC_MUX_CTRL_1 */
761     case 0x08:	/* FUNC_MUX_CTRL_2 */
762         return s->func_mux_ctrl[addr >> 2];
763 
764     case 0x0c:	/* COMP_MODE_CTRL_0 */
765         return s->comp_mode_ctrl[0];
766 
767     case 0x10:	/* FUNC_MUX_CTRL_3 */
768     case 0x14:	/* FUNC_MUX_CTRL_4 */
769     case 0x18:	/* FUNC_MUX_CTRL_5 */
770     case 0x1c:	/* FUNC_MUX_CTRL_6 */
771     case 0x20:	/* FUNC_MUX_CTRL_7 */
772     case 0x24:	/* FUNC_MUX_CTRL_8 */
773     case 0x28:	/* FUNC_MUX_CTRL_9 */
774     case 0x2c:	/* FUNC_MUX_CTRL_A */
775     case 0x30:	/* FUNC_MUX_CTRL_B */
776     case 0x34:	/* FUNC_MUX_CTRL_C */
777     case 0x38:	/* FUNC_MUX_CTRL_D */
778         return s->func_mux_ctrl[(addr >> 2) - 1];
779 
780     case 0x40:	/* PULL_DWN_CTRL_0 */
781     case 0x44:	/* PULL_DWN_CTRL_1 */
782     case 0x48:	/* PULL_DWN_CTRL_2 */
783     case 0x4c:	/* PULL_DWN_CTRL_3 */
784         return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
785 
786     case 0x50:	/* GATE_INH_CTRL_0 */
787         return s->gate_inh_ctrl[0];
788 
789     case 0x60:	/* VOLTAGE_CTRL_0 */
790         return s->voltage_ctrl[0];
791 
792     case 0x70:	/* TEST_DBG_CTRL_0 */
793         return s->test_dbg_ctrl[0];
794 
795     case 0x80:	/* MOD_CONF_CTRL_0 */
796         return s->mod_conf_ctrl[0];
797     }
798 
799     OMAP_BAD_REG(addr);
800     return 0;
801 }
802 
803 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
804                 uint32_t diff, uint32_t value)
805 {
806     if (s->compat1509) {
807         if (diff & (1 << 9))			/* BLUETOOTH */
808             omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
809                             (~value >> 9) & 1);
810         if (diff & (1 << 7))			/* USB.CLKO */
811             omap_clk_onoff(omap_findclk(s, "usb.clko"),
812                             (value >> 7) & 1);
813     }
814 }
815 
816 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
817                 uint32_t diff, uint32_t value)
818 {
819     if (s->compat1509) {
820         if (diff & (1U << 31)) {
821             /* MCBSP3_CLK_HIZ_DI */
822             omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
823         }
824         if (diff & (1 << 1)) {
825             /* CLK32K */
826             omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
827         }
828     }
829 }
830 
831 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
832                 uint32_t diff, uint32_t value)
833 {
834     if (diff & (1U << 31)) {
835         /* CONF_MOD_UART3_CLK_MODE_R */
836         omap_clk_reparent(omap_findclk(s, "uart3_ck"),
837                           omap_findclk(s, ((value >> 31) & 1) ?
838                                        "ck_48m" : "armper_ck"));
839     }
840     if (diff & (1 << 30))			/* CONF_MOD_UART2_CLK_MODE_R */
841          omap_clk_reparent(omap_findclk(s, "uart2_ck"),
842                          omap_findclk(s, ((value >> 30) & 1) ?
843                                  "ck_48m" : "armper_ck"));
844     if (diff & (1 << 29))			/* CONF_MOD_UART1_CLK_MODE_R */
845          omap_clk_reparent(omap_findclk(s, "uart1_ck"),
846                          omap_findclk(s, ((value >> 29) & 1) ?
847                                  "ck_48m" : "armper_ck"));
848     if (diff & (1 << 23))			/* CONF_MOD_MMC_SD_CLK_REQ_R */
849          omap_clk_reparent(omap_findclk(s, "mmc_ck"),
850                          omap_findclk(s, ((value >> 23) & 1) ?
851                                  "ck_48m" : "armper_ck"));
852     if (diff & (1 << 12))			/* CONF_MOD_COM_MCLK_12_48_S */
853          omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
854                          omap_findclk(s, ((value >> 12) & 1) ?
855                                  "ck_48m" : "armper_ck"));
856     if (diff & (1 << 9))			/* CONF_MOD_USB_HOST_HHC_UHO */
857          omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
858 }
859 
860 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
861                                uint64_t value, unsigned size)
862 {
863     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
864     uint32_t diff;
865 
866     if (size != 4) {
867         omap_badwidth_write32(opaque, addr, value);
868         return;
869     }
870 
871     switch (addr) {
872     case 0x00:	/* FUNC_MUX_CTRL_0 */
873         diff = s->func_mux_ctrl[addr >> 2] ^ value;
874         s->func_mux_ctrl[addr >> 2] = value;
875         omap_pin_funcmux0_update(s, diff, value);
876         return;
877 
878     case 0x04:	/* FUNC_MUX_CTRL_1 */
879         diff = s->func_mux_ctrl[addr >> 2] ^ value;
880         s->func_mux_ctrl[addr >> 2] = value;
881         omap_pin_funcmux1_update(s, diff, value);
882         return;
883 
884     case 0x08:	/* FUNC_MUX_CTRL_2 */
885         s->func_mux_ctrl[addr >> 2] = value;
886         return;
887 
888     case 0x0c:	/* COMP_MODE_CTRL_0 */
889         s->comp_mode_ctrl[0] = value;
890         s->compat1509 = (value != 0x0000eaef);
891         omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
892         omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
893         return;
894 
895     case 0x10:	/* FUNC_MUX_CTRL_3 */
896     case 0x14:	/* FUNC_MUX_CTRL_4 */
897     case 0x18:	/* FUNC_MUX_CTRL_5 */
898     case 0x1c:	/* FUNC_MUX_CTRL_6 */
899     case 0x20:	/* FUNC_MUX_CTRL_7 */
900     case 0x24:	/* FUNC_MUX_CTRL_8 */
901     case 0x28:	/* FUNC_MUX_CTRL_9 */
902     case 0x2c:	/* FUNC_MUX_CTRL_A */
903     case 0x30:	/* FUNC_MUX_CTRL_B */
904     case 0x34:	/* FUNC_MUX_CTRL_C */
905     case 0x38:	/* FUNC_MUX_CTRL_D */
906         s->func_mux_ctrl[(addr >> 2) - 1] = value;
907         return;
908 
909     case 0x40:	/* PULL_DWN_CTRL_0 */
910     case 0x44:	/* PULL_DWN_CTRL_1 */
911     case 0x48:	/* PULL_DWN_CTRL_2 */
912     case 0x4c:	/* PULL_DWN_CTRL_3 */
913         s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
914         return;
915 
916     case 0x50:	/* GATE_INH_CTRL_0 */
917         s->gate_inh_ctrl[0] = value;
918         return;
919 
920     case 0x60:	/* VOLTAGE_CTRL_0 */
921         s->voltage_ctrl[0] = value;
922         return;
923 
924     case 0x70:	/* TEST_DBG_CTRL_0 */
925         s->test_dbg_ctrl[0] = value;
926         return;
927 
928     case 0x80:	/* MOD_CONF_CTRL_0 */
929         diff = s->mod_conf_ctrl[0] ^ value;
930         s->mod_conf_ctrl[0] = value;
931         omap_pin_modconf1_update(s, diff, value);
932         return;
933 
934     default:
935         OMAP_BAD_REG(addr);
936     }
937 }
938 
939 static const MemoryRegionOps omap_pin_cfg_ops = {
940     .read = omap_pin_cfg_read,
941     .write = omap_pin_cfg_write,
942     .endianness = DEVICE_NATIVE_ENDIAN,
943 };
944 
945 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
946 {
947     /* Start in Compatibility Mode.  */
948     mpu->compat1509 = 1;
949     omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
950     omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
951     omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
952     memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
953     memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
954     memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
955     memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
956     memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
957     memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
958     memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
959 }
960 
961 static void omap_pin_cfg_init(MemoryRegion *system_memory,
962                 hwaddr base,
963                 struct omap_mpu_state_s *mpu)
964 {
965     memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
966                           "omap-pin-cfg", 0x800);
967     memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
968     omap_pin_cfg_reset(mpu);
969 }
970 
971 /* Device Identification, Die Identification */
972 static uint64_t omap_id_read(void *opaque, hwaddr addr,
973                              unsigned size)
974 {
975     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
976 
977     if (size != 4) {
978         return omap_badwidth_read32(opaque, addr);
979     }
980 
981     switch (addr) {
982     case 0xfffe1800:	/* DIE_ID_LSB */
983         return 0xc9581f0e;
984     case 0xfffe1804:	/* DIE_ID_MSB */
985         return 0xa8858bfa;
986 
987     case 0xfffe2000:	/* PRODUCT_ID_LSB */
988         return 0x00aaaafc;
989     case 0xfffe2004:	/* PRODUCT_ID_MSB */
990         return 0xcafeb574;
991 
992     case 0xfffed400:	/* JTAG_ID_LSB */
993         switch (s->mpu_model) {
994         case omap310:
995             return 0x03310315;
996         case omap1510:
997             return 0x03310115;
998         default:
999             hw_error("%s: bad mpu model\n", __FUNCTION__);
1000         }
1001         break;
1002 
1003     case 0xfffed404:	/* JTAG_ID_MSB */
1004         switch (s->mpu_model) {
1005         case omap310:
1006             return 0xfb57402f;
1007         case omap1510:
1008             return 0xfb47002f;
1009         default:
1010             hw_error("%s: bad mpu model\n", __FUNCTION__);
1011         }
1012         break;
1013     }
1014 
1015     OMAP_BAD_REG(addr);
1016     return 0;
1017 }
1018 
1019 static void omap_id_write(void *opaque, hwaddr addr,
1020                           uint64_t value, unsigned size)
1021 {
1022     if (size != 4) {
1023         omap_badwidth_write32(opaque, addr, value);
1024         return;
1025     }
1026 
1027     OMAP_BAD_REG(addr);
1028 }
1029 
1030 static const MemoryRegionOps omap_id_ops = {
1031     .read = omap_id_read,
1032     .write = omap_id_write,
1033     .endianness = DEVICE_NATIVE_ENDIAN,
1034 };
1035 
1036 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1037 {
1038     memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1039                           "omap-id", 0x100000000ULL);
1040     memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1041                              0xfffe1800, 0x800);
1042     memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1043     memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1044                              0xfffed400, 0x100);
1045     memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1046     if (!cpu_is_omap15xx(mpu)) {
1047         memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1048                                  &mpu->id_iomem, 0xfffe2000, 0x800);
1049         memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1050     }
1051 }
1052 
1053 /* MPUI Control (Dummy) */
1054 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1055                                unsigned size)
1056 {
1057     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1058 
1059     if (size != 4) {
1060         return omap_badwidth_read32(opaque, addr);
1061     }
1062 
1063     switch (addr) {
1064     case 0x00:	/* CTRL */
1065         return s->mpui_ctrl;
1066     case 0x04:	/* DEBUG_ADDR */
1067         return 0x01ffffff;
1068     case 0x08:	/* DEBUG_DATA */
1069         return 0xffffffff;
1070     case 0x0c:	/* DEBUG_FLAG */
1071         return 0x00000800;
1072     case 0x10:	/* STATUS */
1073         return 0x00000000;
1074 
1075     /* Not in OMAP310 */
1076     case 0x14:	/* DSP_STATUS */
1077     case 0x18:	/* DSP_BOOT_CONFIG */
1078         return 0x00000000;
1079     case 0x1c:	/* DSP_MPUI_CONFIG */
1080         return 0x0000ffff;
1081     }
1082 
1083     OMAP_BAD_REG(addr);
1084     return 0;
1085 }
1086 
1087 static void omap_mpui_write(void *opaque, hwaddr addr,
1088                             uint64_t value, unsigned size)
1089 {
1090     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1091 
1092     if (size != 4) {
1093         omap_badwidth_write32(opaque, addr, value);
1094         return;
1095     }
1096 
1097     switch (addr) {
1098     case 0x00:	/* CTRL */
1099         s->mpui_ctrl = value & 0x007fffff;
1100         break;
1101 
1102     case 0x04:	/* DEBUG_ADDR */
1103     case 0x08:	/* DEBUG_DATA */
1104     case 0x0c:	/* DEBUG_FLAG */
1105     case 0x10:	/* STATUS */
1106     /* Not in OMAP310 */
1107     case 0x14:	/* DSP_STATUS */
1108         OMAP_RO_REG(addr);
1109         break;
1110     case 0x18:	/* DSP_BOOT_CONFIG */
1111     case 0x1c:	/* DSP_MPUI_CONFIG */
1112         break;
1113 
1114     default:
1115         OMAP_BAD_REG(addr);
1116     }
1117 }
1118 
1119 static const MemoryRegionOps omap_mpui_ops = {
1120     .read = omap_mpui_read,
1121     .write = omap_mpui_write,
1122     .endianness = DEVICE_NATIVE_ENDIAN,
1123 };
1124 
1125 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1126 {
1127     s->mpui_ctrl = 0x0003ff1b;
1128 }
1129 
1130 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1131                 struct omap_mpu_state_s *mpu)
1132 {
1133     memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1134                           "omap-mpui", 0x100);
1135     memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1136 
1137     omap_mpui_reset(mpu);
1138 }
1139 
1140 /* TIPB Bridges */
1141 struct omap_tipb_bridge_s {
1142     qemu_irq abort;
1143     MemoryRegion iomem;
1144 
1145     int width_intr;
1146     uint16_t control;
1147     uint16_t alloc;
1148     uint16_t buffer;
1149     uint16_t enh_control;
1150 };
1151 
1152 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1153                                       unsigned size)
1154 {
1155     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1156 
1157     if (size < 2) {
1158         return omap_badwidth_read16(opaque, addr);
1159     }
1160 
1161     switch (addr) {
1162     case 0x00:	/* TIPB_CNTL */
1163         return s->control;
1164     case 0x04:	/* TIPB_BUS_ALLOC */
1165         return s->alloc;
1166     case 0x08:	/* MPU_TIPB_CNTL */
