xref: /openbmc/qemu/hw/arm/omap1.c (revision 3a5c76baf312d83cb77c8faa72c5f7a477effed0)
1 /*
2  * TI OMAP processors emulation.
3  *
4  * Copyright (C) 2006-2008 Andrzej Zaborowski  <balrog@zabor.org>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 or
9  * (at your option) version 3 of the License.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License along
17  * with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "hw/hw.h"
20 #include "hw/arm/arm.h"
21 #include "hw/arm/omap.h"
22 #include "sysemu/sysemu.h"
23 #include "hw/arm/soc_dma.h"
24 #include "sysemu/block-backend.h"
25 #include "sysemu/blockdev.h"
26 #include "qemu/range.h"
27 #include "hw/sysbus.h"
28 
29 /* Should signal the TCMI/GPMC */
30 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
31 {
32     uint8_t ret;
33 
34     OMAP_8B_REG(addr);
35     cpu_physical_memory_read(addr, &ret, 1);
36     return ret;
37 }
38 
39 void omap_badwidth_write8(void *opaque, hwaddr addr,
40                 uint32_t value)
41 {
42     uint8_t val8 = value;
43 
44     OMAP_8B_REG(addr);
45     cpu_physical_memory_write(addr, &val8, 1);
46 }
47 
48 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
49 {
50     uint16_t ret;
51 
52     OMAP_16B_REG(addr);
53     cpu_physical_memory_read(addr, &ret, 2);
54     return ret;
55 }
56 
57 void omap_badwidth_write16(void *opaque, hwaddr addr,
58                 uint32_t value)
59 {
60     uint16_t val16 = value;
61 
62     OMAP_16B_REG(addr);
63     cpu_physical_memory_write(addr, &val16, 2);
64 }
65 
66 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
67 {
68     uint32_t ret;
69 
70     OMAP_32B_REG(addr);
71     cpu_physical_memory_read(addr, &ret, 4);
72     return ret;
73 }
74 
75 void omap_badwidth_write32(void *opaque, hwaddr addr,
76                 uint32_t value)
77 {
78     OMAP_32B_REG(addr);
79     cpu_physical_memory_write(addr, &value, 4);
80 }
81 
82 /* MPU OS timers */
83 struct omap_mpu_timer_s {
84     MemoryRegion iomem;
85     qemu_irq irq;
86     omap_clk clk;
87     uint32_t val;
88     int64_t time;
89     QEMUTimer *timer;
90     QEMUBH *tick;
91     int64_t rate;
92     int it_ena;
93 
94     int enable;
95     int ptv;
96     int ar;
97     int st;
98     uint32_t reset_val;
99 };
100 
101 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
102 {
103     uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
104 
105     if (timer->st && timer->enable && timer->rate)
106         return timer->val - muldiv64(distance >> (timer->ptv + 1),
107                                      timer->rate, get_ticks_per_sec());
108     else
109         return timer->val;
110 }
111 
112 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
113 {
114     timer->val = omap_timer_read(timer);
115     timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
116 }
117 
118 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
119 {
120     int64_t expires;
121 
122     if (timer->enable && timer->st && timer->rate) {
123         timer->val = timer->reset_val;	/* Should skip this on clk enable */
124         expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
125                            get_ticks_per_sec(), timer->rate);
126 
127         /* If timer expiry would be sooner than in about 1 ms and
128          * auto-reload isn't set, then fire immediately.  This is a hack
129          * to make systems like PalmOS run in acceptable time.  PalmOS
130          * sets the interval to a very low value and polls the status bit
131          * in a busy loop when it wants to sleep just a couple of CPU
132          * ticks.  */
133         if (expires > (get_ticks_per_sec() >> 10) || timer->ar)
134             timer_mod(timer->timer, timer->time + expires);
135         else
136             qemu_bh_schedule(timer->tick);
137     } else
138         timer_del(timer->timer);
139 }
140 
141 static void omap_timer_fire(void *opaque)
142 {
143     struct omap_mpu_timer_s *timer = opaque;
144 
145     if (!timer->ar) {
146         timer->val = 0;
147         timer->st = 0;
148     }
149 
150     if (timer->it_ena)
151         /* Edge-triggered irq */
152         qemu_irq_pulse(timer->irq);
153 }
154 
155 static void omap_timer_tick(void *opaque)
156 {
157     struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
158 
159     omap_timer_sync(timer);
160     omap_timer_fire(timer);
161     omap_timer_update(timer);
162 }
163 
164 static void omap_timer_clk_update(void *opaque, int line, int on)
165 {
166     struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
167 
168     omap_timer_sync(timer);
169     timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
170     omap_timer_update(timer);
171 }
172 
173 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
174 {
175     omap_clk_adduser(timer->clk,
176                     qemu_allocate_irq(omap_timer_clk_update, timer, 0));
177     timer->rate = omap_clk_getrate(timer->clk);
178 }
179 
180 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
181                                     unsigned size)
182 {
183     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
184 
185     if (size != 4) {
186         return omap_badwidth_read32(opaque, addr);
187     }
188 
189     switch (addr) {
190     case 0x00:	/* CNTL_TIMER */
191         return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
192 
193     case 0x04:	/* LOAD_TIM */
194         break;
195 
196     case 0x08:	/* READ_TIM */
197         return omap_timer_read(s);
198     }
199 
200     OMAP_BAD_REG(addr);
201     return 0;
202 }
203 
204 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
205                                  uint64_t value, unsigned size)
206 {
207     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
208 
209     if (size != 4) {
210         omap_badwidth_write32(opaque, addr, value);
211         return;
212     }
213 
214     switch (addr) {
215     case 0x00:	/* CNTL_TIMER */
216         omap_timer_sync(s);
217         s->enable = (value >> 5) & 1;
218         s->ptv = (value >> 2) & 7;
219         s->ar = (value >> 1) & 1;
220         s->st = value & 1;
221         omap_timer_update(s);
222         return;
223 
224     case 0x04:	/* LOAD_TIM */
225         s->reset_val = value;
226         return;
227 
228     case 0x08:	/* READ_TIM */
229         OMAP_RO_REG(addr);
230         break;
231 
232     default:
233         OMAP_BAD_REG(addr);
234     }
235 }
236 
237 static const MemoryRegionOps omap_mpu_timer_ops = {
238     .read = omap_mpu_timer_read,
239     .write = omap_mpu_timer_write,
240     .endianness = DEVICE_LITTLE_ENDIAN,
241 };
242 
243 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
244 {
245     timer_del(s->timer);
246     s->enable = 0;
247     s->reset_val = 31337;
248     s->val = 0;
249     s->ptv = 0;
250     s->ar = 0;
251     s->st = 0;
252     s->it_ena = 1;
253 }
254 
255 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
256                 hwaddr base,
257                 qemu_irq irq, omap_clk clk)
258 {
259     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
260             g_malloc0(sizeof(struct omap_mpu_timer_s));
261 
262     s->irq = irq;
263     s->clk = clk;
264     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
265     s->tick = qemu_bh_new(omap_timer_fire, s);
266     omap_mpu_timer_reset(s);
267     omap_timer_clk_setup(s);
268 
269     memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
270                           "omap-mpu-timer", 0x100);
271 
272     memory_region_add_subregion(system_memory, base, &s->iomem);
273 
274     return s;
275 }
276 
277 /* Watchdog timer */
278 struct omap_watchdog_timer_s {
279     struct omap_mpu_timer_s timer;
280     MemoryRegion iomem;
281     uint8_t last_wr;
282     int mode;
283     int free;
284     int reset;
285 };
286 
287 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
288                                    unsigned size)
289 {
290     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
291 
292     if (size != 2) {
293         return omap_badwidth_read16(opaque, addr);
294     }
295 
296     switch (addr) {
297     case 0x00:	/* CNTL_TIMER */
298         return (s->timer.ptv << 9) | (s->timer.ar << 8) |
299                 (s->timer.st << 7) | (s->free << 1);
300 
301     case 0x04:	/* READ_TIMER */
302         return omap_timer_read(&s->timer);
303 
304     case 0x08:	/* TIMER_MODE */
305         return s->mode << 15;
306     }
307 
308     OMAP_BAD_REG(addr);
309     return 0;
310 }
311 
312 static void omap_wd_timer_write(void *opaque, hwaddr addr,
313                                 uint64_t value, unsigned size)
314 {
315     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
316 
317     if (size != 2) {
318         omap_badwidth_write16(opaque, addr, value);
319         return;
320     }
321 
322     switch (addr) {
323     case 0x00:	/* CNTL_TIMER */
324         omap_timer_sync(&s->timer);
325         s->timer.ptv = (value >> 9) & 7;
326         s->timer.ar = (value >> 8) & 1;
327         s->timer.st = (value >> 7) & 1;
328         s->free = (value >> 1) & 1;
329         omap_timer_update(&s->timer);
330         break;
331 
332     case 0x04:	/* LOAD_TIMER */
333         s->timer.reset_val = value & 0xffff;
334         break;
335 
336     case 0x08:	/* TIMER_MODE */
337         if (!s->mode && ((value >> 15) & 1))
338             omap_clk_get(s->timer.clk);
339         s->mode |= (value >> 15) & 1;
340         if (s->last_wr == 0xf5) {
341             if ((value & 0xff) == 0xa0) {
342                 if (s->mode) {
343                     s->mode = 0;
344                     omap_clk_put(s->timer.clk);
345                 }
346             } else {
347                 /* XXX: on T|E hardware somehow this has no effect,
348                  * on Zire 71 it works as specified.  */
349                 s->reset = 1;
350                 qemu_system_reset_request();
351             }
352         }
353         s->last_wr = value & 0xff;
354         break;
355 
356     default:
357         OMAP_BAD_REG(addr);
358     }
359 }
360 
361 static const MemoryRegionOps omap_wd_timer_ops = {
362     .read = omap_wd_timer_read,
363     .write = omap_wd_timer_write,
364     .endianness = DEVICE_NATIVE_ENDIAN,
365 };
366 
367 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
368 {
369     timer_del(s->timer.timer);
370     if (!s->mode)
371         omap_clk_get(s->timer.clk);
372     s->mode = 1;
373     s->free = 1;
374     s->reset = 0;
375     s->timer.enable = 1;
376     s->timer.it_ena = 1;
377     s->timer.reset_val = 0xffff;
378     s->timer.val = 0;
379     s->timer.st = 0;
380     s->timer.ptv = 0;
381     s->timer.ar = 0;
382     omap_timer_update(&s->timer);
383 }
384 
385 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
386                 hwaddr base,
387                 qemu_irq irq, omap_clk clk)
388 {
389     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
390             g_malloc0(sizeof(struct omap_watchdog_timer_s));
391 
392     s->timer.irq = irq;
393     s->timer.clk = clk;
394     s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
395     omap_wd_timer_reset(s);
396     omap_timer_clk_setup(&s->timer);
397 
398     memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
399                           "omap-wd-timer", 0x100);
400     memory_region_add_subregion(memory, base, &s->iomem);
401 
402     return s;
403 }
404 
405 /* 32-kHz timer */
406 struct omap_32khz_timer_s {
407     struct omap_mpu_timer_s timer;
408     MemoryRegion iomem;
409 };
410 
411 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
412                                    unsigned size)
413 {
414     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
415     int offset = addr & OMAP_MPUI_REG_MASK;
416 
417     if (size != 4) {
418         return omap_badwidth_read32(opaque, addr);
419     }
420 
421     switch (offset) {
422     case 0x00:	/* TVR */
423         return s->timer.reset_val;
424 
425     case 0x04:	/* TCR */
426         return omap_timer_read(&s->timer);
427 
428     case 0x08:	/* CR */
429         return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
430 
431     default:
432         break;
433     }
434     OMAP_BAD_REG(addr);
435     return 0;
436 }
437 
438 static void omap_os_timer_write(void *opaque, hwaddr addr,
439                                 uint64_t value, unsigned size)
440 {
441     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
442     int offset = addr & OMAP_MPUI_REG_MASK;
443 
444     if (size != 4) {
445         omap_badwidth_write32(opaque, addr, value);
446         return;
447     }
448 
449     switch (offset) {
450     case 0x00:	/* TVR */
451         s->timer.reset_val = value & 0x00ffffff;
452         break;
453 
454     case 0x04:	/* TCR */
455         OMAP_RO_REG(addr);
456         break;
457 
458     case 0x08:	/* CR */
459         s->timer.ar = (value >> 3) & 1;
460         s->timer.it_ena = (value >> 2) & 1;
461         if (s->timer.st != (value & 1) || (value & 2)) {
462             omap_timer_sync(&s->timer);
463             s->timer.enable = value & 1;
464             s->timer.st = value & 1;
465             omap_timer_update(&s->timer);
466         }
467         break;
468 
469     default:
470         OMAP_BAD_REG(addr);
471     }
472 }
473 
474 static const MemoryRegionOps omap_os_timer_ops = {
475     .read = omap_os_timer_read,
476     .write = omap_os_timer_write,
477     .endianness = DEVICE_NATIVE_ENDIAN,
478 };
479 
480 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
