xref: /openbmc/qemu/hw/arm/omap1.c (revision 41b8280a)
1 /*
2  * TI OMAP processors emulation.
3  *
4  * Copyright (C) 2006-2008 Andrzej Zaborowski  <balrog@zabor.org>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 or
9  * (at your option) version 3 of the License.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License along
17  * with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "hw/hw.h"
20 #include "hw/arm/arm.h"
21 #include "hw/arm/omap.h"
22 #include "sysemu/sysemu.h"
23 #include "hw/arm/soc_dma.h"
24 #include "sysemu/blockdev.h"
25 #include "qemu/range.h"
26 #include "hw/sysbus.h"
27 
28 /* Should signal the TCMI/GPMC */
29 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
30 {
31     uint8_t ret;
32 
33     OMAP_8B_REG(addr);
34     cpu_physical_memory_read(addr, &ret, 1);
35     return ret;
36 }
37 
38 void omap_badwidth_write8(void *opaque, hwaddr addr,
39                 uint32_t value)
40 {
41     uint8_t val8 = value;
42 
43     OMAP_8B_REG(addr);
44     cpu_physical_memory_write(addr, &val8, 1);
45 }
46 
47 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
48 {
49     uint16_t ret;
50 
51     OMAP_16B_REG(addr);
52     cpu_physical_memory_read(addr, &ret, 2);
53     return ret;
54 }
55 
56 void omap_badwidth_write16(void *opaque, hwaddr addr,
57                 uint32_t value)
58 {
59     uint16_t val16 = value;
60 
61     OMAP_16B_REG(addr);
62     cpu_physical_memory_write(addr, &val16, 2);
63 }
64 
65 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
66 {
67     uint32_t ret;
68 
69     OMAP_32B_REG(addr);
70     cpu_physical_memory_read(addr, &ret, 4);
71     return ret;
72 }
73 
74 void omap_badwidth_write32(void *opaque, hwaddr addr,
75                 uint32_t value)
76 {
77     OMAP_32B_REG(addr);
78     cpu_physical_memory_write(addr, &value, 4);
79 }
80 
81 /* MPU OS timers */
82 struct omap_mpu_timer_s {
83     MemoryRegion iomem;
84     qemu_irq irq;
85     omap_clk clk;
86     uint32_t val;
87     int64_t time;
88     QEMUTimer *timer;
89     QEMUBH *tick;
90     int64_t rate;
91     int it_ena;
92 
93     int enable;
94     int ptv;
95     int ar;
96     int st;
97     uint32_t reset_val;
98 };
99 
100 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
101 {
102     uint64_t distance = qemu_get_clock_ns(vm_clock) - timer->time;
103 
104     if (timer->st && timer->enable && timer->rate)
105         return timer->val - muldiv64(distance >> (timer->ptv + 1),
106                                      timer->rate, get_ticks_per_sec());
107     else
108         return timer->val;
109 }
110 
111 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
112 {
113     timer->val = omap_timer_read(timer);
114     timer->time = qemu_get_clock_ns(vm_clock);
115 }
116 
117 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
118 {
119     int64_t expires;
120 
121     if (timer->enable && timer->st && timer->rate) {
122         timer->val = timer->reset_val;	/* Should skip this on clk enable */
123         expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
124                            get_ticks_per_sec(), timer->rate);
125 
126         /* If timer expiry would be sooner than in about 1 ms and
127          * auto-reload isn't set, then fire immediately.  This is a hack
128          * to make systems like PalmOS run in acceptable time.  PalmOS
129          * sets the interval to a very low value and polls the status bit
130          * in a busy loop when it wants to sleep just a couple of CPU
131          * ticks.  */
132         if (expires > (get_ticks_per_sec() >> 10) || timer->ar)
133             qemu_mod_timer(timer->timer, timer->time + expires);
134         else
135             qemu_bh_schedule(timer->tick);
136     } else
137         qemu_del_timer(timer->timer);
138 }
139 
140 static void omap_timer_fire(void *opaque)
141 {
142     struct omap_mpu_timer_s *timer = opaque;
143 
144     if (!timer->ar) {
145         timer->val = 0;
146         timer->st = 0;
147     }
148 
149     if (timer->it_ena)
150         /* Edge-triggered irq */
151         qemu_irq_pulse(timer->irq);
152 }
153 
154 static void omap_timer_tick(void *opaque)
155 {
156     struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
157 
158     omap_timer_sync(timer);
159     omap_timer_fire(timer);
160     omap_timer_update(timer);
161 }
162 
163 static void omap_timer_clk_update(void *opaque, int line, int on)
164 {
165     struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
166 
167     omap_timer_sync(timer);
168     timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
169     omap_timer_update(timer);
170 }
171 
172 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
173 {
174     omap_clk_adduser(timer->clk,
175                     qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]);
176     timer->rate = omap_clk_getrate(timer->clk);
177 }
178 
179 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
180                                     unsigned size)
181 {
182     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
183 
184     if (size != 4) {
185         return omap_badwidth_read32(opaque, addr);
186     }
187 
188     switch (addr) {
189     case 0x00:	/* CNTL_TIMER */
190         return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
191 
192     case 0x04:	/* LOAD_TIM */
193         break;
194 
195     case 0x08:	/* READ_TIM */
196         return omap_timer_read(s);
197     }
198 
199     OMAP_BAD_REG(addr);
200     return 0;
201 }
202 
203 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
204                                  uint64_t value, unsigned size)
205 {
206     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
207 
208     if (size != 4) {
209         return omap_badwidth_write32(opaque, addr, value);
210     }
211 
212     switch (addr) {
213     case 0x00:	/* CNTL_TIMER */
214         omap_timer_sync(s);
215         s->enable = (value >> 5) & 1;
216         s->ptv = (value >> 2) & 7;
217         s->ar = (value >> 1) & 1;
218         s->st = value & 1;
219         omap_timer_update(s);
220         return;
221 
222     case 0x04:	/* LOAD_TIM */
223         s->reset_val = value;
224         return;
225 
226     case 0x08:	/* READ_TIM */
227         OMAP_RO_REG(addr);
228         break;
229 
230     default:
231         OMAP_BAD_REG(addr);
232     }
233 }
234 
235 static const MemoryRegionOps omap_mpu_timer_ops = {
236     .read = omap_mpu_timer_read,
237     .write = omap_mpu_timer_write,
238     .endianness = DEVICE_LITTLE_ENDIAN,
239 };
240 
241 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
242 {
243     qemu_del_timer(s->timer);
244     s->enable = 0;
245     s->reset_val = 31337;
246     s->val = 0;
247     s->ptv = 0;
248     s->ar = 0;
249     s->st = 0;
250     s->it_ena = 1;
251 }
252 
253 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
254                 hwaddr base,
255                 qemu_irq irq, omap_clk clk)
256 {
257     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
258             g_malloc0(sizeof(struct omap_mpu_timer_s));
259 
260     s->irq = irq;
261     s->clk = clk;
262     s->timer = qemu_new_timer_ns(vm_clock, omap_timer_tick, s);
263     s->tick = qemu_bh_new(omap_timer_fire, s);
264     omap_mpu_timer_reset(s);
265     omap_timer_clk_setup(s);
266 
267     memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
268                           "omap-mpu-timer", 0x100);
269 
270     memory_region_add_subregion(system_memory, base, &s->iomem);
271 
272     return s;
273 }
274 
275 /* Watchdog timer */
276 struct omap_watchdog_timer_s {
277     struct omap_mpu_timer_s timer;
278     MemoryRegion iomem;
279     uint8_t last_wr;
280     int mode;
281     int free;
282     int reset;
283 };
284 
285 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
286                                    unsigned size)
287 {
288     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
289 
290     if (size != 2) {
291         return omap_badwidth_read16(opaque, addr);
292     }
293 
294     switch (addr) {
295     case 0x00:	/* CNTL_TIMER */
296         return (s->timer.ptv << 9) | (s->timer.ar << 8) |
297                 (s->timer.st << 7) | (s->free << 1);
298 
299     case 0x04:	/* READ_TIMER */
300         return omap_timer_read(&s->timer);
301 
302     case 0x08:	/* TIMER_MODE */
303         return s->mode << 15;
304     }
305 
306     OMAP_BAD_REG(addr);
307     return 0;
308 }
309 
310 static void omap_wd_timer_write(void *opaque, hwaddr addr,
311                                 uint64_t value, unsigned size)
312 {
313     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
314 
315     if (size != 2) {
316         return omap_badwidth_write16(opaque, addr, value);
317     }
318 
319     switch (addr) {
320     case 0x00:	/* CNTL_TIMER */
321         omap_timer_sync(&s->timer);
322         s->timer.ptv = (value >> 9) & 7;
323         s->timer.ar = (value >> 8) & 1;
324         s->timer.st = (value >> 7) & 1;
325         s->free = (value >> 1) & 1;
326         omap_timer_update(&s->timer);
327         break;
328 
329     case 0x04:	/* LOAD_TIMER */
330         s->timer.reset_val = value & 0xffff;
331         break;
332 
333     case 0x08:	/* TIMER_MODE */
334         if (!s->mode && ((value >> 15) & 1))
335             omap_clk_get(s->timer.clk);
336         s->mode |= (value >> 15) & 1;
337         if (s->last_wr == 0xf5) {
338             if ((value & 0xff) == 0xa0) {
339                 if (s->mode) {
340                     s->mode = 0;
341                     omap_clk_put(s->timer.clk);
342                 }
343             } else {
344                 /* XXX: on T|E hardware somehow this has no effect,
345                  * on Zire 71 it works as specified.  */
346                 s->reset = 1;
347                 qemu_system_reset_request();
348             }
349         }
350         s->last_wr = value & 0xff;
351         break;
352 
353     default:
354         OMAP_BAD_REG(addr);
355     }
356 }
357 
358 static const MemoryRegionOps omap_wd_timer_ops = {
359     .read = omap_wd_timer_read,
360     .write = omap_wd_timer_write,
361     .endianness = DEVICE_NATIVE_ENDIAN,
362 };
363 
364 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
365 {
366     qemu_del_timer(s->timer.timer);
367     if (!s->mode)
368         omap_clk_get(s->timer.clk);
369     s->mode = 1;
370     s->free = 1;
371     s->reset = 0;
372     s->timer.enable = 1;
373     s->timer.it_ena = 1;
374     s->timer.reset_val = 0xffff;
375     s->timer.val = 0;
376     s->timer.st = 0;
377     s->timer.ptv = 0;
378     s->timer.ar = 0;
379     omap_timer_update(&s->timer);
380 }
381 
382 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
383                 hwaddr base,
384                 qemu_irq irq, omap_clk clk)
385 {
386     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
387             g_malloc0(sizeof(struct omap_watchdog_timer_s));
388 
389     s->timer.irq = irq;
390     s->timer.clk = clk;
391     s->timer.timer = qemu_new_timer_ns(vm_clock, omap_timer_tick, &s->timer);
392     omap_wd_timer_reset(s);
393     omap_timer_clk_setup(&s->timer);
394 
395     memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
396                           "omap-wd-timer", 0x100);
397     memory_region_add_subregion(memory, base, &s->iomem);
398 
399     return s;
400 }
401 
402 /* 32-kHz timer */
403 struct omap_32khz_timer_s {
404     struct omap_mpu_timer_s timer;
405     MemoryRegion iomem;
406 };
407 
408 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
409                                    unsigned size)
410 {
411     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
412     int offset = addr & OMAP_MPUI_REG_MASK;
413 
414     if (size != 4) {
415         return omap_badwidth_read32(opaque, addr);
416     }
417 
418     switch (offset) {
419     case 0x00:	/* TVR */
420         return s->timer.reset_val;
421 
422     case 0x04:	/* TCR */
423         return omap_timer_read(&s->timer);
424 
425     case 0x08:	/* CR */
426         return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
427 
428     default:
429         break;
430     }
431     OMAP_BAD_REG(addr);
432     return 0;
433 }
434 
435 static void omap_os_timer_write(void *opaque, hwaddr addr,
436                                 uint64_t value, unsigned size)
437 {
438     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
439     int offset = addr & OMAP_MPUI_REG_MASK;
440 
441     if (size != 4) {
442         return omap_badwidth_write32(opaque, addr, value);
443     }
444 
445     switch (offset) {
446     case 0x00:	/* TVR */
447         s->timer.reset_val = value & 0x00ffffff;
448         break;
449 
450     case 0x04:	/* TCR */
451         OMAP_RO_REG(addr);
452         break;
453 
454     case 0x08:	/* CR */
455         s->timer.ar = (value >> 3) & 1;
456         s->timer.it_ena = (value >> 2) & 1;
457         if (s->timer.st != (value & 1) || (value & 2)) {
458             omap_timer_sync(&s->timer);
459             s->timer.enable = value & 1;
460             s->timer.st = value & 1;
461             omap_timer_update(&s->timer);
462         }
463         break;
464 
465     default:
466         OMAP_BAD_REG(addr);
467     }
468 }
469 
470 static const MemoryRegionOps omap_os_timer_ops = {
471     .read = omap_os_timer_read,
472     .write = omap_os_timer_write,
473     .endianness = DEVICE_NATIVE_ENDIAN,
474 };
475 
476 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
477 {
478     qemu_del_timer(s->timer.timer);
479     s->timer.enable = 0;
480     s->timer.it_ena = 0;
481     s->timer.reset_val = 0x00ffffff;
482     s->timer.val = 0;
483     s->timer.st = 0;
484     s->timer.ptv = 0;
485     s->timer.ar = 1;
486 }
487 
488 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
489                 hwaddr base,
490                 qemu_irq irq, omap_clk clk)
491 {
492     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
493             g_malloc0(sizeof(struct omap_32khz_timer_s));
494 
495     s->timer.irq = irq;
496     s->timer.clk = clk;
497     s->timer.timer = qemu_new_timer_ns(vm_clock, omap_timer_tick, &s->timer);
498     omap_os_timer_reset(s);
499     omap_timer_clk_setup(&s->timer);
500 
501     memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
502                           "omap-os-timer", 0x800);
503     memory_region_add_subregion(memory, base, &s->iomem);
504 
505     return s;
506 }
507 
508 /* Ultra Low-Power Device Module */
509 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
510                                   unsigned size)
511 {
512     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
513     uint16_t ret;
514 
515     if (size != 2) {
516         return omap_badwidth_read16(opaque, addr);
517     }
518 
519     switch (addr) {
520     case 0x14:	/* IT_STATUS */
521         ret = s->ulpd_pm_regs[addr >> 2];
522         s->ulpd_pm_regs[addr >> 2] = 0;
523         qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
524         return ret;
525 
526     case 0x18:	/* Reserved */
527     case 0x1c:	/* Reserved */
528     case 0x20:	/* Reserved */
529     case 0x28:	/* Reserved */
530     case 0x2c:	/* Reserved */
531         OMAP_BAD_REG(addr);
532         /* fall through */
533     case 0x00:	/* COUNTER_32_LSB */
534     case 0x04:	/* COUNTER_32_MSB */
535     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
536     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
537     case 0x10:	/* GAUGING_CTRL */
538     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
539     case 0x30:	/* CLOCK_CTRL */
540     case 0x34:	/* SOFT_REQ */
541     case 0x38:	/* COUNTER_32_FIQ */
542     case 0x3c:	/* DPLL_CTRL */
543     case 0x40:	/* STATUS_REQ */
544         /* XXX: check clk::usecount state for every clock */
545     case 0x48:	/* LOCL_TIME */
546     case 0x4c:	/* APLL_CTRL */
547     case 0x50:	/* POWER_CTRL */
548         return s->ulpd_pm_regs[addr >> 2];
549     }
550 
551     OMAP_BAD_REG(addr);
552     return 0;
553 }
554 
555 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
556                 uint16_t diff, uint16_t value)
557 {
558     if (diff & (1 << 4))				/* USB_MCLK_EN */
559         omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
560     if (diff & (1 << 5))				/* DIS_USB_PVCI_CLK */
561         omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
562 }
563 
564 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
565                 uint16_t diff, uint16_t value)
566 {
567     if (diff & (1 << 0))				/* SOFT_DPLL_REQ */
568         omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
569     if (diff & (1 << 1))				/* SOFT_COM_REQ */
570         omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
571     if (diff & (1 << 2))				/* SOFT_SDW_REQ */
572         omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
573     if (diff & (1 << 3))				/* SOFT_USB_REQ */
574         omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