1167         return s->buffer;
1168     case 0x0c:	/* ENHANCED_TIPB_CNTL */
1169         return s->enh_control;
1170     case 0x10:	/* ADDRESS_DBG */
1171     case 0x14:	/* DATA_DEBUG_LOW */
1172     case 0x18:	/* DATA_DEBUG_HIGH */
1173         return 0xffff;
1174     case 0x1c:	/* DEBUG_CNTR_SIG */
1175         return 0x00f8;
1176     }
1177 
1178     OMAP_BAD_REG(addr);
1179     return 0;
1180 }
1181 
1182 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1183                                    uint64_t value, unsigned size)
1184 {
1185     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1186 
1187     if (size < 2) {
1188         omap_badwidth_write16(opaque, addr, value);
1189         return;
1190     }
1191 
1192     switch (addr) {
1193     case 0x00:	/* TIPB_CNTL */
1194         s->control = value & 0xffff;
1195         break;
1196 
1197     case 0x04:	/* TIPB_BUS_ALLOC */
1198         s->alloc = value & 0x003f;
1199         break;
1200 
1201     case 0x08:	/* MPU_TIPB_CNTL */
1202         s->buffer = value & 0x0003;
1203         break;
1204 
1205     case 0x0c:	/* ENHANCED_TIPB_CNTL */
1206         s->width_intr = !(value & 2);
1207         s->enh_control = value & 0x000f;
1208         break;
1209 
1210     case 0x10:	/* ADDRESS_DBG */
1211     case 0x14:	/* DATA_DEBUG_LOW */
1212     case 0x18:	/* DATA_DEBUG_HIGH */
1213     case 0x1c:	/* DEBUG_CNTR_SIG */
1214         OMAP_RO_REG(addr);
1215         break;
1216 
1217     default:
1218         OMAP_BAD_REG(addr);
1219     }
1220 }
1221 
1222 static const MemoryRegionOps omap_tipb_bridge_ops = {
1223     .read = omap_tipb_bridge_read,
1224     .write = omap_tipb_bridge_write,
1225     .endianness = DEVICE_NATIVE_ENDIAN,
1226 };
1227 
1228 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1229 {
1230     s->control = 0xffff;
1231     s->alloc = 0x0009;
1232     s->buffer = 0x0000;
1233     s->enh_control = 0x000f;
1234 }
1235 
1236 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1237     MemoryRegion *memory, hwaddr base,
1238     qemu_irq abort_irq, omap_clk clk)
1239 {
1240     struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1241 
1242     s->abort = abort_irq;
1243     omap_tipb_bridge_reset(s);
1244 
1245     memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1246                           "omap-tipb-bridge", 0x100);
1247     memory_region_add_subregion(memory, base, &s->iomem);
1248 
1249     return s;
1250 }
1251 
1252 /* Dummy Traffic Controller's Memory Interface */
1253 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1254                                unsigned size)
1255 {
1256     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1257     uint32_t ret;
1258 
1259     if (size != 4) {
1260         return omap_badwidth_read32(opaque, addr);
1261     }
1262 
1263     switch (addr) {
1264     case 0x00:	/* IMIF_PRIO */
1265     case 0x04:	/* EMIFS_PRIO */
1266     case 0x08:	/* EMIFF_PRIO */
1267     case 0x0c:	/* EMIFS_CONFIG */
1268     case 0x10:	/* EMIFS_CS0_CONFIG */
1269     case 0x14:	/* EMIFS_CS1_CONFIG */
1270     case 0x18:	/* EMIFS_CS2_CONFIG */
1271     case 0x1c:	/* EMIFS_CS3_CONFIG */
1272     case 0x24:	/* EMIFF_MRS */
1273     case 0x28:	/* TIMEOUT1 */
1274     case 0x2c:	/* TIMEOUT2 */
1275     case 0x30:	/* TIMEOUT3 */
1276     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
1277     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
1278         return s->tcmi_regs[addr >> 2];
1279 
1280     case 0x20:	/* EMIFF_SDRAM_CONFIG */
1281         ret = s->tcmi_regs[addr >> 2];
1282         s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1283         /* XXX: We can try using the VGA_DIRTY flag for this */
1284         return ret;
1285     }
1286 
1287     OMAP_BAD_REG(addr);
1288     return 0;
1289 }
1290 
1291 static void omap_tcmi_write(void *opaque, hwaddr addr,
1292                             uint64_t value, unsigned size)
1293 {
1294     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1295 
1296     if (size != 4) {
1297         omap_badwidth_write32(opaque, addr, value);
1298         return;
1299     }
1300 
1301     switch (addr) {
1302     case 0x00:	/* IMIF_PRIO */
1303     case 0x04:	/* EMIFS_PRIO */
1304     case 0x08:	/* EMIFF_PRIO */
1305     case 0x10:	/* EMIFS_CS0_CONFIG */
1306     case 0x14:	/* EMIFS_CS1_CONFIG */
1307     case 0x18:	/* EMIFS_CS2_CONFIG */
1308     case 0x1c:	/* EMIFS_CS3_CONFIG */
1309     case 0x20:	/* EMIFF_SDRAM_CONFIG */
1310     case 0x24:	/* EMIFF_MRS */
1311     case 0x28:	/* TIMEOUT1 */
1312     case 0x2c:	/* TIMEOUT2 */
1313     case 0x30:	/* TIMEOUT3 */
1314     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
1315     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
1316         s->tcmi_regs[addr >> 2] = value;
1317         break;
1318     case 0x0c:	/* EMIFS_CONFIG */
1319         s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1320         break;
1321 
1322     default:
1323         OMAP_BAD_REG(addr);
1324     }
1325 }
1326 
1327 static const MemoryRegionOps omap_tcmi_ops = {
1328     .read = omap_tcmi_read,
1329     .write = omap_tcmi_write,
1330     .endianness = DEVICE_NATIVE_ENDIAN,
1331 };
1332 
1333 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1334 {
1335     mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1336     mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1337     mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1338     mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1339     mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1340     mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1341     mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1342     mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1343     mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1344     mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1345     mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1346     mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1347     mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1348     mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1349     mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1350 }
1351 
1352 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1353                 struct omap_mpu_state_s *mpu)
1354 {
1355     memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1356                           "omap-tcmi", 0x100);
1357     memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1358     omap_tcmi_reset(mpu);
1359 }
1360 
1361 /* Digital phase-locked loops control */
1362 struct dpll_ctl_s {
1363     MemoryRegion iomem;
1364     uint16_t mode;
1365     omap_clk dpll;
1366 };
1367 
1368 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1369                                unsigned size)
1370 {
1371     struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1372 
1373     if (size != 2) {
1374         return omap_badwidth_read16(opaque, addr);
1375     }
1376 
1377     if (addr == 0x00)	/* CTL_REG */
1378         return s->mode;
1379 
1380     OMAP_BAD_REG(addr);
1381     return 0;
1382 }
1383 
1384 static void omap_dpll_write(void *opaque, hwaddr addr,
1385                             uint64_t value, unsigned size)
1386 {
1387     struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1388     uint16_t diff;
1389     static const int bypass_div[4] = { 1, 2, 4, 4 };
1390     int div, mult;
1391 
1392     if (size != 2) {
1393         omap_badwidth_write16(opaque, addr, value);
1394         return;
1395     }
1396 
1397     if (addr == 0x00) {	/* CTL_REG */
1398         /* See omap_ulpd_pm_write() too */
1399         diff = s->mode & value;
1400         s->mode = value & 0x2fff;
1401         if (diff & (0x3ff << 2)) {
1402             if (value & (1 << 4)) {			/* PLL_ENABLE */
1403                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
1404                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
1405             } else {
1406                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
1407                 mult = 1;
1408             }
1409             omap_clk_setrate(s->dpll, div, mult);
1410         }
1411 
1412         /* Enter the desired mode.  */
1413         s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1414 
1415         /* Act as if the lock is restored.  */
1416         s->mode |= 2;
1417     } else {
1418         OMAP_BAD_REG(addr);
1419     }
1420 }
1421 
1422 static const MemoryRegionOps omap_dpll_ops = {
1423     .read = omap_dpll_read,
1424     .write = omap_dpll_write,
1425     .endianness = DEVICE_NATIVE_ENDIAN,
1426 };
1427 
1428 static void omap_dpll_reset(struct dpll_ctl_s *s)
1429 {
1430     s->mode = 0x2002;
1431     omap_clk_setrate(s->dpll, 1, 1);
1432 }
1433 
1434 static struct dpll_ctl_s  *omap_dpll_init(MemoryRegion *memory,
1435                            hwaddr base, omap_clk clk)
1436 {
1437     struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1438     memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1439 
1440     s->dpll = clk;
1441     omap_dpll_reset(s);
1442 
1443     memory_region_add_subregion(memory, base, &s->iomem);
1444     return s;
1445 }
1446 
1447 /* MPU Clock/Reset/Power Mode Control */
1448 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1449                                unsigned size)
1450 {
1451     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1452 
1453     if (size != 2) {
1454         return omap_badwidth_read16(opaque, addr);
1455     }
1456 
1457     switch (addr) {
1458     case 0x00:	/* ARM_CKCTL */
1459         return s->clkm.arm_ckctl;
1460 
1461     case 0x04:	/* ARM_IDLECT1 */
1462         return s->clkm.arm_idlect1;
1463 
1464     case 0x08:	/* ARM_IDLECT2 */
1465         return s->clkm.arm_idlect2;
1466 
1467     case 0x0c:	/* ARM_EWUPCT */
1468         return s->clkm.arm_ewupct;
1469 
1470     case 0x10:	/* ARM_RSTCT1 */
1471         return s->clkm.arm_rstct1;
1472 
1473     case 0x14:	/* ARM_RSTCT2 */
1474         return s->clkm.arm_rstct2;
1475 
1476     case 0x18:	/* ARM_SYSST */
1477         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1478 
1479     case 0x1c:	/* ARM_CKOUT1 */
1480         return s->clkm.arm_ckout1;
1481 
1482     case 0x20:	/* ARM_CKOUT2 */
1483         break;
1484     }
1485 
1486     OMAP_BAD_REG(addr);
1487     return 0;
1488 }
1489 
1490 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1491                 uint16_t diff, uint16_t value)
1492 {
1493     omap_clk clk;
1494 
1495     if (diff & (1 << 14)) {				/* ARM_INTHCK_SEL */
1496         if (value & (1 << 14))
1497             /* Reserved */;
1498         else {
1499             clk = omap_findclk(s, "arminth_ck");
1500             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1501         }
1502     }
1503     if (diff & (1 << 12)) {				/* ARM_TIMXO */
1504         clk = omap_findclk(s, "armtim_ck");
1505         if (value & (1 << 12))
1506             omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1507         else
1508             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1509     }
1510     /* XXX: en_dspck */
1511     if (diff & (3 << 10)) {				/* DSPMMUDIV */
1512         clk = omap_findclk(s, "dspmmu_ck");
1513         omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1514     }
1515     if (diff & (3 << 8)) {				/* TCDIV */
1516         clk = omap_findclk(s, "tc_ck");
1517         omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1518     }
1519     if (diff & (3 << 6)) {				/* DSPDIV */
1520         clk = omap_findclk(s, "dsp_ck");
1521         omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1522     }
1523     if (diff & (3 << 4)) {				/* ARMDIV */
1524         clk = omap_findclk(s, "arm_ck");
1525         omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1526     }
1527     if (diff & (3 << 2)) {				/* LCDDIV */
1528         clk = omap_findclk(s, "lcd_ck");
1529         omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1530     }
1531     if (diff & (3 << 0)) {				/* PERDIV */
1532         clk = omap_findclk(s, "armper_ck");
1533         omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1534     }
1535 }
1536 
1537 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1538                 uint16_t diff, uint16_t value)
1539 {
1540     omap_clk clk;
1541 
1542     if (value & (1 << 11)) {                            /* SETARM_IDLE */
1543         cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1544     }
1545     if (!(value & (1 << 10)))				/* WKUP_MODE */
1546         qemu_system_shutdown_request();	/* XXX: disable wakeup from IRQ */
1547 
1548 #define SET_CANIDLE(clock, bit)				\
1549     if (diff & (1 << bit)) {				\
1550         clk = omap_findclk(s, clock);			\
1551         omap_clk_canidle(clk, (value >> bit) & 1);	\
1552     }
1553     SET_CANIDLE("mpuwd_ck", 0)				/* IDLWDT_ARM */
1554     SET_CANIDLE("armxor_ck", 1)				/* IDLXORP_ARM */
1555     SET_CANIDLE("mpuper_ck", 2)				/* IDLPER_ARM */
1556     SET_CANIDLE("lcd_ck", 3)				/* IDLLCD_ARM */
1557     SET_CANIDLE("lb_ck", 4)				/* IDLLB_ARM */
1558     SET_CANIDLE("hsab_ck", 5)				/* IDLHSAB_ARM */
1559     SET_CANIDLE("tipb_ck", 6)				/* IDLIF_ARM */
1560     SET_CANIDLE("dma_ck", 6)				/* IDLIF_ARM */
1561     SET_CANIDLE("tc_ck", 6)				/* IDLIF_ARM */
1562     SET_CANIDLE("dpll1", 7)				/* IDLDPLL_ARM */
1563     SET_CANIDLE("dpll2", 7)				/* IDLDPLL_ARM */
1564     SET_CANIDLE("dpll3", 7)				/* IDLDPLL_ARM */
1565     SET_CANIDLE("mpui_ck", 8)				/* IDLAPI_ARM */
1566     SET_CANIDLE("armtim_ck", 9)				/* IDLTIM_ARM */
1567 }
1568 
1569 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1570                 uint16_t diff, uint16_t value)
1571 {
1572     omap_clk clk;
1573 