481 {
482     timer_del(s->timer.timer);
483     s->timer.enable = 0;
484     s->timer.it_ena = 0;
485     s->timer.reset_val = 0x00ffffff;
486     s->timer.val = 0;
487     s->timer.st = 0;
488     s->timer.ptv = 0;
489     s->timer.ar = 1;
490 }
491 
492 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
493                 hwaddr base,
494                 qemu_irq irq, omap_clk clk)
495 {
496     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
497             g_malloc0(sizeof(struct omap_32khz_timer_s));
498 
499     s->timer.irq = irq;
500     s->timer.clk = clk;
501     s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
502     omap_os_timer_reset(s);
503     omap_timer_clk_setup(&s->timer);
504 
505     memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
506                           "omap-os-timer", 0x800);
507     memory_region_add_subregion(memory, base, &s->iomem);
508 
509     return s;
510 }
511 
512 /* Ultra Low-Power Device Module */
513 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
514                                   unsigned size)
515 {
516     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
517     uint16_t ret;
518 
519     if (size != 2) {
520         return omap_badwidth_read16(opaque, addr);
521     }
522 
523     switch (addr) {
524     case 0x14:	/* IT_STATUS */
525         ret = s->ulpd_pm_regs[addr >> 2];
526         s->ulpd_pm_regs[addr >> 2] = 0;
527         qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
528         return ret;
529 
530     case 0x18:	/* Reserved */
531     case 0x1c:	/* Reserved */
532     case 0x20:	/* Reserved */
533     case 0x28:	/* Reserved */
534     case 0x2c:	/* Reserved */
535         OMAP_BAD_REG(addr);
536         /* fall through */
537     case 0x00:	/* COUNTER_32_LSB */
538     case 0x04:	/* COUNTER_32_MSB */
539     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
540     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
541     case 0x10:	/* GAUGING_CTRL */
542     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
543     case 0x30:	/* CLOCK_CTRL */
544     case 0x34:	/* SOFT_REQ */
545     case 0x38:	/* COUNTER_32_FIQ */
546     case 0x3c:	/* DPLL_CTRL */
547     case 0x40:	/* STATUS_REQ */
548         /* XXX: check clk::usecount state for every clock */
549     case 0x48:	/* LOCL_TIME */
550     case 0x4c:	/* APLL_CTRL */
551     case 0x50:	/* POWER_CTRL */
552         return s->ulpd_pm_regs[addr >> 2];
553     }
554 
555     OMAP_BAD_REG(addr);
556     return 0;
557 }
558 
559 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
560                 uint16_t diff, uint16_t value)
561 {
562     if (diff & (1 << 4))				/* USB_MCLK_EN */
563         omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
564     if (diff & (1 << 5))				/* DIS_USB_PVCI_CLK */
565         omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
566 }
567 
568 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
569                 uint16_t diff, uint16_t value)
570 {
571     if (diff & (1 << 0))				/* SOFT_DPLL_REQ */
572         omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
573     if (diff & (1 << 1))				/* SOFT_COM_REQ */
574         omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
575     if (diff & (1 << 2))				/* SOFT_SDW_REQ */
576         omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
577     if (diff & (1 << 3))				/* SOFT_USB_REQ */
578         omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
579 }
580 
581 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
582                                uint64_t value, unsigned size)
583 {
584     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
585     int64_t now, ticks;
586     int div, mult;
587     static const int bypass_div[4] = { 1, 2, 4, 4 };
588     uint16_t diff;
589 
590     if (size != 2) {
591         omap_badwidth_write16(opaque, addr, value);
592         return;
593     }
594 
595     switch (addr) {
596     case 0x00:	/* COUNTER_32_LSB */
597     case 0x04:	/* COUNTER_32_MSB */
598     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
599     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
600     case 0x14:	/* IT_STATUS */
601     case 0x40:	/* STATUS_REQ */
602         OMAP_RO_REG(addr);
603         break;
604 
605     case 0x10:	/* GAUGING_CTRL */
606         /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
607         if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
608             now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
609 
610             if (value & 1)
611                 s->ulpd_gauge_start = now;
612             else {
613                 now -= s->ulpd_gauge_start;
614 
615                 /* 32-kHz ticks */
616                 ticks = muldiv64(now, 32768, get_ticks_per_sec());
617                 s->ulpd_pm_regs[0x00 >> 2] = (ticks >>  0) & 0xffff;
618                 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
619                 if (ticks >> 32)	/* OVERFLOW_32K */
620                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
621 
622                 /* High frequency ticks */
623                 ticks = muldiv64(now, 12000000, get_ticks_per_sec());
624                 s->ulpd_pm_regs[0x08 >> 2] = (ticks >>  0) & 0xffff;
625                 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
626                 if (ticks >> 32)	/* OVERFLOW_HI_FREQ */
627                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
628 
629                 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0;	/* IT_GAUGING */
630                 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
631             }
632         }
633         s->ulpd_pm_regs[addr >> 2] = value;
634         break;
635 
636     case 0x18:	/* Reserved */
637     case 0x1c:	/* Reserved */
638     case 0x20:	/* Reserved */
639     case 0x28:	/* Reserved */
640     case 0x2c:	/* Reserved */
641         OMAP_BAD_REG(addr);
642         /* fall through */
643     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
644     case 0x38:	/* COUNTER_32_FIQ */
645     case 0x48:	/* LOCL_TIME */
646     case 0x50:	/* POWER_CTRL */
647         s->ulpd_pm_regs[addr >> 2] = value;
648         break;
649 
650     case 0x30:	/* CLOCK_CTRL */
651         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
652         s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
653         omap_ulpd_clk_update(s, diff, value);
654         break;
655 
656     case 0x34:	/* SOFT_REQ */
657         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
658         s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
659         omap_ulpd_req_update(s, diff, value);
660         break;
661 
662     case 0x3c:	/* DPLL_CTRL */
663         /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
664          * omitted altogether, probably a typo.  */
665         /* This register has identical semantics with DPLL(1:3) control
666          * registers, see omap_dpll_write() */
667         diff = s->ulpd_pm_regs[addr >> 2] & value;
668         s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
669         if (diff & (0x3ff << 2)) {
670             if (value & (1 << 4)) {			/* PLL_ENABLE */
671                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
672                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
673             } else {
674                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
675                 mult = 1;
676             }
677             omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
678         }
679 
680         /* Enter the desired mode.  */
681         s->ulpd_pm_regs[addr >> 2] =
682                 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
683                 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
684 
685         /* Act as if the lock is restored.  */
686         s->ulpd_pm_regs[addr >> 2] |= 2;
687         break;
688 
689     case 0x4c:	/* APLL_CTRL */
690         diff = s->ulpd_pm_regs[addr >> 2] & value;
691         s->ulpd_pm_regs[addr >> 2] = value & 0xf;
692         if (diff & (1 << 0))				/* APLL_NDPLL_SWITCH */
693             omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
694                                     (value & (1 << 0)) ? "apll" : "dpll4"));
695         break;
696 
697     default:
698         OMAP_BAD_REG(addr);
699     }
700 }
701 
702 static const MemoryRegionOps omap_ulpd_pm_ops = {
703     .read = omap_ulpd_pm_read,
704     .write = omap_ulpd_pm_write,
705     .endianness = DEVICE_NATIVE_ENDIAN,
706 };
707 
708 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
709 {
710     mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
711     mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
712     mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
713     mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
714     mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
715     mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
716     mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
717     mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
718     mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
719     mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
720     mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
721     omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
722     mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
723     omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
724     mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
725     mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
726     mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
727     mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
728     mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
729     mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
730     mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
731     omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
732     omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
733 }
734 
735 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
736                 hwaddr base,
737                 struct omap_mpu_state_s *mpu)
738 {
739     memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
740                           "omap-ulpd-pm", 0x800);
741     memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
742     omap_ulpd_pm_reset(mpu);
743 }
744 
745 /* OMAP Pin Configuration */
746 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
747                                   unsigned size)
748 {
749     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
750 
751     if (size != 4) {
752         return omap_badwidth_read32(opaque, addr);
753     }
754 
755     switch (addr) {
756     case 0x00:	/* FUNC_MUX_CTRL_0 */
757     case 0x04:	/* FUNC_MUX_CTRL_1 */
758     case 0x08:	/* FUNC_MUX_CTRL_2 */
759         return s->func_mux_ctrl[addr >> 2];
760 
761     case 0x0c:	/* COMP_MODE_CTRL_0 */
762         return s->comp_mode_ctrl[0];
763 
764     case 0x10:	/* FUNC_MUX_CTRL_3 */
765     case 0x14:	/* FUNC_MUX_CTRL_4 */
766     case 0x18:	/* FUNC_MUX_CTRL_5 */
767     case 0x1c:	/* FUNC_MUX_CTRL_6 */
768     case 0x20:	/* FUNC_MUX_CTRL_7 */
769     case 0x24:	/* FUNC_MUX_CTRL_8 */
770     case 0x28:	/* FUNC_MUX_CTRL_9 */
771     case 0x2c:	/* FUNC_MUX_CTRL_A */
772     case 0x30:	/* FUNC_MUX_CTRL_B */
773     case 0x34:	/* FUNC_MUX_CTRL_C */
774     case 0x38:	/* FUNC_MUX_CTRL_D */
775         return s->func_mux_ctrl[(addr >> 2) - 1];
776 
777     case 0x40:	/* PULL_DWN_CTRL_0 */
778     case 0x44:	/* PULL_DWN_CTRL_1 */
779     case 0x48:	/* PULL_DWN_CTRL_2 */
780     case 0x4c:	/* PULL_DWN_CTRL_3 */
781         return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
782 
783     case 0x50:	/* GATE_INH_CTRL_0 */
784         return s->gate_inh_ctrl[0];
785 
786     case 0x60:	/* VOLTAGE_CTRL_0 */
787         return s->voltage_ctrl[0];
788 
789     case 0x70:	/* TEST_DBG_CTRL_0 */
790         return s->test_dbg_ctrl[0];
791 
792     case 0x80:	/* MOD_CONF_CTRL_0 */
793         return s->mod_conf_ctrl[0];
794     }
795 
796     OMAP_BAD_REG(addr);
797     return 0;
798 }
799 
800 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
801                 uint32_t diff, uint32_t value)
802 {
803     if (s->compat1509) {
804         if (diff & (1 << 9))			/* BLUETOOTH */
805             omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
806                             (~value >> 9) & 1);
807         if (diff & (1 << 7))			/* USB.CLKO */
808             omap_clk_onoff(omap_findclk(s, "usb.clko"),
809                             (value >> 7) & 1);
810     }
811 }
812 
813 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
814                 uint32_t diff, uint32_t value)
815 {
816     if (s->compat1509) {
817         if (diff & (1U << 31)) {
818             /* MCBSP3_CLK_HIZ_DI */
819             omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
820         }
821         if (diff & (1 << 1)) {
822             /* CLK32K */
823             omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
824         }
825     }
826 }
827 
828 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
829                 uint32_t diff, uint32_t value)
830 {
831     if (diff & (1U << 31)) {
832         /* CONF_MOD_UART3_CLK_MODE_R */
833         omap_clk_reparent(omap_findclk(s, "uart3_ck"),
834                           omap_findclk(s, ((value >> 31) & 1) ?