575 }
576 
577 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
578                                uint64_t value, unsigned size)
579 {
580     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
581     int64_t now, ticks;
582     int div, mult;
583     static const int bypass_div[4] = { 1, 2, 4, 4 };
584     uint16_t diff;
585 
586     if (size != 2) {
587         return omap_badwidth_write16(opaque, addr, value);
588     }
589 
590     switch (addr) {
591     case 0x00:	/* COUNTER_32_LSB */
592     case 0x04:	/* COUNTER_32_MSB */
593     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
594     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
595     case 0x14:	/* IT_STATUS */
596     case 0x40:	/* STATUS_REQ */
597         OMAP_RO_REG(addr);
598         break;
599 
600     case 0x10:	/* GAUGING_CTRL */
601         /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
602         if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
603             now = qemu_get_clock_ns(vm_clock);
604 
605             if (value & 1)
606                 s->ulpd_gauge_start = now;
607             else {
608                 now -= s->ulpd_gauge_start;
609 
610                 /* 32-kHz ticks */
611                 ticks = muldiv64(now, 32768, get_ticks_per_sec());
612                 s->ulpd_pm_regs[0x00 >> 2] = (ticks >>  0) & 0xffff;
613                 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
614                 if (ticks >> 32)	/* OVERFLOW_32K */
615                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
616 
617                 /* High frequency ticks */
618                 ticks = muldiv64(now, 12000000, get_ticks_per_sec());
619                 s->ulpd_pm_regs[0x08 >> 2] = (ticks >>  0) & 0xffff;
620                 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
621                 if (ticks >> 32)	/* OVERFLOW_HI_FREQ */
622                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
623 
624                 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0;	/* IT_GAUGING */
625                 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
626             }
627         }
628         s->ulpd_pm_regs[addr >> 2] = value;
629         break;
630 
631     case 0x18:	/* Reserved */
632     case 0x1c:	/* Reserved */
633     case 0x20:	/* Reserved */
634     case 0x28:	/* Reserved */
635     case 0x2c:	/* Reserved */
636         OMAP_BAD_REG(addr);
637         /* fall through */
638     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
639     case 0x38:	/* COUNTER_32_FIQ */
640     case 0x48:	/* LOCL_TIME */
641     case 0x50:	/* POWER_CTRL */
642         s->ulpd_pm_regs[addr >> 2] = value;
643         break;
644 
645     case 0x30:	/* CLOCK_CTRL */
646         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
647         s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
648         omap_ulpd_clk_update(s, diff, value);
649         break;
650 
651     case 0x34:	/* SOFT_REQ */
652         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
653         s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
654         omap_ulpd_req_update(s, diff, value);
655         break;
656 
657     case 0x3c:	/* DPLL_CTRL */
658         /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
659          * omitted altogether, probably a typo.  */
660         /* This register has identical semantics with DPLL(1:3) control
661          * registers, see omap_dpll_write() */
662         diff = s->ulpd_pm_regs[addr >> 2] & value;
663         s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
664         if (diff & (0x3ff << 2)) {
665             if (value & (1 << 4)) {			/* PLL_ENABLE */
666                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
667                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
668             } else {
669                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
670                 mult = 1;
671             }
672             omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
673         }
674 
675         /* Enter the desired mode.  */
676         s->ulpd_pm_regs[addr >> 2] =
677                 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
678                 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
679 
680         /* Act as if the lock is restored.  */
681         s->ulpd_pm_regs[addr >> 2] |= 2;
682         break;
683 
684     case 0x4c:	/* APLL_CTRL */
685         diff = s->ulpd_pm_regs[addr >> 2] & value;
686         s->ulpd_pm_regs[addr >> 2] = value & 0xf;
687         if (diff & (1 << 0))				/* APLL_NDPLL_SWITCH */
688             omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
689                                     (value & (1 << 0)) ? "apll" : "dpll4"));
690         break;
691 
692     default:
693         OMAP_BAD_REG(addr);
694     }
695 }
696 
697 static const MemoryRegionOps omap_ulpd_pm_ops = {
698     .read = omap_ulpd_pm_read,
699     .write = omap_ulpd_pm_write,
700     .endianness = DEVICE_NATIVE_ENDIAN,
701 };
702 
703 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
704 {
705     mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
706     mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
707     mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
708     mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
709     mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
710     mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
711     mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
712     mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
713     mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
714     mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
715     mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
716     omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
717     mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
718     omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
719     mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
720     mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
721     mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
722     mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
723     mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
724     mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
725     mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
726     omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
727     omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
728 }
729 
730 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
731                 hwaddr base,
732                 struct omap_mpu_state_s *mpu)
733 {
734     memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
735                           "omap-ulpd-pm", 0x800);
736     memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
737     omap_ulpd_pm_reset(mpu);
738 }
739 
740 /* OMAP Pin Configuration */
741 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
742                                   unsigned size)
743 {
744     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
745 
746     if (size != 4) {
747         return omap_badwidth_read32(opaque, addr);
748     }
749 
750     switch (addr) {
751     case 0x00:	/* FUNC_MUX_CTRL_0 */
752     case 0x04:	/* FUNC_MUX_CTRL_1 */
753     case 0x08:	/* FUNC_MUX_CTRL_2 */
754         return s->func_mux_ctrl[addr >> 2];
755 
756     case 0x0c:	/* COMP_MODE_CTRL_0 */
757         return s->comp_mode_ctrl[0];
758 
759     case 0x10:	/* FUNC_MUX_CTRL_3 */
760     case 0x14:	/* FUNC_MUX_CTRL_4 */
761     case 0x18:	/* FUNC_MUX_CTRL_5 */
762     case 0x1c:	/* FUNC_MUX_CTRL_6 */
763     case 0x20:	/* FUNC_MUX_CTRL_7 */
764     case 0x24:	/* FUNC_MUX_CTRL_8 */
765     case 0x28:	/* FUNC_MUX_CTRL_9 */
766     case 0x2c:	/* FUNC_MUX_CTRL_A */
767     case 0x30:	/* FUNC_MUX_CTRL_B */
768     case 0x34:	/* FUNC_MUX_CTRL_C */
769     case 0x38:	/* FUNC_MUX_CTRL_D */
770         return s->func_mux_ctrl[(addr >> 2) - 1];
771 
772     case 0x40:	/* PULL_DWN_CTRL_0 */
773     case 0x44:	/* PULL_DWN_CTRL_1 */
774     case 0x48:	/* PULL_DWN_CTRL_2 */
775     case 0x4c:	/* PULL_DWN_CTRL_3 */
776         return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
777 
778     case 0x50:	/* GATE_INH_CTRL_0 */
779         return s->gate_inh_ctrl[0];
780 
781     case 0x60:	/* VOLTAGE_CTRL_0 */
782         return s->voltage_ctrl[0];
783 
784     case 0x70:	/* TEST_DBG_CTRL_0 */
785         return s->test_dbg_ctrl[0];
786 
787     case 0x80:	/* MOD_CONF_CTRL_0 */
788         return s->mod_conf_ctrl[0];
789     }
790 
791     OMAP_BAD_REG(addr);
792     return 0;
793 }
794 
795 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
796                 uint32_t diff, uint32_t value)
797 {
798     if (s->compat1509) {
799         if (diff & (1 << 9))			/* BLUETOOTH */
800             omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
801                             (~value >> 9) & 1);
802         if (diff & (1 << 7))			/* USB.CLKO */
803             omap_clk_onoff(omap_findclk(s, "usb.clko"),
804                             (value >> 7) & 1);
805     }
806 }
807 
808 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
809                 uint32_t diff, uint32_t value)
810 {
811     if (s->compat1509) {
812         if (diff & (1 << 31))			/* MCBSP3_CLK_HIZ_DI */
813             omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"),
814                             (value >> 31) & 1);
815         if (diff & (1 << 1))			/* CLK32K */
816             omap_clk_onoff(omap_findclk(s, "clk32k_out"),
817                             (~value >> 1) & 1);
818     }
819 }
820 
821 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
822                 uint32_t diff, uint32_t value)
823 {
824     if (diff & (1 << 31))			/* CONF_MOD_UART3_CLK_MODE_R */
825          omap_clk_reparent(omap_findclk(s, "uart3_ck"),
826                          omap_findclk(s, ((value >> 31) & 1) ?
827                                  "ck_48m" : "armper_ck"));
828     if (diff & (1 << 30))			/* CONF_MOD_UART2_CLK_MODE_R */
829          omap_clk_reparent(omap_findclk(s, "uart2_ck"),
830                          omap_findclk(s, ((value >> 30) & 1) ?
831                                  "ck_48m" : "armper_ck"));
832     if (diff & (1 << 29))			/* CONF_MOD_UART1_CLK_MODE_R */
833          omap_clk_reparent(omap_findclk(s, "uart1_ck"),
834                          omap_findclk(s, ((value >> 29) & 1) ?
835                                  "ck_48m" : "armper_ck"));
836     if (diff & (1 << 23))			/* CONF_MOD_MMC_SD_CLK_REQ_R */
837          omap_clk_reparent(omap_findclk(s, "mmc_ck"),
838                          omap_findclk(s, ((value >> 23) & 1) ?
839                                  "ck_48m" : "armper_ck"));
840     if (diff & (1 << 12))			/* CONF_MOD_COM_MCLK_12_48_S */
841          omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
842                          omap_findclk(s, ((value >> 12) & 1) ?
843                                  "ck_48m" : "armper_ck"));
844     if (diff & (1 << 9))			/* CONF_MOD_USB_HOST_HHC_UHO */
845          omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
846 }
847 
848 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
849                                uint64_t value, unsigned size)
850 {
851     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
852     uint32_t diff;
853 
854     if (size != 4) {
855         return omap_badwidth_write32(opaque, addr, value);
856     }
857 
858     switch (addr) {
859     case 0x00:	/* FUNC_MUX_CTRL_0 */
860         diff = s->func_mux_ctrl[addr >> 2] ^ value;
861         s->func_mux_ctrl[addr >> 2] = value;
862         omap_pin_funcmux0_update(s, diff, value);
863         return;
864 
865     case 0x04:	/* FUNC_MUX_CTRL_1 */
866         diff = s->func_mux_ctrl[addr >> 2] ^ value;
867         s->func_mux_ctrl[addr >> 2] = value;
868         omap_pin_funcmux1_update(s, diff, value);
869         return;
870 
871     case 0x08:	/* FUNC_MUX_CTRL_2 */
872         s->func_mux_ctrl[addr >> 2] = value;
873         return;
874 
875     case 0x0c:	/* COMP_MODE_CTRL_0 */
876         s->comp_mode_ctrl[0] = value;
877         s->compat1509 = (value != 0x0000eaef);
878         omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
879         omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
880         return;
881 
882     case 0x10:	/* FUNC_MUX_CTRL_3 */
883     case 0x14:	/* FUNC_MUX_CTRL_4 */
884     case 0x18:	/* FUNC_MUX_CTRL_5 */
885     case 0x1c:	/* FUNC_MUX_CTRL_6 */
886     case 0x20:	/* FUNC_MUX_CTRL_7 */
887     case 0x24:	/* FUNC_MUX_CTRL_8 */
888     case 0x28:	/* FUNC_MUX_CTRL_9 */
889     case 0x2c:	/* FUNC_MUX_CTRL_A */
890     case 0x30:	/* FUNC_MUX_CTRL_B */
891     case 0x34:	/* FUNC_MUX_CTRL_C */
892     case 0x38:	/* FUNC_MUX_CTRL_D */
893         s->func_mux_ctrl[(addr >> 2) - 1] = value;
894         return;
895 
896     case 0x40:	/* PULL_DWN_CTRL_0 */
897     case 0x44:	/* PULL_DWN_CTRL_1 */
898     case 0x48:	/* PULL_DWN_CTRL_2 */
899     case 0x4c:	/* PULL_DWN_CTRL_3 */
900         s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
901         return;
902 
903     case 0x50:	/* GATE_INH_CTRL_0 */
904         s->gate_inh_ctrl[0] = value;
905         return;
906 
907     case 0x60:	/* VOLTAGE_CTRL_0 */
908         s->voltage_ctrl[0] = value;
909         return;
910 
911     case 0x70:	/* TEST_DBG_CTRL_0 */
912         s->test_dbg_ctrl[0] = value;
913         return;
914 
915     case 0x80:	/* MOD_CONF_CTRL_0 */
916         diff = s->mod_conf_ctrl[0] ^ value;
917         s->mod_conf_ctrl[0] = value;
918         omap_pin_modconf1_update(s, diff, value);
919         return;
920 
921     default:
922         OMAP_BAD_REG(addr);
923     }
924 }
925 
926 static const MemoryRegionOps omap_pin_cfg_ops = {
927     .read = omap_pin_cfg_read,
928     .write = omap_pin_cfg_write,
929     .endianness = DEVICE_NATIVE_ENDIAN,
930 };
931 
932 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
933 {
934     /* Start in Compatibility Mode.  */
935     mpu->compat1509 = 1;
936     omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
937     omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
938     omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
939     memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
940     memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
941     memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
942     memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
943     memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
944     memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
945     memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
946 }
947 
948 static void omap_pin_cfg_init(MemoryRegion *system_memory,
949                 hwaddr base,
950                 struct omap_mpu_state_s *mpu)
951 {
952     memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
953                           "omap-pin-cfg", 0x800);
954     memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
955     omap_pin_cfg_reset(mpu);
956 }
957 
958 /* Device Identification, Die Identification */
959 static uint64_t omap_id_read(void *opaque, hwaddr addr,
960                              unsigned size)
961 {
962     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
963 
964     if (size != 4) {
965         return omap_badwidth_read32(opaque, addr);
966     }
967 
968     switch (addr) {
969     case 0xfffe1800:	/* DIE_ID_LSB */
970         return 0xc9581f0e;
971     case 0xfffe1804:	/* DIE_ID_MSB */
972         return 0xa8858bfa;
973 
974     case 0xfffe2000:	/* PRODUCT_ID_LSB */
975         return 0x00aaaafc;
976     case 0xfffe2004:	/* PRODUCT_ID_MSB */
977         return 0xcafeb574;
978 
979     case 0xfffed400:	/* JTAG_ID_LSB */
980         switch (s->mpu_model) {
981         case omap310:
982             return 0x03310315;
983         case omap1510:
984             return 0x03310115;
985         default:
986             hw_error("%s: bad mpu model\n", __FUNCTION__);
987         }
988         break;
989 
990     case 0xfffed404:	/* JTAG_ID_MSB */
991         switch (s->mpu_model) {
992         case omap310:
993             return 0xfb57402f;
994         case omap1510:
995             return 0xfb47002f;
996         default:
997             hw_error("%s: bad mpu model\n", __FUNCTION__);
998         }
999         break;
1000     }
1001 
1002     OMAP_BAD_REG(addr);
1003     return 0;
1004 }
1005 
1006 static void omap_id_write(void *opaque, hwaddr addr,
1007                           uint64_t value, unsigned size)
1008 {
1009     if (size != 4) {
1010         return omap_badwidth_write32(opaque, addr, value);
1011     }
1012 
1013     OMAP_BAD_REG(addr);
1014 }
1015 
1016 static const MemoryRegionOps omap_id_ops = {
1017     .read = omap_id_read,
1018     .write = omap_id_write,