1574 #define SET_ONOFF(clock, bit)				\
1575     if (diff & (1 << bit)) {				\
1576         clk = omap_findclk(s, clock);			\
1577         omap_clk_onoff(clk, (value >> bit) & 1);	\
1578     }
1579     SET_ONOFF("mpuwd_ck", 0)				/* EN_WDTCK */
1580     SET_ONOFF("armxor_ck", 1)				/* EN_XORPCK */
1581     SET_ONOFF("mpuper_ck", 2)				/* EN_PERCK */
1582     SET_ONOFF("lcd_ck", 3)				/* EN_LCDCK */
1583     SET_ONOFF("lb_ck", 4)				/* EN_LBCK */
1584     SET_ONOFF("hsab_ck", 5)				/* EN_HSABCK */
1585     SET_ONOFF("mpui_ck", 6)				/* EN_APICK */
1586     SET_ONOFF("armtim_ck", 7)				/* EN_TIMCK */
1587     SET_CANIDLE("dma_ck", 8)				/* DMACK_REQ */
1588     SET_ONOFF("arm_gpio_ck", 9)				/* EN_GPIOCK */
1589     SET_ONOFF("lbfree_ck", 10)				/* EN_LBFREECK */
1590 }
1591 
1592 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1593                 uint16_t diff, uint16_t value)
1594 {
1595     omap_clk clk;
1596 
1597     if (diff & (3 << 4)) {				/* TCLKOUT */
1598         clk = omap_findclk(s, "tclk_out");
1599         switch ((value >> 4) & 3) {
1600         case 1:
1601             omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1602             omap_clk_onoff(clk, 1);
1603             break;
1604         case 2:
1605             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1606             omap_clk_onoff(clk, 1);
1607             break;
1608         default:
1609             omap_clk_onoff(clk, 0);
1610         }
1611     }
1612     if (diff & (3 << 2)) {				/* DCLKOUT */
1613         clk = omap_findclk(s, "dclk_out");
1614         switch ((value >> 2) & 3) {
1615         case 0:
1616             omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1617             break;
1618         case 1:
1619             omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1620             break;
1621         case 2:
1622             omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1623             break;
1624         case 3:
1625             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1626             break;
1627         }
1628     }
1629     if (diff & (3 << 0)) {				/* ACLKOUT */
1630         clk = omap_findclk(s, "aclk_out");
1631         switch ((value >> 0) & 3) {
1632         case 1:
1633             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1634             omap_clk_onoff(clk, 1);
1635             break;
1636         case 2:
1637             omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1638             omap_clk_onoff(clk, 1);
1639             break;
1640         case 3:
1641             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1642             omap_clk_onoff(clk, 1);
1643             break;
1644         default:
1645             omap_clk_onoff(clk, 0);
1646         }
1647     }
1648 }
1649 
1650 static void omap_clkm_write(void *opaque, hwaddr addr,
1651                             uint64_t value, unsigned size)
1652 {
1653     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1654     uint16_t diff;
1655     omap_clk clk;
1656     static const char *clkschemename[8] = {
1657         "fully synchronous", "fully asynchronous", "synchronous scalable",
1658         "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1659     };
1660 
1661     if (size != 2) {
1662         omap_badwidth_write16(opaque, addr, value);
1663         return;
1664     }
1665 
1666     switch (addr) {
1667     case 0x00:	/* ARM_CKCTL */
1668         diff = s->clkm.arm_ckctl ^ value;
1669         s->clkm.arm_ckctl = value & 0x7fff;
1670         omap_clkm_ckctl_update(s, diff, value);
1671         return;
1672 
1673     case 0x04:	/* ARM_IDLECT1 */
1674         diff = s->clkm.arm_idlect1 ^ value;
1675         s->clkm.arm_idlect1 = value & 0x0fff;
1676         omap_clkm_idlect1_update(s, diff, value);
1677         return;
1678 
1679     case 0x08:	/* ARM_IDLECT2 */
1680         diff = s->clkm.arm_idlect2 ^ value;
1681         s->clkm.arm_idlect2 = value & 0x07ff;
1682         omap_clkm_idlect2_update(s, diff, value);
1683         return;
1684 
1685     case 0x0c:	/* ARM_EWUPCT */
1686         s->clkm.arm_ewupct = value & 0x003f;
1687         return;
1688 
1689     case 0x10:	/* ARM_RSTCT1 */
1690         diff = s->clkm.arm_rstct1 ^ value;
1691         s->clkm.arm_rstct1 = value & 0x0007;
1692         if (value & 9) {
1693             qemu_system_reset_request();
1694             s->clkm.cold_start = 0xa;
1695         }
1696         if (diff & ~value & 4) {				/* DSP_RST */
1697             omap_mpui_reset(s);
1698             omap_tipb_bridge_reset(s->private_tipb);
1699             omap_tipb_bridge_reset(s->public_tipb);
1700         }
1701         if (diff & 2) {						/* DSP_EN */
1702             clk = omap_findclk(s, "dsp_ck");
1703             omap_clk_canidle(clk, (~value >> 1) & 1);
1704         }
1705         return;
1706 
1707     case 0x14:	/* ARM_RSTCT2 */
1708         s->clkm.arm_rstct2 = value & 0x0001;
1709         return;
1710 
1711     case 0x18:	/* ARM_SYSST */
1712         if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1713             s->clkm.clocking_scheme = (value >> 11) & 7;
1714             printf("%s: clocking scheme set to %s\n", __FUNCTION__,
1715                             clkschemename[s->clkm.clocking_scheme]);
1716         }
1717         s->clkm.cold_start &= value & 0x3f;
1718         return;
1719 
1720     case 0x1c:	/* ARM_CKOUT1 */
1721         diff = s->clkm.arm_ckout1 ^ value;
1722         s->clkm.arm_ckout1 = value & 0x003f;
1723         omap_clkm_ckout1_update(s, diff, value);
1724         return;
1725 
1726     case 0x20:	/* ARM_CKOUT2 */
1727     default:
1728         OMAP_BAD_REG(addr);
1729     }
1730 }
1731 
1732 static const MemoryRegionOps omap_clkm_ops = {
1733     .read = omap_clkm_read,
1734     .write = omap_clkm_write,
1735     .endianness = DEVICE_NATIVE_ENDIAN,
1736 };
1737 
1738 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1739                                  unsigned size)
1740 {
1741     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1742     CPUState *cpu = CPU(s->cpu);
1743 
1744     if (size != 2) {
1745         return omap_badwidth_read16(opaque, addr);
1746     }
1747 
1748     switch (addr) {
1749     case 0x04:	/* DSP_IDLECT1 */
1750         return s->clkm.dsp_idlect1;
1751 
1752     case 0x08:	/* DSP_IDLECT2 */
1753         return s->clkm.dsp_idlect2;
1754 
1755     case 0x14:	/* DSP_RSTCT2 */
1756         return s->clkm.dsp_rstct2;
1757 
1758     case 0x18:	/* DSP_SYSST */
1759         cpu = CPU(s->cpu);
1760         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1761                 (cpu->halted << 6);      /* Quite useless... */
1762     }
1763 
1764     OMAP_BAD_REG(addr);
1765     return 0;
1766 }
1767 
1768 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1769                 uint16_t diff, uint16_t value)
1770 {
1771     omap_clk clk;
1772 
1773     SET_CANIDLE("dspxor_ck", 1);			/* IDLXORP_DSP */
1774 }
1775 
1776 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1777                 uint16_t diff, uint16_t value)
1778 {
1779     omap_clk clk;
1780 
1781     SET_ONOFF("dspxor_ck", 1);				/* EN_XORPCK */
1782 }
1783 
1784 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1785                               uint64_t value, unsigned size)
1786 {
1787     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1788     uint16_t diff;
1789 
1790     if (size != 2) {
1791         omap_badwidth_write16(opaque, addr, value);
1792         return;
1793     }
1794 
1795     switch (addr) {
1796     case 0x04:	/* DSP_IDLECT1 */
1797         diff = s->clkm.dsp_idlect1 ^ value;
1798         s->clkm.dsp_idlect1 = value & 0x01f7;
1799         omap_clkdsp_idlect1_update(s, diff, value);
1800         break;
1801 
1802     case 0x08:	/* DSP_IDLECT2 */
1803         s->clkm.dsp_idlect2 = value & 0x0037;
1804         diff = s->clkm.dsp_idlect1 ^ value;
1805         omap_clkdsp_idlect2_update(s, diff, value);
1806         break;
1807 
1808     case 0x14:	/* DSP_RSTCT2 */
1809         s->clkm.dsp_rstct2 = value & 0x0001;
1810         break;
1811 
1812     case 0x18:	/* DSP_SYSST */
1813         s->clkm.cold_start &= value & 0x3f;
1814         break;
1815 
1816     default:
1817         OMAP_BAD_REG(addr);
1818     }
1819 }
1820 
1821 static const MemoryRegionOps omap_clkdsp_ops = {
1822     .read = omap_clkdsp_read,
1823     .write = omap_clkdsp_write,
1824     .endianness = DEVICE_NATIVE_ENDIAN,
1825 };
1826 
1827 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1828 {
1829     if (s->wdt && s->wdt->reset)
1830         s->clkm.cold_start = 0x6;
1831     s->clkm.clocking_scheme = 0;
1832     omap_clkm_ckctl_update(s, ~0, 0x3000);
1833     s->clkm.arm_ckctl = 0x3000;
1834     omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1835     s->clkm.arm_idlect1 = 0x0400;
1836     omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1837     s->clkm.arm_idlect2 = 0x0100;
1838     s->clkm.arm_ewupct = 0x003f;
1839     s->clkm.arm_rstct1 = 0x0000;
1840     s->clkm.arm_rstct2 = 0x0000;
1841     s->clkm.arm_ckout1 = 0x0015;
1842     s->clkm.dpll1_mode = 0x2002;
1843     omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1844     s->clkm.dsp_idlect1 = 0x0040;
1845     omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1846     s->clkm.dsp_idlect2 = 0x0000;
1847     s->clkm.dsp_rstct2 = 0x0000;
1848 }
1849 
1850 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1851                 hwaddr dsp_base, struct omap_mpu_state_s *s)
1852 {
1853     memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1854                           "omap-clkm", 0x100);
1855     memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1856                           "omap-clkdsp", 0x1000);
1857 
1858     s->clkm.arm_idlect1 = 0x03ff;
1859     s->clkm.arm_idlect2 = 0x0100;
1860     s->clkm.dsp_idlect1 = 0x0002;
1861     omap_clkm_reset(s);
1862     s->clkm.cold_start = 0x3a;
1863 
1864     memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1865     memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1866 }
1867 
1868 /* MPU I/O */
1869 struct omap_mpuio_s {
1870     qemu_irq irq;
1871     qemu_irq kbd_irq;
1872     qemu_irq *in;
1873     qemu_irq handler[16];
1874     qemu_irq wakeup;
1875     MemoryRegion iomem;
1876 
1877     uint16_t inputs;
1878     uint16_t outputs;
1879     uint16_t dir;
1880     uint16_t edge;
1881     uint16_t mask;
1882     uint16_t ints;
1883 
1884     uint16_t debounce;
1885     uint16_t latch;
1886     uint8_t event;
1887 
1888     uint8_t buttons[5];
1889     uint8_t row_latch;
1890     uint8_t cols;
1891     int kbd_mask;
1892     int clk;
1893 };
1894 
1895 static void omap_mpuio_set(void *opaque, int line, int level)
1896 {
1897     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1898     uint16_t prev = s->inputs;
1899 
1900     if (level)
1901         s->inputs |= 1 << line;
1902     else
1903         s->inputs &= ~(1 << line);
1904 
1905     if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1906         if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1907             s->ints |= 1 << line;
1908             qemu_irq_raise(s->irq);
1909             /* TODO: wakeup */
1910         }
1911         if ((s->event & (1 << 0)) &&		/* SET_GPIO_EVENT_MODE */
1912                 (s->event >> 1) == line)	/* PIN_SELECT */
1913             s->latch = s->inputs;
1914     }
1915 }
1916 
1917 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1918 {
1919     int i;
1920     uint8_t *row, rows = 0, cols = ~s->cols;
1921 
1922     for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1923         if (*row & cols)
1924             rows |= i;
1925 
1926     qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1927     s->row_latch = ~rows;
1928 }
1929 
1930 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1931                                 unsigned size)
1932 {
1933     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1934     int offset = addr & OMAP_MPUI_REG_MASK;
1935     uint16_t ret;
1936 
1937     if (size != 2) {
1938         return omap_badwidth_read16(opaque, addr);
1939     }
1940 
1941     switch (offset) {
1942     case 0x00:	/* INPUT_LATCH */
1943         return s->inputs;
1944 
1945     case 0x04:	/* OUTPUT_REG */
1946         return s->outputs;
1947 
1948     case 0x08:	/* IO_CNTL */
1949         return s->dir;
1950 
1951     case 0x10:	/* KBR_LATCH */
1952         return s->row_latch;
1953 
1954     case 0x14:	/* KBC_REG */
1955         return s->cols;
1956 
1957     case 0x18:	/* GPIO_EVENT_MODE_REG */
1958         return s->event;
1959 
1960     case 0x1c:	/* GPIO_INT_EDGE_REG */
1961         return s->edge;
1962 
1963     case 0x20:	/* KBD_INT */
1964         return (~s->row_latch & 0x1f) && !s->kbd_mask;
1965 
1966     case 0x24:	/* GPIO_INT */
1967         ret = s->ints;
1968         s->ints &= s->mask;
1969         if (ret)
1970             qemu_irq_lower(s->irq);
1971         return ret;
1972 
1973     case 0x28:	/* KBD_MASKIT */
1974         return s->kbd_mask;
1975 
1976     case 0x2c:	/* GPIO_MASKIT */
1977         return s->mask;
1978 
1979     case 0x30:	/* GPIO_DEBOUNCING_REG */
1980         return s->debounce;
1981 
1982     case 0x34:	/* GPIO_LATCH_REG */
1983         return s->latch;
1984     }
1985 
1986     OMAP_BAD_REG(addr);
1987     return 0;
1988 }
1989 
1990 static void omap_mpuio_write(void *opaque, hwaddr addr,
1991                              uint64_t value, unsigned size)
1992 {
1993     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1994     int offset = addr & OMAP_MPUI_REG_MASK;
1995     uint16_t diff;
1996     int ln;
1997 
1998     if (size != 2) {
1999         omap_badwidth_write16(opaque, addr, value);
2000         return;
2001     }
2002 
2003     switch (offset) {
