xref: /openbmc/qemu/hw/arm/omap1.c (revision 40f23e4e)
1 /*
2  * TI OMAP processors emulation.
3  *
4  * Copyright (C) 2006-2008 Andrzej Zaborowski  <balrog@zabor.org>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 or
9  * (at your option) version 3 of the License.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License along
17  * with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/error-report.h"
22 #include "qemu/main-loop.h"
23 #include "qapi/error.h"
24 #include "qemu-common.h"
25 #include "cpu.h"
26 #include "exec/address-spaces.h"
27 #include "hw/hw.h"
28 #include "hw/irq.h"
29 #include "hw/qdev-properties.h"
30 #include "hw/arm/boot.h"
31 #include "hw/arm/omap.h"
32 #include "sysemu/blockdev.h"
33 #include "sysemu/sysemu.h"
34 #include "hw/arm/soc_dma.h"
35 #include "sysemu/qtest.h"
36 #include "sysemu/reset.h"
37 #include "sysemu/runstate.h"
38 #include "qemu/range.h"
39 #include "hw/sysbus.h"
40 #include "qemu/cutils.h"
41 #include "qemu/bcd.h"
42 
43 static inline void omap_log_badwidth(const char *funcname, hwaddr addr, int sz)
44 {
45     qemu_log_mask(LOG_GUEST_ERROR, "%s: %d-bit register %#08" HWADDR_PRIx "\n",
46                   funcname, 8 * sz, addr);
47 }
48 
49 /* Should signal the TCMI/GPMC */
50 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
51 {
52     uint8_t ret;
53 
54     omap_log_badwidth(__func__, addr, 1);
55     cpu_physical_memory_read(addr, &ret, 1);
56     return ret;
57 }
58 
59 void omap_badwidth_write8(void *opaque, hwaddr addr,
60                 uint32_t value)
61 {
62     uint8_t val8 = value;
63 
64     omap_log_badwidth(__func__, addr, 1);
65     cpu_physical_memory_write(addr, &val8, 1);
66 }
67 
68 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
69 {
70     uint16_t ret;
71 
72     omap_log_badwidth(__func__, addr, 2);
73     cpu_physical_memory_read(addr, &ret, 2);
74     return ret;
75 }
76 
77 void omap_badwidth_write16(void *opaque, hwaddr addr,
78                 uint32_t value)
79 {
80     uint16_t val16 = value;
81 
82     omap_log_badwidth(__func__, addr, 2);
83     cpu_physical_memory_write(addr, &val16, 2);
84 }
85 
86 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
87 {
88     uint32_t ret;
89 
90     omap_log_badwidth(__func__, addr, 4);
91     cpu_physical_memory_read(addr, &ret, 4);
92     return ret;
93 }
94 
95 void omap_badwidth_write32(void *opaque, hwaddr addr,
96                 uint32_t value)
97 {
98     omap_log_badwidth(__func__, addr, 4);
99     cpu_physical_memory_write(addr, &value, 4);
100 }
101 
102 /* MPU OS timers */
103 struct omap_mpu_timer_s {
104     MemoryRegion iomem;
105     qemu_irq irq;
106     omap_clk clk;
107     uint32_t val;
108     int64_t time;
109     QEMUTimer *timer;
110     QEMUBH *tick;
111     int64_t rate;
112     int it_ena;
113 
114     int enable;
115     int ptv;
116     int ar;
117     int st;
118     uint32_t reset_val;
119 };
120 
121 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
122 {
123     uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
124 
125     if (timer->st && timer->enable && timer->rate)
126         return timer->val - muldiv64(distance >> (timer->ptv + 1),
127                                      timer->rate, NANOSECONDS_PER_SECOND);
128     else
129         return timer->val;
130 }
131 
132 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
133 {
134     timer->val = omap_timer_read(timer);
135     timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
136 }
137 
138 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
139 {
140     int64_t expires;
141 
142     if (timer->enable && timer->st && timer->rate) {
143         timer->val = timer->reset_val;	/* Should skip this on clk enable */
144         expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
145                            NANOSECONDS_PER_SECOND, timer->rate);
146 
147         /* If timer expiry would be sooner than in about 1 ms and
148          * auto-reload isn't set, then fire immediately.  This is a hack
149          * to make systems like PalmOS run in acceptable time.  PalmOS
150          * sets the interval to a very low value and polls the status bit
151          * in a busy loop when it wants to sleep just a couple of CPU
152          * ticks.  */
153         if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
154             timer_mod(timer->timer, timer->time + expires);
155         } else {
156             qemu_bh_schedule(timer->tick);
157         }
158     } else
159         timer_del(timer->timer);
160 }
161 
162 static void omap_timer_fire(void *opaque)
163 {
164     struct omap_mpu_timer_s *timer = opaque;
165 
166     if (!timer->ar) {
167         timer->val = 0;
168         timer->st = 0;
169     }
170 
171     if (timer->it_ena)
172         /* Edge-triggered irq */
173         qemu_irq_pulse(timer->irq);
174 }
175 
176 static void omap_timer_tick(void *opaque)
177 {
178     struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
179 
180     omap_timer_sync(timer);
181     omap_timer_fire(timer);
182     omap_timer_update(timer);
183 }
184 
185 static void omap_timer_clk_update(void *opaque, int line, int on)
186 {
187     struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
188 
189     omap_timer_sync(timer);
190     timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
191     omap_timer_update(timer);
192 }
193 
194 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
195 {
196     omap_clk_adduser(timer->clk,
197                     qemu_allocate_irq(omap_timer_clk_update, timer, 0));
198     timer->rate = omap_clk_getrate(timer->clk);
199 }
200 
201 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
202                                     unsigned size)
203 {
204     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
205 
206     if (size != 4) {
207         return omap_badwidth_read32(opaque, addr);
208     }
209 
210     switch (addr) {
211     case 0x00:	/* CNTL_TIMER */
212         return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
213 
214     case 0x04:	/* LOAD_TIM */
215         break;
216 
217     case 0x08:	/* READ_TIM */
218         return omap_timer_read(s);
219     }
220 
221     OMAP_BAD_REG(addr);
222     return 0;
223 }
224 
225 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
226                                  uint64_t value, unsigned size)
227 {
228     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
229 
230     if (size != 4) {
231         omap_badwidth_write32(opaque, addr, value);
232         return;
233     }
234 
235     switch (addr) {
236     case 0x00:	/* CNTL_TIMER */
237         omap_timer_sync(s);
238         s->enable = (value >> 5) & 1;
239         s->ptv = (value >> 2) & 7;
240         s->ar = (value >> 1) & 1;
241         s->st = value & 1;
242         omap_timer_update(s);
243         return;
244 
245     case 0x04:	/* LOAD_TIM */
246         s->reset_val = value;
247         return;
248 
249     case 0x08:	/* READ_TIM */
250         OMAP_RO_REG(addr);
251         break;
252 
253     default:
254         OMAP_BAD_REG(addr);
255     }
256 }
257 
258 static const MemoryRegionOps omap_mpu_timer_ops = {
259     .read = omap_mpu_timer_read,
260     .write = omap_mpu_timer_write,
261     .endianness = DEVICE_LITTLE_ENDIAN,
262 };
263 
264 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
265 {
266     timer_del(s->timer);
267     s->enable = 0;
268     s->reset_val = 31337;
269     s->val = 0;
270     s->ptv = 0;
271     s->ar = 0;
272     s->st = 0;
273     s->it_ena = 1;
274 }
275 
276 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
277                 hwaddr base,
278                 qemu_irq irq, omap_clk clk)
279 {
280     struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
281 
282     s->irq = irq;
283     s->clk = clk;
284     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
285     s->tick = qemu_bh_new(omap_timer_fire, s);
286     omap_mpu_timer_reset(s);
287     omap_timer_clk_setup(s);
288 
289     memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
290                           "omap-mpu-timer", 0x100);
291 
292     memory_region_add_subregion(system_memory, base, &s->iomem);
293 
294     return s;
295 }
296 
297 /* Watchdog timer */
298 struct omap_watchdog_timer_s {
299     struct omap_mpu_timer_s timer;
300     MemoryRegion iomem;
301     uint8_t last_wr;
302     int mode;
303     int free;
304     int reset;
305 };
306 
307 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
308                                    unsigned size)
309 {
310     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
311 
312     if (size != 2) {
313         return omap_badwidth_read16(opaque, addr);
314     }
315 
316     switch (addr) {
317     case 0x00:	/* CNTL_TIMER */
318         return (s->timer.ptv << 9) | (s->timer.ar << 8) |
319                 (s->timer.st << 7) | (s->free << 1);
320 
321     case 0x04:	/* READ_TIMER */
322         return omap_timer_read(&s->timer);
323 
324     case 0x08:	/* TIMER_MODE */
325         return s->mode << 15;
326     }
327 
328     OMAP_BAD_REG(addr);
329     return 0;
330 }
331 
332 static void omap_wd_timer_write(void *opaque, hwaddr addr,
333                                 uint64_t value, unsigned size)
334 {
335     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
336 
337     if (size != 2) {
338         omap_badwidth_write16(opaque, addr, value);
339         return;
340     }
341 
342     switch (addr) {
343     case 0x00:	/* CNTL_TIMER */
344         omap_timer_sync(&s->timer);
345         s->timer.ptv = (value >> 9) & 7;
346         s->timer.ar = (value >> 8) & 1;
347         s->timer.st = (value >> 7) & 1;
348         s->free = (value >> 1) & 1;
349         omap_timer_update(&s->timer);
350         break;
351 
352     case 0x04:	/* LOAD_TIMER */
353         s->timer.reset_val = value & 0xffff;
354         break;
355 
356     case 0x08:	/* TIMER_MODE */
357         if (!s->mode && ((value >> 15) & 1))
358             omap_clk_get(s->timer.clk);
359         s->mode |= (value >> 15) & 1;
360         if (s->last_wr == 0xf5) {
361             if ((value & 0xff) == 0xa0) {
362                 if (s->mode) {
363                     s->mode = 0;
364                     omap_clk_put(s->timer.clk);
365                 }
366             } else {
367                 /* XXX: on T|E hardware somehow this has no effect,
368                  * on Zire 71 it works as specified.  */
369                 s->reset = 1;
370                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
371             }
372         }
373         s->last_wr = value & 0xff;
374         break;
375 
376     default:
377         OMAP_BAD_REG(addr);
378     }
379 }
380 
381 static const MemoryRegionOps omap_wd_timer_ops = {
382     .read = omap_wd_timer_read,
383     .write = omap_wd_timer_write,
384     .endianness = DEVICE_NATIVE_ENDIAN,
385 };
386 
387 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
388 {
389     timer_del(s->timer.timer);
390     if (!s->mode)
391         omap_clk_get(s->timer.clk);
392     s->mode = 1;
393     s->free = 1;
394     s->reset = 0;
395     s->timer.enable = 1;
396     s->timer.it_ena = 1;
397     s->timer.reset_val = 0xffff;
398     s->timer.val = 0;
399     s->timer.st = 0;
400     s->timer.ptv = 0;
401     s->timer.ar = 0;
402     omap_timer_update(&s->timer);
403 }
404 
405 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
406                 hwaddr base,
407                 qemu_irq irq, omap_clk clk)
408 {
409     struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
410 
411     s->timer.irq = irq;
412     s->timer.clk = clk;
413     s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
414     omap_wd_timer_reset(s);
415     omap_timer_clk_setup(&s->timer);
416 
417     memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
418                           "omap-wd-timer", 0x100);
419     memory_region_add_subregion(memory, base, &s->iomem);
420 
421     return s;
422 }
423 
424 /* 32-kHz timer */
425 struct omap_32khz_timer_s {
426     struct omap_mpu_timer_s timer;
427     MemoryRegion iomem;
428 };
429 
430 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
431                                    unsigned size)
432 {
433     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
434     int offset = addr & OMAP_MPUI_REG_MASK;
435 
436     if (size != 4) {
437         return omap_badwidth_read32(opaque, addr);
438     }
439 
440     switch (offset) {
441     case 0x00:	/* TVR */
442         return s->timer.reset_val;
443 
444     case 0x04:	/* TCR */
445         return omap_timer_read(&s->timer);
446 
447     case 0x08:	/* CR */
448         return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
449 
450     default:
451         break;
452     }
453     OMAP_BAD_REG(addr);
454     return 0;
455 }
456 
457 static void omap_os_timer_write(void *opaque, hwaddr addr,
458                                 uint64_t value, unsigned size)
459 {
460     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
461     int offset = addr & OMAP_MPUI_REG_MASK;
462 
463     if (size != 4) {
464         omap_badwidth_write32(opaque, addr, value);
465         return;
466     }
467 
468     switch (offset) {
469     case 0x00:	/* TVR */
470         s->timer.reset_val = value & 0x00ffffff;
471         break;
472 
473     case 0x04:	/* TCR */
474         OMAP_RO_REG(addr);
475         break;
476 
477     case 0x08:	/* CR */
478         s->timer.ar = (value >> 3) & 1;
479         s->timer.it_ena = (value >> 2) & 1;
480         if (s->timer.st != (value & 1) || (value & 2)) {
481             omap_timer_sync(&s->timer);
482             s->timer.enable = value & 1;
483             s->timer.st = value & 1;
484             omap_timer_update(&s->timer);
485         }
486         break;
487 
488     default:
489         OMAP_BAD_REG(addr);
490     }
491 }
492 
493 static const MemoryRegionOps omap_os_timer_ops = {
494     .read = omap_os_timer_read,
495     .write = omap_os_timer_write,
496     .endianness = DEVICE_NATIVE_ENDIAN,
497 };
498 
499 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
500 {
501     timer_del(s->timer.timer);
502     s->timer.enable = 0;
503     s->timer.it_ena = 0;
504     s->timer.reset_val = 0x00ffffff;
505     s->timer.val = 0;
506     s->timer.st = 0;
507     s->timer.ptv = 0;
508     s->timer.ar = 1;
509 }
510 
511 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
512                 hwaddr base,
513                 qemu_irq irq, omap_clk clk)
514 {
515     struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
516 
517     s->timer.irq = irq;
518     s->timer.clk = clk;
519     s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
520     omap_os_timer_reset(s);
521     omap_timer_clk_setup(&s->timer);
522 
523     memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
524                           "omap-os-timer", 0x800);
525     memory_region_add_subregion(memory, base, &s->iomem);
526 
527     return s;
528 }
529 
530 /* Ultra Low-Power Device Module */
531 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
532                                   unsigned size)
533 {
534     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
535     uint16_t ret;
536 
537     if (size != 2) {
538         return omap_badwidth_read16(opaque, addr);
539     }
540 
541     switch (addr) {
542     case 0x14:	/* IT_STATUS */
543         ret = s->ulpd_pm_regs[addr >> 2];
544         s->ulpd_pm_regs[addr >> 2] = 0;
545         qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
546         return ret;
547 
548     case 0x18:	/* Reserved */
549     case 0x1c:	/* Reserved */
550     case 0x20:	/* Reserved */
551     case 0x28:	/* Reserved */
552     case 0x2c:	/* Reserved */
553         OMAP_BAD_REG(addr);
554         /* fall through */
555     case 0x00:	/* COUNTER_32_LSB */
556     case 0x04:	/* COUNTER_32_MSB */
557     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
558     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
559     case 0x10:	/* GAUGING_CTRL */
560     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
561     case 0x30:	/* CLOCK_CTRL */
562     case 0x34:	/* SOFT_REQ */
563     case 0x38:	/* COUNTER_32_FIQ */
564     case 0x3c:	/* DPLL_CTRL */
565     case 0x40:	/* STATUS_REQ */
566         /* XXX: check clk::usecount state for every clock */
567     case 0x48:	/* LOCL_TIME */
568     case 0x4c:	/* APLL_CTRL */
569     case 0x50:	/* POWER_CTRL */
570         return s->ulpd_pm_regs[addr >> 2];
571     }
572 
573     OMAP_BAD_REG(addr);
574     return 0;
575 }
576 
577 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
578                 uint16_t diff, uint16_t value)
579 {
580     if (diff & (1 << 4))				/* USB_MCLK_EN */
581         omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
582     if (diff & (1 << 5))				/* DIS_USB_PVCI_CLK */
583         omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
584 }
585 