835                                        "ck_48m" : "armper_ck"));
836     }
837     if (diff & (1 << 30))			/* CONF_MOD_UART2_CLK_MODE_R */
838          omap_clk_reparent(omap_findclk(s, "uart2_ck"),
839                          omap_findclk(s, ((value >> 30) & 1) ?
840                                  "ck_48m" : "armper_ck"));
841     if (diff & (1 << 29))			/* CONF_MOD_UART1_CLK_MODE_R */
842          omap_clk_reparent(omap_findclk(s, "uart1_ck"),
843                          omap_findclk(s, ((value >> 29) & 1) ?
844                                  "ck_48m" : "armper_ck"));
845     if (diff & (1 << 23))			/* CONF_MOD_MMC_SD_CLK_REQ_R */
846          omap_clk_reparent(omap_findclk(s, "mmc_ck"),
847                          omap_findclk(s, ((value >> 23) & 1) ?
848                                  "ck_48m" : "armper_ck"));
849     if (diff & (1 << 12))			/* CONF_MOD_COM_MCLK_12_48_S */
850          omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
851                          omap_findclk(s, ((value >> 12) & 1) ?
852                                  "ck_48m" : "armper_ck"));
853     if (diff & (1 << 9))			/* CONF_MOD_USB_HOST_HHC_UHO */
854          omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
855 }
856 
857 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
858                                uint64_t value, unsigned size)
859 {
860     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
861     uint32_t diff;
862 
863     if (size != 4) {
864         omap_badwidth_write32(opaque, addr, value);
865         return;
866     }
867 
868     switch (addr) {
869     case 0x00:	/* FUNC_MUX_CTRL_0 */
870         diff = s->func_mux_ctrl[addr >> 2] ^ value;
871         s->func_mux_ctrl[addr >> 2] = value;
872         omap_pin_funcmux0_update(s, diff, value);
873         return;
874 
875     case 0x04:	/* FUNC_MUX_CTRL_1 */
876         diff = s->func_mux_ctrl[addr >> 2] ^ value;
877         s->func_mux_ctrl[addr >> 2] = value;
878         omap_pin_funcmux1_update(s, diff, value);
879         return;
880 
881     case 0x08:	/* FUNC_MUX_CTRL_2 */
882         s->func_mux_ctrl[addr >> 2] = value;
883         return;
884 
885     case 0x0c:	/* COMP_MODE_CTRL_0 */
886         s->comp_mode_ctrl[0] = value;
887         s->compat1509 = (value != 0x0000eaef);
888         omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
889         omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
890         return;
891 
892     case 0x10:	/* FUNC_MUX_CTRL_3 */
893     case 0x14:	/* FUNC_MUX_CTRL_4 */
894     case 0x18:	/* FUNC_MUX_CTRL_5 */
895     case 0x1c:	/* FUNC_MUX_CTRL_6 */
896     case 0x20:	/* FUNC_MUX_CTRL_7 */
897     case 0x24:	/* FUNC_MUX_CTRL_8 */
898     case 0x28:	/* FUNC_MUX_CTRL_9 */
899     case 0x2c:	/* FUNC_MUX_CTRL_A */
900     case 0x30:	/* FUNC_MUX_CTRL_B */
901     case 0x34:	/* FUNC_MUX_CTRL_C */
902     case 0x38:	/* FUNC_MUX_CTRL_D */
903         s->func_mux_ctrl[(addr >> 2) - 1] = value;
904         return;
905 
906     case 0x40:	/* PULL_DWN_CTRL_0 */
907     case 0x44:	/* PULL_DWN_CTRL_1 */
908     case 0x48:	/* PULL_DWN_CTRL_2 */
909     case 0x4c:	/* PULL_DWN_CTRL_3 */
910         s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
911         return;
912 
913     case 0x50:	/* GATE_INH_CTRL_0 */
914         s->gate_inh_ctrl[0] = value;
915         return;
916 
917     case 0x60:	/* VOLTAGE_CTRL_0 */
918         s->voltage_ctrl[0] = value;
919         return;
920 
921     case 0x70:	/* TEST_DBG_CTRL_0 */
922         s->test_dbg_ctrl[0] = value;
923         return;
924 
925     case 0x80:	/* MOD_CONF_CTRL_0 */
926         diff = s->mod_conf_ctrl[0] ^ value;
927         s->mod_conf_ctrl[0] = value;
928         omap_pin_modconf1_update(s, diff, value);
929         return;
930 
931     default:
932         OMAP_BAD_REG(addr);
933     }
934 }
935 
936 static const MemoryRegionOps omap_pin_cfg_ops = {
937     .read = omap_pin_cfg_read,
938     .write = omap_pin_cfg_write,
939     .endianness = DEVICE_NATIVE_ENDIAN,
940 };
941 
942 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
943 {
944     /* Start in Compatibility Mode.  */
945     mpu->compat1509 = 1;
946     omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
947     omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
948     omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
949     memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
950     memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
951     memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
952     memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
953     memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
954     memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
955     memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
956 }
957 
958 static void omap_pin_cfg_init(MemoryRegion *system_memory,
959                 hwaddr base,
960                 struct omap_mpu_state_s *mpu)
961 {
962     memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
963                           "omap-pin-cfg", 0x800);
964     memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
965     omap_pin_cfg_reset(mpu);
966 }
967 
968 /* Device Identification, Die Identification */
969 static uint64_t omap_id_read(void *opaque, hwaddr addr,
970                              unsigned size)
971 {
972     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
973 
974     if (size != 4) {
975         return omap_badwidth_read32(opaque, addr);
976     }
977 
978     switch (addr) {
979     case 0xfffe1800:	/* DIE_ID_LSB */
980         return 0xc9581f0e;
981     case 0xfffe1804:	/* DIE_ID_MSB */
982         return 0xa8858bfa;
983 
984     case 0xfffe2000:	/* PRODUCT_ID_LSB */
985         return 0x00aaaafc;
986     case 0xfffe2004:	/* PRODUCT_ID_MSB */
987         return 0xcafeb574;
988 
989     case 0xfffed400:	/* JTAG_ID_LSB */
990         switch (s->mpu_model) {
991         case omap310:
992             return 0x03310315;
993         case omap1510:
994             return 0x03310115;
995         default:
996             hw_error("%s: bad mpu model\n", __FUNCTION__);
997         }
998         break;
999 
1000     case 0xfffed404:	/* JTAG_ID_MSB */
1001         switch (s->mpu_model) {
1002         case omap310:
1003             return 0xfb57402f;
1004         case omap1510:
1005             return 0xfb47002f;
1006         default:
1007             hw_error("%s: bad mpu model\n", __FUNCTION__);
1008         }
1009         break;
1010     }
1011 
1012     OMAP_BAD_REG(addr);
1013     return 0;
1014 }
1015 
1016 static void omap_id_write(void *opaque, hwaddr addr,
1017                           uint64_t value, unsigned size)
1018 {
1019     if (size != 4) {
1020         omap_badwidth_write32(opaque, addr, value);
1021         return;
1022     }
1023 
1024     OMAP_BAD_REG(addr);
1025 }
1026 
1027 static const MemoryRegionOps omap_id_ops = {
1028     .read = omap_id_read,
1029     .write = omap_id_write,
1030     .endianness = DEVICE_NATIVE_ENDIAN,
1031 };
1032 
1033 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1034 {
1035     memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1036                           "omap-id", 0x100000000ULL);
1037     memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1038                              0xfffe1800, 0x800);
1039     memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1040     memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1041                              0xfffed400, 0x100);
1042     memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1043     if (!cpu_is_omap15xx(mpu)) {
1044         memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1045                                  &mpu->id_iomem, 0xfffe2000, 0x800);
1046         memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1047     }
1048 }
1049 
1050 /* MPUI Control (Dummy) */
1051 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1052                                unsigned size)
1053 {
1054     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1055 
1056     if (size != 4) {
1057         return omap_badwidth_read32(opaque, addr);
1058     }
1059 
1060     switch (addr) {
1061     case 0x00:	/* CTRL */
1062         return s->mpui_ctrl;
1063     case 0x04:	/* DEBUG_ADDR */
1064         return 0x01ffffff;
1065     case 0x08:	/* DEBUG_DATA */
1066         return 0xffffffff;
1067     case 0x0c:	/* DEBUG_FLAG */
1068         return 0x00000800;
1069     case 0x10:	/* STATUS */
1070         return 0x00000000;
1071 
1072     /* Not in OMAP310 */
1073     case 0x14:	/* DSP_STATUS */
1074     case 0x18:	/* DSP_BOOT_CONFIG */
1075         return 0x00000000;
1076     case 0x1c:	/* DSP_MPUI_CONFIG */
1077         return 0x0000ffff;
1078     }
1079 
1080     OMAP_BAD_REG(addr);
1081     return 0;
1082 }
1083 
1084 static void omap_mpui_write(void *opaque, hwaddr addr,
1085                             uint64_t value, unsigned size)
1086 {
1087     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1088 
1089     if (size != 4) {
1090         omap_badwidth_write32(opaque, addr, value);
1091         return;
1092     }
1093 
1094     switch (addr) {
1095     case 0x00:	/* CTRL */
1096         s->mpui_ctrl = value & 0x007fffff;
1097         break;
1098 
1099     case 0x04:	/* DEBUG_ADDR */
1100     case 0x08:	/* DEBUG_DATA */
1101     case 0x0c:	/* DEBUG_FLAG */
1102     case 0x10:	/* STATUS */
1103     /* Not in OMAP310 */
1104     case 0x14:	/* DSP_STATUS */
1105         OMAP_RO_REG(addr);
1106         break;
1107     case 0x18:	/* DSP_BOOT_CONFIG */
1108     case 0x1c:	/* DSP_MPUI_CONFIG */
1109         break;
1110 
1111     default:
1112         OMAP_BAD_REG(addr);
1113     }
1114 }
1115 
1116 static const MemoryRegionOps omap_mpui_ops = {
1117     .read = omap_mpui_read,
1118     .write = omap_mpui_write,
1119     .endianness = DEVICE_NATIVE_ENDIAN,
1120 };
1121 
1122 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1123 {
1124     s->mpui_ctrl = 0x0003ff1b;
1125 }
1126 
1127 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1128                 struct omap_mpu_state_s *mpu)
1129 {
1130     memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1131                           "omap-mpui", 0x100);
1132     memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1133 
1134     omap_mpui_reset(mpu);
1135 }
1136 
1137 /* TIPB Bridges */
1138 struct omap_tipb_bridge_s {
1139     qemu_irq abort;
1140     MemoryRegion iomem;
1141 
1142     int width_intr;
1143     uint16_t control;
1144     uint16_t alloc;
1145     uint16_t buffer;
1146     uint16_t enh_control;
1147 };
1148 
1149 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1150                                       unsigned size)
1151 {
1152     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1153 
1154     if (size < 2) {
1155         return omap_badwidth_read16(opaque, addr);
1156     }
1157 
1158     switch (addr) {
1159     case 0x00:	/* TIPB_CNTL */
1160         return s->control;
1161     case 0x04:	/* TIPB_BUS_ALLOC */
1162         return s->alloc;
1163     case 0x08:	/* MPU_TIPB_CNTL */
1164         return s->buffer;
1165     case 0x0c:	/* ENHANCED_TIPB_CNTL */
1166         return s->enh_control;
1167     case 0x10:	/* ADDRESS_DBG */
1168     case 0x14:	/* DATA_DEBUG_LOW */
1169     case 0x18:	/* DATA_DEBUG_HIGH */
1170         return 0xffff;
1171     case 0x1c:	/* DEBUG_CNTR_SIG */
1172         return 0x00f8;
1173     }
1174 
1175     OMAP_BAD_REG(addr);
1176     return 0;
1177 }
1178 