2004     case 0x04:	/* OUTPUT_REG */
2005         diff = (s->outputs ^ value) & ~s->dir;
2006         s->outputs = value;
2007         while ((ln = ctz32(diff)) != 32) {
2008             if (s->handler[ln])
2009                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2010             diff &= ~(1 << ln);
2011         }
2012         break;
2013 
2014     case 0x08:	/* IO_CNTL */
2015         diff = s->outputs & (s->dir ^ value);
2016         s->dir = value;
2017 
2018         value = s->outputs & ~s->dir;
2019         while ((ln = ctz32(diff)) != 32) {
2020             if (s->handler[ln])
2021                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2022             diff &= ~(1 << ln);
2023         }
2024         break;
2025 
2026     case 0x14:	/* KBC_REG */
2027         s->cols = value;
2028         omap_mpuio_kbd_update(s);
2029         break;
2030 
2031     case 0x18:	/* GPIO_EVENT_MODE_REG */
2032         s->event = value & 0x1f;
2033         break;
2034 
2035     case 0x1c:	/* GPIO_INT_EDGE_REG */
2036         s->edge = value;
2037         break;
2038 
2039     case 0x28:	/* KBD_MASKIT */
2040         s->kbd_mask = value & 1;
2041         omap_mpuio_kbd_update(s);
2042         break;
2043 
2044     case 0x2c:	/* GPIO_MASKIT */
2045         s->mask = value;
2046         break;
2047 
2048     case 0x30:	/* GPIO_DEBOUNCING_REG */
2049         s->debounce = value & 0x1ff;
2050         break;
2051 
2052     case 0x00:	/* INPUT_LATCH */
2053     case 0x10:	/* KBR_LATCH */
2054     case 0x20:	/* KBD_INT */
2055     case 0x24:	/* GPIO_INT */
2056     case 0x34:	/* GPIO_LATCH_REG */
2057         OMAP_RO_REG(addr);
2058         return;
2059 
2060     default:
2061         OMAP_BAD_REG(addr);
2062         return;
2063     }
2064 }
2065 
2066 static const MemoryRegionOps omap_mpuio_ops  = {
2067     .read = omap_mpuio_read,
2068     .write = omap_mpuio_write,
2069     .endianness = DEVICE_NATIVE_ENDIAN,
2070 };
2071 
2072 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2073 {
2074     s->inputs = 0;
2075     s->outputs = 0;
2076     s->dir = ~0;
2077     s->event = 0;
2078     s->edge = 0;
2079     s->kbd_mask = 0;
2080     s->mask = 0;
2081     s->debounce = 0;
2082     s->latch = 0;
2083     s->ints = 0;
2084     s->row_latch = 0x1f;
2085     s->clk = 1;
2086 }
2087 
2088 static void omap_mpuio_onoff(void *opaque, int line, int on)
2089 {
2090     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2091 
2092     s->clk = on;
2093     if (on)
2094         omap_mpuio_kbd_update(s);
2095 }
2096 
2097 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2098                 hwaddr base,
2099                 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2100                 omap_clk clk)
2101 {
2102     struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2103 
2104     s->irq = gpio_int;
2105     s->kbd_irq = kbd_int;
2106     s->wakeup = wakeup;
2107     s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2108     omap_mpuio_reset(s);
2109 
2110     memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2111                           "omap-mpuio", 0x800);
2112     memory_region_add_subregion(memory, base, &s->iomem);
2113 
2114     omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2115 
2116     return s;
2117 }
2118 
2119 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2120 {
2121     return s->in;
2122 }
2123 
2124 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2125 {
2126     if (line >= 16 || line < 0)
2127         hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
2128     s->handler[line] = handler;
2129 }
2130 
2131 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2132 {
2133     if (row >= 5 || row < 0)
2134         hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
2135 
2136     if (down)
2137         s->buttons[row] |= 1 << col;
2138     else
2139         s->buttons[row] &= ~(1 << col);
2140 
2141     omap_mpuio_kbd_update(s);
2142 }
2143 
2144 /* MicroWire Interface */
2145 struct omap_uwire_s {
2146     MemoryRegion iomem;
2147     qemu_irq txirq;
2148     qemu_irq rxirq;
2149     qemu_irq txdrq;
2150 
2151     uint16_t txbuf;
2152     uint16_t rxbuf;
2153     uint16_t control;
2154     uint16_t setup[5];
2155 
2156     uWireSlave *chip[4];
2157 };
2158 
2159 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2160 {
2161     int chipselect = (s->control >> 10) & 3;		/* INDEX */
2162     uWireSlave *slave = s->chip[chipselect];
2163 
2164     if ((s->control >> 5) & 0x1f) {			/* NB_BITS_WR */
2165         if (s->control & (1 << 12))			/* CS_CMD */
2166             if (slave && slave->send)
2167                 slave->send(slave->opaque,
2168                                 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2169         s->control &= ~(1 << 14);			/* CSRB */
2170         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2171          * a DRQ.  When is the level IRQ supposed to be reset?  */
2172     }
2173 
2174     if ((s->control >> 0) & 0x1f) {			/* NB_BITS_RD */
2175         if (s->control & (1 << 12))			/* CS_CMD */
2176             if (slave && slave->receive)
2177                 s->rxbuf = slave->receive(slave->opaque);
2178         s->control |= 1 << 15;				/* RDRB */
2179         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2180          * a DRQ.  When is the level IRQ supposed to be reset?  */
2181     }
2182 }
2183 
2184 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2185                                 unsigned size)
2186 {
2187     struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2188     int offset = addr & OMAP_MPUI_REG_MASK;
2189 
2190     if (size != 2) {
2191         return omap_badwidth_read16(opaque, addr);
2192     }
2193 
2194     switch (offset) {
2195     case 0x00:	/* RDR */
2196         s->control &= ~(1 << 15);			/* RDRB */
2197         return s->rxbuf;
2198 
2199     case 0x04:	/* CSR */
2200         return s->control;
2201 
2202     case 0x08:	/* SR1 */
2203         return s->setup[0];
2204     case 0x0c:	/* SR2 */
2205         return s->setup[1];
2206     case 0x10:	/* SR3 */
2207         return s->setup[2];
2208     case 0x14:	/* SR4 */
2209         return s->setup[3];
2210     case 0x18:	/* SR5 */
2211         return s->setup[4];
2212     }
2213 
2214     OMAP_BAD_REG(addr);
2215     return 0;
2216 }
2217 
2218 static void omap_uwire_write(void *opaque, hwaddr addr,
2219                              uint64_t value, unsigned size)
2220 {
2221     struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2222     int offset = addr & OMAP_MPUI_REG_MASK;
2223 
2224     if (size != 2) {
2225         omap_badwidth_write16(opaque, addr, value);
2226         return;
2227     }
2228 
2229     switch (offset) {
2230     case 0x00:	/* TDR */
2231         s->txbuf = value;				/* TD */
2232         if ((s->setup[4] & (1 << 2)) &&			/* AUTO_TX_EN */
2233                         ((s->setup[4] & (1 << 3)) ||	/* CS_TOGGLE_TX_EN */
2234                          (s->control & (1 << 12)))) {	/* CS_CMD */
2235             s->control |= 1 << 14;			/* CSRB */
2236             omap_uwire_transfer_start(s);
2237         }
2238         break;
2239 
2240     case 0x04:	/* CSR */
2241         s->control = value & 0x1fff;
2242         if (value & (1 << 13))				/* START */
2243             omap_uwire_transfer_start(s);
2244         break;
2245 
2246     case 0x08:	/* SR1 */
2247         s->setup[0] = value & 0x003f;
2248         break;
2249 
2250     case 0x0c:	/* SR2 */
2251         s->setup[1] = value & 0x0fc0;
2252         break;
2253 
2254     case 0x10:	/* SR3 */
2255         s->setup[2] = value & 0x0003;
2256         break;
2257 
2258     case 0x14:	/* SR4 */
2259         s->setup[3] = value & 0x0001;
2260         break;
2261 
2262     case 0x18:	/* SR5 */
2263         s->setup[4] = value & 0x000f;
2264         break;
2265 
2266     default:
2267         OMAP_BAD_REG(addr);
2268         return;
2269     }
2270 }
2271 
2272 static const MemoryRegionOps omap_uwire_ops = {
2273     .read = omap_uwire_read,
2274     .write = omap_uwire_write,
2275     .endianness = DEVICE_NATIVE_ENDIAN,
2276 };
2277 
2278 static void omap_uwire_reset(struct omap_uwire_s *s)
2279 {
2280     s->control = 0;
2281     s->setup[0] = 0;
2282     s->setup[1] = 0;
2283     s->setup[2] = 0;
2284     s->setup[3] = 0;
2285     s->setup[4] = 0;
2286 }
2287 
2288 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2289                                             hwaddr base,
2290                                             qemu_irq txirq, qemu_irq rxirq,
2291                                             qemu_irq dma,
2292                                             omap_clk clk)
2293 {
2294     struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2295 
2296     s->txirq = txirq;
2297     s->rxirq = rxirq;
2298     s->txdrq = dma;
2299     omap_uwire_reset(s);
2300 
2301     memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2302     memory_region_add_subregion(system_memory, base, &s->iomem);
2303 
2304     return s;
2305 }
2306 
2307 void omap_uwire_attach(struct omap_uwire_s *s,
2308                 uWireSlave *slave, int chipselect)
2309 {
2310     if (chipselect < 0 || chipselect > 3) {
2311         fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
2312         exit(-1);
2313     }
2314 
2315     s->chip[chipselect] = slave;
2316 }
2317 
2318 /* Pseudonoise Pulse-Width Light Modulator */
2319 struct omap_pwl_s {
2320     MemoryRegion iomem;
2321     uint8_t output;
2322     uint8_t level;
2323     uint8_t enable;
2324     int clk;
2325 };
2326 
2327 static void omap_pwl_update(struct omap_pwl_s *s)
2328 {
2329     int output = (s->clk && s->enable) ? s->level : 0;
2330 
2331     if (output != s->output) {
2332         s->output = output;
2333         printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
2334     }
2335 }
2336 
2337 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2338                               unsigned size)
2339 {
2340     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2341     int offset = addr & OMAP_MPUI_REG_MASK;
2342 
2343     if (size != 1) {
2344         return omap_badwidth_read8(opaque, addr);
2345     }
2346 
2347     switch (offset) {
2348     case 0x00:	/* PWL_LEVEL */
2349         return s->level;
2350     case 0x04:	/* PWL_CTRL */
2351         return s->enable;
2352     }
2353     OMAP_BAD_REG(addr);
2354     return 0;
2355 }
2356 
2357 static void omap_pwl_write(void *opaque, hwaddr addr,
2358                            uint64_t value, unsigned size)
2359 {
2360     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2361     int offset = addr & OMAP_MPUI_REG_MASK;
2362 
2363     if (size != 1) {
2364         omap_badwidth_write8(opaque, addr, value);
2365         return;
2366     }
2367 
2368     switch (offset) {
2369     case 0x00:	/* PWL_LEVEL */
2370         s->level = value;
2371         omap_pwl_update(s);
2372         break;
2373     case 0x04:	/* PWL_CTRL */
2374         s->enable = value & 1;
2375         omap_pwl_update(s);
2376         break;
2377     default:
2378         OMAP_BAD_REG(addr);
2379         return;
2380     }
2381 }
2382 
2383 static const MemoryRegionOps omap_pwl_ops = {
2384     .read = omap_pwl_read,
2385     .write = omap_pwl_write,
2386     .endianness = DEVICE_NATIVE_ENDIAN,
2387 };
2388 
2389 static void omap_pwl_reset(struct omap_pwl_s *s)
2390 {
2391     s->output = 0;
2392     s->level = 0;
2393     s->enable = 0;
2394     s->clk = 1;
2395     omap_pwl_update(s);
2396 }
2397 
2398 static void omap_pwl_clk_update(void *opaque, int line, int on)
2399 {
2400     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2401 
2402     s->clk = on;
2403     omap_pwl_update(s);
2404 }
2405 
2406 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2407                                         hwaddr base,
2408                                         omap_clk clk)
2409 {
2410     struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2411 
2412     omap_pwl_reset(s);
2413 
2414     memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2415                           "omap-pwl", 0x800);
2416     memory_region_add_subregion(system_memory, base, &s->iomem);
2417 
2418     omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2419     return s;
2420 }
2421 
2422 /* Pulse-Width Tone module */
2423 struct omap_pwt_s {
2424     MemoryRegion iomem;
2425     uint8_t frc;
2426     uint8_t vrc;
2427     uint8_t gcr;
2428     omap_clk clk;
2429 };
2430 
2431 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2432                               unsigned size)
2433 {
2434     struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2435     int offset = addr & OMAP_MPUI_REG_MASK;
2436 
2437     if (size != 1) {
2438         return omap_badwidth_read8(opaque, addr);
2439     }
2440 
2441     switch (offset) {
2442     case 0x00:	/* FRC */
2443         return s->frc;
2444     case 0x04:	/* VCR */
2445         return s->vrc;
2446     case 0x08:	/* GCR */
2447         return s->gcr;
2448     }
2449     OMAP_BAD_REG(addr);
2450     return 0;
2451 }
2452 
2453 static void omap_pwt_write(void *opaque, hwaddr addr,
2454                            uint64_t value, unsigned size)
2455 {
2456     struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2457     int offset = addr & OMAP_MPUI_REG_MASK;
2458 
2459     if (size != 1) {
2460         omap_badwidth_write8(opaque, addr, value);
2461         return;
2462     }
2463 
2464     switch (offset) {
2465     case 0x00:	/* FRC */
2466         s->frc = value & 0x3f;
2467         break;
2468     case 0x04:	/* VRC */
2469         if ((value ^ s->vrc) & 1) {
2470             if (value & 1)
2471                 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