586 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
587                 uint16_t diff, uint16_t value)
588 {
589     if (diff & (1 << 0))				/* SOFT_DPLL_REQ */
590         omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
591     if (diff & (1 << 1))				/* SOFT_COM_REQ */
592         omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
593     if (diff & (1 << 2))				/* SOFT_SDW_REQ */
594         omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
595     if (diff & (1 << 3))				/* SOFT_USB_REQ */
596         omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
597 }
598 
599 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
600                                uint64_t value, unsigned size)
601 {
602     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
603     int64_t now, ticks;
604     int div, mult;
605     static const int bypass_div[4] = { 1, 2, 4, 4 };
606     uint16_t diff;
607 
608     if (size != 2) {
609         omap_badwidth_write16(opaque, addr, value);
610         return;
611     }
612 
613     switch (addr) {
614     case 0x00:	/* COUNTER_32_LSB */
615     case 0x04:	/* COUNTER_32_MSB */
616     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
617     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
618     case 0x14:	/* IT_STATUS */
619     case 0x40:	/* STATUS_REQ */
620         OMAP_RO_REG(addr);
621         break;
622 
623     case 0x10:	/* GAUGING_CTRL */
624         /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
625         if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
626             now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
627 
628             if (value & 1)
629                 s->ulpd_gauge_start = now;
630             else {
631                 now -= s->ulpd_gauge_start;
632 
633                 /* 32-kHz ticks */
634                 ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
635                 s->ulpd_pm_regs[0x00 >> 2] = (ticks >>  0) & 0xffff;
636                 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
637                 if (ticks >> 32)	/* OVERFLOW_32K */
638                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
639 
640                 /* High frequency ticks */
641                 ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
642                 s->ulpd_pm_regs[0x08 >> 2] = (ticks >>  0) & 0xffff;
643                 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
644                 if (ticks >> 32)	/* OVERFLOW_HI_FREQ */
645                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
646 
647                 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0;	/* IT_GAUGING */
648                 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
649             }
650         }
651         s->ulpd_pm_regs[addr >> 2] = value;
652         break;
653 
654     case 0x18:	/* Reserved */
655     case 0x1c:	/* Reserved */
656     case 0x20:	/* Reserved */
657     case 0x28:	/* Reserved */
658     case 0x2c:	/* Reserved */
659         OMAP_BAD_REG(addr);
660         /* fall through */
661     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
662     case 0x38:	/* COUNTER_32_FIQ */
663     case 0x48:	/* LOCL_TIME */
664     case 0x50:	/* POWER_CTRL */
665         s->ulpd_pm_regs[addr >> 2] = value;
666         break;
667 
668     case 0x30:	/* CLOCK_CTRL */
669         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
670         s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
671         omap_ulpd_clk_update(s, diff, value);
672         break;
673 
674     case 0x34:	/* SOFT_REQ */
675         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
676         s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
677         omap_ulpd_req_update(s, diff, value);
678         break;
679 
680     case 0x3c:	/* DPLL_CTRL */
681         /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
682          * omitted altogether, probably a typo.  */
683         /* This register has identical semantics with DPLL(1:3) control
684          * registers, see omap_dpll_write() */
685         diff = s->ulpd_pm_regs[addr >> 2] & value;
686         s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
687         if (diff & (0x3ff << 2)) {
688             if (value & (1 << 4)) {			/* PLL_ENABLE */
689                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
690                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
691             } else {
692                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
693                 mult = 1;
694             }
695             omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
696         }
697 
698         /* Enter the desired mode.  */
699         s->ulpd_pm_regs[addr >> 2] =
700                 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
701                 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
702 
703         /* Act as if the lock is restored.  */
704         s->ulpd_pm_regs[addr >> 2] |= 2;
705         break;
706 
707     case 0x4c:	/* APLL_CTRL */
708         diff = s->ulpd_pm_regs[addr >> 2] & value;
709         s->ulpd_pm_regs[addr >> 2] = value & 0xf;
710         if (diff & (1 << 0))				/* APLL_NDPLL_SWITCH */
711             omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
712                                     (value & (1 << 0)) ? "apll" : "dpll4"));
713         break;
714 
715     default:
716         OMAP_BAD_REG(addr);
717     }
718 }
719 
720 static const MemoryRegionOps omap_ulpd_pm_ops = {
721     .read = omap_ulpd_pm_read,
722     .write = omap_ulpd_pm_write,
723     .endianness = DEVICE_NATIVE_ENDIAN,
724 };
725 
726 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
727 {
728     mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
729     mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
730     mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
731     mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
732     mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
733     mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
734     mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
735     mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
736     mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
737     mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
738     mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
739     omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
740     mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
741     omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
742     mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
743     mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
744     mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
745     mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
746     mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
747     mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
748     mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
749     omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
750     omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
751 }
752 
753 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
754                 hwaddr base,
755                 struct omap_mpu_state_s *mpu)
756 {
757     memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
758                           "omap-ulpd-pm", 0x800);
759     memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
760     omap_ulpd_pm_reset(mpu);
761 }
762 
763 /* OMAP Pin Configuration */
764 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
765                                   unsigned size)
766 {
767     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
768 
769     if (size != 4) {
770         return omap_badwidth_read32(opaque, addr);
771     }
772 
773     switch (addr) {
774     case 0x00:	/* FUNC_MUX_CTRL_0 */
775     case 0x04:	/* FUNC_MUX_CTRL_1 */
776     case 0x08:	/* FUNC_MUX_CTRL_2 */
777         return s->func_mux_ctrl[addr >> 2];
778 
779     case 0x0c:	/* COMP_MODE_CTRL_0 */
780         return s->comp_mode_ctrl[0];
781 
782     case 0x10:	/* FUNC_MUX_CTRL_3 */
783     case 0x14:	/* FUNC_MUX_CTRL_4 */
784     case 0x18:	/* FUNC_MUX_CTRL_5 */
785     case 0x1c:	/* FUNC_MUX_CTRL_6 */
786     case 0x20:	/* FUNC_MUX_CTRL_7 */
787     case 0x24:	/* FUNC_MUX_CTRL_8 */
788     case 0x28:	/* FUNC_MUX_CTRL_9 */
789     case 0x2c:	/* FUNC_MUX_CTRL_A */
790     case 0x30:	/* FUNC_MUX_CTRL_B */
791     case 0x34:	/* FUNC_MUX_CTRL_C */
792     case 0x38:	/* FUNC_MUX_CTRL_D */
793         return s->func_mux_ctrl[(addr >> 2) - 1];
794 
795     case 0x40:	/* PULL_DWN_CTRL_0 */
796     case 0x44:	/* PULL_DWN_CTRL_1 */
797     case 0x48:	/* PULL_DWN_CTRL_2 */
798     case 0x4c:	/* PULL_DWN_CTRL_3 */
799         return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
800 
801     case 0x50:	/* GATE_INH_CTRL_0 */
802         return s->gate_inh_ctrl[0];
803 
804     case 0x60:	/* VOLTAGE_CTRL_0 */
805         return s->voltage_ctrl[0];
806 
807     case 0x70:	/* TEST_DBG_CTRL_0 */
808         return s->test_dbg_ctrl[0];
809 
810     case 0x80:	/* MOD_CONF_CTRL_0 */
811         return s->mod_conf_ctrl[0];
812     }
813 
814     OMAP_BAD_REG(addr);
815     return 0;
816 }
817 
818 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
819                 uint32_t diff, uint32_t value)
820 {
821     if (s->compat1509) {
822         if (diff & (1 << 9))			/* BLUETOOTH */
823             omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
824                             (~value >> 9) & 1);
825         if (diff & (1 << 7))			/* USB.CLKO */
826             omap_clk_onoff(omap_findclk(s, "usb.clko"),
827                             (value >> 7) & 1);
828     }
829 }
830 
831 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
832                 uint32_t diff, uint32_t value)
833 {
834     if (s->compat1509) {
835         if (diff & (1U << 31)) {
836             /* MCBSP3_CLK_HIZ_DI */
837             omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
838         }
839         if (diff & (1 << 1)) {
840             /* CLK32K */
841             omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
842         }
843     }
844 }
845 
846 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
847                 uint32_t diff, uint32_t value)
848 {
849     if (diff & (1U << 31)) {
850         /* CONF_MOD_UART3_CLK_MODE_R */
851         omap_clk_reparent(omap_findclk(s, "uart3_ck"),
852                           omap_findclk(s, ((value >> 31) & 1) ?
853                                        "ck_48m" : "armper_ck"));
854     }
855     if (diff & (1 << 30))			/* CONF_MOD_UART2_CLK_MODE_R */
856          omap_clk_reparent(omap_findclk(s, "uart2_ck"),
857                          omap_findclk(s, ((value >> 30) & 1) ?
858                                  "ck_48m" : "armper_ck"));
859     if (diff & (1 << 29))			/* CONF_MOD_UART1_CLK_MODE_R */
860          omap_clk_reparent(omap_findclk(s, "uart1_ck"),
861                          omap_findclk(s, ((value >> 29) & 1) ?
862                                  "ck_48m" : "armper_ck"));
863     if (diff & (1 << 23))			/* CONF_MOD_MMC_SD_CLK_REQ_R */
864          omap_clk_reparent(omap_findclk(s, "mmc_ck"),
865                          omap_findclk(s, ((value >> 23) & 1) ?
866                                  "ck_48m" : "armper_ck"));
867     if (diff & (1 << 12))			/* CONF_MOD_COM_MCLK_12_48_S */
868          omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
869                          omap_findclk(s, ((value >> 12) & 1) ?
870                                  "ck_48m" : "armper_ck"));
871     if (diff & (1 << 9))			/* CONF_MOD_USB_HOST_HHC_UHO */
872          omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
873 }
874 
875 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
876                                uint64_t value, unsigned size)
877 {
878     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
879     uint32_t diff;
880 
881     if (size != 4) {
882         omap_badwidth_write32(opaque, addr, value);
883         return;
884     }
885 
886     switch (addr) {
887     case 0x00:	/* FUNC_MUX_CTRL_0 */
888         diff = s->func_mux_ctrl[addr >> 2] ^ value;
889         s->func_mux_ctrl[addr >> 2] = value;
890         omap_pin_funcmux0_update(s, diff, value);
891         return;
892 
893     case 0x04:	/* FUNC_MUX_CTRL_1 */
894         diff = s->func_mux_ctrl[addr >> 2] ^ value;
895         s->func_mux_ctrl[addr >> 2] = value;
896         omap_pin_funcmux1_update(s, diff, value);
897         return;
898 
899     case 0x08:	/* FUNC_MUX_CTRL_2 */
900         s->func_mux_ctrl[addr >> 2] = value;
901         return;
902 
903     case 0x0c:	/* COMP_MODE_CTRL_0 */
904         s->comp_mode_ctrl[0] = value;
905         s->compat1509 = (value != 0x0000eaef);
906         omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
907         omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
908         return;
909 
910     case 0x10:	/* FUNC_MUX_CTRL_3 */
911     case 0x14:	/* FUNC_MUX_CTRL_4 */
912     case 0x18:	/* FUNC_MUX_CTRL_5 */
913     case 0x1c:	/* FUNC_MUX_CTRL_6 */
914     case 0x20:	/* FUNC_MUX_CTRL_7 */
915     case 0x24:	/* FUNC_MUX_CTRL_8 */
916     case 0x28:	/* FUNC_MUX_CTRL_9 */
917     case 0x2c:	/* FUNC_MUX_CTRL_A */
918     case 0x30:	/* FUNC_MUX_CTRL_B */
919     case 0x34:	/* FUNC_MUX_CTRL_C */
920     case 0x38:	/* FUNC_MUX_CTRL_D */
921         s->func_mux_ctrl[(addr >> 2) - 1] = value;
922         return;
923 
924     case 0x40:	/* PULL_DWN_CTRL_0 */
925     case 0x44:	/* PULL_DWN_CTRL_1 */
926     case 0x48:	/* PULL_DWN_CTRL_2 */
927     case 0x4c:	/* PULL_DWN_CTRL_3 */
928         s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
929         return;
930 
931     case 0x50:	/* GATE_INH_CTRL_0 */
932         s->gate_inh_ctrl[0] = value;
933         return;
934 
935     case 0x60:	/* VOLTAGE_CTRL_0 */
936         s->voltage_ctrl[0] = value;
937         return;
938 
939     case 0x70:	/* TEST_DBG_CTRL_0 */
940         s->test_dbg_ctrl[0] = value;
941         return;
942 
943     case 0x80:	/* MOD_CONF_CTRL_0 */
944         diff = s->mod_conf_ctrl[0] ^ value;
945         s->mod_conf_ctrl[0] = value;
946         omap_pin_modconf1_update(s, diff, value);
947         return;
948 
949     default:
950         OMAP_BAD_REG(addr);
951     }
952 }
953 
954 static const MemoryRegionOps omap_pin_cfg_ops = {
955     .read = omap_pin_cfg_read,
956     .write = omap_pin_cfg_write,
957     .endianness = DEVICE_NATIVE_ENDIAN,
958 };
959 
960 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
961 {
962     /* Start in Compatibility Mode.  */
963     mpu->compat1509 = 1;
964     omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
965     omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
966     omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
967     memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
968     memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
969     memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
970     memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
971     memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
972     memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
973     memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
974 }
975 
976 static void omap_pin_cfg_init(MemoryRegion *system_memory,
977                 hwaddr base,
978                 struct omap_mpu_state_s *mpu)
979 {
980     memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
981                           "omap-pin-cfg", 0x800);
982     memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
983     omap_pin_cfg_reset(mpu);
984 }
985 
986 /* Device Identification, Die Identification */
987 static uint64_t omap_id_read(void *opaque, hwaddr addr,
988                              unsigned size)
989 {
990     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
991 
992     if (size != 4) {
993         return omap_badwidth_read32(opaque, addr);
994     }
995 
996     switch (addr) {
997     case 0xfffe1800:	/* DIE_ID_LSB */
998         return 0xc9581f0e;
999     case 0xfffe1804:	/* DIE_ID_MSB */
1000         return 0xa8858bfa;
1001 
1002     case 0xfffe2000:	/* PRODUCT_ID_LSB */
1003         return 0x00aaaafc;
1004     case 0xfffe2004:	/* PRODUCT_ID_MSB */
1005         return 0xcafeb574;
1006 
1007     case 0xfffed400:	/* JTAG_ID_LSB */
1008         switch (s->mpu_model) {
1009         case omap310:
1010             return 0x03310315;
1011         case omap1510:
1012             return 0x03310115;
1013         default:
1014             hw_error("%s: bad mpu model\n", __func__);
1015         }
1016         break;
1017 
1018     case 0xfffed404:	/* JTAG_ID_MSB */
1019         switch (s->mpu_model) {
1020         case omap310:
1021             return 0xfb57402f;
1022         case omap1510:
1023             return 0xfb47002f;
1024         default:
1025             hw_error("%s: bad mpu model\n", __func__);
1026         }
1027         break;
1028     }
1029 
1030     OMAP_BAD_REG(addr);
1031     return 0;
1032 }
1033 
1034 static void omap_id_write(void *opaque, hwaddr addr,
1035                           uint64_t value, unsigned size)
1036 {
1037     if (size != 4) {
1038         omap_badwidth_write32(opaque, addr, value);
1039         return;
1040     }
1041 
1042     OMAP_BAD_REG(addr);
1043 }
1044 
1045 static const MemoryRegionOps omap_id_ops = {
1046     .read = omap_id_read,
1047     .write = omap_id_write,
1048     .endianness = DEVICE_NATIVE_ENDIAN,
1049 };
1050 
1051 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1052 {
1053     memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1054                           "omap-id", 0x100000000ULL);
1055     memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1056                              0xfffe1800, 0x800);
1057     memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1058     memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1059                              0xfffed400, 0x100);
1060     memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1061     if (!cpu_is_omap15xx(mpu)) {
1062         memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1063                                  &mpu->id_iomem, 0xfffe2000, 0x800);
1064         memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1065     }
1066 }
1067 
1068 /* MPUI Control (Dummy) */
1069 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1070                                unsigned size)
1071 {
1072     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1073 
1074     if (size != 4) {
1075         return omap_badwidth_read32(opaque, addr);
1076     }
1077 
1078     switch (addr) {
1079     case 0x00:	/* CTRL */
1080         return s->mpui_ctrl;
1081     case 0x04:	/* DEBUG_ADDR */
1082         return 0x01ffffff;
1083     case 0x08:	/* DEBUG_DATA */
1084         return 0xffffffff;
1085     case 0x0c:	/* DEBUG_FLAG */
1086         return 0x00000800;
1087     case 0x10:	/* STATUS */
1088         return 0x00000000;
1089 
1090     /* Not in OMAP310 */
1091     case 0x14:	/* DSP_STATUS */
1092     case 0x18:	/* DSP_BOOT_CONFIG */
1093         return 0x00000000;
1094     case 0x1c:	/* DSP_MPUI_CONFIG */
1095         return 0x0000ffff;
1096     }
1097 
1098     OMAP_BAD_REG(addr);
1099     return 0;
1100 }
1101 
1102 static void omap_mpui_write(void *opaque, hwaddr addr,
1103                             uint64_t value, unsigned size)
1104 {
1105     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1106 
1107     if (size != 4) {
1108         omap_badwidth_write32(opaque, addr, value);
1109         return;
1110     }
1111 
1112     switch (addr) {
1113     case 0x00:	/* CTRL */
1114         s->mpui_ctrl = value & 0x007fffff;
1115         break;
1116 
1117     case 0x04:	/* DEBUG_ADDR */
1118     case 0x08:	/* DEBUG_DATA */
1119     case 0x0c:	/* DEBUG_FLAG */
1120     case 0x10:	/* STATUS */
1121     /* Not in OMAP310 */
1122     case 0x14:	/* DSP_STATUS */
1123         OMAP_RO_REG(addr);
1124         break;
1125     case 0x18:	/* DSP_BOOT_CONFIG */
1126     case 0x1c:	/* DSP_MPUI_CONFIG */
1127         break;
1128 
1129     default:
1130         OMAP_BAD_REG(addr);
1131     }
1132 }
1133 
1134 static const MemoryRegionOps omap_mpui_ops = {
1135     .read = omap_mpui_read,
1136     .write = omap_mpui_write,
1137     .endianness = DEVICE_NATIVE_ENDIAN,
1138 };
1139 
1140 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1141 {
1142     s->mpui_ctrl = 0x0003ff1b;
1143 }
1144 
1145 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1146                 struct omap_mpu_state_s *mpu)
1147 {
1148     memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1149                           "omap-mpui", 0x100);
1150     memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1151 
1152     omap_mpui_reset(mpu);
1153 }
1154 
1155 /* TIPB Bridges */
1156 struct omap_tipb_bridge_s {
1157     qemu_irq abort;
1158     MemoryRegion iomem;
1159 
1160     int width_intr;
1161     uint16_t control;
1162     uint16_t alloc;
1163     uint16_t buffer;
1164     uint16_t enh_control;
1165 };
1166 
1167 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1168                                       unsigned size)
1169 {
1170     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1171 
1172     if (size < 2) {
1173         return omap_badwidth_read16(opaque, addr);
1174     }
1175 
1176     switch (addr) {
1177     case 0x00:	/* TIPB_CNTL */
1178         return s->control;
1179     case 0x04:	/* TIPB_BUS_ALLOC */
1180         return s->alloc;
1181     case 0x08:	/* MPU_TIPB_CNTL */
1182         return s->buffer;
1183     case 0x0c:	/* ENHANCED_TIPB_CNTL */
1184         return s->enh_control;
1185     case 0x10:	/* ADDRESS_DBG */
1186     case 0x14:	/* DATA_DEBUG_LOW */
1187     case 0x18:	/* DATA_DEBUG_HIGH */
1188         return 0xffff;
1189     case 0x1c:	/* DEBUG_CNTR_SIG */
1190         return 0x00f8;
1191     }
1192 
1193     OMAP_BAD_REG(addr);
1194     return 0;
1195 }
1196 
1197 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1198                                    uint64_t value, unsigned size)
1199 {
1200     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1201 
1202     if (size < 2) {
1203         omap_badwidth_write16(opaque, addr, value);
1204         return;
1205     }
1206 
1207     switch (addr) {
1208     case 0x00:	/* TIPB_CNTL */
1209         s->control = value & 0xffff;
1210         break;
1211 
1212     case 0x04:	/* TIPB_BUS_ALLOC */
1213         s->alloc = value & 0x003f;
1214         break;
1215 
1216     case 0x08:	/* MPU_TIPB_CNTL */
1217         s->buffer = value & 0x0003;
1218         break;
1219 
1220     case 0x0c:	/* ENHANCED_TIPB_CNTL */
1221         s->width_intr = !(value & 2);
1222         s->enh_control = value & 0x000f;
1223         break;
1224 
1225     case 0x10:	/* ADDRESS_DBG */
1226     case 0x14:	/* DATA_DEBUG_LOW */
1227     case 0x18:	/* DATA_DEBUG_HIGH */
1228     case 0x1c:	/* DEBUG_CNTR_SIG */
1229         OMAP_RO_REG(addr);
1230         break;
1231 
1232     default:
1233         OMAP_BAD_REG(addr);
1234     }
1235 }
1236 
1237 static const MemoryRegionOps omap_tipb_bridge_ops = {
1238     .read = omap_tipb_bridge_read,
1239     .write = omap_tipb_bridge_write,
1240     .endianness = DEVICE_NATIVE_ENDIAN,
1241 };
1242 
1243 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1244 {
1245     s->control = 0xffff;
1246     s->alloc = 0x0009;
1247     s->buffer = 0x0000;
1248     s->enh_control = 0x000f;
1249 }
1250 
1251 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1252     MemoryRegion *memory, hwaddr base,
1253     qemu_irq abort_irq, omap_clk clk)
1254 {
1255     struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1256 
1257     s->abort = abort_irq;
1258     omap_tipb_bridge_reset(s);
1259 
1260     memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1261                           "omap-tipb-bridge", 0x100);
1262     memory_region_add_subregion(memory, base, &s->iomem);
1263 
1264     return s;
1265 }
1266 
1267 /* Dummy Traffic Controller's Memory Interface */
1268 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1269                                unsigned size)
1270 {
1271     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1272     uint32_t ret;
1273 
1274     if (size != 4) {
1275         return omap_badwidth_read32(opaque, addr);
1276     }
1277 
1278     switch (addr) {
1279     case 0x00:	/* IMIF_PRIO */
1280     case 0x04:	/* EMIFS_PRIO */
1281     case 0x08:	/* EMIFF_PRIO */
1282     case 0x0c:	/* EMIFS_CONFIG */
1283     case 0x10:	/* EMIFS_CS0_CONFIG */
1284     case 0x14:	/* EMIFS_CS1_CONFIG */
1285     case 0x18:	/* EMIFS_CS2_CONFIG */
1286     case 0x1c:	/* EMIFS_CS3_CONFIG */
1287     case 0x24:	/* EMIFF_MRS */
1288     case 0x28:	/* TIMEOUT1 */
1289     case 0x2c:	/* TIMEOUT2 */
1290     case 0x30:	/* TIMEOUT3 */
1291     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
1292     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
1293         return s->tcmi_regs[addr >> 2];
1294 
1295     case 0x20:	/* EMIFF_SDRAM_CONFIG */
1296         ret = s->tcmi_regs[addr >> 2];
1297         s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1298         /* XXX: We can try using the VGA_DIRTY flag for this */
1299         return ret;
1300     }
1301 
1302     OMAP_BAD_REG(addr);
1303     return 0;
1304 }
1305 
1306 static void omap_tcmi_write(void *opaque, hwaddr addr,
1307                             uint64_t value, unsigned size)
1308 {
1309     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1310 
1311     if (size != 4) {
1312         omap_badwidth_write32(opaque, addr, value);
1313         return;
1314     }
1315 
1316     switch (addr) {
1317     case 0x00:	/* IMIF_PRIO */
1318     case 0x04:	/* EMIFS_PRIO */
1319     case 0x08:	/* EMIFF_PRIO */
1320     case 0x10:	/* EMIFS_CS0_CONFIG */
1321     case 0x14:	/* EMIFS_CS1_CONFIG */
1322     case 0x18:	/* EMIFS_CS2_CONFIG */
1323     case 0x1c:	/* EMIFS_CS3_CONFIG */
1324     case 0x20:	/* EMIFF_SDRAM_CONFIG */
1325     case 0x24:	/* EMIFF_MRS */
1326     case 0x28:	/* TIMEOUT1 */
1327     case 0x2c:	/* TIMEOUT2 */
1328     case 0x30:	/* TIMEOUT3 */
1329     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
1330     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
1331         s->tcmi_regs[addr >> 2] = value;
1332         break;
1333     case 0x0c:	/* EMIFS_CONFIG */
1334         s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1335         break;
1336 
1337     default:
1338         OMAP_BAD_REG(addr);
1339     }
1340 }
1341 
1342 static const MemoryRegionOps omap_tcmi_ops = {
1343     .read = omap_tcmi_read,
1344     .write = omap_tcmi_write,
1345     .endianness = DEVICE_NATIVE_ENDIAN,
1346 };
1347 
1348 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1349 {
1350     mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1351     mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1352     mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1353     mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1354     mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1355     mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1356     mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1357     mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1358     mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1359     mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1360     mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1361     mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1362     mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1363     mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1364     mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1365 }
1366 
1367 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1368                 struct omap_mpu_state_s *mpu)
1369 {
1370     memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1371                           "omap-tcmi", 0x100);
1372     memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1373     omap_tcmi_reset(mpu);
1374 }
1375 
1376 /* Digital phase-locked loops control */
1377 struct dpll_ctl_s {
1378     MemoryRegion iomem;
1379     uint16_t mode;
1380     omap_clk dpll;
1381 };
1382 
1383 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1384                                unsigned size)
1385 {
1386     struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1387 
1388     if (size != 2) {
1389         return omap_badwidth_read16(opaque, addr);
1390     }
1391 
1392     if (addr == 0x00)	/* CTL_REG */
1393         return s->mode;
1394 
1395     OMAP_BAD_REG(addr);
1396     return 0;
1397 }
1398 
1399 static void omap_dpll_write(void *opaque, hwaddr addr,
1400                             uint64_t value, unsigned size)
1401 {
1402     struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1403     uint16_t diff;
1404     static const int bypass_div[4] = { 1, 2, 4, 4 };
1405     int div, mult;
1406 
1407     if (size != 2) {
1408         omap_badwidth_write16(opaque, addr, value);
1409         return;
1410     }
1411 
1412     if (addr == 0x00) {	/* CTL_REG */
1413         /* See omap_ulpd_pm_write() too */
1414         diff = s->mode & value;
1415         s->mode = value & 0x2fff;
1416         if (diff & (0x3ff << 2)) {
1417             if (value & (1 << 4)) {			/* PLL_ENABLE */
1418                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
1419                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
1420             } else {
1421                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
1422                 mult = 1;
1423             }
1424             omap_clk_setrate(s->dpll, div, mult);
1425         }
1426 
1427         /* Enter the desired mode.  */
1428         s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1429 
1430         /* Act as if the lock is restored.  */
1431         s->mode |= 2;
1432     } else {
1433         OMAP_BAD_REG(addr);
1434     }
1435 }
1436 
1437 static const MemoryRegionOps omap_dpll_ops = {
1438     .read = omap_dpll_read,
1439     .write = omap_dpll_write,
1440     .endianness = DEVICE_NATIVE_ENDIAN,
1441 };
1442 
1443 static void omap_dpll_reset(struct dpll_ctl_s *s)
1444 {
1445     s->mode = 0x2002;
1446     omap_clk_setrate(s->dpll, 1, 1);
1447 }
1448 
1449 static struct dpll_ctl_s  *omap_dpll_init(MemoryRegion *memory,
1450                            hwaddr base, omap_clk clk)
1451 {
1452     struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1453     memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1454 
1455     s->dpll = clk;
1456     omap_dpll_reset(s);
1457 
1458     memory_region_add_subregion(memory, base, &s->iomem);
1459     return s;
1460 }
1461 
1462 /* MPU Clock/Reset/Power Mode Control */
1463 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1464                                unsigned size)
1465 {
1466     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1467 
1468     if (size != 2) {
1469         return omap_badwidth_read16(opaque, addr);
1470     }
1471 
1472     switch (addr) {
1473     case 0x00:	/* ARM_CKCTL */
1474         return s->clkm.arm_ckctl;
1475 
1476     case 0x04:	/* ARM_IDLECT1 */
1477         return s->clkm.arm_idlect1;
1478 
1479     case 0x08:	/* ARM_IDLECT2 */
1480         return s->clkm.arm_idlect2;
1481 
1482     case 0x0c:	/* ARM_EWUPCT */
1483         return s->clkm.arm_ewupct;
1484 
1485     case 0x10:	/* ARM_RSTCT1 */
1486         return s->clkm.arm_rstct1;
1487 
1488     case 0x14:	/* ARM_RSTCT2 */
1489         return s->clkm.arm_rstct2;
1490 
1491     case 0x18:	/* ARM_SYSST */
1492         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1493 
1494     case 0x1c:	/* ARM_CKOUT1 */
1495         return s->clkm.arm_ckout1;
1496 
1497     case 0x20:	/* ARM_CKOUT2 */
1498         break;
1499     }
1500 
1501     OMAP_BAD_REG(addr);
1502     return 0;
1503 }
1504 
1505 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1506                 uint16_t diff, uint16_t value)
1507 {
1508     omap_clk clk;
1509 
1510     if (diff & (1 << 14)) {				/* ARM_INTHCK_SEL */
1511         if (value & (1 << 14))
1512             /* Reserved */;
1513         else {
1514             clk = omap_findclk(s, "arminth_ck");
1515             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1516         }
1517     }
1518     if (diff & (1 << 12)) {				/* ARM_TIMXO */
1519         clk = omap_findclk(s, "armtim_ck");
1520         if (value & (1 << 12))
1521             omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1522         else
1523             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1524     }
1525     /* XXX: en_dspck */
1526     if (diff & (3 << 10)) {				/* DSPMMUDIV */
1527         clk = omap_findclk(s, "dspmmu_ck");
1528         omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1529     }
1530     if (diff & (3 << 8)) {				/* TCDIV */
1531         clk = omap_findclk(s, "tc_ck");
1532         omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1533     }
1534     if (diff & (3 << 6)) {				/* DSPDIV */
1535         clk = omap_findclk(s, "dsp_ck");
1536         omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1537     }
1538     if (diff & (3 << 4)) {				/* ARMDIV */
1539         clk = omap_findclk(s, "arm_ck");
1540         omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1541     }
1542     if (diff & (3 << 2)) {				/* LCDDIV */
1543         clk = omap_findclk(s, "lcd_ck");
1544         omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1545     }
1546     if (diff & (3 << 0)) {				/* PERDIV */
1547         clk = omap_findclk(s, "armper_ck");
1548         omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1549     }
1550 }
1551 