1019     .endianness = DEVICE_NATIVE_ENDIAN,
1020 };
1021 
1022 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1023 {
1024     memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1025                           "omap-id", 0x100000000ULL);
1026     memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1027                              0xfffe1800, 0x800);
1028     memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1029     memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1030                              0xfffed400, 0x100);
1031     memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1032     if (!cpu_is_omap15xx(mpu)) {
1033         memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1034                                  &mpu->id_iomem, 0xfffe2000, 0x800);
1035         memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1036     }
1037 }
1038 
1039 /* MPUI Control (Dummy) */
1040 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1041                                unsigned size)
1042 {
1043     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1044 
1045     if (size != 4) {
1046         return omap_badwidth_read32(opaque, addr);
1047     }
1048 
1049     switch (addr) {
1050     case 0x00:	/* CTRL */
1051         return s->mpui_ctrl;
1052     case 0x04:	/* DEBUG_ADDR */
1053         return 0x01ffffff;
1054     case 0x08:	/* DEBUG_DATA */
1055         return 0xffffffff;
1056     case 0x0c:	/* DEBUG_FLAG */
1057         return 0x00000800;
1058     case 0x10:	/* STATUS */
1059         return 0x00000000;
1060 
1061     /* Not in OMAP310 */
1062     case 0x14:	/* DSP_STATUS */
1063     case 0x18:	/* DSP_BOOT_CONFIG */
1064         return 0x00000000;
1065     case 0x1c:	/* DSP_MPUI_CONFIG */
1066         return 0x0000ffff;
1067     }
1068 
1069     OMAP_BAD_REG(addr);
1070     return 0;
1071 }
1072 
1073 static void omap_mpui_write(void *opaque, hwaddr addr,
1074                             uint64_t value, unsigned size)
1075 {
1076     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1077 
1078     if (size != 4) {
1079         return omap_badwidth_write32(opaque, addr, value);
1080     }
1081 
1082     switch (addr) {
1083     case 0x00:	/* CTRL */
1084         s->mpui_ctrl = value & 0x007fffff;
1085         break;
1086 
1087     case 0x04:	/* DEBUG_ADDR */
1088     case 0x08:	/* DEBUG_DATA */
1089     case 0x0c:	/* DEBUG_FLAG */
1090     case 0x10:	/* STATUS */
1091     /* Not in OMAP310 */
1092     case 0x14:	/* DSP_STATUS */
1093         OMAP_RO_REG(addr);
1094         break;
1095     case 0x18:	/* DSP_BOOT_CONFIG */
1096     case 0x1c:	/* DSP_MPUI_CONFIG */
1097         break;
1098 
1099     default:
1100         OMAP_BAD_REG(addr);
1101     }
1102 }
1103 
1104 static const MemoryRegionOps omap_mpui_ops = {
1105     .read = omap_mpui_read,
1106     .write = omap_mpui_write,
1107     .endianness = DEVICE_NATIVE_ENDIAN,
1108 };
1109 
1110 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1111 {
1112     s->mpui_ctrl = 0x0003ff1b;
1113 }
1114 
1115 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1116                 struct omap_mpu_state_s *mpu)
1117 {
1118     memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1119                           "omap-mpui", 0x100);
1120     memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1121 
1122     omap_mpui_reset(mpu);
1123 }
1124 
1125 /* TIPB Bridges */
1126 struct omap_tipb_bridge_s {
1127     qemu_irq abort;
1128     MemoryRegion iomem;
1129 
1130     int width_intr;
1131     uint16_t control;
1132     uint16_t alloc;
1133     uint16_t buffer;
1134     uint16_t enh_control;
1135 };
1136 
1137 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1138                                       unsigned size)
1139 {
1140     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1141 
1142     if (size < 2) {
1143         return omap_badwidth_read16(opaque, addr);
1144     }
1145 
1146     switch (addr) {
1147     case 0x00:	/* TIPB_CNTL */
1148         return s->control;
1149     case 0x04:	/* TIPB_BUS_ALLOC */
1150         return s->alloc;
1151     case 0x08:	/* MPU_TIPB_CNTL */
1152         return s->buffer;
1153     case 0x0c:	/* ENHANCED_TIPB_CNTL */
1154         return s->enh_control;
1155     case 0x10:	/* ADDRESS_DBG */
1156     case 0x14:	/* DATA_DEBUG_LOW */
1157     case 0x18:	/* DATA_DEBUG_HIGH */
1158         return 0xffff;
1159     case 0x1c:	/* DEBUG_CNTR_SIG */
1160         return 0x00f8;
1161     }
1162 
1163     OMAP_BAD_REG(addr);
1164     return 0;
1165 }
1166 
1167 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1168                                    uint64_t value, unsigned size)
1169 {
1170     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1171 
1172     if (size < 2) {
1173         return omap_badwidth_write16(opaque, addr, value);
1174     }
1175 
1176     switch (addr) {
1177     case 0x00:	/* TIPB_CNTL */
1178         s->control = value & 0xffff;
1179         break;
1180 
1181     case 0x04:	/* TIPB_BUS_ALLOC */
1182         s->alloc = value & 0x003f;
1183         break;
1184 
1185     case 0x08:	/* MPU_TIPB_CNTL */
1186         s->buffer = value & 0x0003;
1187         break;
1188 
1189     case 0x0c:	/* ENHANCED_TIPB_CNTL */
1190         s->width_intr = !(value & 2);
1191         s->enh_control = value & 0x000f;
1192         break;
1193 
1194     case 0x10:	/* ADDRESS_DBG */
1195     case 0x14:	/* DATA_DEBUG_LOW */
1196     case 0x18:	/* DATA_DEBUG_HIGH */
1197     case 0x1c:	/* DEBUG_CNTR_SIG */
1198         OMAP_RO_REG(addr);
1199         break;
1200 
1201     default:
1202         OMAP_BAD_REG(addr);
1203     }
1204 }
1205 
1206 static const MemoryRegionOps omap_tipb_bridge_ops = {
1207     .read = omap_tipb_bridge_read,
1208     .write = omap_tipb_bridge_write,
1209     .endianness = DEVICE_NATIVE_ENDIAN,
1210 };
1211 
1212 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1213 {
1214     s->control = 0xffff;
1215     s->alloc = 0x0009;
1216     s->buffer = 0x0000;
1217     s->enh_control = 0x000f;
1218 }
1219 
1220 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1221     MemoryRegion *memory, hwaddr base,
1222     qemu_irq abort_irq, omap_clk clk)
1223 {
1224     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
1225             g_malloc0(sizeof(struct omap_tipb_bridge_s));
1226 
1227     s->abort = abort_irq;
1228     omap_tipb_bridge_reset(s);
1229 
1230     memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1231                           "omap-tipb-bridge", 0x100);
1232     memory_region_add_subregion(memory, base, &s->iomem);
1233 
1234     return s;
1235 }
1236 
1237 /* Dummy Traffic Controller's Memory Interface */
1238 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1239                                unsigned size)
1240 {
1241     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1242     uint32_t ret;
1243 
1244     if (size != 4) {
1245         return omap_badwidth_read32(opaque, addr);
1246     }
1247 
1248     switch (addr) {
1249     case 0x00:	/* IMIF_PRIO */
1250     case 0x04:	/* EMIFS_PRIO */
1251     case 0x08:	/* EMIFF_PRIO */
1252     case 0x0c:	/* EMIFS_CONFIG */
1253     case 0x10:	/* EMIFS_CS0_CONFIG */
1254     case 0x14:	/* EMIFS_CS1_CONFIG */
1255     case 0x18:	/* EMIFS_CS2_CONFIG */
1256     case 0x1c:	/* EMIFS_CS3_CONFIG */
1257     case 0x24:	/* EMIFF_MRS */
1258     case 0x28:	/* TIMEOUT1 */
1259     case 0x2c:	/* TIMEOUT2 */
1260     case 0x30:	/* TIMEOUT3 */
1261     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
1262     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
1263         return s->tcmi_regs[addr >> 2];
1264 
1265     case 0x20:	/* EMIFF_SDRAM_CONFIG */
1266         ret = s->tcmi_regs[addr >> 2];
1267         s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1268         /* XXX: We can try using the VGA_DIRTY flag for this */
1269         return ret;
1270     }
1271 
1272     OMAP_BAD_REG(addr);
1273     return 0;
1274 }
1275 
1276 static void omap_tcmi_write(void *opaque, hwaddr addr,
1277                             uint64_t value, unsigned size)
1278 {
1279     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1280 
1281     if (size != 4) {
1282         return omap_badwidth_write32(opaque, addr, value);
1283     }
1284 
1285     switch (addr) {
1286     case 0x00:	/* IMIF_PRIO */
1287     case 0x04:	/* EMIFS_PRIO */
1288     case 0x08:	/* EMIFF_PRIO */
1289     case 0x10:	/* EMIFS_CS0_CONFIG */
1290     case 0x14:	/* EMIFS_CS1_CONFIG */
1291     case 0x18:	/* EMIFS_CS2_CONFIG */
1292     case 0x1c:	/* EMIFS_CS3_CONFIG */
1293     case 0x20:	/* EMIFF_SDRAM_CONFIG */
1294     case 0x24:	/* EMIFF_MRS */
1295     case 0x28:	/* TIMEOUT1 */
1296     case 0x2c:	/* TIMEOUT2 */
1297     case 0x30:	/* TIMEOUT3 */
1298     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
1299     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
1300         s->tcmi_regs[addr >> 2] = value;
1301         break;
1302     case 0x0c:	/* EMIFS_CONFIG */
1303         s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1304         break;
1305 
1306     default:
1307         OMAP_BAD_REG(addr);
1308     }
1309 }
1310 
1311 static const MemoryRegionOps omap_tcmi_ops = {
1312     .read = omap_tcmi_read,
1313     .write = omap_tcmi_write,
1314     .endianness = DEVICE_NATIVE_ENDIAN,
1315 };
1316 
1317 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1318 {
1319     mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1320     mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1321     mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1322     mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1323     mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1324     mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1325     mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1326     mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1327     mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1328     mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1329     mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1330     mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1331     mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1332     mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1333     mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1334 }
1335 
1336 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1337                 struct omap_mpu_state_s *mpu)
1338 {
1339     memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1340                           "omap-tcmi", 0x100);
1341     memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1342     omap_tcmi_reset(mpu);
1343 }
1344 
1345 /* Digital phase-locked loops control */
1346 struct dpll_ctl_s {
1347     MemoryRegion iomem;
1348     uint16_t mode;
1349     omap_clk dpll;
1350 };
1351 
1352 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1353                                unsigned size)
1354 {
1355     struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1356 
1357     if (size != 2) {
1358         return omap_badwidth_read16(opaque, addr);
1359     }
1360 
1361     if (addr == 0x00)	/* CTL_REG */
1362         return s->mode;
1363 
1364     OMAP_BAD_REG(addr);
1365     return 0;
1366 }
1367 
1368 static void omap_dpll_write(void *opaque, hwaddr addr,
1369                             uint64_t value, unsigned size)
1370 {
1371     struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1372     uint16_t diff;
1373     static const int bypass_div[4] = { 1, 2, 4, 4 };
1374     int div, mult;
1375 
1376     if (size != 2) {
1377         return omap_badwidth_write16(opaque, addr, value);
1378     }
1379 
1380     if (addr == 0x00) {	/* CTL_REG */
1381         /* See omap_ulpd_pm_write() too */
1382         diff = s->mode & value;
1383         s->mode = value & 0x2fff;
1384         if (diff & (0x3ff << 2)) {
1385             if (value & (1 << 4)) {			/* PLL_ENABLE */
1386                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
1387                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
1388             } else {
1389                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
1390                 mult = 1;
1391             }
1392             omap_clk_setrate(s->dpll, div, mult);
1393         }
1394 
1395         /* Enter the desired mode.  */
1396         s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1397 
1398         /* Act as if the lock is restored.  */
1399         s->mode |= 2;
1400     } else {
1401         OMAP_BAD_REG(addr);
1402     }
1403 }
1404 
1405 static const MemoryRegionOps omap_dpll_ops = {
1406     .read = omap_dpll_read,
1407     .write = omap_dpll_write,
1408     .endianness = DEVICE_NATIVE_ENDIAN,
1409 };
1410 
1411 static void omap_dpll_reset(struct dpll_ctl_s *s)
1412 {
1413     s->mode = 0x2002;
1414     omap_clk_setrate(s->dpll, 1, 1);
1415 }
1416 
1417 static struct dpll_ctl_s  *omap_dpll_init(MemoryRegion *memory,
1418                            hwaddr base, omap_clk clk)
1419 {
1420     struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1421     memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1422 
1423     s->dpll = clk;
1424     omap_dpll_reset(s);
1425 
1426     memory_region_add_subregion(memory, base, &s->iomem);
1427     return s;
1428 }
1429 
1430 /* MPU Clock/Reset/Power Mode Control */
1431 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1432                                unsigned size)
1433 {
1434     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1435 
1436     if (size != 2) {
1437         return omap_badwidth_read16(opaque, addr);
1438     }
1439 
1440     switch (addr) {
1441     case 0x00:	/* ARM_CKCTL */
1442         return s->clkm.arm_ckctl;
1443 
1444     case 0x04:	/* ARM_IDLECT1 */
1445         return s->clkm.arm_idlect1;
1446 
1447     case 0x08:	/* ARM_IDLECT2 */
1448         return s->clkm.arm_idlect2;
1449 
1450     case 0x0c:	/* ARM_EWUPCT */
1451         return s->clkm.arm_ewupct;
1452 
1453     case 0x10:	/* ARM_RSTCT1 */
1454         return s->clkm.arm_rstct1;
1455 
1456     case 0x14:	/* ARM_RSTCT2 */
1457         return s->clkm.arm_rstct2;
1458 
1459     case 0x18:	/* ARM_SYSST */
1460         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1461 
1462     case 0x1c:	/* ARM_CKOUT1 */
1463         return s->clkm.arm_ckout1;
1464 
1465     case 0x20:	/* ARM_CKOUT2 */
1466         break;
1467     }
1468 
1469     OMAP_BAD_REG(addr);
1470     return 0;
1471 }
1472 
1473 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1474                 uint16_t diff, uint16_t value)
1475 {
1476     omap_clk clk;
1477 
1478     if (diff & (1 << 14)) {				/* ARM_INTHCK_SEL */
1479         if (value & (1 << 14))
1480             /* Reserved */;
1481         else {
1482             clk = omap_findclk(s, "arminth_ck");
1483             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1484         }
1485     }
1486     if (diff & (1 << 12)) {				/* ARM_TIMXO */
1487         clk = omap_findclk(s, "armtim_ck");
1488         if (value & (1 << 12))
1489             omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1490         else
1491             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1492     }
1493     /* XXX: en_dspck */
1494     if (diff & (3 << 10)) {				/* DSPMMUDIV */
1495         clk = omap_findclk(s, "dspmmu_ck");
1496         omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1497     }
1498     if (diff & (3 << 8)) {				/* TCDIV */
1499         clk = omap_findclk(s, "tc_ck");
1500         omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1501     }
1502     if (diff & (3 << 6)) {				/* DSPDIV */
1503         clk = omap_findclk(s, "dsp_ck");
1504         omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1505     }
1506     if (diff & (3 << 4)) {				/* ARMDIV */
1507         clk = omap_findclk(s, "arm_ck");
1508         omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1509     }
1510     if (diff & (3 << 2)) {				/* LCDDIV */
1511         clk = omap_findclk(s, "lcd_ck");
1512         omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1513     }
1514     if (diff & (3 << 0)) {				/* PERDIV */
1515         clk = omap_findclk(s, "armper_ck");
1516         omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1517     }
1518 }
1519 
1520 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1521                 uint16_t diff, uint16_t value)
1522 {
1523     omap_clk clk;
1524 
1525     if (value & (1 << 11)) {                            /* SETARM_IDLE */
1526         cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1527     }
1528     if (!(value & (1 << 10)))				/* WKUP_MODE */
1529         qemu_system_shutdown_request();	/* XXX: disable wakeup from IRQ */
1530 
1531 #define SET_CANIDLE(clock, bit)				\
1532     if (diff & (1 << bit)) {				\
1533         clk = omap_findclk(s, clock);			\
1534         omap_clk_canidle(clk, (value >> bit) & 1);	\