2472                                 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2473                                 ((omap_clk_getrate(s->clk) >> 3) /
2474                                  /* Pre-multiplexer divider */
2475                                  ((s->gcr & 2) ? 1 : 154) /
2476                                  /* Octave multiplexer */
2477                                  (2 << (value & 3)) *
2478                                  /* 101/107 divider */
2479                                  ((value & (1 << 2)) ? 101 : 107) *
2480                                  /*  49/55 divider */
2481                                  ((value & (1 << 3)) ?  49 : 55) *
2482                                  /*  50/63 divider */
2483                                  ((value & (1 << 4)) ?  50 : 63) *
2484                                  /*  80/127 divider */
2485                                  ((value & (1 << 5)) ?  80 : 127) /
2486                                  (107 * 55 * 63 * 127)));
2487             else
2488                 printf("%s: silence!\n", __FUNCTION__);
2489         }
2490         s->vrc = value & 0x7f;
2491         break;
2492     case 0x08:	/* GCR */
2493         s->gcr = value & 3;
2494         break;
2495     default:
2496         OMAP_BAD_REG(addr);
2497         return;
2498     }
2499 }
2500 
2501 static const MemoryRegionOps omap_pwt_ops = {
2502     .read =omap_pwt_read,
2503     .write = omap_pwt_write,
2504     .endianness = DEVICE_NATIVE_ENDIAN,
2505 };
2506 
2507 static void omap_pwt_reset(struct omap_pwt_s *s)
2508 {
2509     s->frc = 0;
2510     s->vrc = 0;
2511     s->gcr = 0;
2512 }
2513 
2514 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2515                                         hwaddr base,
2516                                         omap_clk clk)
2517 {
2518     struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2519     s->clk = clk;
2520     omap_pwt_reset(s);
2521 
2522     memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2523                           "omap-pwt", 0x800);
2524     memory_region_add_subregion(system_memory, base, &s->iomem);
2525     return s;
2526 }
2527 
2528 /* Real-time Clock module */
2529 struct omap_rtc_s {
2530     MemoryRegion iomem;
2531     qemu_irq irq;
2532     qemu_irq alarm;
2533     QEMUTimer *clk;
2534 
2535     uint8_t interrupts;
2536     uint8_t status;
2537     int16_t comp_reg;
2538     int running;
2539     int pm_am;
2540     int auto_comp;
2541     int round;
2542     struct tm alarm_tm;
2543     time_t alarm_ti;
2544 
2545     struct tm current_tm;
2546     time_t ti;
2547     uint64_t tick;
2548 };
2549 
2550 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2551 {
2552     /* s->alarm is level-triggered */
2553     qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2554 }
2555 
2556 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2557 {
2558     s->alarm_ti = mktimegm(&s->alarm_tm);
2559     if (s->alarm_ti == -1)
2560         printf("%s: conversion failed\n", __FUNCTION__);
2561 }
2562 
2563 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2564                               unsigned size)
2565 {
2566     struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2567     int offset = addr & OMAP_MPUI_REG_MASK;
2568     uint8_t i;
2569 
2570     if (size != 1) {
2571         return omap_badwidth_read8(opaque, addr);
2572     }
2573 
2574     switch (offset) {
2575     case 0x00:	/* SECONDS_REG */
2576         return to_bcd(s->current_tm.tm_sec);
2577 
2578     case 0x04:	/* MINUTES_REG */
2579         return to_bcd(s->current_tm.tm_min);
2580 
2581     case 0x08:	/* HOURS_REG */
2582         if (s->pm_am)
2583             return ((s->current_tm.tm_hour > 11) << 7) |
2584                     to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2585         else
2586             return to_bcd(s->current_tm.tm_hour);
2587 
2588     case 0x0c:	/* DAYS_REG */
2589         return to_bcd(s->current_tm.tm_mday);
2590 
2591     case 0x10:	/* MONTHS_REG */
2592         return to_bcd(s->current_tm.tm_mon + 1);
2593 
2594     case 0x14:	/* YEARS_REG */
2595         return to_bcd(s->current_tm.tm_year % 100);
2596 
2597     case 0x18:	/* WEEK_REG */
2598         return s->current_tm.tm_wday;
2599 
2600     case 0x20:	/* ALARM_SECONDS_REG */
2601         return to_bcd(s->alarm_tm.tm_sec);
2602 
2603     case 0x24:	/* ALARM_MINUTES_REG */
2604         return to_bcd(s->alarm_tm.tm_min);
2605 
2606     case 0x28:	/* ALARM_HOURS_REG */
2607         if (s->pm_am)
2608             return ((s->alarm_tm.tm_hour > 11) << 7) |
2609                     to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2610         else
2611             return to_bcd(s->alarm_tm.tm_hour);
2612 
2613     case 0x2c:	/* ALARM_DAYS_REG */
2614         return to_bcd(s->alarm_tm.tm_mday);
2615 
2616     case 0x30:	/* ALARM_MONTHS_REG */
2617         return to_bcd(s->alarm_tm.tm_mon + 1);
2618 
2619     case 0x34:	/* ALARM_YEARS_REG */
2620         return to_bcd(s->alarm_tm.tm_year % 100);
2621 
2622     case 0x40:	/* RTC_CTRL_REG */
2623         return (s->pm_am << 3) | (s->auto_comp << 2) |
2624                 (s->round << 1) | s->running;
2625 
2626     case 0x44:	/* RTC_STATUS_REG */
2627         i = s->status;
2628         s->status &= ~0x3d;
2629         return i;
2630 
2631     case 0x48:	/* RTC_INTERRUPTS_REG */
2632         return s->interrupts;
2633 
2634     case 0x4c:	/* RTC_COMP_LSB_REG */
2635         return ((uint16_t) s->comp_reg) & 0xff;
2636 
2637     case 0x50:	/* RTC_COMP_MSB_REG */
2638         return ((uint16_t) s->comp_reg) >> 8;
2639     }
2640 
2641     OMAP_BAD_REG(addr);
2642     return 0;
2643 }
2644 
2645 static void omap_rtc_write(void *opaque, hwaddr addr,
2646                            uint64_t value, unsigned size)
2647 {
2648     struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2649     int offset = addr & OMAP_MPUI_REG_MASK;
2650     struct tm new_tm;
2651     time_t ti[2];
2652 
2653     if (size != 1) {
2654         omap_badwidth_write8(opaque, addr, value);
2655         return;
2656     }
2657 
2658     switch (offset) {
2659     case 0x00:	/* SECONDS_REG */
2660 #ifdef ALMDEBUG
2661         printf("RTC SEC_REG <-- %02x\n", value);
2662 #endif
2663         s->ti -= s->current_tm.tm_sec;
2664         s->ti += from_bcd(value);
2665         return;
2666 
2667     case 0x04:	/* MINUTES_REG */
2668 #ifdef ALMDEBUG
2669         printf("RTC MIN_REG <-- %02x\n", value);
2670 #endif
2671         s->ti -= s->current_tm.tm_min * 60;
2672         s->ti += from_bcd(value) * 60;
2673         return;
2674 
2675     case 0x08:	/* HOURS_REG */
2676 #ifdef ALMDEBUG
2677         printf("RTC HRS_REG <-- %02x\n", value);
2678 #endif
2679         s->ti -= s->current_tm.tm_hour * 3600;
2680         if (s->pm_am) {
2681             s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2682             s->ti += ((value >> 7) & 1) * 43200;
2683         } else
2684             s->ti += from_bcd(value & 0x3f) * 3600;
2685         return;
2686 
2687     case 0x0c:	/* DAYS_REG */
2688 #ifdef ALMDEBUG
2689         printf("RTC DAY_REG <-- %02x\n", value);
2690 #endif
2691         s->ti -= s->current_tm.tm_mday * 86400;
2692         s->ti += from_bcd(value) * 86400;
2693         return;
2694 
2695     case 0x10:	/* MONTHS_REG */
2696 #ifdef ALMDEBUG
2697         printf("RTC MTH_REG <-- %02x\n", value);
2698 #endif
2699         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2700         new_tm.tm_mon = from_bcd(value);
2701         ti[0] = mktimegm(&s->current_tm);
2702         ti[1] = mktimegm(&new_tm);
2703 
2704         if (ti[0] != -1 && ti[1] != -1) {
2705             s->ti -= ti[0];
2706             s->ti += ti[1];
2707         } else {
2708             /* A less accurate version */
2709             s->ti -= s->current_tm.tm_mon * 2592000;
2710             s->ti += from_bcd(value) * 2592000;
2711         }
2712         return;
2713 
2714     case 0x14:	/* YEARS_REG */
2715 #ifdef ALMDEBUG
2716         printf("RTC YRS_REG <-- %02x\n", value);
2717 #endif
2718         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2719         new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2720         ti[0] = mktimegm(&s->current_tm);
2721         ti[1] = mktimegm(&new_tm);
2722 
2723         if (ti[0] != -1 && ti[1] != -1) {
2724             s->ti -= ti[0];
2725             s->ti += ti[1];
2726         } else {
2727             /* A less accurate version */
2728             s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2729             s->ti += (time_t)from_bcd(value) * 31536000;
2730         }
2731         return;
2732 
2733     case 0x18:	/* WEEK_REG */
2734         return;	/* Ignored */
2735 
2736     case 0x20:	/* ALARM_SECONDS_REG */
2737 #ifdef ALMDEBUG
2738         printf("ALM SEC_REG <-- %02x\n", value);
2739 #endif
2740         s->alarm_tm.tm_sec = from_bcd(value);
2741         omap_rtc_alarm_update(s);
2742         return;
2743 
2744     case 0x24:	/* ALARM_MINUTES_REG */
2745 #ifdef ALMDEBUG
2746         printf("ALM MIN_REG <-- %02x\n", value);
2747 #endif
2748         s->alarm_tm.tm_min = from_bcd(value);
2749         omap_rtc_alarm_update(s);
2750         return;
2751 
2752     case 0x28:	/* ALARM_HOURS_REG */
2753 #ifdef ALMDEBUG
2754         printf("ALM HRS_REG <-- %02x\n", value);
2755 #endif
2756         if (s->pm_am)
2757             s->alarm_tm.tm_hour =
2758                     ((from_bcd(value & 0x3f)) % 12) +
2759                     ((value >> 7) & 1) * 12;
2760         else
2761             s->alarm_tm.tm_hour = from_bcd(value);
2762         omap_rtc_alarm_update(s);
2763         return;
2764 
2765     case 0x2c:	/* ALARM_DAYS_REG */
2766 #ifdef ALMDEBUG
2767         printf("ALM DAY_REG <-- %02x\n", value);
2768 #endif
2769         s->alarm_tm.tm_mday = from_bcd(value);
2770         omap_rtc_alarm_update(s);
2771         return;
2772 
2773     case 0x30:	/* ALARM_MONTHS_REG */
2774 #ifdef ALMDEBUG
2775         printf("ALM MON_REG <-- %02x\n", value);
2776 #endif
2777         s->alarm_tm.tm_mon = from_bcd(value);
2778         omap_rtc_alarm_update(s);
2779         return;
2780 
2781     case 0x34:	/* ALARM_YEARS_REG */
2782 #ifdef ALMDEBUG
2783         printf("ALM YRS_REG <-- %02x\n", value);
2784 #endif
2785         s->alarm_tm.tm_year = from_bcd(value);
2786         omap_rtc_alarm_update(s);
2787         return;
2788 
2789     case 0x40:	/* RTC_CTRL_REG */
2790 #ifdef ALMDEBUG
2791         printf("RTC CONTROL <-- %02x\n", value);
2792 #endif
2793         s->pm_am = (value >> 3) & 1;
2794         s->auto_comp = (value >> 2) & 1;
2795         s->round = (value >> 1) & 1;
2796         s->running = value & 1;
2797         s->status &= 0xfd;
2798         s->status |= s->running << 1;
2799         return;
2800 
2801     case 0x44:	/* RTC_STATUS_REG */
2802 #ifdef ALMDEBUG
2803         printf("RTC STATUSL <-- %02x\n", value);
2804 #endif
2805         s->status &= ~((value & 0xc0) ^ 0x80);
2806         omap_rtc_interrupts_update(s);
2807         return;
2808 
2809     case 0x48:	/* RTC_INTERRUPTS_REG */
2810 #ifdef ALMDEBUG
2811         printf("RTC INTRS <-- %02x\n", value);
2812 #endif
2813         s->interrupts = value;
2814         return;
2815 
2816     case 0x4c:	/* RTC_COMP_LSB_REG */
2817 #ifdef ALMDEBUG
2818         printf("RTC COMPLSB <-- %02x\n", value);
2819 #endif
2820         s->comp_reg &= 0xff00;
2821         s->comp_reg |= 0x00ff & value;
2822         return;
2823 
2824     case 0x50:	/* RTC_COMP_MSB_REG */
2825 #ifdef ALMDEBUG
2826         printf("RTC COMPMSB <-- %02x\n", value);
2827 #endif
2828         s->comp_reg &= 0x00ff;
2829         s->comp_reg |= 0xff00 & (value << 8);
2830         return;
2831 
2832     default:
2833         OMAP_BAD_REG(addr);
2834         return;
2835     }
2836 }
2837 
2838 static const MemoryRegionOps omap_rtc_ops = {
2839     .read = omap_rtc_read,
2840     .write = omap_rtc_write,
2841     .endianness = DEVICE_NATIVE_ENDIAN,
2842 };
2843 
2844 static void omap_rtc_tick(void *opaque)
2845 {
2846     struct omap_rtc_s *s = opaque;
2847 
2848     if (s->round) {
2849         /* Round to nearest full minute.  */
2850         if (s->current_tm.tm_sec < 30)
2851             s->ti -= s->current_tm.tm_sec;
2852         else
2853             s->ti += 60 - s->current_tm.tm_sec;
2854 
2855         s->round = 0;
2856     }
2857 
2858     localtime_r(&s->ti, &s->current_tm);
2859 
2860     if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2861         s->status |= 0x40;
2862         omap_rtc_interrupts_update(s);
2863     }
2864 
2865     if (s->interrupts & 0x04)
2866         switch (s->interrupts & 3) {
2867         case 0:
2868             s->status |= 0x04;
2869             qemu_irq_pulse(s->irq);
2870             break;
2871         case 1:
2872             if (s->current_tm.tm_sec)
2873                 break;
2874             s->status |= 0x08;
2875             qemu_irq_pulse(s->irq);
2876             break;
2877         case 2:
2878             if (s->current_tm.tm_sec || s->current_tm.tm_min)
2879                 break;
2880             s->status |= 0x10;
2881             qemu_irq_pulse(s->irq);
2882             break;
2883         case 3:
2884             if (s->current_tm.tm_sec ||
2885                             s->current_tm.tm_min || s->current_tm.tm_hour)
2886                 break;
2887             s->status |= 0x20;
2888             qemu_irq_pulse(s->irq);
2889             break;
2890         }
2891 
2892     /* Move on */
2893     if (s->running)
2894         s->ti ++;
2895     s->tick += 1000;
2896 
2897     /*
2898      * Every full hour add a rough approximation of the compensation
2899      * register to the 32kHz Timer (which drives the RTC) value.