1552 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1553                 uint16_t diff, uint16_t value)
1554 {
1555     omap_clk clk;
1556 
1557     if (value & (1 << 11)) {                            /* SETARM_IDLE */
1558         cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1559     }
1560     if (!(value & (1 << 10))) {                         /* WKUP_MODE */
1561         /* XXX: disable wakeup from IRQ */
1562         qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1563     }
1564 
1565 #define SET_CANIDLE(clock, bit)				\
1566     if (diff & (1 << bit)) {				\
1567         clk = omap_findclk(s, clock);			\
1568         omap_clk_canidle(clk, (value >> bit) & 1);	\
1569     }
1570     SET_CANIDLE("mpuwd_ck", 0)				/* IDLWDT_ARM */
1571     SET_CANIDLE("armxor_ck", 1)				/* IDLXORP_ARM */
1572     SET_CANIDLE("mpuper_ck", 2)				/* IDLPER_ARM */
1573     SET_CANIDLE("lcd_ck", 3)				/* IDLLCD_ARM */
1574     SET_CANIDLE("lb_ck", 4)				/* IDLLB_ARM */
1575     SET_CANIDLE("hsab_ck", 5)				/* IDLHSAB_ARM */
1576     SET_CANIDLE("tipb_ck", 6)				/* IDLIF_ARM */
1577     SET_CANIDLE("dma_ck", 6)				/* IDLIF_ARM */
1578     SET_CANIDLE("tc_ck", 6)				/* IDLIF_ARM */
1579     SET_CANIDLE("dpll1", 7)				/* IDLDPLL_ARM */
1580     SET_CANIDLE("dpll2", 7)				/* IDLDPLL_ARM */
1581     SET_CANIDLE("dpll3", 7)				/* IDLDPLL_ARM */
1582     SET_CANIDLE("mpui_ck", 8)				/* IDLAPI_ARM */
1583     SET_CANIDLE("armtim_ck", 9)				/* IDLTIM_ARM */
1584 }
1585 
1586 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1587                 uint16_t diff, uint16_t value)
1588 {
1589     omap_clk clk;
1590 
1591 #define SET_ONOFF(clock, bit)				\
1592     if (diff & (1 << bit)) {				\
1593         clk = omap_findclk(s, clock);			\
1594         omap_clk_onoff(clk, (value >> bit) & 1);	\
1595     }
1596     SET_ONOFF("mpuwd_ck", 0)				/* EN_WDTCK */
1597     SET_ONOFF("armxor_ck", 1)				/* EN_XORPCK */
1598     SET_ONOFF("mpuper_ck", 2)				/* EN_PERCK */
1599     SET_ONOFF("lcd_ck", 3)				/* EN_LCDCK */
1600     SET_ONOFF("lb_ck", 4)				/* EN_LBCK */
1601     SET_ONOFF("hsab_ck", 5)				/* EN_HSABCK */
1602     SET_ONOFF("mpui_ck", 6)				/* EN_APICK */
1603     SET_ONOFF("armtim_ck", 7)				/* EN_TIMCK */
1604     SET_CANIDLE("dma_ck", 8)				/* DMACK_REQ */
1605     SET_ONOFF("arm_gpio_ck", 9)				/* EN_GPIOCK */
1606     SET_ONOFF("lbfree_ck", 10)				/* EN_LBFREECK */
1607 }
1608 
1609 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1610                 uint16_t diff, uint16_t value)
1611 {
1612     omap_clk clk;
1613 
1614     if (diff & (3 << 4)) {				/* TCLKOUT */
1615         clk = omap_findclk(s, "tclk_out");
1616         switch ((value >> 4) & 3) {
1617         case 1:
1618             omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1619             omap_clk_onoff(clk, 1);
1620             break;
1621         case 2:
1622             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1623             omap_clk_onoff(clk, 1);
1624             break;
1625         default:
1626             omap_clk_onoff(clk, 0);
1627         }
1628     }
1629     if (diff & (3 << 2)) {				/* DCLKOUT */
1630         clk = omap_findclk(s, "dclk_out");
1631         switch ((value >> 2) & 3) {
1632         case 0:
1633             omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1634             break;
1635         case 1:
1636             omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1637             break;
1638         case 2:
1639             omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1640             break;
1641         case 3:
1642             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1643             break;
1644         }
1645     }
1646     if (diff & (3 << 0)) {				/* ACLKOUT */
1647         clk = omap_findclk(s, "aclk_out");
1648         switch ((value >> 0) & 3) {
1649         case 1:
1650             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1651             omap_clk_onoff(clk, 1);
1652             break;
1653         case 2:
1654             omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1655             omap_clk_onoff(clk, 1);
1656             break;
1657         case 3:
1658             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1659             omap_clk_onoff(clk, 1);
1660             break;
1661         default:
1662             omap_clk_onoff(clk, 0);
1663         }
1664     }
1665 }
1666 
1667 static void omap_clkm_write(void *opaque, hwaddr addr,
1668                             uint64_t value, unsigned size)
1669 {
1670     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1671     uint16_t diff;
1672     omap_clk clk;
1673     static const char *clkschemename[8] = {
1674         "fully synchronous", "fully asynchronous", "synchronous scalable",
1675         "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1676     };
1677 
1678     if (size != 2) {
1679         omap_badwidth_write16(opaque, addr, value);
1680         return;
1681     }
1682 
1683     switch (addr) {
1684     case 0x00:	/* ARM_CKCTL */
1685         diff = s->clkm.arm_ckctl ^ value;
1686         s->clkm.arm_ckctl = value & 0x7fff;
1687         omap_clkm_ckctl_update(s, diff, value);
1688         return;
1689 
1690     case 0x04:	/* ARM_IDLECT1 */
1691         diff = s->clkm.arm_idlect1 ^ value;
1692         s->clkm.arm_idlect1 = value & 0x0fff;
1693         omap_clkm_idlect1_update(s, diff, value);
1694         return;
1695 
1696     case 0x08:	/* ARM_IDLECT2 */
1697         diff = s->clkm.arm_idlect2 ^ value;
1698         s->clkm.arm_idlect2 = value & 0x07ff;
1699         omap_clkm_idlect2_update(s, diff, value);
1700         return;
1701 
1702     case 0x0c:	/* ARM_EWUPCT */
1703         s->clkm.arm_ewupct = value & 0x003f;
1704         return;
1705 
1706     case 0x10:	/* ARM_RSTCT1 */
1707         diff = s->clkm.arm_rstct1 ^ value;
1708         s->clkm.arm_rstct1 = value & 0x0007;
1709         if (value & 9) {
1710             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1711             s->clkm.cold_start = 0xa;
1712         }
1713         if (diff & ~value & 4) {				/* DSP_RST */
1714             omap_mpui_reset(s);
1715             omap_tipb_bridge_reset(s->private_tipb);
1716             omap_tipb_bridge_reset(s->public_tipb);
1717         }
1718         if (diff & 2) {						/* DSP_EN */
1719             clk = omap_findclk(s, "dsp_ck");
1720             omap_clk_canidle(clk, (~value >> 1) & 1);
1721         }
1722         return;
1723 
1724     case 0x14:	/* ARM_RSTCT2 */
1725         s->clkm.arm_rstct2 = value & 0x0001;
1726         return;
1727 
1728     case 0x18:	/* ARM_SYSST */
1729         if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1730             s->clkm.clocking_scheme = (value >> 11) & 7;
1731             printf("%s: clocking scheme set to %s\n", __func__,
1732                    clkschemename[s->clkm.clocking_scheme]);
1733         }
1734         s->clkm.cold_start &= value & 0x3f;
1735         return;
1736 
1737     case 0x1c:	/* ARM_CKOUT1 */
1738         diff = s->clkm.arm_ckout1 ^ value;
1739         s->clkm.arm_ckout1 = value & 0x003f;
1740         omap_clkm_ckout1_update(s, diff, value);
1741         return;
1742 
1743     case 0x20:	/* ARM_CKOUT2 */
1744     default:
1745         OMAP_BAD_REG(addr);
1746     }
1747 }
1748 
1749 static const MemoryRegionOps omap_clkm_ops = {
1750     .read = omap_clkm_read,
1751     .write = omap_clkm_write,
1752     .endianness = DEVICE_NATIVE_ENDIAN,
1753 };
1754 
1755 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1756                                  unsigned size)
1757 {
1758     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1759     CPUState *cpu = CPU(s->cpu);
1760 
1761     if (size != 2) {
1762         return omap_badwidth_read16(opaque, addr);
1763     }
1764 
1765     switch (addr) {
1766     case 0x04:	/* DSP_IDLECT1 */
1767         return s->clkm.dsp_idlect1;
1768 
1769     case 0x08:	/* DSP_IDLECT2 */
1770         return s->clkm.dsp_idlect2;
1771 
1772     case 0x14:	/* DSP_RSTCT2 */
1773         return s->clkm.dsp_rstct2;
1774 
1775     case 0x18:	/* DSP_SYSST */
1776         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1777                 (cpu->halted << 6);      /* Quite useless... */
1778     }
1779 
1780     OMAP_BAD_REG(addr);
1781     return 0;
1782 }
1783 
1784 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1785                 uint16_t diff, uint16_t value)
1786 {
1787     omap_clk clk;
1788 
1789     SET_CANIDLE("dspxor_ck", 1);			/* IDLXORP_DSP */
1790 }
1791 
1792 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1793                 uint16_t diff, uint16_t value)
1794 {
1795     omap_clk clk;
1796 
1797     SET_ONOFF("dspxor_ck", 1);				/* EN_XORPCK */
1798 }
1799 
1800 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1801                               uint64_t value, unsigned size)
1802 {
1803     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1804     uint16_t diff;
1805 
1806     if (size != 2) {
1807         omap_badwidth_write16(opaque, addr, value);
1808         return;
1809     }
1810 
1811     switch (addr) {
1812     case 0x04:	/* DSP_IDLECT1 */
1813         diff = s->clkm.dsp_idlect1 ^ value;
1814         s->clkm.dsp_idlect1 = value & 0x01f7;
1815         omap_clkdsp_idlect1_update(s, diff, value);
1816         break;
1817 
1818     case 0x08:	/* DSP_IDLECT2 */
1819         s->clkm.dsp_idlect2 = value & 0x0037;
1820         diff = s->clkm.dsp_idlect1 ^ value;
1821         omap_clkdsp_idlect2_update(s, diff, value);
1822         break;
1823 
1824     case 0x14:	/* DSP_RSTCT2 */
1825         s->clkm.dsp_rstct2 = value & 0x0001;
1826         break;
1827 
1828     case 0x18:	/* DSP_SYSST */
1829         s->clkm.cold_start &= value & 0x3f;
1830         break;
1831 
1832     default:
1833         OMAP_BAD_REG(addr);
1834     }
1835 }
1836 
1837 static const MemoryRegionOps omap_clkdsp_ops = {
1838     .read = omap_clkdsp_read,
1839     .write = omap_clkdsp_write,
1840     .endianness = DEVICE_NATIVE_ENDIAN,
1841 };
1842 
1843 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1844 {
1845     if (s->wdt && s->wdt->reset)
1846         s->clkm.cold_start = 0x6;
1847     s->clkm.clocking_scheme = 0;
1848     omap_clkm_ckctl_update(s, ~0, 0x3000);
1849     s->clkm.arm_ckctl = 0x3000;
1850     omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1851     s->clkm.arm_idlect1 = 0x0400;
1852     omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1853     s->clkm.arm_idlect2 = 0x0100;
1854     s->clkm.arm_ewupct = 0x003f;
1855     s->clkm.arm_rstct1 = 0x0000;
1856     s->clkm.arm_rstct2 = 0x0000;
1857     s->clkm.arm_ckout1 = 0x0015;
1858     s->clkm.dpll1_mode = 0x2002;
1859     omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1860     s->clkm.dsp_idlect1 = 0x0040;
1861     omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1862     s->clkm.dsp_idlect2 = 0x0000;
1863     s->clkm.dsp_rstct2 = 0x0000;
1864 }
1865 
1866 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1867                 hwaddr dsp_base, struct omap_mpu_state_s *s)
1868 {
1869     memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1870                           "omap-clkm", 0x100);
1871     memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1872                           "omap-clkdsp", 0x1000);
1873 
1874     s->clkm.arm_idlect1 = 0x03ff;
1875     s->clkm.arm_idlect2 = 0x0100;
1876     s->clkm.dsp_idlect1 = 0x0002;
1877     omap_clkm_reset(s);
1878     s->clkm.cold_start = 0x3a;
1879 
1880     memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1881     memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1882 }
1883 
1884 /* MPU I/O */
1885 struct omap_mpuio_s {
1886     qemu_irq irq;
1887     qemu_irq kbd_irq;
1888     qemu_irq *in;
1889     qemu_irq handler[16];
1890     qemu_irq wakeup;
1891     MemoryRegion iomem;
1892 
1893     uint16_t inputs;
1894     uint16_t outputs;
1895     uint16_t dir;
1896     uint16_t edge;
1897     uint16_t mask;
1898     uint16_t ints;
1899 
1900     uint16_t debounce;
1901     uint16_t latch;
1902     uint8_t event;
1903 
1904     uint8_t buttons[5];
1905     uint8_t row_latch;
1906     uint8_t cols;
1907     int kbd_mask;
1908     int clk;
1909 };
1910 
1911 static void omap_mpuio_set(void *opaque, int line, int level)
1912 {
1913     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1914     uint16_t prev = s->inputs;
1915 
1916     if (level)
1917         s->inputs |= 1 << line;
1918     else
1919         s->inputs &= ~(1 << line);
1920 
1921     if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1922         if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1923             s->ints |= 1 << line;
1924             qemu_irq_raise(s->irq);
1925             /* TODO: wakeup */
1926         }
1927         if ((s->event & (1 << 0)) &&		/* SET_GPIO_EVENT_MODE */
1928                 (s->event >> 1) == line)	/* PIN_SELECT */
1929             s->latch = s->inputs;
1930     }
1931 }
1932 
1933 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1934 {
1935     int i;
1936     uint8_t *row, rows = 0, cols = ~s->cols;
1937 
1938     for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1939         if (*row & cols)
1940             rows |= i;
1941 
1942     qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1943     s->row_latch = ~rows;
1944 }
1945 
1946 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1947                                 unsigned size)
1948 {
1949     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1950     int offset = addr & OMAP_MPUI_REG_MASK;
1951     uint16_t ret;
1952 
1953     if (size != 2) {
1954         return omap_badwidth_read16(opaque, addr);
1955     }
1956 
1957     switch (offset) {
1958     case 0x00:	/* INPUT_LATCH */
1959         return s->inputs;
1960 
1961     case 0x04:	/* OUTPUT_REG */
1962         return s->outputs;
1963 
1964     case 0x08:	/* IO_CNTL */
1965         return s->dir;
1966 
1967     case 0x10:	/* KBR_LATCH */
1968         return s->row_latch;
1969 
1970     case 0x14:	/* KBC_REG */
1971         return s->cols;
1972 
1973     case 0x18:	/* GPIO_EVENT_MODE_REG */
1974         return s->event;
1975 
1976     case 0x1c:	/* GPIO_INT_EDGE_REG */
1977         return s->edge;
1978 
1979     case 0x20:	/* KBD_INT */
1980         return (~s->row_latch & 0x1f) && !s->kbd_mask;
1981 
1982     case 0x24:	/* GPIO_INT */
1983         ret = s->ints;
1984         s->ints &= s->mask;
1985         if (ret)
1986             qemu_irq_lower(s->irq);
1987         return ret;
1988 
1989     case 0x28:	/* KBD_MASKIT */
1990         return s->kbd_mask;
1991 
1992     case 0x2c:	/* GPIO_MASKIT */
1993         return s->mask;
1994 
1995     case 0x30:	/* GPIO_DEBOUNCING_REG */
1996         return s->debounce;
1997 
1998     case 0x34:	/* GPIO_LATCH_REG */
1999         return s->latch;
2000     }
2001 
2002     OMAP_BAD_REG(addr);
2003     return 0;
2004 }
2005 
2006 static void omap_mpuio_write(void *opaque, hwaddr addr,
2007                              uint64_t value, unsigned size)
2008 {
2009     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2010     int offset = addr & OMAP_MPUI_REG_MASK;
2011     uint16_t diff;
2012     int ln;
2013 
2014     if (size != 2) {
2015         omap_badwidth_write16(opaque, addr, value);
2016         return;
2017     }
2018 
2019     switch (offset) {
2020     case 0x04:	/* OUTPUT_REG */
2021         diff = (s->outputs ^ value) & ~s->dir;
2022         s->outputs = value;
2023         while ((ln = ctz32(diff)) != 32) {
2024             if (s->handler[ln])
2025                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2026             diff &= ~(1 << ln);
2027         }
2028         break;
2029 
2030     case 0x08:	/* IO_CNTL */
2031         diff = s->outputs & (s->dir ^ value);
2032         s->dir = value;
2033 
2034         value = s->outputs & ~s->dir;
2035         while ((ln = ctz32(diff)) != 32) {
2036             if (s->handler[ln])
2037                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2038             diff &= ~(1 << ln);
2039         }
2040         break;
2041 
2042     case 0x14:	/* KBC_REG */
2043         s->cols = value;
2044         omap_mpuio_kbd_update(s);
2045         break;
2046 
2047     case 0x18:	/* GPIO_EVENT_MODE_REG */
2048         s->event = value & 0x1f;
2049         break;
2050 
2051     case 0x1c:	/* GPIO_INT_EDGE_REG */
2052         s->edge = value;
2053         break;
2054 
2055     case 0x28:	/* KBD_MASKIT */
2056         s->kbd_mask = value & 1;
2057         omap_mpuio_kbd_update(s);
2058         break;
2059 
2060     case 0x2c:	/* GPIO_MASKIT */
2061         s->mask = value;
2062         break;
2063 
2064     case 0x30:	/* GPIO_DEBOUNCING_REG */
2065         s->debounce = value & 0x1ff;
2066         break;
2067 
2068     case 0x00:	/* INPUT_LATCH */
2069     case 0x10:	/* KBR_LATCH */
2070     case 0x20:	/* KBD_INT */
2071     case 0x24:	/* GPIO_INT */