1179 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1180                                    uint64_t value, unsigned size)
1181 {
1182     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1183 
1184     if (size < 2) {
1185         omap_badwidth_write16(opaque, addr, value);
1186         return;
1187     }
1188 
1189     switch (addr) {
1190     case 0x00:	/* TIPB_CNTL */
1191         s->control = value & 0xffff;
1192         break;
1193 
1194     case 0x04:	/* TIPB_BUS_ALLOC */
1195         s->alloc = value & 0x003f;
1196         break;
1197 
1198     case 0x08:	/* MPU_TIPB_CNTL */
1199         s->buffer = value & 0x0003;
1200         break;
1201 
1202     case 0x0c:	/* ENHANCED_TIPB_CNTL */
1203         s->width_intr = !(value & 2);
1204         s->enh_control = value & 0x000f;
1205         break;
1206 
1207     case 0x10:	/* ADDRESS_DBG */
1208     case 0x14:	/* DATA_DEBUG_LOW */
1209     case 0x18:	/* DATA_DEBUG_HIGH */
1210     case 0x1c:	/* DEBUG_CNTR_SIG */
1211         OMAP_RO_REG(addr);
1212         break;
1213 
1214     default:
1215         OMAP_BAD_REG(addr);
1216     }
1217 }
1218 
1219 static const MemoryRegionOps omap_tipb_bridge_ops = {
1220     .read = omap_tipb_bridge_read,
1221     .write = omap_tipb_bridge_write,
1222     .endianness = DEVICE_NATIVE_ENDIAN,
1223 };
1224 
1225 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1226 {
1227     s->control = 0xffff;
1228     s->alloc = 0x0009;
1229     s->buffer = 0x0000;
1230     s->enh_control = 0x000f;
1231 }
1232 
1233 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1234     MemoryRegion *memory, hwaddr base,
1235     qemu_irq abort_irq, omap_clk clk)
1236 {
1237     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
1238             g_malloc0(sizeof(struct omap_tipb_bridge_s));
1239 
1240     s->abort = abort_irq;
1241     omap_tipb_bridge_reset(s);
1242 
1243     memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1244                           "omap-tipb-bridge", 0x100);
1245     memory_region_add_subregion(memory, base, &s->iomem);
1246 
1247     return s;
1248 }
1249 
1250 /* Dummy Traffic Controller's Memory Interface */
1251 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1252                                unsigned size)
1253 {
1254     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1255     uint32_t ret;
1256 
1257     if (size != 4) {
1258         return omap_badwidth_read32(opaque, addr);
1259     }
1260 
1261     switch (addr) {
1262     case 0x00:	/* IMIF_PRIO */
1263     case 0x04:	/* EMIFS_PRIO */
1264     case 0x08:	/* EMIFF_PRIO */
1265     case 0x0c:	/* EMIFS_CONFIG */
1266     case 0x10:	/* EMIFS_CS0_CONFIG */
1267     case 0x14:	/* EMIFS_CS1_CONFIG */
1268     case 0x18:	/* EMIFS_CS2_CONFIG */
1269     case 0x1c:	/* EMIFS_CS3_CONFIG */
1270     case 0x24:	/* EMIFF_MRS */
1271     case 0x28:	/* TIMEOUT1 */
1272     case 0x2c:	/* TIMEOUT2 */
1273     case 0x30:	/* TIMEOUT3 */
1274     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
1275     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
1276         return s->tcmi_regs[addr >> 2];
1277 
1278     case 0x20:	/* EMIFF_SDRAM_CONFIG */
1279         ret = s->tcmi_regs[addr >> 2];
1280         s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1281         /* XXX: We can try using the VGA_DIRTY flag for this */
1282         return ret;
1283     }
1284 
1285     OMAP_BAD_REG(addr);
1286     return 0;
1287 }
1288 
1289 static void omap_tcmi_write(void *opaque, hwaddr addr,
1290                             uint64_t value, unsigned size)
1291 {
1292     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1293 
1294     if (size != 4) {
1295         omap_badwidth_write32(opaque, addr, value);
1296         return;
1297     }
1298 
1299     switch (addr) {
1300     case 0x00:	/* IMIF_PRIO */
1301     case 0x04:	/* EMIFS_PRIO */
1302     case 0x08:	/* EMIFF_PRIO */
1303     case 0x10:	/* EMIFS_CS0_CONFIG */
1304     case 0x14:	/* EMIFS_CS1_CONFIG */
1305     case 0x18:	/* EMIFS_CS2_CONFIG */
1306     case 0x1c:	/* EMIFS_CS3_CONFIG */
1307     case 0x20:	/* EMIFF_SDRAM_CONFIG */
1308     case 0x24:	/* EMIFF_MRS */
1309     case 0x28:	/* TIMEOUT1 */
1310     case 0x2c:	/* TIMEOUT2 */
1311     case 0x30:	/* TIMEOUT3 */
1312     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
1313     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
1314         s->tcmi_regs[addr >> 2] = value;
1315         break;
1316     case 0x0c:	/* EMIFS_CONFIG */
1317         s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1318         break;
1319 
1320     default:
1321         OMAP_BAD_REG(addr);
1322     }
1323 }
1324 
1325 static const MemoryRegionOps omap_tcmi_ops = {
1326     .read = omap_tcmi_read,
1327     .write = omap_tcmi_write,
1328     .endianness = DEVICE_NATIVE_ENDIAN,
1329 };
1330 
1331 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1332 {
1333     mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1334     mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1335     mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1336     mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1337     mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1338     mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1339     mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1340     mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1341     mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1342     mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1343     mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1344     mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1345     mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1346     mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1347     mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1348 }
1349 
1350 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1351                 struct omap_mpu_state_s *mpu)
1352 {
1353     memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1354                           "omap-tcmi", 0x100);
1355     memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1356     omap_tcmi_reset(mpu);
1357 }
1358 
1359 /* Digital phase-locked loops control */
1360 struct dpll_ctl_s {
1361     MemoryRegion iomem;
1362     uint16_t mode;
1363     omap_clk dpll;
1364 };
1365 
1366 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1367                                unsigned size)
1368 {
1369     struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1370 
1371     if (size != 2) {
1372         return omap_badwidth_read16(opaque, addr);
1373     }
1374 
1375     if (addr == 0x00)	/* CTL_REG */
1376         return s->mode;
1377 
1378     OMAP_BAD_REG(addr);
1379     return 0;
1380 }
1381 
1382 static void omap_dpll_write(void *opaque, hwaddr addr,
1383                             uint64_t value, unsigned size)
1384 {
1385     struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1386     uint16_t diff;
1387     static const int bypass_div[4] = { 1, 2, 4, 4 };
1388     int div, mult;
1389 
1390     if (size != 2) {
1391         omap_badwidth_write16(opaque, addr, value);
1392         return;
1393     }
1394 
1395     if (addr == 0x00) {	/* CTL_REG */
1396         /* See omap_ulpd_pm_write() too */
1397         diff = s->mode & value;
1398         s->mode = value & 0x2fff;
1399         if (diff & (0x3ff << 2)) {
1400             if (value & (1 << 4)) {			/* PLL_ENABLE */
1401                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
1402                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
1403             } else {
1404                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
1405                 mult = 1;
1406             }
1407             omap_clk_setrate(s->dpll, div, mult);
1408         }
1409 
1410         /* Enter the desired mode.  */
1411         s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1412 
1413         /* Act as if the lock is restored.  */
1414         s->mode |= 2;
1415     } else {
1416         OMAP_BAD_REG(addr);
1417     }
1418 }
1419 
1420 static const MemoryRegionOps omap_dpll_ops = {
1421     .read = omap_dpll_read,
1422     .write = omap_dpll_write,
1423     .endianness = DEVICE_NATIVE_ENDIAN,
1424 };
1425 
1426 static void omap_dpll_reset(struct dpll_ctl_s *s)
1427 {
1428     s->mode = 0x2002;
1429     omap_clk_setrate(s->dpll, 1, 1);
1430 }
1431 
1432 static struct dpll_ctl_s  *omap_dpll_init(MemoryRegion *memory,
1433                            hwaddr base, omap_clk clk)
1434 {
1435     struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1436     memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1437 
1438     s->dpll = clk;
1439     omap_dpll_reset(s);
1440 
1441     memory_region_add_subregion(memory, base, &s->iomem);
1442     return s;
1443 }
1444 
1445 /* MPU Clock/Reset/Power Mode Control */
1446 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1447                                unsigned size)
1448 {
1449     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1450 
1451     if (size != 2) {
1452         return omap_badwidth_read16(opaque, addr);
1453     }
1454 
1455     switch (addr) {
1456     case 0x00:	/* ARM_CKCTL */
1457         return s->clkm.arm_ckctl;
1458 
1459     case 0x04:	/* ARM_IDLECT1 */
1460         return s->clkm.arm_idlect1;
1461 
1462     case 0x08:	/* ARM_IDLECT2 */
1463         return s->clkm.arm_idlect2;
1464 
1465     case 0x0c:	/* ARM_EWUPCT */
1466         return s->clkm.arm_ewupct;
1467 
1468     case 0x10:	/* ARM_RSTCT1 */
1469         return s->clkm.arm_rstct1;
1470 
1471     case 0x14:	/* ARM_RSTCT2 */
1472         return s->clkm.arm_rstct2;
1473 
1474     case 0x18:	/* ARM_SYSST */
1475         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1476 
1477     case 0x1c:	/* ARM_CKOUT1 */
1478         return s->clkm.arm_ckout1;
1479 
1480     case 0x20:	/* ARM_CKOUT2 */
1481         break;
1482     }
1483 
1484     OMAP_BAD_REG(addr);
1485     return 0;
1486 }
1487 
1488 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1489                 uint16_t diff, uint16_t value)
1490 {
1491     omap_clk clk;
1492 
1493     if (diff & (1 << 14)) {				/* ARM_INTHCK_SEL */
1494         if (value & (1 << 14))
1495             /* Reserved */;
1496         else {
1497             clk = omap_findclk(s, "arminth_ck");
1498             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1499         }
1500     }
1501     if (diff & (1 << 12)) {				/* ARM_TIMXO */
1502         clk = omap_findclk(s, "armtim_ck");
1503         if (value & (1 << 12))
1504             omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1505         else
1506             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1507     }
1508     /* XXX: en_dspck */
1509     if (diff & (3 << 10)) {				/* DSPMMUDIV */
1510         clk = omap_findclk(s, "dspmmu_ck");
1511         omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1512     }
1513     if (diff & (3 << 8)) {				/* TCDIV */
1514         clk = omap_findclk(s, "tc_ck");
1515         omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1516     }
1517     if (diff & (3 << 6)) {				/* DSPDIV */
1518         clk = omap_findclk(s, "dsp_ck");
1519         omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1520     }
1521     if (diff & (3 << 4)) {				/* ARMDIV */
1522         clk = omap_findclk(s, "arm_ck");
1523         omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1524     }
1525     if (diff & (3 << 2)) {				/* LCDDIV */
1526         clk = omap_findclk(s, "lcd_ck");