2900      */
2901     if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2902         s->tick += s->comp_reg * 1000 / 32768;
2903 
2904     timer_mod(s->clk, s->tick);
2905 }
2906 
2907 static void omap_rtc_reset(struct omap_rtc_s *s)
2908 {
2909     struct tm tm;
2910 
2911     s->interrupts = 0;
2912     s->comp_reg = 0;
2913     s->running = 0;
2914     s->pm_am = 0;
2915     s->auto_comp = 0;
2916     s->round = 0;
2917     s->tick = qemu_clock_get_ms(rtc_clock);
2918     memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2919     s->alarm_tm.tm_mday = 0x01;
2920     s->status = 1 << 7;
2921     qemu_get_timedate(&tm, 0);
2922     s->ti = mktimegm(&tm);
2923 
2924     omap_rtc_alarm_update(s);
2925     omap_rtc_tick(s);
2926 }
2927 
2928 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2929                                         hwaddr base,
2930                                         qemu_irq timerirq, qemu_irq alarmirq,
2931                                         omap_clk clk)
2932 {
2933     struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2934 
2935     s->irq = timerirq;
2936     s->alarm = alarmirq;
2937     s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2938 
2939     omap_rtc_reset(s);
2940 
2941     memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2942                           "omap-rtc", 0x800);
2943     memory_region_add_subregion(system_memory, base, &s->iomem);
2944 
2945     return s;
2946 }
2947 
2948 /* Multi-channel Buffered Serial Port interfaces */
2949 struct omap_mcbsp_s {
2950     MemoryRegion iomem;
2951     qemu_irq txirq;
2952     qemu_irq rxirq;
2953     qemu_irq txdrq;
2954     qemu_irq rxdrq;
2955 
2956     uint16_t spcr[2];
2957     uint16_t rcr[2];
2958     uint16_t xcr[2];
2959     uint16_t srgr[2];
2960     uint16_t mcr[2];
2961     uint16_t pcr;
2962     uint16_t rcer[8];
2963     uint16_t xcer[8];
2964     int tx_rate;
2965     int rx_rate;
2966     int tx_req;
2967     int rx_req;
2968 
2969     I2SCodec *codec;
2970     QEMUTimer *source_timer;
2971     QEMUTimer *sink_timer;
2972 };
2973 
2974 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2975 {
2976     int irq;
2977 
2978     switch ((s->spcr[0] >> 4) & 3) {			/* RINTM */
2979     case 0:
2980         irq = (s->spcr[0] >> 1) & 1;			/* RRDY */
2981         break;
2982     case 3:
2983         irq = (s->spcr[0] >> 3) & 1;			/* RSYNCERR */
2984         break;
2985     default:
2986         irq = 0;
2987         break;
2988     }
2989 
2990     if (irq)
2991         qemu_irq_pulse(s->rxirq);
2992 
2993     switch ((s->spcr[1] >> 4) & 3) {			/* XINTM */
2994     case 0:
2995         irq = (s->spcr[1] >> 1) & 1;			/* XRDY */
2996         break;
2997     case 3:
2998         irq = (s->spcr[1] >> 3) & 1;			/* XSYNCERR */
2999         break;
3000     default:
3001         irq = 0;
3002         break;
3003     }
3004 
3005     if (irq)
3006         qemu_irq_pulse(s->txirq);
3007 }
3008 
3009 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3010 {
3011     if ((s->spcr[0] >> 1) & 1)				/* RRDY */
3012         s->spcr[0] |= 1 << 2;				/* RFULL */
3013     s->spcr[0] |= 1 << 1;				/* RRDY */
3014     qemu_irq_raise(s->rxdrq);
3015     omap_mcbsp_intr_update(s);
3016 }
3017 
3018 static void omap_mcbsp_source_tick(void *opaque)
3019 {
3020     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3021     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3022 
3023     if (!s->rx_rate)
3024         return;
3025     if (s->rx_req)
3026         printf("%s: Rx FIFO overrun\n", __FUNCTION__);
3027 
3028     s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3029 
3030     omap_mcbsp_rx_newdata(s);
3031     timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3032                    get_ticks_per_sec());
3033 }
3034 
3035 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3036 {
3037     if (!s->codec || !s->codec->rts)
3038         omap_mcbsp_source_tick(s);
3039     else if (s->codec->in.len) {
3040         s->rx_req = s->codec->in.len;
3041         omap_mcbsp_rx_newdata(s);
3042     }
3043 }
3044 
3045 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3046 {
3047     timer_del(s->source_timer);
3048 }
3049 
3050 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3051 {
3052     s->spcr[0] &= ~(1 << 1);				/* RRDY */
3053     qemu_irq_lower(s->rxdrq);
3054     omap_mcbsp_intr_update(s);
3055 }
3056 
3057 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3058 {
3059     s->spcr[1] |= 1 << 1;				/* XRDY */
3060     qemu_irq_raise(s->txdrq);
3061     omap_mcbsp_intr_update(s);
3062 }
3063 
3064 static void omap_mcbsp_sink_tick(void *opaque)
3065 {
3066     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3067     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3068 
3069     if (!s->tx_rate)
3070         return;
3071     if (s->tx_req)
3072         printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3073 
3074     s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3075 
3076     omap_mcbsp_tx_newdata(s);
3077     timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3078                    get_ticks_per_sec());
3079 }
3080 
3081 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3082 {
3083     if (!s->codec || !s->codec->cts)
3084         omap_mcbsp_sink_tick(s);
3085     else if (s->codec->out.size) {
3086         s->tx_req = s->codec->out.size;
3087         omap_mcbsp_tx_newdata(s);
3088     }
3089 }
3090 
3091 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3092 {
3093     s->spcr[1] &= ~(1 << 1);				/* XRDY */
3094     qemu_irq_lower(s->txdrq);
3095     omap_mcbsp_intr_update(s);
3096     if (s->codec && s->codec->cts)
3097         s->codec->tx_swallow(s->codec->opaque);
3098 }
3099 
3100 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3101 {
3102     s->tx_req = 0;
3103     omap_mcbsp_tx_done(s);
3104     timer_del(s->sink_timer);
3105 }
3106 
3107 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3108 {
3109     int prev_rx_rate, prev_tx_rate;
3110     int rx_rate = 0, tx_rate = 0;
3111     int cpu_rate = 1500000;	/* XXX */
3112 
3113     /* TODO: check CLKSTP bit */
3114     if (s->spcr[1] & (1 << 6)) {			/* GRST */
3115         if (s->spcr[0] & (1 << 0)) {			/* RRST */
3116             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
3117                             (s->pcr & (1 << 8))) {	/* CLKRM */
3118                 if (~s->pcr & (1 << 7))			/* SCLKME */
3119                     rx_rate = cpu_rate /
3120                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
3121             } else
3122                 if (s->codec)
3123                     rx_rate = s->codec->rx_rate;
3124         }
3125 
3126         if (s->spcr[1] & (1 << 0)) {			/* XRST */
3127             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
3128                             (s->pcr & (1 << 9))) {	/* CLKXM */
3129                 if (~s->pcr & (1 << 7))			/* SCLKME */
3130                     tx_rate = cpu_rate /
3131                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
3132             } else
3133                 if (s->codec)
3134                     tx_rate = s->codec->tx_rate;
3135         }
3136     }
3137     prev_tx_rate = s->tx_rate;
3138     prev_rx_rate = s->rx_rate;
3139     s->tx_rate = tx_rate;
3140     s->rx_rate = rx_rate;
3141 
3142     if (s->codec)
3143         s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3144 
3145     if (!prev_tx_rate && tx_rate)
3146         omap_mcbsp_tx_start(s);
3147     else if (s->tx_rate && !tx_rate)
3148         omap_mcbsp_tx_stop(s);
3149 
3150     if (!prev_rx_rate && rx_rate)
3151         omap_mcbsp_rx_start(s);
3152     else if (prev_tx_rate && !tx_rate)
3153         omap_mcbsp_rx_stop(s);
3154 }
3155 
3156 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3157                                 unsigned size)
3158 {
3159     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3160     int offset = addr & OMAP_MPUI_REG_MASK;
3161     uint16_t ret;
3162 
3163     if (size != 2) {
3164         return omap_badwidth_read16(opaque, addr);
3165     }
3166 
3167     switch (offset) {
3168     case 0x00:	/* DRR2 */
3169         if (((s->rcr[0] >> 5) & 7) < 3)			/* RWDLEN1 */
3170             return 0x0000;
3171         /* Fall through.  */
3172     case 0x02:	/* DRR1 */
3173         if (s->rx_req < 2) {
3174             printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3175             omap_mcbsp_rx_done(s);
3176         } else {
3177             s->tx_req -= 2;
3178             if (s->codec && s->codec->in.len >= 2) {
3179                 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3180                 ret |= s->codec->in.fifo[s->codec->in.start ++];
3181                 s->codec->in.len -= 2;
3182             } else
3183                 ret = 0x0000;
3184             if (!s->tx_req)
3185                 omap_mcbsp_rx_done(s);
3186             return ret;
3187         }
3188         return 0x0000;
3189 
3190     case 0x04:	/* DXR2 */
3191     case 0x06:	/* DXR1 */
3192         return 0x0000;
3193 
3194     case 0x08:	/* SPCR2 */
3195         return s->spcr[1];
3196     case 0x0a:	/* SPCR1 */
3197         return s->spcr[0];
3198     case 0x0c:	/* RCR2 */
3199         return s->rcr[1];
3200     case 0x0e:	/* RCR1 */
3201         return s->rcr[0];
3202     case 0x10:	/* XCR2 */
3203         return s->xcr[1];
3204     case 0x12:	/* XCR1 */
3205         return s->xcr[0];
3206     case 0x14:	/* SRGR2 */
3207         return s->srgr[1];
3208     case 0x16:	/* SRGR1 */
3209         return s->srgr[0];
3210     case 0x18:	/* MCR2 */
3211         return s->mcr[1];
3212     case 0x1a:	/* MCR1 */
3213         return s->mcr[0];
3214     case 0x1c:	/* RCERA */
3215         return s->rcer[0];
3216     case 0x1e:	/* RCERB */
3217         return s->rcer[1];
3218     case 0x20:	/* XCERA */
3219         return s->xcer[0];
3220     case 0x22:	/* XCERB */
3221         return s->xcer[1];
3222     case 0x24:	/* PCR0 */
3223         return s->pcr;
3224     case 0x26:	/* RCERC */
3225         return s->rcer[2];
3226     case 0x28:	/* RCERD */
3227         return s->rcer[3];
3228     case 0x2a:	/* XCERC */
3229         return s->xcer[2];
3230     case 0x2c:	/* XCERD */
3231         return s->xcer[3];
3232     case 0x2e:	/* RCERE */
3233         return s->rcer[4];
3234     case 0x30:	/* RCERF */
3235         return s->rcer[5];
3236     case 0x32:	/* XCERE */
3237         return s->xcer[4];
3238     case 0x34:	/* XCERF */
3239         return s->xcer[5];
3240     case 0x36:	/* RCERG */
3241         return s->rcer[6];
3242     case 0x38:	/* RCERH */
3243         return s->rcer[7];
3244     case 0x3a:	/* XCERG */
3245         return s->xcer[6];
3246     case 0x3c:	/* XCERH */
3247         return s->xcer[7];
3248     }
3249 
3250     OMAP_BAD_REG(addr);
3251     return 0;
3252 }
3253 
3254 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3255                 uint32_t value)
3256 {
3257     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3258     int offset = addr & OMAP_MPUI_REG_MASK;
3259 
3260     switch (offset) {
3261     case 0x00:	/* DRR2 */
3262     case 0x02:	/* DRR1 */
3263         OMAP_RO_REG(addr);
3264         return;
3265 
3266     case 0x04:	/* DXR2 */
3267         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
3268             return;
3269         /* Fall through.  */
3270     case 0x06:	/* DXR1 */
3271         if (s->tx_req > 1) {
3272             s->tx_req -= 2;
3273             if (s->codec && s->codec->cts) {
3274                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3275                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3276             }
3277             if (s->tx_req < 2)
3278                 omap_mcbsp_tx_done(s);
3279         } else
3280             printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3281         return;
3282 
3283     case 0x08:	/* SPCR2 */
3284         s->spcr[1] &= 0x0002;
3285         s->spcr[1] |= 0x03f9 & value;
3286         s->spcr[1] |= 0x0004 & (value << 2);		/* XEMPTY := XRST */
3287         if (~value & 1)					/* XRST */
3288             s->spcr[1] &= ~6;
3289         omap_mcbsp_req_update(s);
3290         return;
3291     case 0x0a:	/* SPCR1 */
3292         s->spcr[0] &= 0x0006;
3293         s->spcr[0] |= 0xf8f9 & value;
3294         if (value & (1 << 15))				/* DLB */
3295             printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
3296         if (~value & 1) {				/* RRST */
3297             s->spcr[0] &= ~6;
3298             s->rx_req = 0;
3299             omap_mcbsp_rx_done(s);
3300         }
3301         omap_mcbsp_req_update(s);
3302         return;
3303 
3304     case 0x0c:	/* RCR2 */
3305         s->rcr[1] = value & 0xffff;
3306         return;
3307     case 0x0e:	/* RCR1 */
3308         s->rcr[0] = value & 0x7fe0;
3309         return;
3310     case 0x10:	/* XCR2 */
3311         s->xcr[1] = value & 0xffff;
3312         return;
3313     case 0x12:	/* XCR1 */
3314         s->xcr[0] = value & 0x7fe0;
3315         return;
3316     case 0x14:	/* SRGR2 */
3317         s->srgr[1] = value & 0xffff;
3318         omap_mcbsp_req_update(s);
3319         return;
3320     case 0x16:	/* SRGR1 */
3321         s->srgr[0] = value & 0xffff;
3322         omap_mcbsp_req_update(s);
3323         return;
3324     case 0x18:	/* MCR2 */
3325         s->mcr[1] = value & 0x03e3;
3326         if (value & 3)					/* XMCM */
3327             printf("%s: Tx channel selection mode enable attempt\n",
3328                             __FUNCTION__);
3329         return;
3330     case 0x1a:	/* MCR1 */
3331         s->mcr[0] = value & 0x03e1;
3332         if (value & 1)					/* RMCM */
3333             printf("%s: Rx channel selection mode enable attempt\n",
3334                             __FUNCTION__);
3335         return;
3336     case 0x1c:	/* RCERA */
3337         s->rcer[0] = value & 0xffff;
3338         return;
3339     case 0x1e:	/* RCERB */
3340         s->rcer[1] = value & 0xffff;
3341         return;
3342     case 0x20:	/* XCERA */
3343         s->xcer[0] = value & 0xffff;