2072     case 0x34:	/* GPIO_LATCH_REG */
2073         OMAP_RO_REG(addr);
2074         return;
2075 
2076     default:
2077         OMAP_BAD_REG(addr);
2078         return;
2079     }
2080 }
2081 
2082 static const MemoryRegionOps omap_mpuio_ops  = {
2083     .read = omap_mpuio_read,
2084     .write = omap_mpuio_write,
2085     .endianness = DEVICE_NATIVE_ENDIAN,
2086 };
2087 
2088 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2089 {
2090     s->inputs = 0;
2091     s->outputs = 0;
2092     s->dir = ~0;
2093     s->event = 0;
2094     s->edge = 0;
2095     s->kbd_mask = 0;
2096     s->mask = 0;
2097     s->debounce = 0;
2098     s->latch = 0;
2099     s->ints = 0;
2100     s->row_latch = 0x1f;
2101     s->clk = 1;
2102 }
2103 
2104 static void omap_mpuio_onoff(void *opaque, int line, int on)
2105 {
2106     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2107 
2108     s->clk = on;
2109     if (on)
2110         omap_mpuio_kbd_update(s);
2111 }
2112 
2113 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2114                 hwaddr base,
2115                 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2116                 omap_clk clk)
2117 {
2118     struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2119 
2120     s->irq = gpio_int;
2121     s->kbd_irq = kbd_int;
2122     s->wakeup = wakeup;
2123     s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2124     omap_mpuio_reset(s);
2125 
2126     memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2127                           "omap-mpuio", 0x800);
2128     memory_region_add_subregion(memory, base, &s->iomem);
2129 
2130     omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2131 
2132     return s;
2133 }
2134 
2135 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2136 {
2137     return s->in;
2138 }
2139 
2140 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2141 {
2142     if (line >= 16 || line < 0)
2143         hw_error("%s: No GPIO line %i\n", __func__, line);
2144     s->handler[line] = handler;
2145 }
2146 
2147 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2148 {
2149     if (row >= 5 || row < 0)
2150         hw_error("%s: No key %i-%i\n", __func__, col, row);
2151 
2152     if (down)
2153         s->buttons[row] |= 1 << col;
2154     else
2155         s->buttons[row] &= ~(1 << col);
2156 
2157     omap_mpuio_kbd_update(s);
2158 }
2159 
2160 /* MicroWire Interface */
2161 struct omap_uwire_s {
2162     MemoryRegion iomem;
2163     qemu_irq txirq;
2164     qemu_irq rxirq;
2165     qemu_irq txdrq;
2166 
2167     uint16_t txbuf;
2168     uint16_t rxbuf;
2169     uint16_t control;
2170     uint16_t setup[5];
2171 
2172     uWireSlave *chip[4];
2173 };
2174 
2175 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2176 {
2177     int chipselect = (s->control >> 10) & 3;		/* INDEX */
2178     uWireSlave *slave = s->chip[chipselect];
2179 
2180     if ((s->control >> 5) & 0x1f) {			/* NB_BITS_WR */
2181         if (s->control & (1 << 12))			/* CS_CMD */
2182             if (slave && slave->send)
2183                 slave->send(slave->opaque,
2184                                 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2185         s->control &= ~(1 << 14);			/* CSRB */
2186         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2187          * a DRQ.  When is the level IRQ supposed to be reset?  */
2188     }
2189 
2190     if ((s->control >> 0) & 0x1f) {			/* NB_BITS_RD */
2191         if (s->control & (1 << 12))			/* CS_CMD */
2192             if (slave && slave->receive)
2193                 s->rxbuf = slave->receive(slave->opaque);
2194         s->control |= 1 << 15;				/* RDRB */
2195         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2196          * a DRQ.  When is the level IRQ supposed to be reset?  */
2197     }
2198 }
2199 
2200 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2201                                 unsigned size)
2202 {
2203     struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2204     int offset = addr & OMAP_MPUI_REG_MASK;
2205 
2206     if (size != 2) {
2207         return omap_badwidth_read16(opaque, addr);
2208     }
2209 
2210     switch (offset) {
2211     case 0x00:	/* RDR */
2212         s->control &= ~(1 << 15);			/* RDRB */
2213         return s->rxbuf;
2214 
2215     case 0x04:	/* CSR */
2216         return s->control;
2217 
2218     case 0x08:	/* SR1 */
2219         return s->setup[0];
2220     case 0x0c:	/* SR2 */
2221         return s->setup[1];
2222     case 0x10:	/* SR3 */
2223         return s->setup[2];
2224     case 0x14:	/* SR4 */
2225         return s->setup[3];
2226     case 0x18:	/* SR5 */
2227         return s->setup[4];
2228     }
2229 
2230     OMAP_BAD_REG(addr);
2231     return 0;
2232 }
2233 
2234 static void omap_uwire_write(void *opaque, hwaddr addr,
2235                              uint64_t value, unsigned size)
2236 {
2237     struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2238     int offset = addr & OMAP_MPUI_REG_MASK;
2239 
2240     if (size != 2) {
2241         omap_badwidth_write16(opaque, addr, value);
2242         return;
2243     }
2244 
2245     switch (offset) {
2246     case 0x00:	/* TDR */
2247         s->txbuf = value;				/* TD */
2248         if ((s->setup[4] & (1 << 2)) &&			/* AUTO_TX_EN */
2249                         ((s->setup[4] & (1 << 3)) ||	/* CS_TOGGLE_TX_EN */
2250                          (s->control & (1 << 12)))) {	/* CS_CMD */
2251             s->control |= 1 << 14;			/* CSRB */
2252             omap_uwire_transfer_start(s);
2253         }
2254         break;
2255 
2256     case 0x04:	/* CSR */
2257         s->control = value & 0x1fff;
2258         if (value & (1 << 13))				/* START */
2259             omap_uwire_transfer_start(s);
2260         break;
2261 
2262     case 0x08:	/* SR1 */
2263         s->setup[0] = value & 0x003f;
2264         break;
2265 
2266     case 0x0c:	/* SR2 */
2267         s->setup[1] = value & 0x0fc0;
2268         break;
2269 
2270     case 0x10:	/* SR3 */
2271         s->setup[2] = value & 0x0003;
2272         break;
2273 
2274     case 0x14:	/* SR4 */
2275         s->setup[3] = value & 0x0001;
2276         break;
2277 
2278     case 0x18:	/* SR5 */
2279         s->setup[4] = value & 0x000f;
2280         break;
2281 
2282     default:
2283         OMAP_BAD_REG(addr);
2284         return;
2285     }
2286 }
2287 
2288 static const MemoryRegionOps omap_uwire_ops = {
2289     .read = omap_uwire_read,
2290     .write = omap_uwire_write,
2291     .endianness = DEVICE_NATIVE_ENDIAN,
2292 };
2293 
2294 static void omap_uwire_reset(struct omap_uwire_s *s)
2295 {
2296     s->control = 0;
2297     s->setup[0] = 0;
2298     s->setup[1] = 0;
2299     s->setup[2] = 0;
2300     s->setup[3] = 0;
2301     s->setup[4] = 0;
2302 }
2303 
2304 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2305                                             hwaddr base,
2306                                             qemu_irq txirq, qemu_irq rxirq,
2307                                             qemu_irq dma,
2308                                             omap_clk clk)
2309 {
2310     struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2311 
2312     s->txirq = txirq;
2313     s->rxirq = rxirq;
2314     s->txdrq = dma;
2315     omap_uwire_reset(s);
2316 
2317     memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2318     memory_region_add_subregion(system_memory, base, &s->iomem);
2319 
2320     return s;
2321 }
2322 
2323 void omap_uwire_attach(struct omap_uwire_s *s,
2324                 uWireSlave *slave, int chipselect)
2325 {
2326     if (chipselect < 0 || chipselect > 3) {
2327         error_report("%s: Bad chipselect %i", __func__, chipselect);
2328         exit(-1);
2329     }
2330 
2331     s->chip[chipselect] = slave;
2332 }
2333 
2334 /* Pseudonoise Pulse-Width Light Modulator */
2335 struct omap_pwl_s {
2336     MemoryRegion iomem;
2337     uint8_t output;
2338     uint8_t level;
2339     uint8_t enable;
2340     int clk;
2341 };
2342 
2343 static void omap_pwl_update(struct omap_pwl_s *s)
2344 {
2345     int output = (s->clk && s->enable) ? s->level : 0;
2346 
2347     if (output != s->output) {
2348         s->output = output;
2349         printf("%s: Backlight now at %i/256\n", __func__, output);
2350     }
2351 }
2352 
2353 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2354                               unsigned size)
2355 {
2356     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2357     int offset = addr & OMAP_MPUI_REG_MASK;
2358 
2359     if (size != 1) {
2360         return omap_badwidth_read8(opaque, addr);
2361     }
2362 
2363     switch (offset) {
2364     case 0x00:	/* PWL_LEVEL */
2365         return s->level;
2366     case 0x04:	/* PWL_CTRL */
2367         return s->enable;
2368     }
2369     OMAP_BAD_REG(addr);
2370     return 0;
2371 }
2372 
2373 static void omap_pwl_write(void *opaque, hwaddr addr,
2374                            uint64_t value, unsigned size)
2375 {
2376     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2377     int offset = addr & OMAP_MPUI_REG_MASK;
2378 
2379     if (size != 1) {
2380         omap_badwidth_write8(opaque, addr, value);
2381         return;
2382     }
2383 
2384     switch (offset) {
2385     case 0x00:	/* PWL_LEVEL */
2386         s->level = value;
2387         omap_pwl_update(s);
2388         break;
2389     case 0x04:	/* PWL_CTRL */
2390         s->enable = value & 1;
2391         omap_pwl_update(s);
2392         break;
2393     default:
2394         OMAP_BAD_REG(addr);
2395         return;
2396     }
2397 }
2398 
2399 static const MemoryRegionOps omap_pwl_ops = {
2400     .read = omap_pwl_read,
2401     .write = omap_pwl_write,
2402     .endianness = DEVICE_NATIVE_ENDIAN,
2403 };
2404 
2405 static void omap_pwl_reset(struct omap_pwl_s *s)
2406 {
2407     s->output = 0;
2408     s->level = 0;
2409     s->enable = 0;
2410     s->clk = 1;
2411     omap_pwl_update(s);
2412 }
2413 
2414 static void omap_pwl_clk_update(void *opaque, int line, int on)
2415 {
2416     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2417 
2418     s->clk = on;
2419     omap_pwl_update(s);
2420 }
2421 
2422 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2423                                         hwaddr base,
2424                                         omap_clk clk)
2425 {
2426     struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2427 
2428     omap_pwl_reset(s);
2429 
2430     memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2431                           "omap-pwl", 0x800);
2432     memory_region_add_subregion(system_memory, base, &s->iomem);
2433 
2434     omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2435     return s;
2436 }
2437 
2438 /* Pulse-Width Tone module */
2439 struct omap_pwt_s {
2440     MemoryRegion iomem;
2441     uint8_t frc;
2442     uint8_t vrc;
2443     uint8_t gcr;
2444     omap_clk clk;
2445 };
2446 
2447 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2448                               unsigned size)
2449 {
2450     struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2451     int offset = addr & OMAP_MPUI_REG_MASK;
2452 
2453     if (size != 1) {
2454         return omap_badwidth_read8(opaque, addr);
2455     }
2456 
2457     switch (offset) {
2458     case 0x00:	/* FRC */
2459         return s->frc;
2460     case 0x04:	/* VCR */
2461         return s->vrc;
2462     case 0x08:	/* GCR */
2463         return s->gcr;
2464     }
2465     OMAP_BAD_REG(addr);
2466     return 0;
2467 }
2468 
2469 static void omap_pwt_write(void *opaque, hwaddr addr,
2470                            uint64_t value, unsigned size)
2471 {
2472     struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2473     int offset = addr & OMAP_MPUI_REG_MASK;
2474 
2475     if (size != 1) {
2476         omap_badwidth_write8(opaque, addr, value);
2477         return;
2478     }
2479 
2480     switch (offset) {
2481     case 0x00:	/* FRC */
2482         s->frc = value & 0x3f;
2483         break;
2484     case 0x04:	/* VRC */
2485         if ((value ^ s->vrc) & 1) {
2486             if (value & 1)
2487                 printf("%s: %iHz buzz on\n", __func__, (int)
2488                                 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2489                                 ((omap_clk_getrate(s->clk) >> 3) /
2490                                  /* Pre-multiplexer divider */
2491                                  ((s->gcr & 2) ? 1 : 154) /
2492                                  /* Octave multiplexer */
2493                                  (2 << (value & 3)) *
2494                                  /* 101/107 divider */
2495                                  ((value & (1 << 2)) ? 101 : 107) *
2496                                  /*  49/55 divider */
2497                                  ((value & (1 << 3)) ?  49 : 55) *
2498                                  /*  50/63 divider */
2499                                  ((value & (1 << 4)) ?  50 : 63) *
2500                                  /*  80/127 divider */
2501                                  ((value & (1 << 5)) ?  80 : 127) /
2502                                  (107 * 55 * 63 * 127)));
2503             else
2504                 printf("%s: silence!\n", __func__);
2505         }
2506         s->vrc = value & 0x7f;
2507         break;
2508     case 0x08:	/* GCR */
2509         s->gcr = value & 3;
2510         break;
2511     default:
2512         OMAP_BAD_REG(addr);
2513         return;
2514     }
2515 }
2516 
2517 static const MemoryRegionOps omap_pwt_ops = {
2518     .read =omap_pwt_read,
2519     .write = omap_pwt_write,
2520     .endianness = DEVICE_NATIVE_ENDIAN,
2521 };
2522 
2523 static void omap_pwt_reset(struct omap_pwt_s *s)
2524 {
2525     s->frc = 0;
2526     s->vrc = 0;
2527     s->gcr = 0;
2528 }
2529 
2530 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2531                                         hwaddr base,
2532                                         omap_clk clk)
2533 {
2534     struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2535     s->clk = clk;
2536     omap_pwt_reset(s);
2537 
2538     memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2539                           "omap-pwt", 0x800);
2540     memory_region_add_subregion(system_memory, base, &s->iomem);
2541     return s;
2542 }
2543 
2544 /* Real-time Clock module */
2545 struct omap_rtc_s {
2546     MemoryRegion iomem;
2547     qemu_irq irq;
2548     qemu_irq alarm;
2549     QEMUTimer *clk;
2550 
2551     uint8_t interrupts;
2552     uint8_t status;
2553     int16_t comp_reg;
2554     int running;
2555     int pm_am;
2556     int auto_comp;
2557     int round;
2558     struct tm alarm_tm;
2559     time_t alarm_ti;
2560 
2561     struct tm current_tm;
2562     time_t ti;
2563     uint64_t tick;
2564 };
2565 
2566 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2567 {
2568     /* s->alarm is level-triggered */
2569     qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2570 }
2571 
2572 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2573 {
2574     s->alarm_ti = mktimegm(&s->alarm_tm);
2575     if (s->alarm_ti == -1)
2576         printf("%s: conversion failed\n", __func__);
2577 }
2578 
2579 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2580                               unsigned size)
2581 {
2582     struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2583     int offset = addr & OMAP_MPUI_REG_MASK;
2584     uint8_t i;
2585 
2586     if (size != 1) {
2587         return omap_badwidth_read8(opaque, addr);
2588     }
2589 
2590     switch (offset) {
2591     case 0x00:	/* SECONDS_REG */
2592         return to_bcd(s->current_tm.tm_sec);
2593 
2594     case 0x04:	/* MINUTES_REG */
2595         return to_bcd(s->current_tm.tm_min);
2596 
2597     case 0x08:	/* HOURS_REG */
2598         if (s->pm_am)
2599             return ((s->current_tm.tm_hour > 11) << 7) |
2600                     to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2601         else
2602             return to_bcd(s->current_tm.tm_hour);
2603 
2604     case 0x0c:	/* DAYS_REG */
2605         return to_bcd(s->current_tm.tm_mday);
2606 
2607     case 0x10:	/* MONTHS_REG */
2608         return to_bcd(s->current_tm.tm_mon + 1);
2609 
2610     case 0x14:	/* YEARS_REG */
2611         return to_bcd(s->current_tm.tm_year % 100);
2612 
2613     case 0x18:	/* WEEK_REG */
2614         return s->current_tm.tm_wday;
2615 
2616     case 0x20:	/* ALARM_SECONDS_REG */
2617         return to_bcd(s->alarm_tm.tm_sec);
2618 
2619     case 0x24:	/* ALARM_MINUTES_REG */
2620         return to_bcd(s->alarm_tm.tm_min);
2621 
2622     case 0x28:	/* ALARM_HOURS_REG */
2623         if (s->pm_am)
2624             return ((s->alarm_tm.tm_hour > 11) << 7) |
2625                     to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2626         else
2627             return to_bcd(s->alarm_tm.tm_hour);
2628 
2629     case 0x2c:	/* ALARM_DAYS_REG */