1535     }
1536     SET_CANIDLE("mpuwd_ck", 0)				/* IDLWDT_ARM */
1537     SET_CANIDLE("armxor_ck", 1)				/* IDLXORP_ARM */
1538     SET_CANIDLE("mpuper_ck", 2)				/* IDLPER_ARM */
1539     SET_CANIDLE("lcd_ck", 3)				/* IDLLCD_ARM */
1540     SET_CANIDLE("lb_ck", 4)				/* IDLLB_ARM */
1541     SET_CANIDLE("hsab_ck", 5)				/* IDLHSAB_ARM */
1542     SET_CANIDLE("tipb_ck", 6)				/* IDLIF_ARM */
1543     SET_CANIDLE("dma_ck", 6)				/* IDLIF_ARM */
1544     SET_CANIDLE("tc_ck", 6)				/* IDLIF_ARM */
1545     SET_CANIDLE("dpll1", 7)				/* IDLDPLL_ARM */
1546     SET_CANIDLE("dpll2", 7)				/* IDLDPLL_ARM */
1547     SET_CANIDLE("dpll3", 7)				/* IDLDPLL_ARM */
1548     SET_CANIDLE("mpui_ck", 8)				/* IDLAPI_ARM */
1549     SET_CANIDLE("armtim_ck", 9)				/* IDLTIM_ARM */
1550 }
1551 
1552 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1553                 uint16_t diff, uint16_t value)
1554 {
1555     omap_clk clk;
1556 
1557 #define SET_ONOFF(clock, bit)				\
1558     if (diff & (1 << bit)) {				\
1559         clk = omap_findclk(s, clock);			\
1560         omap_clk_onoff(clk, (value >> bit) & 1);	\
1561     }
1562     SET_ONOFF("mpuwd_ck", 0)				/* EN_WDTCK */
1563     SET_ONOFF("armxor_ck", 1)				/* EN_XORPCK */
1564     SET_ONOFF("mpuper_ck", 2)				/* EN_PERCK */
1565     SET_ONOFF("lcd_ck", 3)				/* EN_LCDCK */
1566     SET_ONOFF("lb_ck", 4)				/* EN_LBCK */
1567     SET_ONOFF("hsab_ck", 5)				/* EN_HSABCK */
1568     SET_ONOFF("mpui_ck", 6)				/* EN_APICK */
1569     SET_ONOFF("armtim_ck", 7)				/* EN_TIMCK */
1570     SET_CANIDLE("dma_ck", 8)				/* DMACK_REQ */
1571     SET_ONOFF("arm_gpio_ck", 9)				/* EN_GPIOCK */
1572     SET_ONOFF("lbfree_ck", 10)				/* EN_LBFREECK */
1573 }
1574 
1575 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1576                 uint16_t diff, uint16_t value)
1577 {
1578     omap_clk clk;
1579 
1580     if (diff & (3 << 4)) {				/* TCLKOUT */
1581         clk = omap_findclk(s, "tclk_out");
1582         switch ((value >> 4) & 3) {
1583         case 1:
1584             omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1585             omap_clk_onoff(clk, 1);
1586             break;
1587         case 2:
1588             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1589             omap_clk_onoff(clk, 1);
1590             break;
1591         default:
1592             omap_clk_onoff(clk, 0);
1593         }
1594     }
1595     if (diff & (3 << 2)) {				/* DCLKOUT */
1596         clk = omap_findclk(s, "dclk_out");
1597         switch ((value >> 2) & 3) {
1598         case 0:
1599             omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1600             break;
1601         case 1:
1602             omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1603             break;
1604         case 2:
1605             omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1606             break;
1607         case 3:
1608             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1609             break;
1610         }
1611     }
1612     if (diff & (3 << 0)) {				/* ACLKOUT */
1613         clk = omap_findclk(s, "aclk_out");
1614         switch ((value >> 0) & 3) {
1615         case 1:
1616             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1617             omap_clk_onoff(clk, 1);
1618             break;
1619         case 2:
1620             omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1621             omap_clk_onoff(clk, 1);
1622             break;
1623         case 3:
1624             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1625             omap_clk_onoff(clk, 1);
1626             break;
1627         default:
1628             omap_clk_onoff(clk, 0);
1629         }
1630     }
1631 }
1632 
1633 static void omap_clkm_write(void *opaque, hwaddr addr,
1634                             uint64_t value, unsigned size)
1635 {
1636     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1637     uint16_t diff;
1638     omap_clk clk;
1639     static const char *clkschemename[8] = {
1640         "fully synchronous", "fully asynchronous", "synchronous scalable",
1641         "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1642     };
1643 
1644     if (size != 2) {
1645         return omap_badwidth_write16(opaque, addr, value);
1646     }
1647 
1648     switch (addr) {
1649     case 0x00:	/* ARM_CKCTL */
1650         diff = s->clkm.arm_ckctl ^ value;
1651         s->clkm.arm_ckctl = value & 0x7fff;
1652         omap_clkm_ckctl_update(s, diff, value);
1653         return;
1654 
1655     case 0x04:	/* ARM_IDLECT1 */
1656         diff = s->clkm.arm_idlect1 ^ value;
1657         s->clkm.arm_idlect1 = value & 0x0fff;
1658         omap_clkm_idlect1_update(s, diff, value);
1659         return;
1660 
1661     case 0x08:	/* ARM_IDLECT2 */
1662         diff = s->clkm.arm_idlect2 ^ value;
1663         s->clkm.arm_idlect2 = value & 0x07ff;
1664         omap_clkm_idlect2_update(s, diff, value);
1665         return;
1666 
1667     case 0x0c:	/* ARM_EWUPCT */
1668         s->clkm.arm_ewupct = value & 0x003f;
1669         return;
1670 
1671     case 0x10:	/* ARM_RSTCT1 */
1672         diff = s->clkm.arm_rstct1 ^ value;
1673         s->clkm.arm_rstct1 = value & 0x0007;
1674         if (value & 9) {
1675             qemu_system_reset_request();
1676             s->clkm.cold_start = 0xa;
1677         }
1678         if (diff & ~value & 4) {				/* DSP_RST */
1679             omap_mpui_reset(s);
1680             omap_tipb_bridge_reset(s->private_tipb);
1681             omap_tipb_bridge_reset(s->public_tipb);
1682         }
1683         if (diff & 2) {						/* DSP_EN */
1684             clk = omap_findclk(s, "dsp_ck");
1685             omap_clk_canidle(clk, (~value >> 1) & 1);
1686         }
1687         return;
1688 
1689     case 0x14:	/* ARM_RSTCT2 */
1690         s->clkm.arm_rstct2 = value & 0x0001;
1691         return;
1692 
1693     case 0x18:	/* ARM_SYSST */
1694         if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1695             s->clkm.clocking_scheme = (value >> 11) & 7;
1696             printf("%s: clocking scheme set to %s\n", __FUNCTION__,
1697                             clkschemename[s->clkm.clocking_scheme]);
1698         }
1699         s->clkm.cold_start &= value & 0x3f;
1700         return;
1701 
1702     case 0x1c:	/* ARM_CKOUT1 */
1703         diff = s->clkm.arm_ckout1 ^ value;
1704         s->clkm.arm_ckout1 = value & 0x003f;
1705         omap_clkm_ckout1_update(s, diff, value);
1706         return;
1707 
1708     case 0x20:	/* ARM_CKOUT2 */
1709     default:
1710         OMAP_BAD_REG(addr);
1711     }
1712 }
1713 
1714 static const MemoryRegionOps omap_clkm_ops = {
1715     .read = omap_clkm_read,
1716     .write = omap_clkm_write,
1717     .endianness = DEVICE_NATIVE_ENDIAN,
1718 };
1719 
1720 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1721                                  unsigned size)
1722 {
1723     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1724     CPUState *cpu = CPU(s->cpu);
1725 
1726     if (size != 2) {
1727         return omap_badwidth_read16(opaque, addr);
1728     }
1729 
1730     switch (addr) {
1731     case 0x04:	/* DSP_IDLECT1 */
1732         return s->clkm.dsp_idlect1;
1733 
1734     case 0x08:	/* DSP_IDLECT2 */
1735         return s->clkm.dsp_idlect2;
1736 
1737     case 0x14:	/* DSP_RSTCT2 */
1738         return s->clkm.dsp_rstct2;
1739 
1740     case 0x18:	/* DSP_SYSST */
1741         cpu = CPU(s->cpu);
1742         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1743                 (cpu->halted << 6);      /* Quite useless... */
1744     }
1745 
1746     OMAP_BAD_REG(addr);
1747     return 0;
1748 }
1749 
1750 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1751                 uint16_t diff, uint16_t value)
1752 {
1753     omap_clk clk;
1754 
1755     SET_CANIDLE("dspxor_ck", 1);			/* IDLXORP_DSP */
1756 }
1757 
1758 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1759                 uint16_t diff, uint16_t value)
1760 {
1761     omap_clk clk;
1762 
1763     SET_ONOFF("dspxor_ck", 1);				/* EN_XORPCK */
1764 }
1765 
1766 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1767                               uint64_t value, unsigned size)
1768 {
1769     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1770     uint16_t diff;
1771 
1772     if (size != 2) {
1773         return omap_badwidth_write16(opaque, addr, value);
1774     }
1775 
1776     switch (addr) {
1777     case 0x04:	/* DSP_IDLECT1 */
1778         diff = s->clkm.dsp_idlect1 ^ value;
1779         s->clkm.dsp_idlect1 = value & 0x01f7;
1780         omap_clkdsp_idlect1_update(s, diff, value);
1781         break;
1782 
1783     case 0x08:	/* DSP_IDLECT2 */
1784         s->clkm.dsp_idlect2 = value & 0x0037;
1785         diff = s->clkm.dsp_idlect1 ^ value;
1786         omap_clkdsp_idlect2_update(s, diff, value);
1787         break;
1788 
1789     case 0x14:	/* DSP_RSTCT2 */
1790         s->clkm.dsp_rstct2 = value & 0x0001;
1791         break;
1792 
1793     case 0x18:	/* DSP_SYSST */
1794         s->clkm.cold_start &= value & 0x3f;
1795         break;
1796 
1797     default:
1798         OMAP_BAD_REG(addr);
1799     }
1800 }
1801 
1802 static const MemoryRegionOps omap_clkdsp_ops = {
1803     .read = omap_clkdsp_read,
1804     .write = omap_clkdsp_write,
1805     .endianness = DEVICE_NATIVE_ENDIAN,
1806 };
1807 
1808 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1809 {
1810     if (s->wdt && s->wdt->reset)
1811         s->clkm.cold_start = 0x6;
1812     s->clkm.clocking_scheme = 0;
1813     omap_clkm_ckctl_update(s, ~0, 0x3000);
1814     s->clkm.arm_ckctl = 0x3000;
1815     omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1816     s->clkm.arm_idlect1 = 0x0400;
1817     omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1818     s->clkm.arm_idlect2 = 0x0100;
1819     s->clkm.arm_ewupct = 0x003f;
1820     s->clkm.arm_rstct1 = 0x0000;
1821     s->clkm.arm_rstct2 = 0x0000;
1822     s->clkm.arm_ckout1 = 0x0015;
1823     s->clkm.dpll1_mode = 0x2002;
1824     omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1825     s->clkm.dsp_idlect1 = 0x0040;
1826     omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1827     s->clkm.dsp_idlect2 = 0x0000;
1828     s->clkm.dsp_rstct2 = 0x0000;
1829 }
1830 
1831 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1832                 hwaddr dsp_base, struct omap_mpu_state_s *s)
1833 {
1834     memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1835                           "omap-clkm", 0x100);
1836     memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1837                           "omap-clkdsp", 0x1000);
1838 
1839     s->clkm.arm_idlect1 = 0x03ff;
1840     s->clkm.arm_idlect2 = 0x0100;
1841     s->clkm.dsp_idlect1 = 0x0002;
1842     omap_clkm_reset(s);
1843     s->clkm.cold_start = 0x3a;
1844 
1845     memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1846     memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1847 }
1848 
1849 /* MPU I/O */
1850 struct omap_mpuio_s {
1851     qemu_irq irq;
1852     qemu_irq kbd_irq;
1853     qemu_irq *in;
1854     qemu_irq handler[16];
1855     qemu_irq wakeup;
1856     MemoryRegion iomem;
1857 
1858     uint16_t inputs;
1859     uint16_t outputs;
1860     uint16_t dir;
1861     uint16_t edge;
1862     uint16_t mask;
1863     uint16_t ints;
1864 
1865     uint16_t debounce;
1866     uint16_t latch;
1867     uint8_t event;
1868 
1869     uint8_t buttons[5];
1870     uint8_t row_latch;
1871     uint8_t cols;
1872     int kbd_mask;
1873     int clk;
1874 };
1875 
1876 static void omap_mpuio_set(void *opaque, int line, int level)
1877 {
1878     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1879     uint16_t prev = s->inputs;
1880 
1881     if (level)
1882         s->inputs |= 1 << line;
1883     else
1884         s->inputs &= ~(1 << line);
1885 
1886     if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1887         if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1888             s->ints |= 1 << line;
1889             qemu_irq_raise(s->irq);
1890             /* TODO: wakeup */
1891         }
1892         if ((s->event & (1 << 0)) &&		/* SET_GPIO_EVENT_MODE */
1893                 (s->event >> 1) == line)	/* PIN_SELECT */
1894             s->latch = s->inputs;
1895     }
1896 }
1897 
1898 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1899 {
1900     int i;
1901     uint8_t *row, rows = 0, cols = ~s->cols;
1902 
1903     for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1904         if (*row & cols)
1905             rows |= i;
1906 
1907     qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1908     s->row_latch = ~rows;
1909 }
1910 
1911 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1912                                 unsigned size)
1913 {
1914     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1915     int offset = addr & OMAP_MPUI_REG_MASK;
1916     uint16_t ret;
1917 
1918     if (size != 2) {
1919         return omap_badwidth_read16(opaque, addr);
1920     }
1921 
1922     switch (offset) {
1923     case 0x00:	/* INPUT_LATCH */
1924         return s->inputs;
1925 
1926     case 0x04:	/* OUTPUT_REG */
1927         return s->outputs;
1928 
1929     case 0x08:	/* IO_CNTL */
1930         return s->dir;
1931 
1932     case 0x10:	/* KBR_LATCH */
1933         return s->row_latch;
1934 
1935     case 0x14:	/* KBC_REG */
1936         return s->cols;
1937 
1938     case 0x18:	/* GPIO_EVENT_MODE_REG */
1939         return s->event;
1940 
1941     case 0x1c:	/* GPIO_INT_EDGE_REG */
1942         return s->edge;
1943 
1944     case 0x20:	/* KBD_INT */
1945         return (~s->row_latch & 0x1f) && !s->kbd_mask;
1946 
1947     case 0x24:	/* GPIO_INT */
1948         ret = s->ints;
1949         s->ints &= s->mask;
1950         if (ret)
1951             qemu_irq_lower(s->irq);
1952         return ret;
1953 
1954     case 0x28:	/* KBD_MASKIT */
1955         return s->kbd_mask;
1956 
1957     case 0x2c:	/* GPIO_MASKIT */
1958         return s->mask;
1959 
1960     case 0x30:	/* GPIO_DEBOUNCING_REG */
1961         return s->debounce;
1962 
1963     case 0x34:	/* GPIO_LATCH_REG */
1964         return s->latch;
1965     }
1966 
1967     OMAP_BAD_REG(addr);
1968     return 0;
1969 }
1970 
1971 static void omap_mpuio_write(void *opaque, hwaddr addr,
1972                              uint64_t value, unsigned size)
1973 {
1974     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1975     int offset = addr & OMAP_MPUI_REG_MASK;
1976     uint16_t diff;
1977     int ln;
1978 
1979     if (size != 2) {
1980         return omap_badwidth_write16(opaque, addr, value);
1981     }
1982 
1983     switch (offset) {
1984     case 0x04:	/* OUTPUT_REG */
1985         diff = (s->outputs ^ value) & ~s->dir;
1986         s->outputs = value;
1987         while ((ln = ffs(diff))) {
1988             ln --;
1989             if (s->handler[ln])
1990                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
1991             diff &= ~(1 << ln);
1992         }
1993         break;
1994 
1995     case 0x08:	/* IO_CNTL */
1996         diff = s->outputs & (s->dir ^ value);
1997         s->dir = value;
1998 
1999         value = s->outputs & ~s->dir;
2000         while ((ln = ffs(diff))) {
2001             ln --;
2002             if (s->handler[ln])
2003                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2004             diff &= ~(1 << ln);
2005         }
2006         break;
2007 
2008     case 0x14:	/* KBC_REG */
2009         s->cols = value;
2010         omap_mpuio_kbd_update(s);
2011         break;
2012 
2013     case 0x18:	/* GPIO_EVENT_MODE_REG */
2014         s->event = value & 0x1f;
2015         break;
2016 
2017     case 0x1c:	/* GPIO_INT_EDGE_REG */
2018         s->edge = value;
2019         break;
2020 
2021     case 0x28:	/* KBD_MASKIT */
2022         s->kbd_mask = value & 1;
2023         omap_mpuio_kbd_update(s);
2024         break;
2025 
2026     case 0x2c:	/* GPIO_MASKIT */
2027         s->mask = value;
2028         break;
2029 
2030     case 0x30:	/* GPIO_DEBOUNCING_REG */
2031         s->debounce = value & 0x1ff;
2032         break;
2033 
2034     case 0x00:	/* INPUT_LATCH */
2035     case 0x10:	/* KBR_LATCH */
2036     case 0x20:	/* KBD_INT */
2037     case 0x24:	/* GPIO_INT */
2038     case 0x34:	/* GPIO_LATCH_REG */
2039         OMAP_RO_REG(addr);
2040         return;
2041 
2042     default:
2043         OMAP_BAD_REG(addr);
2044         return;
2045     }
2046 }
2047 
2048 static const MemoryRegionOps omap_mpuio_ops  = {
2049     .read = omap_mpuio_read,
2050     .write = omap_mpuio_write,
2051     .endianness = DEVICE_NATIVE_ENDIAN,
2052 };
2053 
2054 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2055 {
2056     s->inputs = 0;
2057     s->outputs = 0;
2058     s->dir = ~0;
2059     s->event = 0;
2060     s->edge = 0;
2061     s->kbd_mask = 0;
2062     s->mask = 0;
2063     s->debounce = 0;
2064     s->latch = 0;
2065     s->ints = 0;