3344         return;
3345     case 0x22:	/* XCERB */
3346         s->xcer[1] = value & 0xffff;
3347         return;
3348     case 0x24:	/* PCR0 */
3349         s->pcr = value & 0x7faf;
3350         return;
3351     case 0x26:	/* RCERC */
3352         s->rcer[2] = value & 0xffff;
3353         return;
3354     case 0x28:	/* RCERD */
3355         s->rcer[3] = value & 0xffff;
3356         return;
3357     case 0x2a:	/* XCERC */
3358         s->xcer[2] = value & 0xffff;
3359         return;
3360     case 0x2c:	/* XCERD */
3361         s->xcer[3] = value & 0xffff;
3362         return;
3363     case 0x2e:	/* RCERE */
3364         s->rcer[4] = value & 0xffff;
3365         return;
3366     case 0x30:	/* RCERF */
3367         s->rcer[5] = value & 0xffff;
3368         return;
3369     case 0x32:	/* XCERE */
3370         s->xcer[4] = value & 0xffff;
3371         return;
3372     case 0x34:	/* XCERF */
3373         s->xcer[5] = value & 0xffff;
3374         return;
3375     case 0x36:	/* RCERG */
3376         s->rcer[6] = value & 0xffff;
3377         return;
3378     case 0x38:	/* RCERH */
3379         s->rcer[7] = value & 0xffff;
3380         return;
3381     case 0x3a:	/* XCERG */
3382         s->xcer[6] = value & 0xffff;
3383         return;
3384     case 0x3c:	/* XCERH */
3385         s->xcer[7] = value & 0xffff;
3386         return;
3387     }
3388 
3389     OMAP_BAD_REG(addr);
3390 }
3391 
3392 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3393                 uint32_t value)
3394 {
3395     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3396     int offset = addr & OMAP_MPUI_REG_MASK;
3397 
3398     if (offset == 0x04) {				/* DXR */
3399         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
3400             return;
3401         if (s->tx_req > 3) {
3402             s->tx_req -= 4;
3403             if (s->codec && s->codec->cts) {
3404                 s->codec->out.fifo[s->codec->out.len ++] =
3405                         (value >> 24) & 0xff;
3406                 s->codec->out.fifo[s->codec->out.len ++] =
3407                         (value >> 16) & 0xff;
3408                 s->codec->out.fifo[s->codec->out.len ++] =
3409                         (value >> 8) & 0xff;
3410                 s->codec->out.fifo[s->codec->out.len ++] =
3411                         (value >> 0) & 0xff;
3412             }
3413             if (s->tx_req < 4)
3414                 omap_mcbsp_tx_done(s);
3415         } else
3416             printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3417         return;
3418     }
3419 
3420     omap_badwidth_write16(opaque, addr, value);
3421 }
3422 
3423 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3424                              uint64_t value, unsigned size)
3425 {
3426     switch (size) {
3427     case 2:
3428         omap_mcbsp_writeh(opaque, addr, value);
3429         break;
3430     case 4:
3431         omap_mcbsp_writew(opaque, addr, value);
3432         break;
3433     default:
3434         omap_badwidth_write16(opaque, addr, value);
3435     }
3436 }
3437 
3438 static const MemoryRegionOps omap_mcbsp_ops = {
3439     .read = omap_mcbsp_read,
3440     .write = omap_mcbsp_write,
3441     .endianness = DEVICE_NATIVE_ENDIAN,
3442 };
3443 
3444 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3445 {
3446     memset(&s->spcr, 0, sizeof(s->spcr));
3447     memset(&s->rcr, 0, sizeof(s->rcr));
3448     memset(&s->xcr, 0, sizeof(s->xcr));
3449     s->srgr[0] = 0x0001;
3450     s->srgr[1] = 0x2000;
3451     memset(&s->mcr, 0, sizeof(s->mcr));
3452     memset(&s->pcr, 0, sizeof(s->pcr));
3453     memset(&s->rcer, 0, sizeof(s->rcer));
3454     memset(&s->xcer, 0, sizeof(s->xcer));
3455     s->tx_req = 0;
3456     s->rx_req = 0;
3457     s->tx_rate = 0;
3458     s->rx_rate = 0;
3459     timer_del(s->source_timer);
3460     timer_del(s->sink_timer);
3461 }
3462 
3463 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3464                                             hwaddr base,
3465                                             qemu_irq txirq, qemu_irq rxirq,
3466                                             qemu_irq *dma, omap_clk clk)
3467 {
3468     struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
3469 
3470     s->txirq = txirq;
3471     s->rxirq = rxirq;
3472     s->txdrq = dma[0];
3473     s->rxdrq = dma[1];
3474     s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3475     s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3476     omap_mcbsp_reset(s);
3477 
3478     memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3479     memory_region_add_subregion(system_memory, base, &s->iomem);
3480 
3481     return s;
3482 }
3483 
3484 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3485 {
3486     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3487 
3488     if (s->rx_rate) {
3489         s->rx_req = s->codec->in.len;
3490         omap_mcbsp_rx_newdata(s);
3491     }
3492 }
3493 
3494 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3495 {
3496     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3497 
3498     if (s->tx_rate) {
3499         s->tx_req = s->codec->out.size;
3500         omap_mcbsp_tx_newdata(s);
3501     }
3502 }
3503 
3504 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3505 {
3506     s->codec = slave;
3507     slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3508     slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3509 }
3510 
3511 /* LED Pulse Generators */
3512 struct omap_lpg_s {
3513     MemoryRegion iomem;
3514     QEMUTimer *tm;
3515 
3516     uint8_t control;
3517     uint8_t power;
3518     int64_t on;
3519     int64_t period;
3520     int clk;
3521     int cycle;
3522 };
3523 
3524 static void omap_lpg_tick(void *opaque)
3525 {
3526     struct omap_lpg_s *s = opaque;
3527 
3528     if (s->cycle)
3529         timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3530     else
3531         timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3532 
3533     s->cycle = !s->cycle;
3534     printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
3535 }
3536 
3537 static void omap_lpg_update(struct omap_lpg_s *s)
3538 {
3539     int64_t on, period = 1, ticks = 1000;
3540     static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3541 
3542     if (~s->control & (1 << 6))					/* LPGRES */
3543         on = 0;
3544     else if (s->control & (1 << 7))				/* PERM_ON */
3545         on = period;
3546     else {
3547         period = muldiv64(ticks, per[s->control & 7],		/* PERCTRL */
3548                         256 / 32);
3549         on = (s->clk && s->power) ? muldiv64(ticks,
3550                         per[(s->control >> 3) & 7], 256) : 0;	/* ONCTRL */
3551     }
3552 
3553     timer_del(s->tm);
3554     if (on == period && s->on < s->period)
3555         printf("%s: LED is on\n", __FUNCTION__);
3556     else if (on == 0 && s->on)
3557         printf("%s: LED is off\n", __FUNCTION__);
3558     else if (on && (on != s->on || period != s->period)) {
3559         s->cycle = 0;
3560         s->on = on;
3561         s->period = period;
3562         omap_lpg_tick(s);
3563         return;
3564     }
3565 
3566     s->on = on;
3567     s->period = period;
3568 }
3569 
3570 static void omap_lpg_reset(struct omap_lpg_s *s)
3571 {
3572     s->control = 0x00;
3573     s->power = 0x00;
3574     s->clk = 1;
3575     omap_lpg_update(s);
3576 }
3577 
3578 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3579                               unsigned size)
3580 {
3581     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3582     int offset = addr & OMAP_MPUI_REG_MASK;
3583 
3584     if (size != 1) {
3585         return omap_badwidth_read8(opaque, addr);
3586     }
3587 
3588     switch (offset) {
3589     case 0x00:	/* LCR */
3590         return s->control;
3591 
3592     case 0x04:	/* PMR */
3593         return s->power;
3594     }
3595 
3596     OMAP_BAD_REG(addr);
3597     return 0;
3598 }
3599 
3600 static void omap_lpg_write(void *opaque, hwaddr addr,
3601                            uint64_t value, unsigned size)
3602 {
3603     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3604     int offset = addr & OMAP_MPUI_REG_MASK;
3605 
3606     if (size != 1) {
3607         omap_badwidth_write8(opaque, addr, value);
3608         return;
3609     }
3610 
3611     switch (offset) {
3612     case 0x00:	/* LCR */
3613         if (~value & (1 << 6))					/* LPGRES */
3614             omap_lpg_reset(s);
3615         s->control = value & 0xff;
3616         omap_lpg_update(s);
3617         return;
3618 
3619     case 0x04:	/* PMR */
3620         s->power = value & 0x01;
3621         omap_lpg_update(s);
3622         return;
3623 
3624     default:
3625         OMAP_BAD_REG(addr);
3626         return;
3627     }
3628 }
3629 
3630 static const MemoryRegionOps omap_lpg_ops = {
3631     .read = omap_lpg_read,
3632     .write = omap_lpg_write,
3633     .endianness = DEVICE_NATIVE_ENDIAN,
3634 };
3635 
3636 static void omap_lpg_clk_update(void *opaque, int line, int on)
3637 {
3638     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3639 
3640     s->clk = on;
3641     omap_lpg_update(s);
3642 }
3643 
3644 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3645                                         hwaddr base, omap_clk clk)
3646 {
3647     struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
3648 
3649     s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3650 
3651     omap_lpg_reset(s);
3652 
3653     memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3654     memory_region_add_subregion(system_memory, base, &s->iomem);
3655 
3656     omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3657 
3658     return s;
3659 }
3660 
3661 /* MPUI Peripheral Bridge configuration */
3662 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3663                                   unsigned size)
3664 {
3665     if (size != 2) {
3666         return omap_badwidth_read16(opaque, addr);
3667     }
3668 
3669     if (addr == OMAP_MPUI_BASE)	/* CMR */
3670         return 0xfe4d;
3671 
3672     OMAP_BAD_REG(addr);
3673     return 0;
3674 }
3675 
3676 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3677                                uint64_t value, unsigned size)
3678 {
3679     /* FIXME: infinite loop */
3680     omap_badwidth_write16(opaque, addr, value);
3681 }
3682 
3683 static const MemoryRegionOps omap_mpui_io_ops = {
3684     .read = omap_mpui_io_read,
3685     .write = omap_mpui_io_write,
3686     .endianness = DEVICE_NATIVE_ENDIAN,
3687 };
3688 
3689 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3690                                struct omap_mpu_state_s *mpu)
3691 {
3692     memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3693                           "omap-mpui-io", 0x7fff);
3694     memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3695                                 &mpu->mpui_io_iomem);
3696 }
3697 
3698 /* General chip reset */
3699 static void omap1_mpu_reset(void *opaque)
3700 {
3701     struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3702 
3703     omap_dma_reset(mpu->dma);
3704     omap_mpu_timer_reset(mpu->timer[0]);
3705     omap_mpu_timer_reset(mpu->timer[1]);
3706     omap_mpu_timer_reset(mpu->timer[2]);
3707     omap_wd_timer_reset(mpu->wdt);
3708     omap_os_timer_reset(mpu->os_timer);
3709     omap_lcdc_reset(mpu->lcd);
3710     omap_ulpd_pm_reset(mpu);
3711     omap_pin_cfg_reset(mpu);
3712     omap_mpui_reset(mpu);
3713     omap_tipb_bridge_reset(mpu->private_tipb);
3714     omap_tipb_bridge_reset(mpu->public_tipb);
3715     omap_dpll_reset(mpu->dpll[0]);
3716     omap_dpll_reset(mpu->dpll[1]);
3717     omap_dpll_reset(mpu->dpll[2]);
3718     omap_uart_reset(mpu->uart[0]);
3719     omap_uart_reset(mpu->uart[1]);
3720     omap_uart_reset(mpu->uart[2]);
3721     omap_mmc_reset(mpu->mmc);
3722     omap_mpuio_reset(mpu->mpuio);
3723     omap_uwire_reset(mpu->microwire);
3724     omap_pwl_reset(mpu->pwl);
3725     omap_pwt_reset(mpu->pwt);
3726     omap_rtc_reset(mpu->rtc);
3727     omap_mcbsp_reset(mpu->mcbsp1);
3728     omap_mcbsp_reset(mpu->mcbsp2);
3729     omap_mcbsp_reset(mpu->mcbsp3);
3730     omap_lpg_reset(mpu->led[0]);
3731     omap_lpg_reset(mpu->led[1]);
3732     omap_clkm_reset(mpu);
3733     cpu_reset(CPU(mpu->cpu));
3734 }
3735 
3736 static const struct omap_map_s {
3737     hwaddr phys_dsp;
3738     hwaddr phys_mpu;
3739     uint32_t size;
3740     const char *name;
3741 } omap15xx_dsp_mm[] = {
3742     /* Strobe 0 */
3743     { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" },		/* CS0 */
3744     { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" },		/* CS1 */
3745     { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" },		/* CS3 */
3746     { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" },	/* CS4 */
3747     { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" },	/* CS5 */
3748     { 0xe1013000, 0xfffb3000, 0x800, "uWire" },			/* CS6 */
3749     { 0xe1013800, 0xfffb3800, 0x800, "I^2C" },			/* CS7 */
3750     { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" },		/* CS8 */
3751     { 0xe1014800, 0xfffb4800, 0x800, "RTC" },			/* CS9 */
3752     { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" },			/* CS10 */
3753     { 0xe1015800, 0xfffb5800, 0x800, "PWL" },			/* CS11 */
3754     { 0xe1016000, 0xfffb6000, 0x800, "PWT" },			/* CS12 */
3755     { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" },		/* CS14 */
3756     { 0xe1017800, 0xfffb7800, 0x800, "MMC" },			/* CS15 */
3757     { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" },		/* CS18 */
3758     { 0xe1019800, 0xfffb9800, 0x800, "UART3" },			/* CS19 */
3759     { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" },		/* CS25 */
3760     /* Strobe 1 */
3761     { 0xe101e000, 0xfffce000, 0x800, "GPIOs" },			/* CS28 */
3762 
3763     { 0 }
3764 };
3765 
3766 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3767                                    const struct omap_map_s *map)
3768 {
3769     MemoryRegion *io;
3770 
3771     for (; map->phys_dsp; map ++) {
3772         io = g_new(MemoryRegion, 1);