2630         return to_bcd(s->alarm_tm.tm_mday);
2631 
2632     case 0x30:	/* ALARM_MONTHS_REG */
2633         return to_bcd(s->alarm_tm.tm_mon + 1);
2634 
2635     case 0x34:	/* ALARM_YEARS_REG */
2636         return to_bcd(s->alarm_tm.tm_year % 100);
2637 
2638     case 0x40:	/* RTC_CTRL_REG */
2639         return (s->pm_am << 3) | (s->auto_comp << 2) |
2640                 (s->round << 1) | s->running;
2641 
2642     case 0x44:	/* RTC_STATUS_REG */
2643         i = s->status;
2644         s->status &= ~0x3d;
2645         return i;
2646 
2647     case 0x48:	/* RTC_INTERRUPTS_REG */
2648         return s->interrupts;
2649 
2650     case 0x4c:	/* RTC_COMP_LSB_REG */
2651         return ((uint16_t) s->comp_reg) & 0xff;
2652 
2653     case 0x50:	/* RTC_COMP_MSB_REG */
2654         return ((uint16_t) s->comp_reg) >> 8;
2655     }
2656 
2657     OMAP_BAD_REG(addr);
2658     return 0;
2659 }
2660 
2661 static void omap_rtc_write(void *opaque, hwaddr addr,
2662                            uint64_t value, unsigned size)
2663 {
2664     struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2665     int offset = addr & OMAP_MPUI_REG_MASK;
2666     struct tm new_tm;
2667     time_t ti[2];
2668 
2669     if (size != 1) {
2670         omap_badwidth_write8(opaque, addr, value);
2671         return;
2672     }
2673 
2674     switch (offset) {
2675     case 0x00:	/* SECONDS_REG */
2676 #ifdef ALMDEBUG
2677         printf("RTC SEC_REG <-- %02x\n", value);
2678 #endif
2679         s->ti -= s->current_tm.tm_sec;
2680         s->ti += from_bcd(value);
2681         return;
2682 
2683     case 0x04:	/* MINUTES_REG */
2684 #ifdef ALMDEBUG
2685         printf("RTC MIN_REG <-- %02x\n", value);
2686 #endif
2687         s->ti -= s->current_tm.tm_min * 60;
2688         s->ti += from_bcd(value) * 60;
2689         return;
2690 
2691     case 0x08:	/* HOURS_REG */
2692 #ifdef ALMDEBUG
2693         printf("RTC HRS_REG <-- %02x\n", value);
2694 #endif
2695         s->ti -= s->current_tm.tm_hour * 3600;
2696         if (s->pm_am) {
2697             s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2698             s->ti += ((value >> 7) & 1) * 43200;
2699         } else
2700             s->ti += from_bcd(value & 0x3f) * 3600;
2701         return;
2702 
2703     case 0x0c:	/* DAYS_REG */
2704 #ifdef ALMDEBUG
2705         printf("RTC DAY_REG <-- %02x\n", value);
2706 #endif
2707         s->ti -= s->current_tm.tm_mday * 86400;
2708         s->ti += from_bcd(value) * 86400;
2709         return;
2710 
2711     case 0x10:	/* MONTHS_REG */
2712 #ifdef ALMDEBUG
2713         printf("RTC MTH_REG <-- %02x\n", value);
2714 #endif
2715         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2716         new_tm.tm_mon = from_bcd(value);
2717         ti[0] = mktimegm(&s->current_tm);
2718         ti[1] = mktimegm(&new_tm);
2719 
2720         if (ti[0] != -1 && ti[1] != -1) {
2721             s->ti -= ti[0];
2722             s->ti += ti[1];
2723         } else {
2724             /* A less accurate version */
2725             s->ti -= s->current_tm.tm_mon * 2592000;
2726             s->ti += from_bcd(value) * 2592000;
2727         }
2728         return;
2729 
2730     case 0x14:	/* YEARS_REG */
2731 #ifdef ALMDEBUG
2732         printf("RTC YRS_REG <-- %02x\n", value);
2733 #endif
2734         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2735         new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2736         ti[0] = mktimegm(&s->current_tm);
2737         ti[1] = mktimegm(&new_tm);
2738 
2739         if (ti[0] != -1 && ti[1] != -1) {
2740             s->ti -= ti[0];
2741             s->ti += ti[1];
2742         } else {
2743             /* A less accurate version */
2744             s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2745             s->ti += (time_t)from_bcd(value) * 31536000;
2746         }
2747         return;
2748 
2749     case 0x18:	/* WEEK_REG */
2750         return;	/* Ignored */
2751 
2752     case 0x20:	/* ALARM_SECONDS_REG */
2753 #ifdef ALMDEBUG
2754         printf("ALM SEC_REG <-- %02x\n", value);
2755 #endif
2756         s->alarm_tm.tm_sec = from_bcd(value);
2757         omap_rtc_alarm_update(s);
2758         return;
2759 
2760     case 0x24:	/* ALARM_MINUTES_REG */
2761 #ifdef ALMDEBUG
2762         printf("ALM MIN_REG <-- %02x\n", value);
2763 #endif
2764         s->alarm_tm.tm_min = from_bcd(value);
2765         omap_rtc_alarm_update(s);
2766         return;
2767 
2768     case 0x28:	/* ALARM_HOURS_REG */
2769 #ifdef ALMDEBUG
2770         printf("ALM HRS_REG <-- %02x\n", value);
2771 #endif
2772         if (s->pm_am)
2773             s->alarm_tm.tm_hour =
2774                     ((from_bcd(value & 0x3f)) % 12) +
2775                     ((value >> 7) & 1) * 12;
2776         else
2777             s->alarm_tm.tm_hour = from_bcd(value);
2778         omap_rtc_alarm_update(s);
2779         return;
2780 
2781     case 0x2c:	/* ALARM_DAYS_REG */
2782 #ifdef ALMDEBUG
2783         printf("ALM DAY_REG <-- %02x\n", value);
2784 #endif
2785         s->alarm_tm.tm_mday = from_bcd(value);
2786         omap_rtc_alarm_update(s);
2787         return;
2788 
2789     case 0x30:	/* ALARM_MONTHS_REG */
2790 #ifdef ALMDEBUG
2791         printf("ALM MON_REG <-- %02x\n", value);
2792 #endif
2793         s->alarm_tm.tm_mon = from_bcd(value);
2794         omap_rtc_alarm_update(s);
2795         return;
2796 
2797     case 0x34:	/* ALARM_YEARS_REG */
2798 #ifdef ALMDEBUG
2799         printf("ALM YRS_REG <-- %02x\n", value);
2800 #endif
2801         s->alarm_tm.tm_year = from_bcd(value);
2802         omap_rtc_alarm_update(s);
2803         return;
2804 
2805     case 0x40:	/* RTC_CTRL_REG */
2806 #ifdef ALMDEBUG
2807         printf("RTC CONTROL <-- %02x\n", value);
2808 #endif
2809         s->pm_am = (value >> 3) & 1;
2810         s->auto_comp = (value >> 2) & 1;
2811         s->round = (value >> 1) & 1;
2812         s->running = value & 1;
2813         s->status &= 0xfd;
2814         s->status |= s->running << 1;
2815         return;
2816 
2817     case 0x44:	/* RTC_STATUS_REG */
2818 #ifdef ALMDEBUG
2819         printf("RTC STATUSL <-- %02x\n", value);
2820 #endif
2821         s->status &= ~((value & 0xc0) ^ 0x80);
2822         omap_rtc_interrupts_update(s);
2823         return;
2824 
2825     case 0x48:	/* RTC_INTERRUPTS_REG */
2826 #ifdef ALMDEBUG
2827         printf("RTC INTRS <-- %02x\n", value);
2828 #endif
2829         s->interrupts = value;
2830         return;
2831 
2832     case 0x4c:	/* RTC_COMP_LSB_REG */
2833 #ifdef ALMDEBUG
2834         printf("RTC COMPLSB <-- %02x\n", value);
2835 #endif
2836         s->comp_reg &= 0xff00;
2837         s->comp_reg |= 0x00ff & value;
2838         return;
2839 
2840     case 0x50:	/* RTC_COMP_MSB_REG */
2841 #ifdef ALMDEBUG
2842         printf("RTC COMPMSB <-- %02x\n", value);
2843 #endif
2844         s->comp_reg &= 0x00ff;
2845         s->comp_reg |= 0xff00 & (value << 8);
2846         return;
2847 
2848     default:
2849         OMAP_BAD_REG(addr);
2850         return;
2851     }
2852 }
2853 
2854 static const MemoryRegionOps omap_rtc_ops = {
2855     .read = omap_rtc_read,
2856     .write = omap_rtc_write,
2857     .endianness = DEVICE_NATIVE_ENDIAN,
2858 };
2859 
2860 static void omap_rtc_tick(void *opaque)
2861 {
2862     struct omap_rtc_s *s = opaque;
2863 
2864     if (s->round) {
2865         /* Round to nearest full minute.  */
2866         if (s->current_tm.tm_sec < 30)
2867             s->ti -= s->current_tm.tm_sec;
2868         else
2869             s->ti += 60 - s->current_tm.tm_sec;
2870 
2871         s->round = 0;
2872     }
2873 
2874     localtime_r(&s->ti, &s->current_tm);
2875 
2876     if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2877         s->status |= 0x40;
2878         omap_rtc_interrupts_update(s);
2879     }
2880 
2881     if (s->interrupts & 0x04)
2882         switch (s->interrupts & 3) {
2883         case 0:
2884             s->status |= 0x04;
2885             qemu_irq_pulse(s->irq);
2886             break;
2887         case 1:
2888             if (s->current_tm.tm_sec)
2889                 break;
2890             s->status |= 0x08;
2891             qemu_irq_pulse(s->irq);
2892             break;
2893         case 2:
2894             if (s->current_tm.tm_sec || s->current_tm.tm_min)
2895                 break;
2896             s->status |= 0x10;
2897             qemu_irq_pulse(s->irq);
2898             break;
2899         case 3:
2900             if (s->current_tm.tm_sec ||
2901                             s->current_tm.tm_min || s->current_tm.tm_hour)
2902                 break;
2903             s->status |= 0x20;
2904             qemu_irq_pulse(s->irq);
2905             break;
2906         }
2907 
2908     /* Move on */
2909     if (s->running)
2910         s->ti ++;
2911     s->tick += 1000;
2912 
2913     /*
2914      * Every full hour add a rough approximation of the compensation
2915      * register to the 32kHz Timer (which drives the RTC) value.
2916      */
2917     if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2918         s->tick += s->comp_reg * 1000 / 32768;
2919 
2920     timer_mod(s->clk, s->tick);
2921 }
2922 
2923 static void omap_rtc_reset(struct omap_rtc_s *s)
2924 {
2925     struct tm tm;
2926 
2927     s->interrupts = 0;
2928     s->comp_reg = 0;
2929     s->running = 0;
2930     s->pm_am = 0;
2931     s->auto_comp = 0;
2932     s->round = 0;
2933     s->tick = qemu_clock_get_ms(rtc_clock);
2934     memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2935     s->alarm_tm.tm_mday = 0x01;
2936     s->status = 1 << 7;
2937     qemu_get_timedate(&tm, 0);
2938     s->ti = mktimegm(&tm);
2939 
2940     omap_rtc_alarm_update(s);
2941     omap_rtc_tick(s);
2942 }
2943 
2944 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2945                                         hwaddr base,
2946                                         qemu_irq timerirq, qemu_irq alarmirq,
2947                                         omap_clk clk)
2948 {
2949     struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2950 
2951     s->irq = timerirq;
2952     s->alarm = alarmirq;
2953     s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2954 
2955     omap_rtc_reset(s);
2956 
2957     memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2958                           "omap-rtc", 0x800);
2959     memory_region_add_subregion(system_memory, base, &s->iomem);
2960 
2961     return s;
2962 }
2963 
2964 /* Multi-channel Buffered Serial Port interfaces */
2965 struct omap_mcbsp_s {
2966     MemoryRegion iomem;
2967     qemu_irq txirq;
2968     qemu_irq rxirq;
2969     qemu_irq txdrq;
2970     qemu_irq rxdrq;
2971 
2972     uint16_t spcr[2];
2973     uint16_t rcr[2];
2974     uint16_t xcr[2];
2975     uint16_t srgr[2];
2976     uint16_t mcr[2];
2977     uint16_t pcr;
2978     uint16_t rcer[8];
2979     uint16_t xcer[8];
2980     int tx_rate;
2981     int rx_rate;
2982     int tx_req;
2983     int rx_req;
2984 
2985     I2SCodec *codec;
2986     QEMUTimer *source_timer;
2987     QEMUTimer *sink_timer;
2988 };
2989 
2990 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2991 {
2992     int irq;
2993 
2994     switch ((s->spcr[0] >> 4) & 3) {			/* RINTM */
2995     case 0:
2996         irq = (s->spcr[0] >> 1) & 1;			/* RRDY */
2997         break;
2998     case 3:
2999         irq = (s->spcr[0] >> 3) & 1;			/* RSYNCERR */
3000         break;
3001     default:
3002         irq = 0;
3003         break;
3004     }
3005 
3006     if (irq)
3007         qemu_irq_pulse(s->rxirq);
3008 
3009     switch ((s->spcr[1] >> 4) & 3) {			/* XINTM */
3010     case 0:
3011         irq = (s->spcr[1] >> 1) & 1;			/* XRDY */
3012         break;
3013     case 3:
3014         irq = (s->spcr[1] >> 3) & 1;			/* XSYNCERR */
3015         break;
3016     default:
3017         irq = 0;
3018         break;
3019     }
3020 
3021     if (irq)
3022         qemu_irq_pulse(s->txirq);
3023 }
3024 
3025 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3026 {
3027     if ((s->spcr[0] >> 1) & 1)				/* RRDY */
3028         s->spcr[0] |= 1 << 2;				/* RFULL */
3029     s->spcr[0] |= 1 << 1;				/* RRDY */
3030     qemu_irq_raise(s->rxdrq);
3031     omap_mcbsp_intr_update(s);
3032 }
3033 
3034 static void omap_mcbsp_source_tick(void *opaque)
3035 {
3036     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3037     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3038 
3039     if (!s->rx_rate)
3040         return;
3041     if (s->rx_req)
3042         printf("%s: Rx FIFO overrun\n", __func__);
3043 
3044     s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3045 
3046     omap_mcbsp_rx_newdata(s);
3047     timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3048                    NANOSECONDS_PER_SECOND);
3049 }
3050 
3051 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3052 {
3053     if (!s->codec || !s->codec->rts)
3054         omap_mcbsp_source_tick(s);
3055     else if (s->codec->in.len) {
3056         s->rx_req = s->codec->in.len;
3057         omap_mcbsp_rx_newdata(s);
3058     }
3059 }
3060 
3061 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3062 {
3063     timer_del(s->source_timer);
3064 }
3065 
3066 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3067 {
3068     s->spcr[0] &= ~(1 << 1);				/* RRDY */
3069     qemu_irq_lower(s->rxdrq);
3070     omap_mcbsp_intr_update(s);
3071 }
3072 
3073 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3074 {
3075     s->spcr[1] |= 1 << 1;				/* XRDY */
3076     qemu_irq_raise(s->txdrq);
3077     omap_mcbsp_intr_update(s);
3078 }
3079 
3080 static void omap_mcbsp_sink_tick(void *opaque)
3081 {
3082     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3083     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3084 
3085     if (!s->tx_rate)
3086         return;
3087     if (s->tx_req)
3088         printf("%s: Tx FIFO underrun\n", __func__);
3089 
3090     s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3091 
3092     omap_mcbsp_tx_newdata(s);
3093     timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3094                    NANOSECONDS_PER_SECOND);
3095 }
3096 
3097 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3098 {
3099     if (!s->codec || !s->codec->cts)
3100         omap_mcbsp_sink_tick(s);
3101     else if (s->codec->out.size) {
3102         s->tx_req = s->codec->out.size;
3103         omap_mcbsp_tx_newdata(s);
3104     }
3105 }
3106 
3107 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3108 {
3109     s->spcr[1] &= ~(1 << 1);				/* XRDY */
3110     qemu_irq_lower(s->txdrq);
3111     omap_mcbsp_intr_update(s);
3112     if (s->codec && s->codec->cts)
3113         s->codec->tx_swallow(s->codec->opaque);
3114 }
3115 
3116 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3117 {
3118     s->tx_req = 0;
3119     omap_mcbsp_tx_done(s);
3120     timer_del(s->sink_timer);
3121 }
3122 
3123 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3124 {
3125     int prev_rx_rate, prev_tx_rate;
3126     int rx_rate = 0, tx_rate = 0;
3127     int cpu_rate = 1500000;	/* XXX */
3128 
3129     /* TODO: check CLKSTP bit */
3130     if (s->spcr[1] & (1 << 6)) {			/* GRST */
3131         if (s->spcr[0] & (1 << 0)) {			/* RRST */
3132             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
3133                             (s->pcr & (1 << 8))) {	/* CLKRM */
3134                 if (~s->pcr & (1 << 7))			/* SCLKME */
3135                     rx_rate = cpu_rate /
3136                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
3137             } else
3138                 if (s->codec)
3139                     rx_rate = s->codec->rx_rate;
3140         }
3141 
3142         if (s->spcr[1] & (1 << 0)) {			/* XRST */
3143             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
3144                             (s->pcr & (1 << 9))) {	/* CLKXM */
3145                 if (~s->pcr & (1 << 7))			/* SCLKME */
3146                     tx_rate = cpu_rate /
3147                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
3148             } else
3149                 if (s->codec)
3150                     tx_rate = s->codec->tx_rate;
3151         }
3152     }
3153     prev_tx_rate = s->tx_rate;
3154     prev_rx_rate = s->rx_rate;
3155     s->tx_rate = tx_rate;
3156     s->rx_rate = rx_rate;
3157 
3158     if (s->codec)
3159         s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3160 
3161     if (!prev_tx_rate && tx_rate)
3162         omap_mcbsp_tx_start(s);
3163     else if (s->tx_rate && !tx_rate)
3164         omap_mcbsp_tx_stop(s);
3165 
3166     if (!prev_rx_rate && rx_rate)
3167         omap_mcbsp_rx_start(s);
3168     else if (prev_tx_rate && !tx_rate)
3169         omap_mcbsp_rx_stop(s);
3170 }
3171 
3172 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3173                                 unsigned size)
3174 {
3175     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3176     int offset = addr & OMAP_MPUI_REG_MASK;
3177     uint16_t ret;
3178 
3179     if (size != 2) {