1527         omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1528     }
1529     if (diff & (3 << 0)) {				/* PERDIV */
1530         clk = omap_findclk(s, "armper_ck");
1531         omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1532     }
1533 }
1534 
1535 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1536                 uint16_t diff, uint16_t value)
1537 {
1538     omap_clk clk;
1539 
1540     if (value & (1 << 11)) {                            /* SETARM_IDLE */
1541         cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1542     }
1543     if (!(value & (1 << 10)))				/* WKUP_MODE */
1544         qemu_system_shutdown_request();	/* XXX: disable wakeup from IRQ */
1545 
1546 #define SET_CANIDLE(clock, bit)				\
1547     if (diff & (1 << bit)) {				\
1548         clk = omap_findclk(s, clock);			\
1549         omap_clk_canidle(clk, (value >> bit) & 1);	\
1550     }
1551     SET_CANIDLE("mpuwd_ck", 0)				/* IDLWDT_ARM */
1552     SET_CANIDLE("armxor_ck", 1)				/* IDLXORP_ARM */
1553     SET_CANIDLE("mpuper_ck", 2)				/* IDLPER_ARM */
1554     SET_CANIDLE("lcd_ck", 3)				/* IDLLCD_ARM */
1555     SET_CANIDLE("lb_ck", 4)				/* IDLLB_ARM */
1556     SET_CANIDLE("hsab_ck", 5)				/* IDLHSAB_ARM */
1557     SET_CANIDLE("tipb_ck", 6)				/* IDLIF_ARM */
1558     SET_CANIDLE("dma_ck", 6)				/* IDLIF_ARM */
1559     SET_CANIDLE("tc_ck", 6)				/* IDLIF_ARM */
1560     SET_CANIDLE("dpll1", 7)				/* IDLDPLL_ARM */
1561     SET_CANIDLE("dpll2", 7)				/* IDLDPLL_ARM */
1562     SET_CANIDLE("dpll3", 7)				/* IDLDPLL_ARM */
1563     SET_CANIDLE("mpui_ck", 8)				/* IDLAPI_ARM */
1564     SET_CANIDLE("armtim_ck", 9)				/* IDLTIM_ARM */
1565 }
1566 
1567 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1568                 uint16_t diff, uint16_t value)
1569 {
1570     omap_clk clk;
1571 
1572 #define SET_ONOFF(clock, bit)				\
1573     if (diff & (1 << bit)) {				\
1574         clk = omap_findclk(s, clock);			\
1575         omap_clk_onoff(clk, (value >> bit) & 1);	\
1576     }
1577     SET_ONOFF("mpuwd_ck", 0)				/* EN_WDTCK */
1578     SET_ONOFF("armxor_ck", 1)				/* EN_XORPCK */
1579     SET_ONOFF("mpuper_ck", 2)				/* EN_PERCK */
1580     SET_ONOFF("lcd_ck", 3)				/* EN_LCDCK */
1581     SET_ONOFF("lb_ck", 4)				/* EN_LBCK */
1582     SET_ONOFF("hsab_ck", 5)				/* EN_HSABCK */
1583     SET_ONOFF("mpui_ck", 6)				/* EN_APICK */
1584     SET_ONOFF("armtim_ck", 7)				/* EN_TIMCK */
1585     SET_CANIDLE("dma_ck", 8)				/* DMACK_REQ */
1586     SET_ONOFF("arm_gpio_ck", 9)				/* EN_GPIOCK */
1587     SET_ONOFF("lbfree_ck", 10)				/* EN_LBFREECK */
1588 }
1589 
1590 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1591                 uint16_t diff, uint16_t value)
1592 {
1593     omap_clk clk;
1594 
1595     if (diff & (3 << 4)) {				/* TCLKOUT */
1596         clk = omap_findclk(s, "tclk_out");
1597         switch ((value >> 4) & 3) {
1598         case 1:
1599             omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1600             omap_clk_onoff(clk, 1);
1601             break;
1602         case 2:
1603             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1604             omap_clk_onoff(clk, 1);
1605             break;
1606         default:
1607             omap_clk_onoff(clk, 0);
1608         }
1609     }
1610     if (diff & (3 << 2)) {				/* DCLKOUT */
1611         clk = omap_findclk(s, "dclk_out");
1612         switch ((value >> 2) & 3) {
1613         case 0:
1614             omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1615             break;
1616         case 1:
1617             omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1618             break;
1619         case 2:
1620             omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1621             break;
1622         case 3:
1623             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1624             break;
1625         }
1626     }
1627     if (diff & (3 << 0)) {				/* ACLKOUT */
1628         clk = omap_findclk(s, "aclk_out");
1629         switch ((value >> 0) & 3) {
1630         case 1:
1631             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1632             omap_clk_onoff(clk, 1);
1633             break;
1634         case 2:
1635             omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1636             omap_clk_onoff(clk, 1);
1637             break;
1638         case 3:
1639             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1640             omap_clk_onoff(clk, 1);
1641             break;
1642         default:
1643             omap_clk_onoff(clk, 0);
1644         }
1645     }
1646 }
1647 
1648 static void omap_clkm_write(void *opaque, hwaddr addr,
1649                             uint64_t value, unsigned size)
1650 {
1651     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1652     uint16_t diff;
1653     omap_clk clk;
1654     static const char *clkschemename[8] = {
1655         "fully synchronous", "fully asynchronous", "synchronous scalable",
1656         "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1657     };
1658 
1659     if (size != 2) {
1660         omap_badwidth_write16(opaque, addr, value);
1661         return;
1662     }
1663 
1664     switch (addr) {
1665     case 0x00:	/* ARM_CKCTL */
1666         diff = s->clkm.arm_ckctl ^ value;
1667         s->clkm.arm_ckctl = value & 0x7fff;
1668         omap_clkm_ckctl_update(s, diff, value);
1669         return;
1670 
1671     case 0x04:	/* ARM_IDLECT1 */
1672         diff = s->clkm.arm_idlect1 ^ value;
1673         s->clkm.arm_idlect1 = value & 0x0fff;
1674         omap_clkm_idlect1_update(s, diff, value);
1675         return;
1676 
1677     case 0x08:	/* ARM_IDLECT2 */
1678         diff = s->clkm.arm_idlect2 ^ value;
1679         s->clkm.arm_idlect2 = value & 0x07ff;
1680         omap_clkm_idlect2_update(s, diff, value);
1681         return;
1682 
1683     case 0x0c:	/* ARM_EWUPCT */
1684         s->clkm.arm_ewupct = value & 0x003f;
1685         return;
1686 
1687     case 0x10:	/* ARM_RSTCT1 */
1688         diff = s->clkm.arm_rstct1 ^ value;
1689         s->clkm.arm_rstct1 = value & 0x0007;
1690         if (value & 9) {
1691             qemu_system_reset_request();
1692             s->clkm.cold_start = 0xa;
1693         }
1694         if (diff & ~value & 4) {				/* DSP_RST */
1695             omap_mpui_reset(s);
1696             omap_tipb_bridge_reset(s->private_tipb);
1697             omap_tipb_bridge_reset(s->public_tipb);
1698         }
1699         if (diff & 2) {						/* DSP_EN */
1700             clk = omap_findclk(s, "dsp_ck");
1701             omap_clk_canidle(clk, (~value >> 1) & 1);
1702         }
1703         return;
1704 
1705     case 0x14:	/* ARM_RSTCT2 */
1706         s->clkm.arm_rstct2 = value & 0x0001;
1707         return;
1708 
1709     case 0x18:	/* ARM_SYSST */
1710         if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1711             s->clkm.clocking_scheme = (value >> 11) & 7;
1712             printf("%s: clocking scheme set to %s\n", __FUNCTION__,
1713                             clkschemename[s->clkm.clocking_scheme]);
1714         }
1715         s->clkm.cold_start &= value & 0x3f;
1716         return;
1717 
1718     case 0x1c:	/* ARM_CKOUT1 */
1719         diff = s->clkm.arm_ckout1 ^ value;
1720         s->clkm.arm_ckout1 = value & 0x003f;
1721         omap_clkm_ckout1_update(s, diff, value);
1722         return;
1723 
1724     case 0x20:	/* ARM_CKOUT2 */
1725     default:
1726         OMAP_BAD_REG(addr);
1727     }
1728 }
1729 
1730 static const MemoryRegionOps omap_clkm_ops = {
1731     .read = omap_clkm_read,
1732     .write = omap_clkm_write,
1733     .endianness = DEVICE_NATIVE_ENDIAN,
1734 };
1735 
1736 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1737                                  unsigned size)
1738 {
1739     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1740     CPUState *cpu = CPU(s->cpu);
1741 
1742     if (size != 2) {
1743         return omap_badwidth_read16(opaque, addr);
1744     }
1745 
1746     switch (addr) {
1747     case 0x04:	/* DSP_IDLECT1 */
1748         return s->clkm.dsp_idlect1;
1749 
1750     case 0x08:	/* DSP_IDLECT2 */
1751         return s->clkm.dsp_idlect2;
1752 
1753     case 0x14:	/* DSP_RSTCT2 */
1754         return s->clkm.dsp_rstct2;
1755 
1756     case 0x18:	/* DSP_SYSST */
1757         cpu = CPU(s->cpu);
1758         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1759                 (cpu->halted << 6);      /* Quite useless... */
1760     }
1761 
1762     OMAP_BAD_REG(addr);
1763     return 0;
1764 }
1765 
1766 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1767                 uint16_t diff, uint16_t value)
1768 {
1769     omap_clk clk;
1770 
1771     SET_CANIDLE("dspxor_ck", 1);			/* IDLXORP_DSP */
1772 }
1773 
1774 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1775                 uint16_t diff, uint16_t value)
1776 {
1777     omap_clk clk;
1778 
1779     SET_ONOFF("dspxor_ck", 1);				/* EN_XORPCK */
1780 }
1781 
1782 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1783                               uint64_t value, unsigned size)
1784 {
1785     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1786     uint16_t diff;
1787 
1788     if (size != 2) {
1789         omap_badwidth_write16(opaque, addr, value);
1790         return;
1791     }
1792 
1793     switch (addr) {
1794     case 0x04:	/* DSP_IDLECT1 */
1795         diff = s->clkm.dsp_idlect1 ^ value;
1796         s->clkm.dsp_idlect1 = value & 0x01f7;
1797         omap_clkdsp_idlect1_update(s, diff, value);
1798         break;
1799 
1800     case 0x08:	/* DSP_IDLECT2 */
1801         s->clkm.dsp_idlect2 = value & 0x0037;
1802         diff = s->clkm.dsp_idlect1 ^ value;
1803         omap_clkdsp_idlect2_update(s, diff, value);
1804         break;
1805 
1806     case 0x14:	/* DSP_RSTCT2 */
1807         s->clkm.dsp_rstct2 = value & 0x0001;
1808         break;
1809 
1810     case 0x18:	/* DSP_SYSST */
1811         s->clkm.cold_start &= value & 0x3f;
1812         break;
1813 
1814     default:
1815         OMAP_BAD_REG(addr);
1816     }
1817 }
1818 
1819 static const MemoryRegionOps omap_clkdsp_ops = {
1820     .read = omap_clkdsp_read,
1821     .write = omap_clkdsp_write,
1822     .endianness = DEVICE_NATIVE_ENDIAN,
1823 };
1824 
1825 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1826 {
1827     if (s->wdt && s->wdt->reset)
1828         s->clkm.cold_start = 0x6;
1829     s->clkm.clocking_scheme = 0;
1830     omap_clkm_ckctl_update(s, ~0, 0x3000);
1831     s->clkm.arm_ckctl = 0x3000;
1832     omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1833     s->clkm.arm_idlect1 = 0x0400;
1834     omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1835     s->clkm.arm_idlect2 = 0x0100;
1836     s->clkm.arm_ewupct = 0x003f;
1837     s->clkm.arm_rstct1 = 0x0000;
1838     s->clkm.arm_rstct2 = 0x0000;
1839     s->clkm.arm_ckout1 = 0x0015;
1840     s->clkm.dpll1_mode = 0x2002;
1841     omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1842     s->clkm.dsp_idlect1 = 0x0040;
1843     omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1844     s->clkm.dsp_idlect2 = 0x0000;
1845     s->clkm.dsp_rstct2 = 0x0000;
1846 }
1847 
1848 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1849                 hwaddr dsp_base, struct omap_mpu_state_s *s)
1850 {
1851     memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1852                           "omap-clkm", 0x100);
1853     memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1854                           "omap-clkdsp", 0x1000);