3773         memory_region_init_alias(io, NULL, map->name,
3774                                  system_memory, map->phys_mpu, map->size);
3775         memory_region_add_subregion(system_memory, map->phys_dsp, io);
3776     }
3777 }
3778 
3779 void omap_mpu_wakeup(void *opaque, int irq, int req)
3780 {
3781     struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3782     CPUState *cpu = CPU(mpu->cpu);
3783 
3784     if (cpu->halted) {
3785         cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3786     }
3787 }
3788 
3789 static const struct dma_irq_map omap1_dma_irq_map[] = {
3790     { 0, OMAP_INT_DMA_CH0_6 },
3791     { 0, OMAP_INT_DMA_CH1_7 },
3792     { 0, OMAP_INT_DMA_CH2_8 },
3793     { 0, OMAP_INT_DMA_CH3 },
3794     { 0, OMAP_INT_DMA_CH4 },
3795     { 0, OMAP_INT_DMA_CH5 },
3796     { 1, OMAP_INT_1610_DMA_CH6 },
3797     { 1, OMAP_INT_1610_DMA_CH7 },
3798     { 1, OMAP_INT_1610_DMA_CH8 },
3799     { 1, OMAP_INT_1610_DMA_CH9 },
3800     { 1, OMAP_INT_1610_DMA_CH10 },
3801     { 1, OMAP_INT_1610_DMA_CH11 },
3802     { 1, OMAP_INT_1610_DMA_CH12 },
3803     { 1, OMAP_INT_1610_DMA_CH13 },
3804     { 1, OMAP_INT_1610_DMA_CH14 },
3805     { 1, OMAP_INT_1610_DMA_CH15 }
3806 };
3807 
3808 /* DMA ports for OMAP1 */
3809 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3810                 hwaddr addr)
3811 {
3812     return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3813 }
3814 
3815 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3816                 hwaddr addr)
3817 {
3818     return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3819                              addr);
3820 }
3821 
3822 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3823                 hwaddr addr)
3824 {
3825     return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3826 }
3827 
3828 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3829                 hwaddr addr)
3830 {
3831     return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3832 }
3833 
3834 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3835                 hwaddr addr)
3836 {
3837     return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3838 }
3839 
3840 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3841                 hwaddr addr)
3842 {
3843     return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3844 }
3845 
3846 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3847                 unsigned long sdram_size,
3848                 const char *core)
3849 {
3850     int i;
3851     struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
3852     qemu_irq dma_irqs[6];
3853     DriveInfo *dinfo;
3854     SysBusDevice *busdev;
3855 
3856     if (!core)
3857         core = "ti925t";
3858 
3859     /* Core */
3860     s->mpu_model = omap310;
3861     s->cpu = cpu_arm_init(core);
3862     if (s->cpu == NULL) {
3863         fprintf(stderr, "Unable to find CPU definition\n");
3864         exit(1);
3865     }
3866     s->sdram_size = sdram_size;
3867     s->sram_size = OMAP15XX_SRAM_SIZE;
3868 
3869     s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3870 
3871     /* Clocks */
3872     omap_clk_init(s);
3873 
3874     /* Memory-mapped stuff */
3875     memory_region_allocate_system_memory(&s->emiff_ram, NULL, "omap1.dram",
3876                                          s->sdram_size);
3877     memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3878     memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3879                            &error_fatal);
3880     vmstate_register_ram_global(&s->imif_ram);
3881     memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3882 
3883     omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3884 
3885     s->ih[0] = qdev_create(NULL, "omap-intc");
3886     qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3887     qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3888     qdev_init_nofail(s->ih[0]);
3889     busdev = SYS_BUS_DEVICE(s->ih[0]);
3890     sysbus_connect_irq(busdev, 0,
3891                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3892     sysbus_connect_irq(busdev, 1,
3893                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3894     sysbus_mmio_map(busdev, 0, 0xfffecb00);
3895     s->ih[1] = qdev_create(NULL, "omap-intc");
3896     qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3897     qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3898     qdev_init_nofail(s->ih[1]);
3899     busdev = SYS_BUS_DEVICE(s->ih[1]);
3900     sysbus_connect_irq(busdev, 0,
3901                        qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3902     /* The second interrupt controller's FIQ output is not wired up */
3903     sysbus_mmio_map(busdev, 0, 0xfffe0000);
3904 
3905     for (i = 0; i < 6; i++) {
3906         dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3907                                        omap1_dma_irq_map[i].intr);
3908     }
3909     s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3910                            qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3911                            s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3912 
3913     s->port[emiff    ].addr_valid = omap_validate_emiff_addr;
3914     s->port[emifs    ].addr_valid = omap_validate_emifs_addr;
3915     s->port[imif     ].addr_valid = omap_validate_imif_addr;
3916     s->port[tipb     ].addr_valid = omap_validate_tipb_addr;
3917     s->port[local    ].addr_valid = omap_validate_local_addr;
3918     s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3919 
3920     /* Register SDRAM and SRAM DMA ports for fast transfers.  */
3921     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3922                          OMAP_EMIFF_BASE, s->sdram_size);
3923     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3924                          OMAP_IMIF_BASE, s->sram_size);
3925 
3926     s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3927                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3928                     omap_findclk(s, "mputim_ck"));
3929     s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3930                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3931                     omap_findclk(s, "mputim_ck"));
3932     s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3933                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3934                     omap_findclk(s, "mputim_ck"));
3935 
3936     s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3937                     qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3938                     omap_findclk(s, "armwdt_ck"));
3939 
3940     s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3941                     qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3942                     omap_findclk(s, "clk32-kHz"));
3943 
3944     s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3945                             qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3946                             omap_dma_get_lcdch(s->dma),
3947                             omap_findclk(s, "lcd_ck"));
3948 
3949     omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3950     omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3951     omap_id_init(system_memory, s);
3952 
3953     omap_mpui_init(system_memory, 0xfffec900, s);
3954 
3955     s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3956                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3957                     omap_findclk(s, "tipb_ck"));
3958     s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3959                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3960                     omap_findclk(s, "tipb_ck"));
3961 
3962     omap_tcmi_init(system_memory, 0xfffecc00, s);
3963 
3964     s->uart[0] = omap_uart_init(0xfffb0000,
3965                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3966                     omap_findclk(s, "uart1_ck"),
3967                     omap_findclk(s, "uart1_ck"),
3968                     s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3969                     "uart1",
3970                     serial_hds[0]);
3971     s->uart[1] = omap_uart_init(0xfffb0800,
3972                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3973                     omap_findclk(s, "uart2_ck"),
3974                     omap_findclk(s, "uart2_ck"),
3975                     s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3976                     "uart2",
3977                     serial_hds[0] ? serial_hds[1] : NULL);
3978     s->uart[2] = omap_uart_init(0xfffb9800,
3979                                 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3980                     omap_findclk(s, "uart3_ck"),
3981                     omap_findclk(s, "uart3_ck"),
3982                     s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3983                     "uart3",
3984                     serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
3985 
3986     s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3987                                 omap_findclk(s, "dpll1"));
3988     s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3989                                 omap_findclk(s, "dpll2"));
3990     s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3991                                 omap_findclk(s, "dpll3"));
3992 
3993     dinfo = drive_get(IF_SD, 0, 0);
3994     if (!dinfo) {
3995         fprintf(stderr, "qemu: missing SecureDigital device\n");
3996         exit(1);
3997     }
3998     s->mmc = omap_mmc_init(0xfffb7800, system_memory,
3999                            blk_by_legacy_dinfo(dinfo),
4000                            qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
4001                            &s->drq[OMAP_DMA_MMC_TX],
4002                     omap_findclk(s, "mmc_ck"));
4003 
4004     s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4005                                qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4006                                qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4007                                s->wakeup, omap_findclk(s, "clk32-kHz"));
4008 
4009     s->gpio = qdev_create(NULL, "omap-gpio");
4010     qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4011     qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
4012     qdev_init_nofail(s->gpio);
4013     sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4014                        qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4015     sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4016 
4017     s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4018                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4019                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4020                     s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4021 
4022     s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4023                            omap_findclk(s, "armxor_ck"));
4024     s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4025                            omap_findclk(s, "armxor_ck"));
4026 
4027     s->i2c[0] = qdev_create(NULL, "omap_i2c");
4028     qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4029     qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4030     qdev_init_nofail(s->i2c[0]);
4031     busdev = SYS_BUS_DEVICE(s->i2c[0]);
4032     sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4033     sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4034     sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4035     sysbus_mmio_map(busdev, 0, 0xfffb3800);
4036 
4037     s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4038                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4039                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4040                     omap_findclk(s, "clk32-kHz"));
4041 
4042     s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4043                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4044                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4045                     &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4046     s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4047                                 qdev_get_gpio_in(s->ih[0],
4048                                                  OMAP_INT_310_McBSP2_TX),
4049                                 qdev_get_gpio_in(s->ih[0],
4050                                                  OMAP_INT_310_McBSP2_RX),
4051                     &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4052     s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4053                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4054                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4055                     &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4056 
4057     s->led[0] = omap_lpg_init(system_memory,
4058                               0xfffbd000, omap_findclk(s, "clk32-kHz"));
4059     s->led[1] = omap_lpg_init(system_memory,
4060                               0xfffbd800, omap_findclk(s, "clk32-kHz"));
4061 
4062     /* Register mappings not currenlty implemented:
4063      * MCSI2 Comm	fffb2000 - fffb27ff (not mapped on OMAP310)
4064      * MCSI1 Bluetooth	fffb2800 - fffb2fff (not mapped on OMAP310)
4065      * USB W2FC		fffb4000 - fffb47ff
4066      * Camera Interface	fffb6800 - fffb6fff
4067      * USB Host		fffba000 - fffba7ff
4068      * FAC		fffba800 - fffbafff
4069      * HDQ/1-Wire	fffbc000 - fffbc7ff
4070      * TIPB switches	fffbc800 - fffbcfff
4071      * Mailbox		fffcf000 - fffcf7ff
4072      * Local bus IF	fffec100 - fffec1ff
4073      * Local bus MMU	fffec200 - fffec2ff
4074      * DSP MMU		fffed200 - fffed2ff
4075      */
4076 
4077     omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4078     omap_setup_mpui_io(system_memory, s);
4079 
4080     qemu_register_reset(omap1_mpu_reset, s);
4081 
4082     return s;
4083 }
4084