3180         return omap_badwidth_read16(opaque, addr);
3181     }
3182 
3183     switch (offset) {
3184     case 0x00:	/* DRR2 */
3185         if (((s->rcr[0] >> 5) & 7) < 3)			/* RWDLEN1 */
3186             return 0x0000;
3187         /* Fall through.  */
3188     case 0x02:	/* DRR1 */
3189         if (s->rx_req < 2) {
3190             printf("%s: Rx FIFO underrun\n", __func__);
3191             omap_mcbsp_rx_done(s);
3192         } else {
3193             s->tx_req -= 2;
3194             if (s->codec && s->codec->in.len >= 2) {
3195                 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3196                 ret |= s->codec->in.fifo[s->codec->in.start ++];
3197                 s->codec->in.len -= 2;
3198             } else
3199                 ret = 0x0000;
3200             if (!s->tx_req)
3201                 omap_mcbsp_rx_done(s);
3202             return ret;
3203         }
3204         return 0x0000;
3205 
3206     case 0x04:	/* DXR2 */
3207     case 0x06:	/* DXR1 */
3208         return 0x0000;
3209 
3210     case 0x08:	/* SPCR2 */
3211         return s->spcr[1];
3212     case 0x0a:	/* SPCR1 */
3213         return s->spcr[0];
3214     case 0x0c:	/* RCR2 */
3215         return s->rcr[1];
3216     case 0x0e:	/* RCR1 */
3217         return s->rcr[0];
3218     case 0x10:	/* XCR2 */
3219         return s->xcr[1];
3220     case 0x12:	/* XCR1 */
3221         return s->xcr[0];
3222     case 0x14:	/* SRGR2 */
3223         return s->srgr[1];
3224     case 0x16:	/* SRGR1 */
3225         return s->srgr[0];
3226     case 0x18:	/* MCR2 */
3227         return s->mcr[1];
3228     case 0x1a:	/* MCR1 */
3229         return s->mcr[0];
3230     case 0x1c:	/* RCERA */
3231         return s->rcer[0];
3232     case 0x1e:	/* RCERB */
3233         return s->rcer[1];
3234     case 0x20:	/* XCERA */
3235         return s->xcer[0];
3236     case 0x22:	/* XCERB */
3237         return s->xcer[1];
3238     case 0x24:	/* PCR0 */
3239         return s->pcr;
3240     case 0x26:	/* RCERC */
3241         return s->rcer[2];
3242     case 0x28:	/* RCERD */
3243         return s->rcer[3];
3244     case 0x2a:	/* XCERC */
3245         return s->xcer[2];
3246     case 0x2c:	/* XCERD */
3247         return s->xcer[3];
3248     case 0x2e:	/* RCERE */
3249         return s->rcer[4];
3250     case 0x30:	/* RCERF */
3251         return s->rcer[5];
3252     case 0x32:	/* XCERE */
3253         return s->xcer[4];
3254     case 0x34:	/* XCERF */
3255         return s->xcer[5];
3256     case 0x36:	/* RCERG */
3257         return s->rcer[6];
3258     case 0x38:	/* RCERH */
3259         return s->rcer[7];
3260     case 0x3a:	/* XCERG */
3261         return s->xcer[6];
3262     case 0x3c:	/* XCERH */
3263         return s->xcer[7];
3264     }
3265 
3266     OMAP_BAD_REG(addr);
3267     return 0;
3268 }
3269 
3270 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3271                 uint32_t value)
3272 {
3273     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3274     int offset = addr & OMAP_MPUI_REG_MASK;
3275 
3276     switch (offset) {
3277     case 0x00:	/* DRR2 */
3278     case 0x02:	/* DRR1 */
3279         OMAP_RO_REG(addr);
3280         return;
3281 
3282     case 0x04:	/* DXR2 */
3283         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
3284             return;
3285         /* Fall through.  */
3286     case 0x06:	/* DXR1 */
3287         if (s->tx_req > 1) {
3288             s->tx_req -= 2;
3289             if (s->codec && s->codec->cts) {
3290                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3291                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3292             }
3293             if (s->tx_req < 2)
3294                 omap_mcbsp_tx_done(s);
3295         } else
3296             printf("%s: Tx FIFO overrun\n", __func__);
3297         return;
3298 
3299     case 0x08:	/* SPCR2 */
3300         s->spcr[1] &= 0x0002;
3301         s->spcr[1] |= 0x03f9 & value;
3302         s->spcr[1] |= 0x0004 & (value << 2);		/* XEMPTY := XRST */
3303         if (~value & 1)					/* XRST */
3304             s->spcr[1] &= ~6;
3305         omap_mcbsp_req_update(s);
3306         return;
3307     case 0x0a:	/* SPCR1 */
3308         s->spcr[0] &= 0x0006;
3309         s->spcr[0] |= 0xf8f9 & value;
3310         if (value & (1 << 15))				/* DLB */
3311             printf("%s: Digital Loopback mode enable attempt\n", __func__);
3312         if (~value & 1) {				/* RRST */
3313             s->spcr[0] &= ~6;
3314             s->rx_req = 0;
3315             omap_mcbsp_rx_done(s);
3316         }
3317         omap_mcbsp_req_update(s);
3318         return;
3319 
3320     case 0x0c:	/* RCR2 */
3321         s->rcr[1] = value & 0xffff;
3322         return;
3323     case 0x0e:	/* RCR1 */
3324         s->rcr[0] = value & 0x7fe0;
3325         return;
3326     case 0x10:	/* XCR2 */
3327         s->xcr[1] = value & 0xffff;
3328         return;
3329     case 0x12:	/* XCR1 */
3330         s->xcr[0] = value & 0x7fe0;
3331         return;
3332     case 0x14:	/* SRGR2 */
3333         s->srgr[1] = value & 0xffff;
3334         omap_mcbsp_req_update(s);
3335         return;
3336     case 0x16:	/* SRGR1 */
3337         s->srgr[0] = value & 0xffff;
3338         omap_mcbsp_req_update(s);
3339         return;
3340     case 0x18:	/* MCR2 */
3341         s->mcr[1] = value & 0x03e3;
3342         if (value & 3)					/* XMCM */
3343             printf("%s: Tx channel selection mode enable attempt\n", __func__);
3344         return;
3345     case 0x1a:	/* MCR1 */
3346         s->mcr[0] = value & 0x03e1;
3347         if (value & 1)					/* RMCM */
3348             printf("%s: Rx channel selection mode enable attempt\n", __func__);
3349         return;
3350     case 0x1c:	/* RCERA */
3351         s->rcer[0] = value & 0xffff;
3352         return;
3353     case 0x1e:	/* RCERB */
3354         s->rcer[1] = value & 0xffff;
3355         return;
3356     case 0x20:	/* XCERA */
3357         s->xcer[0] = value & 0xffff;
3358         return;
3359     case 0x22:	/* XCERB */
3360         s->xcer[1] = value & 0xffff;
3361         return;
3362     case 0x24:	/* PCR0 */
3363         s->pcr = value & 0x7faf;
3364         return;
3365     case 0x26:	/* RCERC */
3366         s->rcer[2] = value & 0xffff;
3367         return;
3368     case 0x28:	/* RCERD */
3369         s->rcer[3] = value & 0xffff;
3370         return;
3371     case 0x2a:	/* XCERC */
3372         s->xcer[2] = value & 0xffff;
3373         return;
3374     case 0x2c:	/* XCERD */
3375         s->xcer[3] = value & 0xffff;
3376         return;
3377     case 0x2e:	/* RCERE */
3378         s->rcer[4] = value & 0xffff;
3379         return;
3380     case 0x30:	/* RCERF */
3381         s->rcer[5] = value & 0xffff;
3382         return;
3383     case 0x32:	/* XCERE */
3384         s->xcer[4] = value & 0xffff;
3385         return;
3386     case 0x34:	/* XCERF */
3387         s->xcer[5] = value & 0xffff;
3388         return;
3389     case 0x36:	/* RCERG */
3390         s->rcer[6] = value & 0xffff;
3391         return;
3392     case 0x38:	/* RCERH */
3393         s->rcer[7] = value & 0xffff;
3394         return;
3395     case 0x3a:	/* XCERG */
3396         s->xcer[6] = value & 0xffff;
3397         return;
3398     case 0x3c:	/* XCERH */
3399         s->xcer[7] = value & 0xffff;
3400         return;
3401     }
3402 
3403     OMAP_BAD_REG(addr);
3404 }
3405 
3406 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3407                 uint32_t value)
3408 {
3409     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3410     int offset = addr & OMAP_MPUI_REG_MASK;
3411 
3412     if (offset == 0x04) {				/* DXR */
3413         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
3414             return;
3415         if (s->tx_req > 3) {
3416             s->tx_req -= 4;
3417             if (s->codec && s->codec->cts) {
3418                 s->codec->out.fifo[s->codec->out.len ++] =
3419                         (value >> 24) & 0xff;
3420                 s->codec->out.fifo[s->codec->out.len ++] =
3421                         (value >> 16) & 0xff;
3422                 s->codec->out.fifo[s->codec->out.len ++] =
3423                         (value >> 8) & 0xff;
3424                 s->codec->out.fifo[s->codec->out.len ++] =
3425                         (value >> 0) & 0xff;
3426             }
3427             if (s->tx_req < 4)
3428                 omap_mcbsp_tx_done(s);
3429         } else
3430             printf("%s: Tx FIFO overrun\n", __func__);
3431         return;
3432     }
3433 
3434     omap_badwidth_write16(opaque, addr, value);
3435 }
3436 
3437 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3438                              uint64_t value, unsigned size)
3439 {
3440     switch (size) {
3441     case 2:
3442         omap_mcbsp_writeh(opaque, addr, value);
3443         break;
3444     case 4:
3445         omap_mcbsp_writew(opaque, addr, value);
3446         break;
3447     default:
3448         omap_badwidth_write16(opaque, addr, value);
3449     }
3450 }
3451 
3452 static const MemoryRegionOps omap_mcbsp_ops = {
3453     .read = omap_mcbsp_read,
3454     .write = omap_mcbsp_write,
3455     .endianness = DEVICE_NATIVE_ENDIAN,
3456 };
3457 
3458 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3459 {
3460     memset(&s->spcr, 0, sizeof(s->spcr));
3461     memset(&s->rcr, 0, sizeof(s->rcr));
3462     memset(&s->xcr, 0, sizeof(s->xcr));
3463     s->srgr[0] = 0x0001;
3464     s->srgr[1] = 0x2000;
3465     memset(&s->mcr, 0, sizeof(s->mcr));
3466     memset(&s->pcr, 0, sizeof(s->pcr));
3467     memset(&s->rcer, 0, sizeof(s->rcer));
3468     memset(&s->xcer, 0, sizeof(s->xcer));
3469     s->tx_req = 0;
3470     s->rx_req = 0;
3471     s->tx_rate = 0;
3472     s->rx_rate = 0;
3473     timer_del(s->source_timer);
3474     timer_del(s->sink_timer);
3475 }
3476 
3477 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3478                                             hwaddr base,
3479                                             qemu_irq txirq, qemu_irq rxirq,
3480                                             qemu_irq *dma, omap_clk clk)
3481 {
3482     struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
3483 
3484     s->txirq = txirq;
3485     s->rxirq = rxirq;
3486     s->txdrq = dma[0];
3487     s->rxdrq = dma[1];
3488     s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3489     s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3490     omap_mcbsp_reset(s);
3491 
3492     memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3493     memory_region_add_subregion(system_memory, base, &s->iomem);
3494 
3495     return s;
3496 }
3497 
3498 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3499 {
3500     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3501 
3502     if (s->rx_rate) {
3503         s->rx_req = s->codec->in.len;
3504         omap_mcbsp_rx_newdata(s);
3505     }
3506 }
3507 
3508 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3509 {
3510     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3511 
3512     if (s->tx_rate) {
3513         s->tx_req = s->codec->out.size;
3514         omap_mcbsp_tx_newdata(s);
3515     }
3516 }
3517 
3518 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3519 {
3520     s->codec = slave;
3521     slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3522     slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3523 }
3524 
3525 /* LED Pulse Generators */
3526 struct omap_lpg_s {
3527     MemoryRegion iomem;
3528     QEMUTimer *tm;
3529 
3530     uint8_t control;
3531     uint8_t power;
3532     int64_t on;
3533     int64_t period;
3534     int clk;
3535     int cycle;
3536 };
3537 
3538 static void omap_lpg_tick(void *opaque)
3539 {
3540     struct omap_lpg_s *s = opaque;
3541 
3542     if (s->cycle)
3543         timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3544     else
3545         timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3546 
3547     s->cycle = !s->cycle;
3548     printf("%s: LED is %s\n", __func__, s->cycle ? "on" : "off");
3549 }
3550 
3551 static void omap_lpg_update(struct omap_lpg_s *s)
3552 {
3553     int64_t on, period = 1, ticks = 1000;
3554     static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3555 
3556     if (~s->control & (1 << 6))					/* LPGRES */
3557         on = 0;
3558     else if (s->control & (1 << 7))				/* PERM_ON */
3559         on = period;
3560     else {
3561         period = muldiv64(ticks, per[s->control & 7],		/* PERCTRL */
3562                         256 / 32);
3563         on = (s->clk && s->power) ? muldiv64(ticks,
3564                         per[(s->control >> 3) & 7], 256) : 0;	/* ONCTRL */
3565     }
3566 
3567     timer_del(s->tm);
3568     if (on == period && s->on < s->period)
3569         printf("%s: LED is on\n", __func__);
3570     else if (on == 0 && s->on)
3571         printf("%s: LED is off\n", __func__);
3572     else if (on && (on != s->on || period != s->period)) {
3573         s->cycle = 0;
3574         s->on = on;
3575         s->period = period;
3576         omap_lpg_tick(s);
3577         return;
3578     }
3579 
3580     s->on = on;
3581     s->period = period;
3582 }
3583 
3584 static void omap_lpg_reset(struct omap_lpg_s *s)
3585 {
3586     s->control = 0x00;
3587     s->power = 0x00;
3588     s->clk = 1;
3589     omap_lpg_update(s);
3590 }
3591 
3592 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3593                               unsigned size)
3594 {
3595     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3596     int offset = addr & OMAP_MPUI_REG_MASK;
3597 
3598     if (size != 1) {
3599         return omap_badwidth_read8(opaque, addr);
3600     }
3601 
3602     switch (offset) {
3603     case 0x00:	/* LCR */
3604         return s->control;
3605 
3606     case 0x04:	/* PMR */
3607         return s->power;
3608     }
3609 
3610     OMAP_BAD_REG(addr);
3611     return 0;
3612 }
3613 
3614 static void omap_lpg_write(void *opaque, hwaddr addr,
3615                            uint64_t value, unsigned size)
3616 {
3617     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3618     int offset = addr & OMAP_MPUI_REG_MASK;
3619 
3620     if (size != 1) {
3621         omap_badwidth_write8(opaque, addr, value);
3622         return;
3623     }
3624 
3625     switch (offset) {
3626     case 0x00:	/* LCR */
3627         if (~value & (1 << 6))					/* LPGRES */
3628             omap_lpg_reset(s);
3629         s->control = value & 0xff;
3630         omap_lpg_update(s);
3631         return;
3632 
3633     case 0x04:	/* PMR */
3634         s->power = value & 0x01;
3635         omap_lpg_update(s);
3636         return;
3637 
3638     default:
3639         OMAP_BAD_REG(addr);
3640         return;
3641     }
3642 }
3643 
3644 static const MemoryRegionOps omap_lpg_ops = {
3645     .read = omap_lpg_read,
3646     .write = omap_lpg_write,
3647     .endianness = DEVICE_NATIVE_ENDIAN,
3648 };
3649 
3650 static void omap_lpg_clk_update(void *opaque, int line, int on)
3651 {
3652     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3653 
3654     s->clk = on;
3655     omap_lpg_update(s);
3656 }
3657 
3658 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3659                                         hwaddr base, omap_clk clk)
3660 {
3661     struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
3662 
3663     s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3664 
3665     omap_lpg_reset(s);
3666 
3667     memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3668     memory_region_add_subregion(system_memory, base, &s->iomem);
3669 
3670     omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3671 
3672     return s;
3673 }
3674 
3675 /* MPUI Peripheral Bridge configuration */
3676 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3677                                   unsigned size)
3678 {
3679     if (size != 2) {
3680         return omap_badwidth_read16(opaque, addr);
3681     }
3682 
3683     if (addr == OMAP_MPUI_BASE)	/* CMR */
3684         return 0xfe4d;
3685 
3686     OMAP_BAD_REG(addr);
3687     return 0;
3688 }
3689 
3690 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3691                                uint64_t value, unsigned size)
3692 {
3693     /* FIXME: infinite loop */
3694     omap_badwidth_write16(opaque, addr, value);
3695 }
3696 
3697 static const MemoryRegionOps omap_mpui_io_ops = {
3698     .read = omap_mpui_io_read,
3699     .write = omap_mpui_io_write,
3700     .endianness = DEVICE_NATIVE_ENDIAN,
3701 };
3702 
3703 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3704                                struct omap_mpu_state_s *mpu)
3705 {
3706     memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3707                           "omap-mpui-io", 0x7fff);
3708     memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3709                                 &mpu->mpui_io_iomem);
3710 }
3711 
3712 /* General chip reset */
3713 static void omap1_mpu_reset(void *opaque)
3714 {