1855 
1856     s->clkm.arm_idlect1 = 0x03ff;
1857     s->clkm.arm_idlect2 = 0x0100;
1858     s->clkm.dsp_idlect1 = 0x0002;
1859     omap_clkm_reset(s);
1860     s->clkm.cold_start = 0x3a;
1861 
1862     memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1863     memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1864 }
1865 
1866 /* MPU I/O */
1867 struct omap_mpuio_s {
1868     qemu_irq irq;
1869     qemu_irq kbd_irq;
1870     qemu_irq *in;
1871     qemu_irq handler[16];
1872     qemu_irq wakeup;
1873     MemoryRegion iomem;
1874 
1875     uint16_t inputs;
1876     uint16_t outputs;
1877     uint16_t dir;
1878     uint16_t edge;
1879     uint16_t mask;
1880     uint16_t ints;
1881 
1882     uint16_t debounce;
1883     uint16_t latch;
1884     uint8_t event;
1885 
1886     uint8_t buttons[5];
1887     uint8_t row_latch;
1888     uint8_t cols;
1889     int kbd_mask;
1890     int clk;
1891 };
1892 
1893 static void omap_mpuio_set(void *opaque, int line, int level)
1894 {
1895     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1896     uint16_t prev = s->inputs;
1897 
1898     if (level)
1899         s->inputs |= 1 << line;
1900     else
1901         s->inputs &= ~(1 << line);
1902 
1903     if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1904         if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1905             s->ints |= 1 << line;
1906             qemu_irq_raise(s->irq);
1907             /* TODO: wakeup */
1908         }
1909         if ((s->event & (1 << 0)) &&		/* SET_GPIO_EVENT_MODE */
1910                 (s->event >> 1) == line)	/* PIN_SELECT */
1911             s->latch = s->inputs;
1912     }
1913 }
1914 
1915 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1916 {
1917     int i;
1918     uint8_t *row, rows = 0, cols = ~s->cols;
1919 
1920     for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1921         if (*row & cols)
1922             rows |= i;
1923 
1924     qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1925     s->row_latch = ~rows;
1926 }
1927 
1928 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1929                                 unsigned size)
1930 {
1931     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1932     int offset = addr & OMAP_MPUI_REG_MASK;
1933     uint16_t ret;
1934 
1935     if (size != 2) {
1936         return omap_badwidth_read16(opaque, addr);
1937     }
1938 
1939     switch (offset) {
1940     case 0x00:	/* INPUT_LATCH */
1941         return s->inputs;
1942 
1943     case 0x04:	/* OUTPUT_REG */
1944         return s->outputs;
1945 
1946     case 0x08:	/* IO_CNTL */
1947         return s->dir;
1948 
1949     case 0x10:	/* KBR_LATCH */
1950         return s->row_latch;
1951 
1952     case 0x14:	/* KBC_REG */
1953         return s->cols;
1954 
1955     case 0x18:	/* GPIO_EVENT_MODE_REG */
1956         return s->event;
1957 
1958     case 0x1c:	/* GPIO_INT_EDGE_REG */
1959         return s->edge;
1960 
1961     case 0x20:	/* KBD_INT */
1962         return (~s->row_latch & 0x1f) && !s->kbd_mask;
1963 
1964     case 0x24:	/* GPIO_INT */
1965         ret = s->ints;
1966         s->ints &= s->mask;
1967         if (ret)
1968             qemu_irq_lower(s->irq);
1969         return ret;
1970 
1971     case 0x28:	/* KBD_MASKIT */
1972         return s->kbd_mask;
1973 
1974     case 0x2c:	/* GPIO_MASKIT */
1975         return s->mask;
1976 
1977     case 0x30:	/* GPIO_DEBOUNCING_REG */
1978         return s->debounce;
1979 
1980     case 0x34:	/* GPIO_LATCH_REG */
1981         return s->latch;
1982     }
1983 
1984     OMAP_BAD_REG(addr);
1985     return 0;
1986 }
1987 
1988 static void omap_mpuio_write(void *opaque, hwaddr addr,
1989                              uint64_t value, unsigned size)
1990 {
1991     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1992     int offset = addr & OMAP_MPUI_REG_MASK;
1993     uint16_t diff;
1994     int ln;
1995 
1996     if (size != 2) {
1997         omap_badwidth_write16(opaque, addr, value);
1998         return;
1999     }
2000 
2001     switch (offset) {
2002     case 0x04:	/* OUTPUT_REG */
2003         diff = (s->outputs ^ value) & ~s->dir;
2004         s->outputs = value;
2005         while ((ln = ffs(diff))) {
2006             ln --;
2007             if (s->handler[ln])
2008                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2009             diff &= ~(1 << ln);
2010         }
2011         break;
2012 
2013     case 0x08:	/* IO_CNTL */
2014         diff = s->outputs & (s->dir ^ value);
2015         s->dir = value;
2016 
2017         value = s->outputs & ~s->dir;
2018         while ((ln = ffs(diff))) {
2019             ln --;
2020             if (s->handler[ln])
2021                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2022             diff &= ~(1 << ln);
2023         }
2024         break;
2025 
2026     case 0x14:	/* KBC_REG */
2027         s->cols = value;
2028         omap_mpuio_kbd_update(s);
2029         break;
2030 
2031     case 0x18:	/* GPIO_EVENT_MODE_REG */
2032         s->event = value & 0x1f;
2033         break;
2034 
2035     case 0x1c:	/* GPIO_INT_EDGE_REG */
2036         s->edge = value;
2037         break;
2038 
2039     case 0x28:	/* KBD_MASKIT */
2040         s->kbd_mask = value & 1;
2041         omap_mpuio_kbd_update(s);
2042         break;
2043 
2044     case 0x2c:	/* GPIO_MASKIT */
2045         s->mask = value;
2046         break;
2047 
2048     case 0x30:	/* GPIO_DEBOUNCING_REG */
2049         s->debounce = value & 0x1ff;
2050         break;
2051 
2052     case 0x00:	/* INPUT_LATCH */
2053     case 0x10:	/* KBR_LATCH */
2054     case 0x20:	/* KBD_INT */
2055     case 0x24:	/* GPIO_INT */
2056     case 0x34:	/* GPIO_LATCH_REG */
2057         OMAP_RO_REG(addr);
2058         return;
2059 
2060     default:
2061         OMAP_BAD_REG(addr);
2062         return;
2063     }
2064 }
2065 
2066 static const MemoryRegionOps omap_mpuio_ops  = {
2067     .read = omap_mpuio_read,
2068     .write = omap_mpuio_write,
2069     .endianness = DEVICE_NATIVE_ENDIAN,
2070 };
2071 
2072 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2073 {
2074     s->inputs = 0;
2075     s->outputs = 0;
2076     s->dir = ~0;
2077     s->event = 0;
2078     s->edge = 0;
2079     s->kbd_mask = 0;
2080     s->mask = 0;
2081     s->debounce = 0;
2082     s->latch = 0;
2083     s->ints = 0;
2084     s->row_latch = 0x1f;
2085     s->clk = 1;
2086 }
2087 
2088 static void omap_mpuio_onoff(void *opaque, int line, int on)
2089 {
2090     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2091 
2092     s->clk = on;
2093     if (on)
2094         omap_mpuio_kbd_update(s);
2095 }
2096 
2097 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2098                 hwaddr base,
2099                 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2100                 omap_clk clk)
2101 {
2102     struct omap_mpuio_s *s = (struct omap_mpuio_s *)
2103             g_malloc0(sizeof(struct omap_mpuio_s));
2104 
2105     s->irq = gpio_int;
2106     s->kbd_irq = kbd_int;
2107     s->wakeup = wakeup;
2108     s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2109     omap_mpuio_reset(s);
2110 
2111     memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2112                           "omap-mpuio", 0x800);
2113     memory_region_add_subregion(memory, base, &s->iomem);
2114 
2115     omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2116 
2117     return s;
2118 }
2119 
2120 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2121 {
2122     return s->in;
2123 }
2124 
2125 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2126 {
2127     if (line >= 16 || line < 0)
2128         hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
2129     s->handler[line] = handler;
2130 }
2131 
2132 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2133 {
2134     if (row >= 5 || row < 0)
2135         hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
2136 
2137     if (down)
2138         s->buttons[row] |= 1 << col;
2139     else
2140         s->buttons[row] &= ~(1 << col);
2141 
2142     omap_mpuio_kbd_update(s);
2143 }
2144 
2145 /* MicroWire Interface */
2146 struct omap_uwire_s {
2147     MemoryRegion iomem;
2148     qemu_irq txirq;
2149     qemu_irq rxirq;
2150     qemu_irq txdrq;
2151 
2152     uint16_t txbuf;
2153     uint16_t rxbuf;
2154     uint16_t control;
2155     uint16_t setup[5];
2156 
2157     uWireSlave *chip[4];
2158 };
2159 
2160 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2161 {
2162     int chipselect = (s->control >> 10) & 3;		/* INDEX */
2163     uWireSlave *slave = s->chip[chipselect];
2164 
2165     if ((s->control >> 5) & 0x1f) {			/* NB_BITS_WR */
2166         if (s->control & (1 << 12))			/* CS_CMD */
2167             if (slave && slave->send)
2168                 slave->send(slave->opaque,
2169                                 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2170         s->control &= ~(1 << 14);			/* CSRB */
2171         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2172          * a DRQ.  When is the level IRQ supposed to be reset?  */
2173     }
2174 
2175     if ((s->control >> 0) & 0x1f) {			/* NB_BITS_RD */
2176         if (s->control & (1 << 12))			/* CS_CMD */
2177             if (slave && slave->receive)
2178                 s->rxbuf = slave->receive(slave->opaque);
2179         s->control |= 1 << 15;				/* RDRB */
2180         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2181          * a DRQ.  When is the level IRQ supposed to be reset?  */
2182     }
2183 }
2184 
2185 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2186                                 unsigned size)
2187 {
2188     struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2189     int offset = addr & OMAP_MPUI_REG_MASK;
2190 
2191     if (size != 2) {
2192         return omap_badwidth_read16(opaque, addr);
2193     }
2194 
2195     switch (offset) {
2196     case 0x00:	/* RDR */
2197         s->control &= ~(1 << 15);			/* RDRB */
2198         return s->rxbuf;
2199 
2200     case 0x04:	/* CSR */
2201         return s->control;
2202 
2203     case 0x08:	/* SR1 */
2204         return s->setup[0];
2205     case 0x0c:	/* SR2 */
2206         return s->setup[1];
2207     case 0x10:	/* SR3 */
2208         return s->setup[2];
2209     case 0x14:	/* SR4 */
2210         return s->setup[3];
2211     case 0x18:	/* SR5 */
2212         return s->setup[4];
2213     }
2214 
2215     OMAP_BAD_REG(addr);
2216     return 0;
2217 }
2218 
2219 static void omap_uwire_write(void *opaque, hwaddr addr,
2220                              uint64_t value, unsigned size)
2221 {
2222     struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2223     int offset = addr & OMAP_MPUI_REG_MASK;
2224 
2225     if (size != 2) {
2226         omap_badwidth_write16(opaque, addr, value);
2227         return;
2228     }
2229 
2230     switch (offset) {
2231     case 0x00:	/* TDR */
2232         s->txbuf = value;				/* TD */
2233         if ((s->setup[4] & (1 << 2)) &&			/* AUTO_TX_EN */
2234                         ((s->setup[4] & (1 << 3)) ||	/* CS_TOGGLE_TX_EN */
2235                          (s->control & (1 << 12)))) {	/* CS_CMD */
2236             s->control |= 1 << 14;			/* CSRB */
2237             omap_uwire_transfer_start(s);
2238         }
2239         break;
2240 
2241     case 0x04:	/* CSR */
2242         s->control = value & 0x1fff;
2243         if (value & (1 << 13))				/* START */
2244             omap_uwire_transfer_start(s);
2245         break;
2246 
2247     case 0x08:	/* SR1 */
2248         s->setup[0] = value & 0x003f;