2066     s->row_latch = 0x1f;
2067     s->clk = 1;
2068 }
2069 
2070 static void omap_mpuio_onoff(void *opaque, int line, int on)
2071 {
2072     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2073 
2074     s->clk = on;
2075     if (on)
2076         omap_mpuio_kbd_update(s);
2077 }
2078 
2079 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2080                 hwaddr base,
2081                 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2082                 omap_clk clk)
2083 {
2084     struct omap_mpuio_s *s = (struct omap_mpuio_s *)
2085             g_malloc0(sizeof(struct omap_mpuio_s));
2086 
2087     s->irq = gpio_int;
2088     s->kbd_irq = kbd_int;
2089     s->wakeup = wakeup;
2090     s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2091     omap_mpuio_reset(s);
2092 
2093     memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2094                           "omap-mpuio", 0x800);
2095     memory_region_add_subregion(memory, base, &s->iomem);
2096 
2097     omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]);
2098 
2099     return s;
2100 }
2101 
2102 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2103 {
2104     return s->in;
2105 }
2106 
2107 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2108 {
2109     if (line >= 16 || line < 0)
2110         hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
2111     s->handler[line] = handler;
2112 }
2113 
2114 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2115 {
2116     if (row >= 5 || row < 0)
2117         hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
2118 
2119     if (down)
2120         s->buttons[row] |= 1 << col;
2121     else
2122         s->buttons[row] &= ~(1 << col);
2123 
2124     omap_mpuio_kbd_update(s);
2125 }
2126 
2127 /* MicroWire Interface */
2128 struct omap_uwire_s {
2129     MemoryRegion iomem;
2130     qemu_irq txirq;
2131     qemu_irq rxirq;
2132     qemu_irq txdrq;
2133 
2134     uint16_t txbuf;
2135     uint16_t rxbuf;
2136     uint16_t control;
2137     uint16_t setup[5];
2138 
2139     uWireSlave *chip[4];
2140 };
2141 
2142 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2143 {
2144     int chipselect = (s->control >> 10) & 3;		/* INDEX */
2145     uWireSlave *slave = s->chip[chipselect];
2146 
2147     if ((s->control >> 5) & 0x1f) {			/* NB_BITS_WR */
2148         if (s->control & (1 << 12))			/* CS_CMD */
2149             if (slave && slave->send)
2150                 slave->send(slave->opaque,
2151                                 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2152         s->control &= ~(1 << 14);			/* CSRB */
2153         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2154          * a DRQ.  When is the level IRQ supposed to be reset?  */
2155     }
2156 
2157     if ((s->control >> 0) & 0x1f) {			/* NB_BITS_RD */
2158         if (s->control & (1 << 12))			/* CS_CMD */
2159             if (slave && slave->receive)
2160                 s->rxbuf = slave->receive(slave->opaque);
2161         s->control |= 1 << 15;				/* RDRB */
2162         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2163          * a DRQ.  When is the level IRQ supposed to be reset?  */
2164     }
2165 }
2166 
2167 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2168                                 unsigned size)
2169 {
2170     struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2171     int offset = addr & OMAP_MPUI_REG_MASK;
2172 
2173     if (size != 2) {
2174         return omap_badwidth_read16(opaque, addr);
2175     }
2176 
2177     switch (offset) {
2178     case 0x00:	/* RDR */
2179         s->control &= ~(1 << 15);			/* RDRB */
2180         return s->rxbuf;
2181 
2182     case 0x04:	/* CSR */
2183         return s->control;
2184 
2185     case 0x08:	/* SR1 */
2186         return s->setup[0];
2187     case 0x0c:	/* SR2 */
2188         return s->setup[1];
2189     case 0x10:	/* SR3 */
2190         return s->setup[2];
2191     case 0x14:	/* SR4 */
2192         return s->setup[3];
2193     case 0x18:	/* SR5 */
2194         return s->setup[4];
2195     }
2196 
2197     OMAP_BAD_REG(addr);
2198     return 0;
2199 }
2200 
2201 static void omap_uwire_write(void *opaque, hwaddr addr,
2202                              uint64_t value, unsigned size)
2203 {
2204     struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2205     int offset = addr & OMAP_MPUI_REG_MASK;
2206 
2207     if (size != 2) {
2208         return omap_badwidth_write16(opaque, addr, value);
2209     }
2210 
2211     switch (offset) {
2212     case 0x00:	/* TDR */
2213         s->txbuf = value;				/* TD */
2214         if ((s->setup[4] & (1 << 2)) &&			/* AUTO_TX_EN */
2215                         ((s->setup[4] & (1 << 3)) ||	/* CS_TOGGLE_TX_EN */
2216                          (s->control & (1 << 12)))) {	/* CS_CMD */
2217             s->control |= 1 << 14;			/* CSRB */
2218             omap_uwire_transfer_start(s);
2219         }
2220         break;
2221 
2222     case 0x04:	/* CSR */
2223         s->control = value & 0x1fff;
2224         if (value & (1 << 13))				/* START */
2225             omap_uwire_transfer_start(s);
2226         break;
2227 
2228     case 0x08:	/* SR1 */
2229         s->setup[0] = value & 0x003f;
2230         break;
2231 
2232     case 0x0c:	/* SR2 */
2233         s->setup[1] = value & 0x0fc0;
2234         break;
2235 
2236     case 0x10:	/* SR3 */
2237         s->setup[2] = value & 0x0003;
2238         break;
2239 
2240     case 0x14:	/* SR4 */
2241         s->setup[3] = value & 0x0001;
2242         break;
2243 
2244     case 0x18:	/* SR5 */
2245         s->setup[4] = value & 0x000f;
2246         break;
2247 
2248     default:
2249         OMAP_BAD_REG(addr);
2250         return;
2251     }
2252 }
2253 
2254 static const MemoryRegionOps omap_uwire_ops = {
2255     .read = omap_uwire_read,
2256     .write = omap_uwire_write,
2257     .endianness = DEVICE_NATIVE_ENDIAN,
2258 };
2259 
2260 static void omap_uwire_reset(struct omap_uwire_s *s)
2261 {
2262     s->control = 0;
2263     s->setup[0] = 0;
2264     s->setup[1] = 0;
2265     s->setup[2] = 0;
2266     s->setup[3] = 0;
2267     s->setup[4] = 0;
2268 }
2269 
2270 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2271                                             hwaddr base,
2272                                             qemu_irq txirq, qemu_irq rxirq,
2273                                             qemu_irq dma,
2274                                             omap_clk clk)
2275 {
2276     struct omap_uwire_s *s = (struct omap_uwire_s *)
2277             g_malloc0(sizeof(struct omap_uwire_s));
2278 
2279     s->txirq = txirq;
2280     s->rxirq = rxirq;
2281     s->txdrq = dma;
2282     omap_uwire_reset(s);
2283 
2284     memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2285     memory_region_add_subregion(system_memory, base, &s->iomem);
2286 
2287     return s;
2288 }
2289 
2290 void omap_uwire_attach(struct omap_uwire_s *s,
2291                 uWireSlave *slave, int chipselect)
2292 {
2293     if (chipselect < 0 || chipselect > 3) {
2294         fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
2295         exit(-1);
2296     }
2297 
2298     s->chip[chipselect] = slave;
2299 }
2300 
2301 /* Pseudonoise Pulse-Width Light Modulator */
2302 struct omap_pwl_s {
2303     MemoryRegion iomem;
2304     uint8_t output;
2305     uint8_t level;
2306     uint8_t enable;
2307     int clk;
2308 };
2309 
2310 static void omap_pwl_update(struct omap_pwl_s *s)
2311 {
2312     int output = (s->clk && s->enable) ? s->level : 0;
2313 
2314     if (output != s->output) {
2315         s->output = output;
2316         printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
2317     }
2318 }
2319 
2320 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2321                               unsigned size)
2322 {
2323     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2324     int offset = addr & OMAP_MPUI_REG_MASK;
2325 
2326     if (size != 1) {
2327         return omap_badwidth_read8(opaque, addr);
2328     }
2329 
2330     switch (offset) {
2331     case 0x00:	/* PWL_LEVEL */
2332         return s->level;
2333     case 0x04:	/* PWL_CTRL */
2334         return s->enable;
2335     }
2336     OMAP_BAD_REG(addr);
2337     return 0;
2338 }
2339 
2340 static void omap_pwl_write(void *opaque, hwaddr addr,
2341                            uint64_t value, unsigned size)
2342 {
2343     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2344     int offset = addr & OMAP_MPUI_REG_MASK;
2345 
2346     if (size != 1) {
2347         return omap_badwidth_write8(opaque, addr, value);
2348     }
2349 
2350     switch (offset) {
2351     case 0x00:	/* PWL_LEVEL */
2352         s->level = value;
2353         omap_pwl_update(s);
2354         break;
2355     case 0x04:	/* PWL_CTRL */
2356         s->enable = value & 1;
2357         omap_pwl_update(s);
2358         break;
2359     default:
2360         OMAP_BAD_REG(addr);
2361         return;
2362     }
2363 }
2364 
2365 static const MemoryRegionOps omap_pwl_ops = {
2366     .read = omap_pwl_read,
2367     .write = omap_pwl_write,
2368     .endianness = DEVICE_NATIVE_ENDIAN,
2369 };
2370 
2371 static void omap_pwl_reset(struct omap_pwl_s *s)
2372 {
2373     s->output = 0;
2374     s->level = 0;
2375     s->enable = 0;
2376     s->clk = 1;
2377     omap_pwl_update(s);
2378 }
2379 
2380 static void omap_pwl_clk_update(void *opaque, int line, int on)
2381 {
2382     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2383 
2384     s->clk = on;
2385     omap_pwl_update(s);
2386 }
2387 
2388 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2389                                         hwaddr base,
2390                                         omap_clk clk)
2391 {
2392     struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2393 
2394     omap_pwl_reset(s);
2395 
2396     memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2397                           "omap-pwl", 0x800);
2398     memory_region_add_subregion(system_memory, base, &s->iomem);
2399 
2400     omap_clk_adduser(clk, qemu_allocate_irqs(omap_pwl_clk_update, s, 1)[0]);
2401     return s;
2402 }
2403 
2404 /* Pulse-Width Tone module */
2405 struct omap_pwt_s {
2406     MemoryRegion iomem;
2407     uint8_t frc;
2408     uint8_t vrc;
2409     uint8_t gcr;
2410     omap_clk clk;
2411 };
2412 
2413 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2414                               unsigned size)
2415 {
2416     struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2417     int offset = addr & OMAP_MPUI_REG_MASK;
2418 
2419     if (size != 1) {
2420         return omap_badwidth_read8(opaque, addr);
2421     }
2422 
2423     switch (offset) {
2424     case 0x00:	/* FRC */
2425         return s->frc;
2426     case 0x04:	/* VCR */
2427         return s->vrc;
2428     case 0x08:	/* GCR */
2429         return s->gcr;
2430     }
2431     OMAP_BAD_REG(addr);
2432     return 0;
2433 }
2434 
2435 static void omap_pwt_write(void *opaque, hwaddr addr,
2436                            uint64_t value, unsigned size)
2437 {
2438     struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2439     int offset = addr & OMAP_MPUI_REG_MASK;
2440 
2441     if (size != 1) {
2442         return omap_badwidth_write8(opaque, addr, value);
2443     }
2444 
2445     switch (offset) {
2446     case 0x00:	/* FRC */
2447         s->frc = value & 0x3f;
2448         break;
2449     case 0x04:	/* VRC */
2450         if ((value ^ s->vrc) & 1) {
2451             if (value & 1)
2452                 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
2453                                 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2454                                 ((omap_clk_getrate(s->clk) >> 3) /
2455                                  /* Pre-multiplexer divider */
2456                                  ((s->gcr & 2) ? 1 : 154) /
2457                                  /* Octave multiplexer */
2458                                  (2 << (value & 3)) *
2459                                  /* 101/107 divider */
2460                                  ((value & (1 << 2)) ? 101 : 107) *
2461                                  /*  49/55 divider */
2462                                  ((value & (1 << 3)) ?  49 : 55) *
2463                                  /*  50/63 divider */
2464                                  ((value & (1 << 4)) ?  50 : 63) *
2465                                  /*  80/127 divider */
2466                                  ((value & (1 << 5)) ?  80 : 127) /
2467                                  (107 * 55 * 63 * 127)));
2468             else
2469                 printf("%s: silence!\n", __FUNCTION__);
2470         }
2471         s->vrc = value & 0x7f;
2472         break;
2473     case 0x08:	/* GCR */
2474         s->gcr = value & 3;
2475         break;
2476     default:
2477         OMAP_BAD_REG(addr);
2478         return;
2479     }
2480 }
2481 
2482 static const MemoryRegionOps omap_pwt_ops = {
2483     .read =omap_pwt_read,
2484     .write = omap_pwt_write,
2485     .endianness = DEVICE_NATIVE_ENDIAN,
2486 };
2487 
2488 static void omap_pwt_reset(struct omap_pwt_s *s)
2489 {
2490     s->frc = 0;
2491     s->vrc = 0;
2492     s->gcr = 0;
2493 }
2494 
2495 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2496                                         hwaddr base,
2497                                         omap_clk clk)
2498 {
2499     struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2500     s->clk = clk;
2501     omap_pwt_reset(s);
2502 
2503     memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2504                           "omap-pwt", 0x800);
2505     memory_region_add_subregion(system_memory, base, &s->iomem);
2506     return s;
2507 }
2508 
2509 /* Real-time Clock module */
2510 struct omap_rtc_s {
2511     MemoryRegion iomem;
2512     qemu_irq irq;
2513     qemu_irq alarm;
2514     QEMUTimer *clk;
2515 
2516     uint8_t interrupts;
2517     uint8_t status;
2518     int16_t comp_reg;
2519     int running;
2520     int pm_am;
2521     int auto_comp;
2522     int round;
2523     struct tm alarm_tm;
2524     time_t alarm_ti;
2525 
2526     struct tm current_tm;
2527     time_t ti;
2528     uint64_t tick;
2529 };
2530 
2531 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2532 {
2533     /* s->alarm is level-triggered */
2534     qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2535 }
2536 
2537 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2538 {
2539     s->alarm_ti = mktimegm(&s->alarm_tm);
2540     if (s->alarm_ti == -1)
2541         printf("%s: conversion failed\n", __FUNCTION__);
2542 }
2543 
2544 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2545                               unsigned size)
2546 {
2547     struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2548     int offset = addr & OMAP_MPUI_REG_MASK;
2549     uint8_t i;
2550 
2551     if (size != 1) {
2552         return omap_badwidth_read8(opaque, addr);
2553     }
2554 
2555     switch (offset) {
2556     case 0x00:	/* SECONDS_REG */
2557         return to_bcd(s->current_tm.tm_sec);
2558 
2559     case 0x04:	/* MINUTES_REG */
2560         return to_bcd(s->current_tm.tm_min);
2561 
2562     case 0x08:	/* HOURS_REG */
2563         if (s->pm_am)
2564             return ((s->current_tm.tm_hour > 11) << 7) |
2565                     to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2566         else
2567             return to_bcd(s->current_tm.tm_hour);
2568 
2569     case 0x0c:	/* DAYS_REG */
2570         return to_bcd(s->current_tm.tm_mday);
2571 
2572     case 0x10:	/* MONTHS_REG */
2573         return to_bcd(s->current_tm.tm_mon + 1);
2574 
2575     case 0x14:	/* YEARS_REG */
2576         return to_bcd(s->current_tm.tm_year % 100);
2577 
2578     case 0x18:	/* WEEK_REG */
2579         return s->current_tm.tm_wday;
2580 
2581     case 0x20:	/* ALARM_SECONDS_REG */
2582         return to_bcd(s->alarm_tm.tm_sec);
2583 
2584     case 0x24:	/* ALARM_MINUTES_REG */
2585         return to_bcd(s->alarm_tm.tm_min);
2586 
2587     case 0x28:	/* ALARM_HOURS_REG */
2588         if (s->pm_am)
2589             return ((s->alarm_tm.tm_hour > 11) << 7) |
2590                     to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2591         else
2592             return to_bcd(s->alarm_tm.tm_hour);
2593 
2594     case 0x2c:	/* ALARM_DAYS_REG */
2595         return to_bcd(s->alarm_tm.tm_mday);
2596 
2597     case 0x30:	/* ALARM_MONTHS_REG */
2598         return to_bcd(s->alarm_tm.tm_mon + 1);
2599 
2600     case 0x34:	/* ALARM_YEARS_REG */
2601         return to_bcd(s->alarm_tm.tm_year % 100);
2602 
2603     case 0x40:	/* RTC_CTRL_REG */
2604         return (s->pm_am << 3) | (s->auto_comp << 2) |
2605                 (s->round << 1) | s->running;
2606 
2607     case 0x44:	/* RTC_STATUS_REG */
2608         i = s->status;
2609         s->status &= ~0x3d;
2610         return i;
2611 
2612     case 0x48:	/* RTC_INTERRUPTS_REG */