3715     struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3716 
3717     omap_dma_reset(mpu->dma);
3718     omap_mpu_timer_reset(mpu->timer[0]);
3719     omap_mpu_timer_reset(mpu->timer[1]);
3720     omap_mpu_timer_reset(mpu->timer[2]);
3721     omap_wd_timer_reset(mpu->wdt);
3722     omap_os_timer_reset(mpu->os_timer);
3723     omap_lcdc_reset(mpu->lcd);
3724     omap_ulpd_pm_reset(mpu);
3725     omap_pin_cfg_reset(mpu);
3726     omap_mpui_reset(mpu);
3727     omap_tipb_bridge_reset(mpu->private_tipb);
3728     omap_tipb_bridge_reset(mpu->public_tipb);
3729     omap_dpll_reset(mpu->dpll[0]);
3730     omap_dpll_reset(mpu->dpll[1]);
3731     omap_dpll_reset(mpu->dpll[2]);
3732     omap_uart_reset(mpu->uart[0]);
3733     omap_uart_reset(mpu->uart[1]);
3734     omap_uart_reset(mpu->uart[2]);
3735     omap_mmc_reset(mpu->mmc);
3736     omap_mpuio_reset(mpu->mpuio);
3737     omap_uwire_reset(mpu->microwire);
3738     omap_pwl_reset(mpu->pwl);
3739     omap_pwt_reset(mpu->pwt);
3740     omap_rtc_reset(mpu->rtc);
3741     omap_mcbsp_reset(mpu->mcbsp1);
3742     omap_mcbsp_reset(mpu->mcbsp2);
3743     omap_mcbsp_reset(mpu->mcbsp3);
3744     omap_lpg_reset(mpu->led[0]);
3745     omap_lpg_reset(mpu->led[1]);
3746     omap_clkm_reset(mpu);
3747     cpu_reset(CPU(mpu->cpu));
3748 }
3749 
3750 static const struct omap_map_s {
3751     hwaddr phys_dsp;
3752     hwaddr phys_mpu;
3753     uint32_t size;
3754     const char *name;
3755 } omap15xx_dsp_mm[] = {
3756     /* Strobe 0 */
3757     { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" },		/* CS0 */
3758     { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" },		/* CS1 */
3759     { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" },		/* CS3 */
3760     { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" },	/* CS4 */
3761     { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" },	/* CS5 */
3762     { 0xe1013000, 0xfffb3000, 0x800, "uWire" },			/* CS6 */
3763     { 0xe1013800, 0xfffb3800, 0x800, "I^2C" },			/* CS7 */
3764     { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" },		/* CS8 */
3765     { 0xe1014800, 0xfffb4800, 0x800, "RTC" },			/* CS9 */
3766     { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" },			/* CS10 */
3767     { 0xe1015800, 0xfffb5800, 0x800, "PWL" },			/* CS11 */
3768     { 0xe1016000, 0xfffb6000, 0x800, "PWT" },			/* CS12 */
3769     { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" },		/* CS14 */
3770     { 0xe1017800, 0xfffb7800, 0x800, "MMC" },			/* CS15 */
3771     { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" },		/* CS18 */
3772     { 0xe1019800, 0xfffb9800, 0x800, "UART3" },			/* CS19 */
3773     { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" },		/* CS25 */
3774     /* Strobe 1 */
3775     { 0xe101e000, 0xfffce000, 0x800, "GPIOs" },			/* CS28 */
3776 
3777     { 0 }
3778 };
3779 
3780 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3781                                    const struct omap_map_s *map)
3782 {
3783     MemoryRegion *io;
3784 
3785     for (; map->phys_dsp; map ++) {
3786         io = g_new(MemoryRegion, 1);
3787         memory_region_init_alias(io, NULL, map->name,
3788                                  system_memory, map->phys_mpu, map->size);
3789         memory_region_add_subregion(system_memory, map->phys_dsp, io);
3790     }
3791 }
3792 
3793 void omap_mpu_wakeup(void *opaque, int irq, int req)
3794 {
3795     struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3796     CPUState *cpu = CPU(mpu->cpu);
3797 
3798     if (cpu->halted) {
3799         cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3800     }
3801 }
3802 
3803 static const struct dma_irq_map omap1_dma_irq_map[] = {
3804     { 0, OMAP_INT_DMA_CH0_6 },
3805     { 0, OMAP_INT_DMA_CH1_7 },
3806     { 0, OMAP_INT_DMA_CH2_8 },
3807     { 0, OMAP_INT_DMA_CH3 },
3808     { 0, OMAP_INT_DMA_CH4 },
3809     { 0, OMAP_INT_DMA_CH5 },
3810     { 1, OMAP_INT_1610_DMA_CH6 },
3811     { 1, OMAP_INT_1610_DMA_CH7 },
3812     { 1, OMAP_INT_1610_DMA_CH8 },
3813     { 1, OMAP_INT_1610_DMA_CH9 },
3814     { 1, OMAP_INT_1610_DMA_CH10 },
3815     { 1, OMAP_INT_1610_DMA_CH11 },
3816     { 1, OMAP_INT_1610_DMA_CH12 },
3817     { 1, OMAP_INT_1610_DMA_CH13 },
3818     { 1, OMAP_INT_1610_DMA_CH14 },
3819     { 1, OMAP_INT_1610_DMA_CH15 }
3820 };
3821 
3822 /* DMA ports for OMAP1 */
3823 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3824                 hwaddr addr)
3825 {
3826     return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3827 }
3828 
3829 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3830                 hwaddr addr)
3831 {
3832     return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3833                              addr);
3834 }
3835 
3836 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3837                 hwaddr addr)
3838 {
3839     return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3840 }
3841 
3842 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3843                 hwaddr addr)
3844 {
3845     return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3846 }
3847 
3848 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3849                 hwaddr addr)
3850 {
3851     return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3852 }
3853 
3854 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3855                 hwaddr addr)
3856 {
3857     return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3858 }
3859 
3860 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *dram,
3861                 const char *cpu_type)
3862 {
3863     int i;
3864     struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
3865     qemu_irq dma_irqs[6];
3866     DriveInfo *dinfo;
3867     SysBusDevice *busdev;
3868     MemoryRegion *system_memory = get_system_memory();
3869 
3870     /* Core */
3871     s->mpu_model = omap310;
3872     s->cpu = ARM_CPU(cpu_create(cpu_type));
3873     s->sdram_size = memory_region_size(dram);
3874     s->sram_size = OMAP15XX_SRAM_SIZE;
3875 
3876     s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3877 
3878     /* Clocks */
3879     omap_clk_init(s);
3880 
3881     /* Memory-mapped stuff */
3882     memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3883                            &error_fatal);
3884     memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3885 
3886     omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3887 
3888     s->ih[0] = qdev_new("omap-intc");
3889     qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3890     omap_intc_set_iclk(OMAP_INTC(s->ih[0]), omap_findclk(s, "arminth_ck"));
3891     busdev = SYS_BUS_DEVICE(s->ih[0]);
3892     sysbus_realize_and_unref(busdev, &error_fatal);
3893     sysbus_connect_irq(busdev, 0,
3894                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3895     sysbus_connect_irq(busdev, 1,
3896                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3897     sysbus_mmio_map(busdev, 0, 0xfffecb00);
3898     s->ih[1] = qdev_new("omap-intc");
3899     qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3900     omap_intc_set_iclk(OMAP_INTC(s->ih[1]), omap_findclk(s, "arminth_ck"));
3901     busdev = SYS_BUS_DEVICE(s->ih[1]);
3902     sysbus_realize_and_unref(busdev, &error_fatal);
3903     sysbus_connect_irq(busdev, 0,
3904                        qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3905     /* The second interrupt controller's FIQ output is not wired up */
3906     sysbus_mmio_map(busdev, 0, 0xfffe0000);
3907 
3908     for (i = 0; i < 6; i++) {
3909         dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3910                                        omap1_dma_irq_map[i].intr);
3911     }
3912     s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3913                            qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3914                            s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3915 
3916     s->port[emiff    ].addr_valid = omap_validate_emiff_addr;
3917     s->port[emifs    ].addr_valid = omap_validate_emifs_addr;
3918     s->port[imif     ].addr_valid = omap_validate_imif_addr;
3919     s->port[tipb     ].addr_valid = omap_validate_tipb_addr;
3920     s->port[local    ].addr_valid = omap_validate_local_addr;
3921     s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3922 
3923     /* Register SDRAM and SRAM DMA ports for fast transfers.  */
3924     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(dram),
3925                          OMAP_EMIFF_BASE, s->sdram_size);
3926     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3927                          OMAP_IMIF_BASE, s->sram_size);
3928 
3929     s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3930                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3931                     omap_findclk(s, "mputim_ck"));
3932     s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3933                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3934                     omap_findclk(s, "mputim_ck"));
3935     s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3936                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3937                     omap_findclk(s, "mputim_ck"));
3938 
3939     s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3940                     qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3941                     omap_findclk(s, "armwdt_ck"));
3942 
3943     s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3944                     qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3945                     omap_findclk(s, "clk32-kHz"));
3946 
3947     s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3948                             qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3949                             omap_dma_get_lcdch(s->dma),
3950                             omap_findclk(s, "lcd_ck"));
3951 
3952     omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3953     omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3954     omap_id_init(system_memory, s);
3955 
3956     omap_mpui_init(system_memory, 0xfffec900, s);
3957 
3958     s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3959                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3960                     omap_findclk(s, "tipb_ck"));
3961     s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3962                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3963                     omap_findclk(s, "tipb_ck"));
3964 
3965     omap_tcmi_init(system_memory, 0xfffecc00, s);
3966 
3967     s->uart[0] = omap_uart_init(0xfffb0000,
3968                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3969                     omap_findclk(s, "uart1_ck"),
3970                     omap_findclk(s, "uart1_ck"),
3971                     s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3972                     "uart1",
3973                     serial_hd(0));
3974     s->uart[1] = omap_uart_init(0xfffb0800,
3975                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3976                     omap_findclk(s, "uart2_ck"),
3977                     omap_findclk(s, "uart2_ck"),
3978                     s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3979                     "uart2",
3980                     serial_hd(0) ? serial_hd(1) : NULL);
3981     s->uart[2] = omap_uart_init(0xfffb9800,
3982                                 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3983                     omap_findclk(s, "uart3_ck"),
3984                     omap_findclk(s, "uart3_ck"),
3985                     s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3986                     "uart3",
3987                     serial_hd(0) && serial_hd(1) ? serial_hd(2) : NULL);
3988 
3989     s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3990                                 omap_findclk(s, "dpll1"));
3991     s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3992                                 omap_findclk(s, "dpll2"));
3993     s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3994                                 omap_findclk(s, "dpll3"));
3995 
3996     dinfo = drive_get(IF_SD, 0, 0);
3997     if (!dinfo && !qtest_enabled()) {
3998         warn_report("missing SecureDigital device");
3999     }
4000     s->mmc = omap_mmc_init(0xfffb7800, system_memory,
4001                            dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
4002                            qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
4003                            &s->drq[OMAP_DMA_MMC_TX],
4004                     omap_findclk(s, "mmc_ck"));
4005 
4006     s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4007                                qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4008                                qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4009                                s->wakeup, omap_findclk(s, "clk32-kHz"));
4010 
4011     s->gpio = qdev_new("omap-gpio");
4012     qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4013     omap_gpio_set_clk(OMAP1_GPIO(s->gpio), omap_findclk(s, "arm_gpio_ck"));
4014     sysbus_realize_and_unref(SYS_BUS_DEVICE(s->gpio), &error_fatal);
4015     sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4016                        qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4017     sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4018 
4019     s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4020                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4021                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4022                     s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4023 
4024     s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4025                            omap_findclk(s, "armxor_ck"));
4026     s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4027                            omap_findclk(s, "armxor_ck"));
4028 
4029     s->i2c[0] = qdev_new("omap_i2c");
4030     qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4031     omap_i2c_set_fclk(OMAP_I2C(s->i2c[0]), omap_findclk(s, "mpuper_ck"));
4032     busdev = SYS_BUS_DEVICE(s->i2c[0]);
4033     sysbus_realize_and_unref(busdev, &error_fatal);
4034     sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4035     sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4036     sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4037     sysbus_mmio_map(busdev, 0, 0xfffb3800);
4038 
4039     s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4040                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4041                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4042                     omap_findclk(s, "clk32-kHz"));
4043 
4044     s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4045                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4046                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4047                     &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4048     s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4049                                 qdev_get_gpio_in(s->ih[0],
4050                                                  OMAP_INT_310_McBSP2_TX),
4051                                 qdev_get_gpio_in(s->ih[0],
4052                                                  OMAP_INT_310_McBSP2_RX),
4053                     &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4054     s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4055                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4056                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4057                     &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4058 
4059     s->led[0] = omap_lpg_init(system_memory,
4060                               0xfffbd000, omap_findclk(s, "clk32-kHz"));
4061     s->led[1] = omap_lpg_init(system_memory,
4062                               0xfffbd800, omap_findclk(s, "clk32-kHz"));
4063 
4064     /* Register mappings not currenlty implemented:
4065      * MCSI2 Comm	fffb2000 - fffb27ff (not mapped on OMAP310)
4066      * MCSI1 Bluetooth	fffb2800 - fffb2fff (not mapped on OMAP310)
4067      * USB W2FC		fffb4000 - fffb47ff
4068      * Camera Interface	fffb6800 - fffb6fff
4069      * USB Host		fffba000 - fffba7ff
4070      * FAC		fffba800 - fffbafff
4071      * HDQ/1-Wire	fffbc000 - fffbc7ff
4072      * TIPB switches	fffbc800 - fffbcfff
4073      * Mailbox		fffcf000 - fffcf7ff
4074      * Local bus IF	fffec100 - fffec1ff
4075      * Local bus MMU	fffec200 - fffec2ff
4076      * DSP MMU		fffed200 - fffed2ff
4077      */
4078 
4079     omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4080     omap_setup_mpui_io(system_memory, s);
4081 
4082     qemu_register_reset(omap1_mpu_reset, s);
4083 
4084     return s;
4085 }
4086