2249         break;
2250 
2251     case 0x0c:	/* SR2 */
2252         s->setup[1] = value & 0x0fc0;
2253         break;
2254 
2255     case 0x10:	/* SR3 */
2256         s->setup[2] = value & 0x0003;
2257         break;
2258 
2259     case 0x14:	/* SR4 */
2260         s->setup[3] = value & 0x0001;
2261         break;
2262 
2263     case 0x18:	/* SR5 */
2264         s->setup[4] = value & 0x000f;
2265         break;
2266 
2267     default:
2268         OMAP_BAD_REG(addr);
2269         return;
2270     }
2271 }
2272 
2273 static const MemoryRegionOps omap_uwire_ops = {
2274     .read = omap_uwire_read,
2275     .write = omap_uwire_write,
2276     .endianness = DEVICE_NATIVE_ENDIAN,
2277 };
2278 
2279 static void omap_uwire_reset(struct omap_uwire_s *s)
2280 {
2281     s->control = 0;
2282     s->setup[0] = 0;
2283     s->setup[1] = 0;
2284     s->setup[2] = 0;
2285     s->setup[3] = 0;
2286     s->setup[4] = 0;
2287 }
2288 
2289 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2290                                             hwaddr base,
2291                                             qemu_irq txirq, qemu_irq rxirq,
2292                                             qemu_irq dma,
2293                                             omap_clk clk)
2294 {
2295     struct omap_uwire_s *s = (struct omap_uwire_s *)
2296             g_malloc0(sizeof(struct omap_uwire_s));
2297 
2298     s->txirq = txirq;
2299     s->rxirq = rxirq;
2300     s->txdrq = dma;
2301     omap_uwire_reset(s);
2302 
2303     memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2304     memory_region_add_subregion(system_memory, base, &s->iomem);
2305 
2306     return s;
2307 }
2308 
2309 void omap_uwire_attach(struct omap_uwire_s *s,
2310                 uWireSlave *slave, int chipselect)
2311 {
2312     if (chipselect < 0 || chipselect > 3) {
2313         fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
2314         exit(-1);
2315     }
2316 
2317     s->chip[chipselect] = slave;
2318 }
2319 
2320 /* Pseudonoise Pulse-Width Light Modulator */
2321 struct omap_pwl_s {
2322     MemoryRegion iomem;
2323     uint8_t output;
2324     uint8_t level;
2325     uint8_t enable;
2326     int clk;
2327 };
2328 
2329 static void omap_pwl_update(struct omap_pwl_s *s)
2330 {
2331     int output = (s->clk && s->enable) ? s->level : 0;
2332 
2333     if (output != s->output) {
2334         s->output = output;
2335         printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
2336     }
2337 }
2338 
2339 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2340                               unsigned size)
2341 {
2342     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2343     int offset = addr & OMAP_MPUI_REG_MASK;
2344 
2345     if (size != 1) {
2346         return omap_badwidth_read8(opaque, addr);
2347     }
2348 
2349     switch (offset) {
2350     case 0x00:	/* PWL_LEVEL */
2351         return s->level;
2352     case 0x04:	/* PWL_CTRL */
2353         return s->enable;
2354     }
2355     OMAP_BAD_REG(addr);
2356     return 0;
2357 }
2358 
2359 static void omap_pwl_write(void *opaque, hwaddr addr,
2360                            uint64_t value, unsigned size)
2361 {
2362     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2363     int offset = addr & OMAP_MPUI_REG_MASK;
2364 
2365     if (size != 1) {
2366         omap_badwidth_write8(opaque, addr, value);
2367         return;
2368     }
2369 
2370     switch (offset) {
2371     case 0x00:	/* PWL_LEVEL */
2372         s->level = value;
2373         omap_pwl_update(s);
2374         break;
2375     case 0x04:	/* PWL_CTRL */
2376         s->enable = value & 1;
2377         omap_pwl_update(s);
2378         break;
2379     default:
2380         OMAP_BAD_REG(addr);
2381         return;
2382     }
2383 }
2384 
2385 static const MemoryRegionOps omap_pwl_ops = {
2386     .read = omap_pwl_read,
2387     .write = omap_pwl_write,
2388     .endianness = DEVICE_NATIVE_ENDIAN,
2389 };
2390 
2391 static void omap_pwl_reset(struct omap_pwl_s *s)
2392 {
2393     s->output = 0;
2394     s->level = 0;
2395     s->enable = 0;
2396     s->clk = 1;
2397     omap_pwl_update(s);
2398 }
2399 
2400 static void omap_pwl_clk_update(void *opaque, int line, int on)
2401 {
2402     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2403 
2404     s->clk = on;
2405     omap_pwl_update(s);
2406 }
2407 
2408 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2409                                         hwaddr base,
2410                                         omap_clk clk)
2411 {
2412     struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2413 
2414     omap_pwl_reset(s);
2415 
2416     memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2417                           "omap-pwl", 0x800);
2418     memory_region_add_subregion(system_memory, base, &s->iomem);
2419 
2420     omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2421     return s;
2422 }
2423 
2424 /* Pulse-Width Tone module */
2425 struct omap_pwt_s {
2426     MemoryRegion iomem;
2427     uint8_t frc;
2428     uint8_t vrc;
2429     uint8_t gcr;
2430     omap_clk clk;
2431 };
2432 
2433 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2434                               unsigned size)
2435 {
2436     struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2437     int offset = addr & OMAP_MPUI_REG_MASK;
2438 
2439     if (size != 1) {
2440         return omap_badwidth_read8(opaque, addr);
2441     }
2442 
2443     switch (offset) {
2444     case 0x00:	/* FRC */
2445         return s->frc;
2446     case 0x04:	/* VCR */
2447         return s->vrc;
2448     case 0x08:	/* GCR */
2449         return s->gcr;
2450     }
2451     OMAP_BAD_REG(addr);
2452     return 0;
2453 }
2454 
2455 static void omap_pwt_write(void *opaque, hwaddr addr,
2456                            uint64_t value, unsigned size)
2457 {
2458     struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2459     int offset = addr & OMAP_MPUI_REG_MASK;
2460 
2461     if (size != 1) {
2462         omap_badwidth_write8(opaque, addr, value);
2463         return;
2464     }
2465 
2466     switch (offset) {
2467     case 0x00:	/* FRC */
2468         s->frc = value & 0x3f;
2469         break;
2470     case 0x04:	/* VRC */
2471         if ((value ^ s->vrc) & 1) {
2472             if (value & 1)
2473                 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
2474                                 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2475                                 ((omap_clk_getrate(s->clk) >> 3) /
2476                                  /* Pre-multiplexer divider */
2477                                  ((s->gcr & 2) ? 1 : 154) /
2478                                  /* Octave multiplexer */
2479                                  (2 << (value & 3)) *
2480                                  /* 101/107 divider */
2481                                  ((value & (1 << 2)) ? 101 : 107) *
2482                                  /*  49/55 divider */
2483                                  ((value & (1 << 3)) ?  49 : 55) *
2484                                  /*  50/63 divider */
2485                                  ((value & (1 << 4)) ?  50 : 63) *
2486                                  /*  80/127 divider */
2487                                  ((value & (1 << 5)) ?  80 : 127) /
2488                                  (107 * 55 * 63 * 127)));
2489             else
2490                 printf("%s: silence!\n", __FUNCTION__);
2491         }
2492         s->vrc = value & 0x7f;
2493         break;
2494     case 0x08:	/* GCR */
2495         s->gcr = value & 3;
2496         break;
2497     default:
2498         OMAP_BAD_REG(addr);
2499         return;
2500     }
2501 }
2502 
2503 static const MemoryRegionOps omap_pwt_ops = {
2504     .read =omap_pwt_read,
2505     .write = omap_pwt_write,
2506     .endianness = DEVICE_NATIVE_ENDIAN,
2507 };
2508 
2509 static void omap_pwt_reset(struct omap_pwt_s *s)
2510 {
2511     s->frc = 0;
2512     s->vrc = 0;
2513     s->gcr = 0;
2514 }
2515 
2516 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2517                                         hwaddr base,
2518                                         omap_clk clk)
2519 {
2520     struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2521     s->clk = clk;
2522     omap_pwt_reset(s);
2523 
2524     memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2525                           "omap-pwt", 0x800);
2526     memory_region_add_subregion(system_memory, base, &s->iomem);
2527     return s;
2528 }
2529 
2530 /* Real-time Clock module */
2531 struct omap_rtc_s {
2532     MemoryRegion iomem;
2533     qemu_irq irq;
2534     qemu_irq alarm;
2535     QEMUTimer *clk;
2536 
2537     uint8_t interrupts;
2538     uint8_t status;
2539     int16_t comp_reg;
2540     int running;
2541     int pm_am;
2542     int auto_comp;
2543     int round;
2544     struct tm alarm_tm;
2545     time_t alarm_ti;
2546 
2547     struct tm current_tm;
2548     time_t ti;
2549     uint64_t tick;
2550 };
2551 
2552 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2553 {
2554     /* s->alarm is level-triggered */
2555     qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2556 }
2557 
2558 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2559 {
2560     s->alarm_ti = mktimegm(&s->alarm_tm);
2561     if (s->alarm_ti == -1)
2562         printf("%s: conversion failed\n", __FUNCTION__);
2563 }
2564 
2565 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2566                               unsigned size)
2567 {
2568     struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2569     int offset = addr & OMAP_MPUI_REG_MASK;
2570     uint8_t i;
2571 
2572     if (size != 1) {
2573         return omap_badwidth_read8(opaque, addr);
2574     }
2575 
2576     switch (offset) {
2577     case 0x00:	/* SECONDS_REG */
2578         return to_bcd(s->current_tm.tm_sec);
2579 
2580     case 0x04:	/* MINUTES_REG */
2581         return to_bcd(s->current_tm.tm_min);
2582 
2583     case 0x08:	/* HOURS_REG */
2584         if (s->pm_am)
2585             return ((s->current_tm.tm_hour > 11) << 7) |
2586                     to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2587         else
2588             return to_bcd(s->current_tm.tm_hour);
2589 
2590     case 0x0c:	/* DAYS_REG */
2591         return to_bcd(s->current_tm.tm_mday);
2592 
2593     case 0x10:	/* MONTHS_REG */
2594         return to_bcd(s->current_tm.tm_mon + 1);
2595 
2596     case 0x14:	/* YEARS_REG */
2597         return to_bcd(s->current_tm.tm_year % 100);
2598 
2599     case 0x18:	/* WEEK_REG */
2600         return s->current_tm.tm_wday;
2601 
2602     case 0x20:	/* ALARM_SECONDS_REG */
2603         return to_bcd(s->alarm_tm.tm_sec);
2604 
2605     case 0x24:	/* ALARM_MINUTES_REG */
2606         return to_bcd(s->alarm_tm.tm_min);
2607 
2608     case 0x28:	/* ALARM_HOURS_REG */
2609         if (s->pm_am)
2610             return ((s->alarm_tm.tm_hour > 11) << 7) |
2611                     to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2612         else
2613             return to_bcd(s->alarm_tm.tm_hour);
2614 
2615     case 0x2c:	/* ALARM_DAYS_REG */
2616         return to_bcd(s->alarm_tm.tm_mday);
2617 
2618     case 0x30:	/* ALARM_MONTHS_REG */
2619         return to_bcd(s->alarm_tm.tm_mon + 1);
2620 
2621     case 0x34:	/* ALARM_YEARS_REG */
2622         return to_bcd(s->alarm_tm.tm_year % 100);
2623 
2624     case 0x40:	/* RTC_CTRL_REG */
2625         return (s->pm_am << 3) | (s->auto_comp << 2) |