2613         return s->interrupts;
2614 
2615     case 0x4c:	/* RTC_COMP_LSB_REG */
2616         return ((uint16_t) s->comp_reg) & 0xff;
2617 
2618     case 0x50:	/* RTC_COMP_MSB_REG */
2619         return ((uint16_t) s->comp_reg) >> 8;
2620     }
2621 
2622     OMAP_BAD_REG(addr);
2623     return 0;
2624 }
2625 
2626 static void omap_rtc_write(void *opaque, hwaddr addr,
2627                            uint64_t value, unsigned size)
2628 {
2629     struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2630     int offset = addr & OMAP_MPUI_REG_MASK;
2631     struct tm new_tm;
2632     time_t ti[2];
2633 
2634     if (size != 1) {
2635         return omap_badwidth_write8(opaque, addr, value);
2636     }
2637 
2638     switch (offset) {
2639     case 0x00:	/* SECONDS_REG */
2640 #ifdef ALMDEBUG
2641         printf("RTC SEC_REG <-- %02x\n", value);
2642 #endif
2643         s->ti -= s->current_tm.tm_sec;
2644         s->ti += from_bcd(value);
2645         return;
2646 
2647     case 0x04:	/* MINUTES_REG */
2648 #ifdef ALMDEBUG
2649         printf("RTC MIN_REG <-- %02x\n", value);
2650 #endif
2651         s->ti -= s->current_tm.tm_min * 60;
2652         s->ti += from_bcd(value) * 60;
2653         return;
2654 
2655     case 0x08:	/* HOURS_REG */
2656 #ifdef ALMDEBUG
2657         printf("RTC HRS_REG <-- %02x\n", value);
2658 #endif
2659         s->ti -= s->current_tm.tm_hour * 3600;
2660         if (s->pm_am) {
2661             s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2662             s->ti += ((value >> 7) & 1) * 43200;
2663         } else
2664             s->ti += from_bcd(value & 0x3f) * 3600;
2665         return;
2666 
2667     case 0x0c:	/* DAYS_REG */
2668 #ifdef ALMDEBUG
2669         printf("RTC DAY_REG <-- %02x\n", value);
2670 #endif
2671         s->ti -= s->current_tm.tm_mday * 86400;
2672         s->ti += from_bcd(value) * 86400;
2673         return;
2674 
2675     case 0x10:	/* MONTHS_REG */
2676 #ifdef ALMDEBUG
2677         printf("RTC MTH_REG <-- %02x\n", value);
2678 #endif
2679         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2680         new_tm.tm_mon = from_bcd(value);
2681         ti[0] = mktimegm(&s->current_tm);
2682         ti[1] = mktimegm(&new_tm);
2683 
2684         if (ti[0] != -1 && ti[1] != -1) {
2685             s->ti -= ti[0];
2686             s->ti += ti[1];
2687         } else {
2688             /* A less accurate version */
2689             s->ti -= s->current_tm.tm_mon * 2592000;
2690             s->ti += from_bcd(value) * 2592000;
2691         }
2692         return;
2693 
2694     case 0x14:	/* YEARS_REG */
2695 #ifdef ALMDEBUG
2696         printf("RTC YRS_REG <-- %02x\n", value);
2697 #endif
2698         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2699         new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2700         ti[0] = mktimegm(&s->current_tm);
2701         ti[1] = mktimegm(&new_tm);
2702 
2703         if (ti[0] != -1 && ti[1] != -1) {
2704             s->ti -= ti[0];
2705             s->ti += ti[1];
2706         } else {
2707             /* A less accurate version */
2708             s->ti -= (s->current_tm.tm_year % 100) * 31536000;
2709             s->ti += from_bcd(value) * 31536000;
2710         }
2711         return;
2712 
2713     case 0x18:	/* WEEK_REG */
2714         return;	/* Ignored */
2715 
2716     case 0x20:	/* ALARM_SECONDS_REG */
2717 #ifdef ALMDEBUG
2718         printf("ALM SEC_REG <-- %02x\n", value);
2719 #endif
2720         s->alarm_tm.tm_sec = from_bcd(value);
2721         omap_rtc_alarm_update(s);
2722         return;
2723 
2724     case 0x24:	/* ALARM_MINUTES_REG */
2725 #ifdef ALMDEBUG
2726         printf("ALM MIN_REG <-- %02x\n", value);
2727 #endif
2728         s->alarm_tm.tm_min = from_bcd(value);
2729         omap_rtc_alarm_update(s);
2730         return;
2731 
2732     case 0x28:	/* ALARM_HOURS_REG */
2733 #ifdef ALMDEBUG
2734         printf("ALM HRS_REG <-- %02x\n", value);
2735 #endif
2736         if (s->pm_am)
2737             s->alarm_tm.tm_hour =
2738                     ((from_bcd(value & 0x3f)) % 12) +
2739                     ((value >> 7) & 1) * 12;
2740         else
2741             s->alarm_tm.tm_hour = from_bcd(value);
2742         omap_rtc_alarm_update(s);
2743         return;
2744 
2745     case 0x2c:	/* ALARM_DAYS_REG */
2746 #ifdef ALMDEBUG
2747         printf("ALM DAY_REG <-- %02x\n", value);
2748 #endif
2749         s->alarm_tm.tm_mday = from_bcd(value);
2750         omap_rtc_alarm_update(s);
2751         return;
2752 
2753     case 0x30:	/* ALARM_MONTHS_REG */
2754 #ifdef ALMDEBUG
2755         printf("ALM MON_REG <-- %02x\n", value);
2756 #endif
2757         s->alarm_tm.tm_mon = from_bcd(value);
2758         omap_rtc_alarm_update(s);
2759         return;
2760 
2761     case 0x34:	/* ALARM_YEARS_REG */
2762 #ifdef ALMDEBUG
2763         printf("ALM YRS_REG <-- %02x\n", value);
2764 #endif
2765         s->alarm_tm.tm_year = from_bcd(value);
2766         omap_rtc_alarm_update(s);
2767         return;
2768 
2769     case 0x40:	/* RTC_CTRL_REG */
2770 #ifdef ALMDEBUG
2771         printf("RTC CONTROL <-- %02x\n", value);
2772 #endif
2773         s->pm_am = (value >> 3) & 1;
2774         s->auto_comp = (value >> 2) & 1;
2775         s->round = (value >> 1) & 1;
2776         s->running = value & 1;
2777         s->status &= 0xfd;
2778         s->status |= s->running << 1;
2779         return;
2780 
2781     case 0x44:	/* RTC_STATUS_REG */
2782 #ifdef ALMDEBUG
2783         printf("RTC STATUSL <-- %02x\n", value);
2784 #endif
2785         s->status &= ~((value & 0xc0) ^ 0x80);
2786         omap_rtc_interrupts_update(s);
2787         return;
2788 
2789     case 0x48:	/* RTC_INTERRUPTS_REG */
2790 #ifdef ALMDEBUG
2791         printf("RTC INTRS <-- %02x\n", value);
2792 #endif
2793         s->interrupts = value;
2794         return;
2795 
2796     case 0x4c:	/* RTC_COMP_LSB_REG */
2797 #ifdef ALMDEBUG
2798         printf("RTC COMPLSB <-- %02x\n", value);
2799 #endif
2800         s->comp_reg &= 0xff00;
2801         s->comp_reg |= 0x00ff & value;
2802         return;
2803 
2804     case 0x50:	/* RTC_COMP_MSB_REG */
2805 #ifdef ALMDEBUG
2806         printf("RTC COMPMSB <-- %02x\n", value);
2807 #endif
2808         s->comp_reg &= 0x00ff;
2809         s->comp_reg |= 0xff00 & (value << 8);
2810         return;
2811 
2812     default:
2813         OMAP_BAD_REG(addr);
2814         return;
2815     }
2816 }
2817 
2818 static const MemoryRegionOps omap_rtc_ops = {
2819     .read = omap_rtc_read,
2820     .write = omap_rtc_write,
2821     .endianness = DEVICE_NATIVE_ENDIAN,
2822 };
2823 
2824 static void omap_rtc_tick(void *opaque)
2825 {
2826     struct omap_rtc_s *s = opaque;
2827 
2828     if (s->round) {
2829         /* Round to nearest full minute.  */
2830         if (s->current_tm.tm_sec < 30)
2831             s->ti -= s->current_tm.tm_sec;
2832         else
2833             s->ti += 60 - s->current_tm.tm_sec;
2834 
2835         s->round = 0;
2836     }
2837 
2838     localtime_r(&s->ti, &s->current_tm);
2839 
2840     if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2841         s->status |= 0x40;
2842         omap_rtc_interrupts_update(s);
2843     }
2844 
2845     if (s->interrupts & 0x04)
2846         switch (s->interrupts & 3) {
2847         case 0:
2848             s->status |= 0x04;
2849             qemu_irq_pulse(s->irq);
2850             break;
2851         case 1:
2852             if (s->current_tm.tm_sec)
2853                 break;
2854             s->status |= 0x08;
2855             qemu_irq_pulse(s->irq);
2856             break;
2857         case 2:
2858             if (s->current_tm.tm_sec || s->current_tm.tm_min)
2859                 break;
2860             s->status |= 0x10;
2861             qemu_irq_pulse(s->irq);
2862             break;
2863         case 3:
2864             if (s->current_tm.tm_sec ||
2865                             s->current_tm.tm_min || s->current_tm.tm_hour)
2866                 break;
2867             s->status |= 0x20;
2868             qemu_irq_pulse(s->irq);
2869             break;
2870         }
2871 
2872     /* Move on */
2873     if (s->running)
2874         s->ti ++;
2875     s->tick += 1000;
2876 
2877     /*
2878      * Every full hour add a rough approximation of the compensation
2879      * register to the 32kHz Timer (which drives the RTC) value.
2880      */
2881     if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2882         s->tick += s->comp_reg * 1000 / 32768;
2883 
2884     qemu_mod_timer(s->clk, s->tick);
2885 }
2886 
2887 static void omap_rtc_reset(struct omap_rtc_s *s)
2888 {
2889     struct tm tm;
2890 
2891     s->interrupts = 0;
2892     s->comp_reg = 0;
2893     s->running = 0;
2894     s->pm_am = 0;
2895     s->auto_comp = 0;
2896     s->round = 0;
2897     s->tick = qemu_get_clock_ms(rtc_clock);
2898     memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2899     s->alarm_tm.tm_mday = 0x01;
2900     s->status = 1 << 7;
2901     qemu_get_timedate(&tm, 0);
2902     s->ti = mktimegm(&tm);
2903 
2904     omap_rtc_alarm_update(s);
2905     omap_rtc_tick(s);
2906 }
2907 
2908 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2909                                         hwaddr base,
2910                                         qemu_irq timerirq, qemu_irq alarmirq,
2911                                         omap_clk clk)
2912 {
2913     struct omap_rtc_s *s = (struct omap_rtc_s *)
2914             g_malloc0(sizeof(struct omap_rtc_s));
2915 
2916     s->irq = timerirq;
2917     s->alarm = alarmirq;
2918     s->clk = qemu_new_timer_ms(rtc_clock, omap_rtc_tick, s);
2919 
2920     omap_rtc_reset(s);
2921 
2922     memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2923                           "omap-rtc", 0x800);
2924     memory_region_add_subregion(system_memory, base, &s->iomem);
2925 
2926     return s;
2927 }
2928 
2929 /* Multi-channel Buffered Serial Port interfaces */
2930 struct omap_mcbsp_s {
2931     MemoryRegion iomem;
2932     qemu_irq txirq;
2933     qemu_irq rxirq;
2934     qemu_irq txdrq;
2935     qemu_irq rxdrq;
2936 
2937     uint16_t spcr[2];
2938     uint16_t rcr[2];
2939     uint16_t xcr[2];
2940     uint16_t srgr[2];
2941     uint16_t mcr[2];
2942     uint16_t pcr;
2943     uint16_t rcer[8];
2944     uint16_t xcer[8];
2945     int tx_rate;
2946     int rx_rate;
2947     int tx_req;
2948     int rx_req;
2949 
2950     I2SCodec *codec;
2951     QEMUTimer *source_timer;
2952     QEMUTimer *sink_timer;
2953 };
2954 
2955 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2956 {
2957     int irq;
2958 
2959     switch ((s->spcr[0] >> 4) & 3) {			/* RINTM */
2960     case 0:
2961         irq = (s->spcr[0] >> 1) & 1;			/* RRDY */
2962         break;
2963     case 3:
2964         irq = (s->spcr[0] >> 3) & 1;			/* RSYNCERR */
2965         break;
2966     default:
2967         irq = 0;
2968         break;
2969     }
2970 
2971     if (irq)
2972         qemu_irq_pulse(s->rxirq);
2973 
2974     switch ((s->spcr[1] >> 4) & 3) {			/* XINTM */
2975     case 0:
2976         irq = (s->spcr[1] >> 1) & 1;			/* XRDY */
2977         break;
2978     case 3:
2979         irq = (s->spcr[1] >> 3) & 1;			/* XSYNCERR */
2980         break;
2981     default:
2982         irq = 0;
2983         break;
2984     }
2985 
2986     if (irq)
2987         qemu_irq_pulse(s->txirq);
2988 }
2989 
2990 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
2991 {
2992     if ((s->spcr[0] >> 1) & 1)				/* RRDY */
2993         s->spcr[0] |= 1 << 2;				/* RFULL */
2994     s->spcr[0] |= 1 << 1;				/* RRDY */
2995     qemu_irq_raise(s->rxdrq);
2996     omap_mcbsp_intr_update(s);
2997 }
2998 
2999 static void omap_mcbsp_source_tick(void *opaque)
3000 {
3001     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3002     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3003 
3004     if (!s->rx_rate)
3005         return;
3006     if (s->rx_req)
3007         printf("%s: Rx FIFO overrun\n", __FUNCTION__);
3008 
3009     s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3010 
3011     omap_mcbsp_rx_newdata(s);
3012     qemu_mod_timer(s->source_timer, qemu_get_clock_ns(vm_clock) +
3013                    get_ticks_per_sec());
3014 }
3015 
3016 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3017 {
3018     if (!s->codec || !s->codec->rts)
3019         omap_mcbsp_source_tick(s);
3020     else if (s->codec->in.len) {
3021         s->rx_req = s->codec->in.len;
3022         omap_mcbsp_rx_newdata(s);
3023     }
3024 }
3025 
3026 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3027 {
3028     qemu_del_timer(s->source_timer);
3029 }
3030 
3031 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3032 {
3033     s->spcr[0] &= ~(1 << 1);				/* RRDY */
3034     qemu_irq_lower(s->rxdrq);
3035     omap_mcbsp_intr_update(s);
3036 }
3037 
3038 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3039 {
3040     s->spcr[1] |= 1 << 1;				/* XRDY */
3041     qemu_irq_raise(s->txdrq);
3042     omap_mcbsp_intr_update(s);
3043 }
3044 
3045 static void omap_mcbsp_sink_tick(void *opaque)
3046 {
3047     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3048     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3049 
3050     if (!s->tx_rate)
3051         return;
3052     if (s->tx_req)
3053         printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3054 
3055     s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3056 
3057     omap_mcbsp_tx_newdata(s);
3058     qemu_mod_timer(s->sink_timer, qemu_get_clock_ns(vm_clock) +
3059                    get_ticks_per_sec());
3060 }
3061 
3062 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3063 {
3064     if (!s->codec || !s->codec->cts)
3065         omap_mcbsp_sink_tick(s);
3066     else if (s->codec->out.size) {
3067         s->tx_req = s->codec->out.size;
3068         omap_mcbsp_tx_newdata(s);
3069     }
3070 }
3071 
3072 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3073 {
3074     s->spcr[1] &= ~(1 << 1);				/* XRDY */
3075     qemu_irq_lower(s->txdrq);
3076     omap_mcbsp_intr_update(s);
3077     if (s->codec && s->codec->cts)
3078         s->codec->tx_swallow(s->codec->opaque);
3079 }
3080 
3081 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3082 {
3083     s->tx_req = 0;
3084     omap_mcbsp_tx_done(s);
3085     qemu_del_timer(s->sink_timer);
3086 }
3087 
3088 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3089 {
3090     int prev_rx_rate, prev_tx_rate;
3091     int rx_rate = 0, tx_rate = 0;
3092     int cpu_rate = 1500000;	/* XXX */
3093 
3094     /* TODO: check CLKSTP bit */
3095     if (s->spcr[1] & (1 << 6)) {			/* GRST */
3096         if (s->spcr[0] & (1 << 0)) {			/* RRST */
3097             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
3098                             (s->pcr & (1 << 8))) {	/* CLKRM */
3099                 if (~s->pcr & (1 << 7))			/* SCLKME */
3100                     rx_rate = cpu_rate /
3101                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
3102             } else
3103                 if (s->codec)
3104                     rx_rate = s->codec->rx_rate;
3105         }
3106 
3107         if (s->spcr[1] & (1 << 0)) {			/* XRST */
3108             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
3109                             (s->pcr & (1 << 9))) {	/* CLKXM */
3110                 if (~s->pcr & (1 << 7))			/* SCLKME */
3111                     tx_rate = cpu_rate /
3112                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
3113             } else
3114                 if (s->codec)
3115                     tx_rate = s->codec->tx_rate;
3116         }
3117     }
3118     prev_tx_rate = s->tx_rate;
3119     prev_rx_rate = s->rx_rate;
3120     s->tx_rate = tx_rate;
3121     s->rx_rate = rx_rate;
3122 
3123     if (s->codec)
3124         s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3125 
3126     if (!prev_tx_rate && tx_rate)
3127         omap_mcbsp_tx_start(s);
3128     else if (s->tx_rate && !tx_rate)
3129         omap_mcbsp_tx_stop(s);
3130 
3131     if (!prev_rx_rate && rx_rate)
3132         omap_mcbsp_rx_start(s);
3133     else if (prev_tx_rate && !tx_rate)
3134         omap_mcbsp_rx_stop(s);
3135 }
3136 
3137 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3138                                 unsigned size)
3139 {
3140     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3141     int offset = addr & OMAP_MPUI_REG_MASK;
3142     uint16_t ret;
3143 
3144     if (size != 2) {
3145         return omap_badwidth_read16(opaque, addr);
3146     }
3147 
3148     switch (offset) {
3149     case 0x00:	/* DRR2 */
3150         if (((s->rcr[0] >> 5) & 7) < 3)			/* RWDLEN1 */
3151             return 0x0000;
3152         /* Fall through.  */
3153     case 0x02:	/* DRR1 */
3154         if (s->rx_req < 2) {
3155             printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3156             omap_mcbsp_rx_done(s);
3157         } else {
3158             s->tx_req -= 2;
3159             if (s->codec && s->codec->in.len >= 2) {
3160                 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3161                 ret |= s->codec->in.fifo[s->codec->in.start ++];
3162                 s->codec->in.len -= 2;
3163             } else
3164                 ret = 0x0000;
3165             if (!s->tx_req)
3166                 omap_mcbsp_rx_done(s);
3167             return ret;
3168         }
3169         return 0x0000;
3170 
3171     case 0x04:	/* DXR2 */
3172     case 0x06:	/* DXR1 */
3173         return 0x0000;
3174 
3175     case 0x08:	/* SPCR2 */
3176         return s->spcr[1];
3177     case 0x0a:	/* SPCR1 */
3178         return s->spcr[0];
3179     case 0x0c:	/* RCR2 */
3180         return s->rcr[1];
3181     case 0x0e:	/* RCR1 */
3182         return s->rcr[0];
3183     case 0x10:	/* XCR2 */
3184         return s->xcr[1];
3185     case 0x12:	/* XCR1 */
3186         return s->xcr[0];
3187     case 0x14:	/* SRGR2 */
3188         return s->srgr[1];
3189     case 0x16:	/* SRGR1 */
3190         return s->srgr[0];
3191     case 0x18:	/* MCR2 */
3192         return s->mcr[1];
3193     case 0x1a:	/* MCR1 */
3194         return s->mcr[0];
3195     case 0x1c:	/* RCERA */
3196         return s->rcer[0];
3197     case 0x1e:	/* RCERB */
3198         return s->rcer[1];
3199     case 0x20:	/* XCERA */
3200         return s->xcer[0];
3201     case 0x22:	/* XCERB */
3202         return s->xcer[1];
3203     case 0x24:	/* PCR0 */
3204         return s->pcr;
3205     case 0x26:	/* RCERC */
3206         return s->rcer[2];
3207     case 0x28:	/* RCERD */
3208         return s->rcer[3];
3209     case 0x2a:	/* XCERC */
3210         return s->xcer[2];
3211     case 0x2c:	/* XCERD */
3212         return s->xcer[3];
3213     case 0x2e:	/* RCERE */
3214         return s->rcer[4];
3215     case 0x30:	/* RCERF */
3216         return s->rcer[5];
3217     case 0x32:	/* XCERE */
3218         return s->xcer[4];
3219     case 0x34:	/* XCERF */
3220         return s->xcer[5];
3221     case 0x36:	/* RCERG */
3222         return s->rcer[6];
3223     case 0x38:	/* RCERH */
3224         return s->rcer[7];
3225     case 0x3a:	/* XCERG */
3226         return s->xcer[6];
3227     case 0x3c:	/* XCERH */
3228         return s->xcer[7];
3229     }
3230 
3231     OMAP_BAD_REG(addr);
3232     return 0;
3233 }
3234 
3235 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3236                 uint32_t value)
3237 {
3238     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3239     int offset = addr & OMAP_MPUI_REG_MASK;
3240 
3241     switch (offset) {
3242     case 0x00:	/* DRR2 */
3243     case 0x02:	/* DRR1 */
3244         OMAP_RO_REG(addr);
3245         return;
3246 
3247     case 0x04:	/* DXR2 */
3248         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
3249             return;
3250         /* Fall through.  */
3251     case 0x06:	/* DXR1 */
3252         if (s->tx_req > 1) {
3253             s->tx_req -= 2;
3254             if (s->codec && s->codec->cts) {
3255                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3256                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3257             }
3258             if (s->tx_req < 2)
3259                 omap_mcbsp_tx_done(s);
3260         } else
3261             printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3262         return;
3263 
3264     case 0x08:	/* SPCR2 */
3265         s->spcr[1] &= 0x0002;
3266         s->spcr[1] |= 0x03f9 & value;
3267         s->spcr[1] |= 0x0004 & (value << 2);		/* XEMPTY := XRST */
3268         if (~value & 1)					/* XRST */
3269             s->spcr[1] &= ~6;
3270         omap_mcbsp_req_update(s);
3271         return;
3272     case 0x0a:	/* SPCR1 */
3273         s->spcr[0] &= 0x0006;
3274         s->spcr[0] |= 0xf8f9 & value;
3275         if (value & (1 << 15))				/* DLB */
3276             printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
3277         if (~value & 1) {				/* RRST */
3278             s->spcr[0] &= ~6;
3279             s->rx_req = 0;
3280             omap_mcbsp_rx_done(s);
3281         }
3282         omap_mcbsp_req_update(s);
3283         return;
3284 
3285     case 0x0c:	/* RCR2 */
3286         s->rcr[1] = value & 0xffff;
3287         return;
3288     case 0x0e:	/* RCR1 */
3289         s->rcr[0] = value & 0x7fe0;
3290         return;
3291     case 0x10:	/* XCR2 */
3292         s->xcr[1] = value & 0xffff;
3293         return;
3294     case 0x12:	/* XCR1 */
3295         s->xcr[0] = value & 0x7fe0;
3296         return;
3297     case 0x14:	/* SRGR2 */
3298         s->srgr[1] = value & 0xffff;
3299         omap_mcbsp_req_update(s);
3300         return;
3301     case 0x16:	/* SRGR1 */
3302         s->srgr[0] = value & 0xffff;
3303         omap_mcbsp_req_update(s);
3304         return;
3305     case 0x18:	/* MCR2 */
3306         s->mcr[1] = value & 0x03e3;
3307         if (value & 3)					/* XMCM */
3308             printf("%s: Tx channel selection mode enable attempt\n",
3309                             __FUNCTION__);
3310         return;
3311     case 0x1a:	/* MCR1 */
3312         s->mcr[0] = value & 0x03e1;
3313         if (value & 1)					/* RMCM */
3314             printf("%s: Rx channel selection mode enable attempt\n",
3315                             __FUNCTION__);
3316         return;
3317     case 0x1c:	/* RCERA */
3318         s->rcer[0] = value & 0xffff;
3319         return;
3320     case 0x1e:	/* RCERB */
3321         s->rcer[1] = value & 0xffff;
3322         return;
3323     case 0x20:	/* XCERA */
3324         s->xcer[0] = value & 0xffff;
3325         return;
3326     case 0x22:	/* XCERB */
3327         s->xcer[1] = value & 0xffff;
3328         return;
3329     case 0x24:	/* PCR0 */
3330         s->pcr = value & 0x7faf;
3331         return;
3332     case 0x26:	/* RCERC */
3333         s->rcer[2] = value & 0xffff;
3334         return;
3335     case 0x28:	/* RCERD */
3336         s->rcer[3] = value & 0xffff;
3337         return;
3338     case 0x2a:	/* XCERC */
3339         s->xcer[2] = value & 0xffff;
3340         return;
3341     case 0x2c:	/* XCERD */
3342         s->xcer[3] = value & 0xffff;
3343         return;
3344     case 0x2e:	/* RCERE */
3345         s->rcer[4] = value & 0xffff;
3346         return;
3347     case 0x30:	/* RCERF */
3348         s->rcer[5] = value & 0xffff;
3349         return;
3350     case 0x32:	/* XCERE */
3351         s->xcer[4] = value & 0xffff;
3352         return;
3353     case 0x34:	/* XCERF */
3354         s->xcer[5] = value & 0xffff;
3355         return;
3356     case 0x36:	/* RCERG */
3357         s->rcer[6] = value & 0xffff;
3358         return;
3359     case 0x38:	/* RCERH */
3360         s->rcer[7] = value & 0xffff;
3361         return;
3362     case 0x3a:	/* XCERG */
3363         s->xcer[6] = value & 0xffff;
3364         return;
3365     case 0x3c:	/* XCERH */
3366         s->xcer[7] = value & 0xffff;
3367         return;
3368     }
3369 
3370     OMAP_BAD_REG(addr);
3371 }
3372 
3373 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3374                 uint32_t value)
3375 {
3376     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3377     int offset = addr & OMAP_MPUI_REG_MASK;
3378 
3379     if (offset == 0x04) {				/* DXR */
3380         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
3381             return;
3382         if (s->tx_req > 3) {
3383             s->tx_req -= 4;
3384             if (s->codec && s->codec->cts) {
3385                 s->codec->out.fifo[s->codec->out.len ++] =
3386                         (value >> 24) & 0xff;
3387                 s->codec->out.fifo[s->codec->out.len ++] =
3388                         (value >> 16) & 0xff;
3389                 s->codec->out.fifo[s->codec->out.len ++] =
3390                         (value >> 8) & 0xff;
3391                 s->codec->out.fifo[s->codec->out.len ++] =
3392                         (value >> 0) & 0xff;
3393             }
3394             if (s->tx_req < 4)
3395                 omap_mcbsp_tx_done(s);
3396         } else
3397             printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3398         return;
3399     }
3400 
3401     omap_badwidth_write16(opaque, addr, value);
3402 }
3403 
3404 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3405                              uint64_t value, unsigned size)
3406 {
3407     switch (size) {
3408     case 2: return omap_mcbsp_writeh(opaque, addr, value);
3409     case 4: return omap_mcbsp_writew(opaque, addr, value);
3410     default: return omap_badwidth_write16(opaque, addr, value);
3411     }
3412 }
3413 
3414 static const MemoryRegionOps omap_mcbsp_ops = {
3415     .read = omap_mcbsp_read,
3416     .write = omap_mcbsp_write,
3417     .endianness = DEVICE_NATIVE_ENDIAN,
3418 };
3419 
3420 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3421 {
3422     memset(&s->spcr, 0, sizeof(s->spcr));
3423     memset(&s->rcr, 0, sizeof(s->rcr));
3424     memset(&s->xcr, 0, sizeof(s->xcr));
3425     s->srgr[0] = 0x0001;
3426     s->srgr[1] = 0x2000;
3427     memset(&s->mcr, 0, sizeof(s->mcr));
3428     memset(&s->pcr, 0, sizeof(s->pcr));
3429     memset(&s->rcer, 0, sizeof(s->rcer));
3430     memset(&s->xcer, 0, sizeof(s->xcer));
3431     s->tx_req = 0;
3432     s->rx_req = 0;
3433     s->tx_rate = 0;
3434     s->rx_rate = 0;
3435     qemu_del_timer(s->source_timer);
3436     qemu_del_timer(s->sink_timer);
3437 }
3438 
3439 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3440                                             hwaddr base,
3441                                             qemu_irq txirq, qemu_irq rxirq,
3442                                             qemu_irq *dma, omap_clk clk)
3443 {
3444     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *)
3445             g_malloc0(sizeof(struct omap_mcbsp_s));
3446 
3447     s->txirq = txirq;
3448     s->rxirq = rxirq;
3449     s->txdrq = dma[0];
3450     s->rxdrq = dma[1];
3451     s->sink_timer = qemu_new_timer_ns(vm_clock, omap_mcbsp_sink_tick, s);
3452     s->source_timer = qemu_new_timer_ns(vm_clock, omap_mcbsp_source_tick, s);
3453     omap_mcbsp_reset(s);
3454 
3455     memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3456     memory_region_add_subregion(system_memory, base, &s->iomem);
3457 
3458     return s;
3459 }
3460 
3461 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3462 {
3463     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3464 
3465     if (s->rx_rate) {
3466         s->rx_req = s->codec->in.len;
3467         omap_mcbsp_rx_newdata(s);
3468     }
3469 }
3470 
3471 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3472 {
3473     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3474 
3475     if (s->tx_rate) {
3476         s->tx_req = s->codec->out.size;
3477         omap_mcbsp_tx_newdata(s);
3478     }
3479 }
3480 
3481 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3482 {
3483     s->codec = slave;
3484     slave->rx_swallow = qemu_allocate_irqs(omap_mcbsp_i2s_swallow, s, 1)[0];
3485     slave->tx_start = qemu_allocate_irqs(omap_mcbsp_i2s_start, s, 1)[0];
3486 }
3487 
3488 /* LED Pulse Generators */
3489 struct omap_lpg_s {
3490     MemoryRegion iomem;
3491     QEMUTimer *tm;
3492 
3493     uint8_t control;
3494     uint8_t power;
3495     int64_t on;
3496     int64_t period;
3497     int clk;
3498     int cycle;
3499 };
3500 
3501 static void omap_lpg_tick(void *opaque)
3502 {
3503     struct omap_lpg_s *s = opaque;
3504 
3505     if (s->cycle)
3506         qemu_mod_timer(s->tm, qemu_get_clock_ms(vm_clock) + s->period - s->on);
3507     else
3508         qemu_mod_timer(s->tm, qemu_get_clock_ms(vm_clock) + s->on);
3509 
3510     s->cycle = !s->cycle;
3511     printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
3512 }
3513 
3514 static void omap_lpg_update(struct omap_lpg_s *s)
3515 {
3516     int64_t on, period = 1, ticks = 1000;
3517     static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3518 
3519     if (~s->control & (1 << 6))					/* LPGRES */
3520         on = 0;
3521     else if (s->control & (1 << 7))				/* PERM_ON */
3522         on = period;
3523     else {
3524         period = muldiv64(ticks, per[s->control & 7],		/* PERCTRL */
3525                         256 / 32);
3526         on = (s->clk && s->power) ? muldiv64(ticks,
3527                         per[(s->control >> 3) & 7], 256) : 0;	/* ONCTRL */
3528     }
3529 
3530     qemu_del_timer(s->tm);
3531     if (on == period && s->on < s->period)
3532         printf("%s: LED is on\n", __FUNCTION__);
3533     else if (on == 0 && s->on)
3534         printf("%s: LED is off\n", __FUNCTION__);
3535     else if (on && (on != s->on || period != s->period)) {
3536         s->cycle = 0;
3537         s->on = on;
3538         s->period = period;
3539         omap_lpg_tick(s);
3540         return;
3541     }
3542 
3543     s->on = on;
3544     s->period = period;
3545 }
3546 
3547 static void omap_lpg_reset(struct omap_lpg_s *s)
3548 {
3549     s->control = 0x00;
3550     s->power = 0x00;
3551     s->clk = 1;
3552     omap_lpg_update(s);
3553 }
3554 
3555 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3556                               unsigned size)
3557 {
3558     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3559     int offset = addr & OMAP_MPUI_REG_MASK;
3560 
3561     if (size != 1) {
3562         return omap_badwidth_read8(opaque, addr);
3563     }
3564 
3565     switch (offset) {
3566     case 0x00:	/* LCR */
3567         return s->control;
3568 
3569     case 0x04:	/* PMR */
3570         return s->power;
3571     }
3572 
3573     OMAP_BAD_REG(addr);
3574     return 0;
3575 }
3576 
3577 static void omap_lpg_write(void *opaque, hwaddr addr,
3578                            uint64_t value, unsigned size)
3579 {
3580     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3581     int offset = addr & OMAP_MPUI_REG_MASK;
3582 
3583     if (size != 1) {
3584         return omap_badwidth_write8(opaque, addr, value);
3585     }
3586 
3587     switch (offset) {
3588     case 0x00:	/* LCR */
3589         if (~value & (1 << 6))					/* LPGRES */
3590             omap_lpg_reset(s);
3591         s->control = value & 0xff;
3592         omap_lpg_update(s);
3593         return;
3594 
3595     case 0x04:	/* PMR */
3596         s->power = value & 0x01;
3597         omap_lpg_update(s);
3598         return;
3599 
3600     default:
3601         OMAP_BAD_REG(addr);
3602         return;
3603     }
3604 }
3605 
3606 static const MemoryRegionOps omap_lpg_ops = {
3607     .read = omap_lpg_read,
3608     .write = omap_lpg_write,
3609     .endianness = DEVICE_NATIVE_ENDIAN,
3610 };
3611 
3612 static void omap_lpg_clk_update(void *opaque, int line, int on)
3613 {
3614     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3615 
3616     s->clk = on;
3617     omap_lpg_update(s);
3618 }
3619 
3620 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3621                                         hwaddr base, omap_clk clk)
3622 {
3623     struct omap_lpg_s *s = (struct omap_lpg_s *)
3624             g_malloc0(sizeof(struct omap_lpg_s));
3625 
3626     s->tm = qemu_new_timer_ms(vm_clock, omap_lpg_tick, s);
3627 
3628     omap_lpg_reset(s);
3629 
3630     memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3631     memory_region_add_subregion(system_memory, base, &s->iomem);
3632 
3633     omap_clk_adduser(clk, qemu_allocate_irqs(omap_lpg_clk_update, s, 1)[0]);
3634 
3635     return s;
3636 }
3637 
3638 /* MPUI Peripheral Bridge configuration */
3639 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3640                                   unsigned size)
3641 {
3642     if (size != 2) {
3643         return omap_badwidth_read16(opaque, addr);
3644     }
3645 
3646     if (addr == OMAP_MPUI_BASE)	/* CMR */
3647         return 0xfe4d;
3648 
3649     OMAP_BAD_REG(addr);
3650     return 0;
3651 }
3652 
3653 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3654                                uint64_t value, unsigned size)
3655 {
3656     /* FIXME: infinite loop */
3657     omap_badwidth_write16(opaque, addr, value);
3658 }
3659 
3660 static const MemoryRegionOps omap_mpui_io_ops = {
3661     .read = omap_mpui_io_read,
3662     .write = omap_mpui_io_write,
3663     .endianness = DEVICE_NATIVE_ENDIAN,
3664 };
3665 
3666 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3667                                struct omap_mpu_state_s *mpu)
3668 {
3669     memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3670                           "omap-mpui-io", 0x7fff);
3671     memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3672                                 &mpu->mpui_io_iomem);
3673 }
3674 
3675 /* General chip reset */
3676 static void omap1_mpu_reset(void *opaque)
3677 {
3678     struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3679 
3680     omap_dma_reset(mpu->dma);
3681     omap_mpu_timer_reset(mpu->timer[0]);
3682     omap_mpu_timer_reset(mpu->timer[1]);
3683     omap_mpu_timer_reset(mpu->timer[2]);
3684     omap_wd_timer_reset(mpu->wdt);
3685     omap_os_timer_reset(mpu->os_timer);
3686     omap_lcdc_reset(mpu->lcd);
3687     omap_ulpd_pm_reset(mpu);
3688     omap_pin_cfg_reset(mpu);
3689     omap_mpui_reset(mpu);
3690     omap_tipb_bridge_reset(mpu->private_tipb);
3691     omap_tipb_bridge_reset(mpu->public_tipb);
3692     omap_dpll_reset(mpu->dpll[0]);
3693     omap_dpll_reset(mpu->dpll[1]);
3694     omap_dpll_reset(mpu->dpll[2]);
3695     omap_uart_reset(mpu->uart[0]);
3696     omap_uart_reset(mpu->uart[1]);
3697     omap_uart_reset(mpu->uart[2]);
3698     omap_mmc_reset(mpu->mmc);
3699     omap_mpuio_reset(mpu->mpuio);
3700     omap_uwire_reset(mpu->microwire);
3701     omap_pwl_reset(mpu->pwl);
3702     omap_pwt_reset(mpu->pwt);
3703     omap_rtc_reset(mpu->rtc);
3704     omap_mcbsp_reset(mpu->mcbsp1);
3705     omap_mcbsp_reset(mpu->mcbsp2);
3706     omap_mcbsp_reset(mpu->mcbsp3);
3707     omap_lpg_reset(mpu->led[0]);
3708     omap_lpg_reset(mpu->led[1]);
3709     omap_clkm_reset(mpu);
3710     cpu_reset(CPU(mpu->cpu));
3711 }
3712 
3713 static const struct omap_map_s {
3714     hwaddr phys_dsp;
3715     hwaddr phys_mpu;
3716     uint32_t size;
3717     const char *name;
3718 } omap15xx_dsp_mm[] = {
3719     /* Strobe 0 */
3720     { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" },		/* CS0 */
3721     { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" },		/* CS1 */
3722     { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" },		/* CS3 */
3723     { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" },	/* CS4 */
3724     { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" },	/* CS5 */
3725     { 0xe1013000, 0xfffb3000, 0x800, "uWire" },			/* CS6 */
3726     { 0xe1013800, 0xfffb3800, 0x800, "I^2C" },			/* CS7 */
3727     { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" },		/* CS8 */
3728     { 0xe1014800, 0xfffb4800, 0x800, "RTC" },			/* CS9 */
3729     { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" },			/* CS10 */
3730     { 0xe1015800, 0xfffb5800, 0x800, "PWL" },			/* CS11 */
3731     { 0xe1016000, 0xfffb6000, 0x800, "PWT" },			/* CS12 */
3732     { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" },		/* CS14 */
3733     { 0xe1017800, 0xfffb7800, 0x800, "MMC" },			/* CS15 */
3734     { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" },		/* CS18 */
3735     { 0xe1019800, 0xfffb9800, 0x800, "UART3" },			/* CS19 */
3736     { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" },		/* CS25 */
3737     /* Strobe 1 */
3738     { 0xe101e000, 0xfffce000, 0x800, "GPIOs" },			/* CS28 */
3739 
3740     { 0 }
3741 };
3742 
3743 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3744                                    const struct omap_map_s *map)
3745 {
3746     MemoryRegion *io;
3747 
3748     for (; map->phys_dsp; map ++) {
3749         io = g_new(MemoryRegion, 1);
3750         memory_region_init_alias(io, NULL, map->name,
3751                                  system_memory, map->phys_mpu, map->size);
3752         memory_region_add_subregion(system_memory, map->phys_dsp, io);
3753     }
3754 }
3755 
3756 void omap_mpu_wakeup(void *opaque, int irq, int req)
3757 {
3758     struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3759     CPUState *cpu = CPU(mpu->cpu);
3760 
3761     if (cpu->halted) {
3762         cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3763     }
3764 }
3765 
3766 static const struct dma_irq_map omap1_dma_irq_map[] = {
3767     { 0, OMAP_INT_DMA_CH0_6 },
3768     { 0, OMAP_INT_DMA_CH1_7 },
3769     { 0, OMAP_INT_DMA_CH2_8 },
3770     { 0, OMAP_INT_DMA_CH3 },
3771     { 0, OMAP_INT_DMA_CH4 },
3772     { 0, OMAP_INT_DMA_CH5 },
3773     { 1, OMAP_INT_1610_DMA_CH6 },
3774     { 1, OMAP_INT_1610_DMA_CH7 },
3775     { 1, OMAP_INT_1610_DMA_CH8 },
3776     { 1, OMAP_INT_1610_DMA_CH9 },
3777     { 1, OMAP_INT_1610_DMA_CH10 },
3778     { 1, OMAP_INT_1610_DMA_CH11 },
3779     { 1, OMAP_INT_1610_DMA_CH12 },
3780     { 1, OMAP_INT_1610_DMA_CH13 },
3781     { 1, OMAP_INT_1610_DMA_CH14 },
3782     { 1, OMAP_INT_1610_DMA_CH15 }
3783 };
3784 
3785 /* DMA ports for OMAP1 */
3786 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3787                 hwaddr addr)
3788 {
3789     return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3790 }
3791 
3792 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3793                 hwaddr addr)
3794 {
3795     return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3796                              addr);
3797 }
3798 
3799 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3800                 hwaddr addr)
3801 {
3802     return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3803 }
3804 
3805 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3806                 hwaddr addr)
3807 {
3808     return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3809 }
3810 
3811 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3812                 hwaddr addr)
3813 {
3814     return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3815 }
3816 
3817 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3818                 hwaddr addr)
3819 {
3820     return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3821 }
3822 
3823 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3824                 unsigned long sdram_size,
3825                 const char *core)
3826 {
3827     int i;
3828     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
3829             g_malloc0(sizeof(struct omap_mpu_state_s));
3830     qemu_irq *cpu_irq;
3831     qemu_irq dma_irqs[6];
3832     DriveInfo *dinfo;
3833     SysBusDevice *busdev;
3834 
3835     if (!core)
3836         core = "ti925t";
3837 
3838     /* Core */
3839     s->mpu_model = omap310;
3840     s->cpu = cpu_arm_init(core);
3841     if (s->cpu == NULL) {
3842         fprintf(stderr, "Unable to find CPU definition\n");
3843         exit(1);
3844     }
3845     s->sdram_size = sdram_size;
3846     s->sram_size = OMAP15XX_SRAM_SIZE;
3847 
3848     s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0];
3849 
3850     /* Clocks */
3851     omap_clk_init(s);
3852 
3853     /* Memory-mapped stuff */
3854     memory_region_init_ram(&s->emiff_ram, NULL, "omap1.dram", s->sdram_size);
3855     vmstate_register_ram_global(&s->emiff_ram);
3856     memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3857     memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size);
3858     vmstate_register_ram_global(&s->imif_ram);
3859     memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3860 
3861     omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3862 
3863     cpu_irq = arm_pic_init_cpu(s->cpu);
3864     s->ih[0] = qdev_create(NULL, "omap-intc");
3865     qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3866     qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3867     qdev_init_nofail(s->ih[0]);
3868     busdev = SYS_BUS_DEVICE(s->ih[0]);
3869     sysbus_connect_irq(busdev, 0, cpu_irq[ARM_PIC_CPU_IRQ]);
3870     sysbus_connect_irq(busdev, 1, cpu_irq[ARM_PIC_CPU_FIQ]);
3871     sysbus_mmio_map(busdev, 0, 0xfffecb00);
3872     s->ih[1] = qdev_create(NULL, "omap-intc");
3873     qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3874     qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3875     qdev_init_nofail(s->ih[1]);
3876     busdev = SYS_BUS_DEVICE(s->ih[1]);
3877     sysbus_connect_irq(busdev, 0,
3878                        qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3879     /* The second interrupt controller's FIQ output is not wired up */
3880     sysbus_mmio_map(busdev, 0, 0xfffe0000);
3881 
3882     for (i = 0; i < 6; i++) {
3883         dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3884                                        omap1_dma_irq_map[i].intr);
3885     }
3886     s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3887                            qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3888                            s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3889 
3890     s->port[emiff    ].addr_valid = omap_validate_emiff_addr;
3891     s->port[emifs    ].addr_valid = omap_validate_emifs_addr;
3892     s->port[imif     ].addr_valid = omap_validate_imif_addr;
3893     s->port[tipb     ].addr_valid = omap_validate_tipb_addr;
3894     s->port[local    ].addr_valid = omap_validate_local_addr;
3895     s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3896 
3897     /* Register SDRAM and SRAM DMA ports for fast transfers.  */
3898     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3899                          OMAP_EMIFF_BASE, s->sdram_size);
3900     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3901                          OMAP_IMIF_BASE, s->sram_size);
3902 
3903     s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3904                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3905                     omap_findclk(s, "mputim_ck"));
3906     s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3907                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3908                     omap_findclk(s, "mputim_ck"));
3909     s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3910                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3911                     omap_findclk(s, "mputim_ck"));
3912 
3913     s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3914                     qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3915                     omap_findclk(s, "armwdt_ck"));
3916 
3917     s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3918                     qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3919                     omap_findclk(s, "clk32-kHz"));
3920 
3921     s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3922                             qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3923                             omap_dma_get_lcdch(s->dma),
3924                             omap_findclk(s, "lcd_ck"));
3925 
3926     omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3927     omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3928     omap_id_init(system_memory, s);
3929 
3930     omap_mpui_init(system_memory, 0xfffec900, s);
3931 
3932     s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3933                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3934                     omap_findclk(s, "tipb_ck"));
3935     s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3936                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3937                     omap_findclk(s, "tipb_ck"));
3938 
3939     omap_tcmi_init(system_memory, 0xfffecc00, s);
3940 
3941     s->uart[0] = omap_uart_init(0xfffb0000,
3942                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3943                     omap_findclk(s, "uart1_ck"),
3944                     omap_findclk(s, "uart1_ck"),
3945                     s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3946                     "uart1",
3947                     serial_hds[0]);
3948     s->uart[1] = omap_uart_init(0xfffb0800,
3949                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3950                     omap_findclk(s, "uart2_ck"),
3951                     omap_findclk(s, "uart2_ck"),
3952                     s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3953                     "uart2",
3954                     serial_hds[0] ? serial_hds[1] : NULL);
3955     s->uart[2] = omap_uart_init(0xfffb9800,
3956                                 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3957                     omap_findclk(s, "uart3_ck"),
3958                     omap_findclk(s, "uart3_ck"),
3959                     s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3960                     "uart3",
3961                     serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
3962 
3963     s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3964                                 omap_findclk(s, "dpll1"));
3965     s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3966                                 omap_findclk(s, "dpll2"));
3967     s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3968                                 omap_findclk(s, "dpll3"));
3969 
3970     dinfo = drive_get(IF_SD, 0, 0);
3971     if (!dinfo) {
3972         fprintf(stderr, "qemu: missing SecureDigital device\n");
3973         exit(1);
3974     }
3975     s->mmc = omap_mmc_init(0xfffb7800, system_memory, dinfo->bdrv,
3976                            qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
3977                            &s->drq[OMAP_DMA_MMC_TX],
3978                     omap_findclk(s, "mmc_ck"));
3979 
3980     s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
3981                                qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
3982                                qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
3983                                s->wakeup, omap_findclk(s, "clk32-kHz"));
3984 
3985     s->gpio = qdev_create(NULL, "omap-gpio");
3986     qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
3987     qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
3988     qdev_init_nofail(s->gpio);
3989     sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
3990                        qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
3991     sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
3992 
3993     s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
3994                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
3995                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
3996                     s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
3997 
3998     s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
3999                            omap_findclk(s, "armxor_ck"));
4000     s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4001                            omap_findclk(s, "armxor_ck"));
4002 
4003     s->i2c[0] = qdev_create(NULL, "omap_i2c");
4004     qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4005     qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4006     qdev_init_nofail(s->i2c[0]);
4007     busdev = SYS_BUS_DEVICE(s->i2c[0]);
4008     sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4009     sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4010     sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4011     sysbus_mmio_map(busdev, 0, 0xfffb3800);
4012 
4013     s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4014                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4015                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4016                     omap_findclk(s, "clk32-kHz"));
4017 
4018     s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4019                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4020                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4021                     &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4022     s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4023                                 qdev_get_gpio_in(s->ih[0],
4024                                                  OMAP_INT_310_McBSP2_TX),
4025                                 qdev_get_gpio_in(s->ih[0],
4026                                                  OMAP_INT_310_McBSP2_RX),
4027                     &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4028     s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4029                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4030                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4031                     &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4032 
4033     s->led[0] = omap_lpg_init(system_memory,
4034                               0xfffbd000, omap_findclk(s, "clk32-kHz"));
4035     s->led[1] = omap_lpg_init(system_memory,
4036                               0xfffbd800, omap_findclk(s, "clk32-kHz"));
4037 
4038     /* Register mappings not currenlty implemented:
4039      * MCSI2 Comm	fffb2000 - fffb27ff (not mapped on OMAP310)
4040      * MCSI1 Bluetooth	fffb2800 - fffb2fff (not mapped on OMAP310)
4041      * USB W2FC		fffb4000 - fffb47ff
4042      * Camera Interface	fffb6800 - fffb6fff
4043      * USB Host		fffba000 - fffba7ff
4044      * FAC		fffba800 - fffbafff
4045      * HDQ/1-Wire	fffbc000 - fffbc7ff
4046      * TIPB switches	fffbc800 - fffbcfff
4047      * Mailbox		fffcf000 - fffcf7ff
4048      * Local bus IF	fffec100 - fffec1ff
4049      * Local bus MMU	fffec200 - fffec2ff
4050      * DSP MMU		fffed200 - fffed2ff
4051      */
4052 
4053     omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4054     omap_setup_mpui_io(system_memory, s);
4055 
4056     qemu_register_reset(omap1_mpu_reset, s);
4057 
4058     return s;
4059 }
4060