2626                 (s->round << 1) | s->running;
2627 
2628     case 0x44:	/* RTC_STATUS_REG */
2629         i = s->status;
2630         s->status &= ~0x3d;
2631         return i;
2632 
2633     case 0x48:	/* RTC_INTERRUPTS_REG */
2634         return s->interrupts;
2635 
2636     case 0x4c:	/* RTC_COMP_LSB_REG */
2637         return ((uint16_t) s->comp_reg) & 0xff;
2638 
2639     case 0x50:	/* RTC_COMP_MSB_REG */
2640         return ((uint16_t) s->comp_reg) >> 8;
2641     }
2642 
2643     OMAP_BAD_REG(addr);
2644     return 0;
2645 }
2646 
2647 static void omap_rtc_write(void *opaque, hwaddr addr,
2648                            uint64_t value, unsigned size)
2649 {
2650     struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2651     int offset = addr & OMAP_MPUI_REG_MASK;
2652     struct tm new_tm;
2653     time_t ti[2];
2654 
2655     if (size != 1) {
2656         omap_badwidth_write8(opaque, addr, value);
2657         return;
2658     }
2659 
2660     switch (offset) {
2661     case 0x00:	/* SECONDS_REG */
2662 #ifdef ALMDEBUG
2663         printf("RTC SEC_REG <-- %02x\n", value);
2664 #endif
2665         s->ti -= s->current_tm.tm_sec;
2666         s->ti += from_bcd(value);
2667         return;
2668 
2669     case 0x04:	/* MINUTES_REG */
2670 #ifdef ALMDEBUG
2671         printf("RTC MIN_REG <-- %02x\n", value);
2672 #endif
2673         s->ti -= s->current_tm.tm_min * 60;
2674         s->ti += from_bcd(value) * 60;
2675         return;
2676 
2677     case 0x08:	/* HOURS_REG */
2678 #ifdef ALMDEBUG
2679         printf("RTC HRS_REG <-- %02x\n", value);
2680 #endif
2681         s->ti -= s->current_tm.tm_hour * 3600;
2682         if (s->pm_am) {
2683             s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2684             s->ti += ((value >> 7) & 1) * 43200;
2685         } else
2686             s->ti += from_bcd(value & 0x3f) * 3600;
2687         return;
2688 
2689     case 0x0c:	/* DAYS_REG */
2690 #ifdef ALMDEBUG
2691         printf("RTC DAY_REG <-- %02x\n", value);
2692 #endif
2693         s->ti -= s->current_tm.tm_mday * 86400;
2694         s->ti += from_bcd(value) * 86400;
2695         return;
2696 
2697     case 0x10:	/* MONTHS_REG */
2698 #ifdef ALMDEBUG
2699         printf("RTC MTH_REG <-- %02x\n", value);
2700 #endif
2701         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2702         new_tm.tm_mon = from_bcd(value);
2703         ti[0] = mktimegm(&s->current_tm);
2704         ti[1] = mktimegm(&new_tm);
2705 
2706         if (ti[0] != -1 && ti[1] != -1) {
2707             s->ti -= ti[0];
2708             s->ti += ti[1];
2709         } else {
2710             /* A less accurate version */
2711             s->ti -= s->current_tm.tm_mon * 2592000;
2712             s->ti += from_bcd(value) * 2592000;
2713         }
2714         return;
2715 
2716     case 0x14:	/* YEARS_REG */
2717 #ifdef ALMDEBUG
2718         printf("RTC YRS_REG <-- %02x\n", value);
2719 #endif
2720         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2721         new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2722         ti[0] = mktimegm(&s->current_tm);
2723         ti[1] = mktimegm(&new_tm);
2724 
2725         if (ti[0] != -1 && ti[1] != -1) {
2726             s->ti -= ti[0];
2727             s->ti += ti[1];
2728         } else {
2729             /* A less accurate version */
2730             s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2731             s->ti += (time_t)from_bcd(value) * 31536000;
2732         }
2733         return;
2734 
2735     case 0x18:	/* WEEK_REG */
2736         return;	/* Ignored */
2737 
2738     case 0x20:	/* ALARM_SECONDS_REG */
2739 #ifdef ALMDEBUG
2740         printf("ALM SEC_REG <-- %02x\n", value);
2741 #endif
2742         s->alarm_tm.tm_sec = from_bcd(value);
2743         omap_rtc_alarm_update(s);
2744         return;
2745 
2746     case 0x24:	/* ALARM_MINUTES_REG */
2747 #ifdef ALMDEBUG
2748         printf("ALM MIN_REG <-- %02x\n", value);
2749 #endif
2750         s->alarm_tm.tm_min = from_bcd(value);
2751         omap_rtc_alarm_update(s);
2752         return;
2753 
2754     case 0x28:	/* ALARM_HOURS_REG */
2755 #ifdef ALMDEBUG
2756         printf("ALM HRS_REG <-- %02x\n", value);
2757 #endif
2758         if (s->pm_am)
2759             s->alarm_tm.tm_hour =
2760                     ((from_bcd(value & 0x3f)) % 12) +
2761                     ((value >> 7) & 1) * 12;
2762         else
2763             s->alarm_tm.tm_hour = from_bcd(value);
2764         omap_rtc_alarm_update(s);
2765         return;
2766 
2767     case 0x2c:	/* ALARM_DAYS_REG */
2768 #ifdef ALMDEBUG
2769         printf("ALM DAY_REG <-- %02x\n", value);
2770 #endif
2771         s->alarm_tm.tm_mday = from_bcd(value);
2772         omap_rtc_alarm_update(s);
2773         return;
2774 
2775     case 0x30:	/* ALARM_MONTHS_REG */
2776 #ifdef ALMDEBUG
2777         printf("ALM MON_REG <-- %02x\n", value);
2778 #endif
2779         s->alarm_tm.tm_mon = from_bcd(value);
2780         omap_rtc_alarm_update(s);
2781         return;
2782 
2783     case 0x34:	/* ALARM_YEARS_REG */
2784 #ifdef ALMDEBUG
2785         printf("ALM YRS_REG <-- %02x\n", value);
2786 #endif
2787         s->alarm_tm.tm_year = from_bcd(value);
2788         omap_rtc_alarm_update(s);
2789         return;
2790 
2791     case 0x40:	/* RTC_CTRL_REG */
2792 #ifdef ALMDEBUG
2793         printf("RTC CONTROL <-- %02x\n", value);
2794 #endif
2795         s->pm_am = (value >> 3) & 1;
2796         s->auto_comp = (value >> 2) & 1;
2797         s->round = (value >> 1) & 1;
2798         s->running = value & 1;
2799         s->status &= 0xfd;
2800         s->status |= s->running << 1;
2801         return;
2802 
2803     case 0x44:	/* RTC_STATUS_REG */
2804 #ifdef ALMDEBUG
2805         printf("RTC STATUSL <-- %02x\n", value);
2806 #endif
2807         s->status &= ~((value & 0xc0) ^ 0x80);
2808         omap_rtc_interrupts_update(s);
2809         return;
2810 
2811     case 0x48:	/* RTC_INTERRUPTS_REG */
2812 #ifdef ALMDEBUG
2813         printf("RTC INTRS <-- %02x\n", value);
2814 #endif
2815         s->interrupts = value;
2816         return;
2817 
2818     case 0x4c:	/* RTC_COMP_LSB_REG */
2819 #ifdef ALMDEBUG
2820         printf("RTC COMPLSB <-- %02x\n", value);
2821 #endif
2822         s->comp_reg &= 0xff00;
2823         s->comp_reg |= 0x00ff & value;
2824         return;
2825 
2826     case 0x50:	/* RTC_COMP_MSB_REG */
2827 #ifdef ALMDEBUG
2828         printf("RTC COMPMSB <-- %02x\n", value);
2829 #endif
2830         s->comp_reg &= 0x00ff;
2831         s->comp_reg |= 0xff00 & (value << 8);
2832         return;
2833 
2834     default:
2835         OMAP_BAD_REG(addr);
2836         return;
2837     }
2838 }
2839 
2840 static const MemoryRegionOps omap_rtc_ops = {
2841     .read = omap_rtc_read,
2842     .write = omap_rtc_write,
2843     .endianness = DEVICE_NATIVE_ENDIAN,
2844 };
2845 
2846 static void omap_rtc_tick(void *opaque)
2847 {
2848     struct omap_rtc_s *s = opaque;
2849 
2850     if (s->round) {
2851         /* Round to nearest full minute.  */
2852         if (s->current_tm.tm_sec < 30)
2853             s->ti -= s->current_tm.tm_sec;
2854         else
2855             s->ti += 60 - s->current_tm.tm_sec;
2856 
2857         s->round = 0;
2858     }
2859 
2860     localtime_r(&s->ti, &s->current_tm);
2861 
2862     if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2863         s->status |= 0x40;
2864         omap_rtc_interrupts_update(s);
2865     }
2866 
2867     if (s->interrupts & 0x04)
2868         switch (s->interrupts & 3) {
2869         case 0:
2870             s->status |= 0x04;
2871             qemu_irq_pulse(s->irq);
2872             break;
2873         case 1:
2874             if (s->current_tm.tm_sec)
2875                 break;
2876             s->status |= 0x08;
2877             qemu_irq_pulse(s->irq);
2878             break;
2879         case 2:
2880             if (s->current_tm.tm_sec || s->current_tm.tm_min)
2881                 break;
2882             s->status |= 0x10;
2883             qemu_irq_pulse(s->irq);
2884             break;
2885         case 3:
2886             if (s->current_tm.tm_sec ||
2887                             s->current_tm.tm_min || s->current_tm.tm_hour)
2888                 break;
2889             s->status |= 0x20;
2890             qemu_irq_pulse(s->irq);
2891             break;
2892         }
2893 
2894     /* Move on */
2895     if (s->running)
2896         s->ti ++;
2897     s->tick += 1000;
2898 
2899     /*
2900      * Every full hour add a rough approximation of the compensation
2901      * register to the 32kHz Timer (which drives the RTC) value.
2902      */
2903     if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2904         s->tick += s->comp_reg * 1000 / 32768;
2905 
2906     timer_mod(s->clk, s->tick);
2907 }
2908 
2909 static void omap_rtc_reset(struct omap_rtc_s *s)
2910 {
2911     struct tm tm;
2912 
2913     s->interrupts = 0;
2914     s->comp_reg = 0;
2915     s->running = 0;
2916     s->pm_am = 0;
2917     s->auto_comp = 0;
2918     s->round = 0;
2919     s->tick = qemu_clock_get_ms(rtc_clock);
2920     memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2921     s->alarm_tm.tm_mday = 0x01;
2922     s->status = 1 << 7;
2923     qemu_get_timedate(&tm, 0);
2924     s->ti = mktimegm(&tm);
2925 
2926     omap_rtc_alarm_update(s);
2927     omap_rtc_tick(s);
2928 }
2929 
2930 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2931                                         hwaddr base,
2932                                         qemu_irq timerirq, qemu_irq alarmirq,
2933                                         omap_clk clk)
2934 {
2935     struct omap_rtc_s *s = (struct omap_rtc_s *)
2936             g_malloc0(sizeof(struct omap_rtc_s));
2937 
2938     s->irq = timerirq;
2939     s->alarm = alarmirq;
2940     s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2941 
2942     omap_rtc_reset(s);
2943 
2944     memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2945                           "omap-rtc", 0x800);
2946     memory_region_add_subregion(system_memory, base, &s->iomem);
2947 
2948     return s;
2949 }
2950 
2951 /* Multi-channel Buffered Serial Port interfaces */
2952 struct omap_mcbsp_s {
2953     MemoryRegion iomem;
2954     qemu_irq txirq;
2955     qemu_irq rxirq;
2956     qemu_irq txdrq;
2957     qemu_irq rxdrq;
2958 
2959     uint16_t spcr[2];
2960     uint16_t rcr[2];
2961     uint16_t xcr[2];
2962     uint16_t srgr[2];
2963     uint16_t mcr[2];
2964     uint16_t pcr;
2965     uint16_t rcer[8];
2966     uint16_t xcer[8];
2967     int tx_rate;
2968     int rx_rate;
2969     int tx_req;
2970     int rx_req;
2971 
2972     I2SCodec *codec;
2973     QEMUTimer *source_timer;
2974     QEMUTimer *sink_timer;
2975 };
2976 
2977 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2978 {
2979     int irq;
2980 
2981     switch ((s->spcr[0] >> 4) & 3) {			/* RINTM */
2982     case 0:
2983         irq = (s->spcr[0] >> 1) & 1;			/* RRDY */
2984         break;
2985     case 3:
2986         irq = (s->spcr[0] >> 3) & 1;			/* RSYNCERR */
2987         break;
2988     default:
2989         irq = 0;
2990         break;
2991     }
2992 
2993     if (irq)
2994         qemu_irq_pulse(s->rxirq);
2995 
2996     switch ((s->spcr[1] >> 4) & 3) {			/* XINTM */
2997     case 0:
2998         irq = (s->spcr[1] >> 1) & 1;			/* XRDY */
2999         break;
3000     case 3:
3001         irq = (s->spcr[1] >> 3) & 1;			/* XSYNCERR */
3002         break;
3003     default:
3004         irq = 0;
3005         break;
3006     }
3007 
3008     if (irq)
3009         qemu_irq_pulse(s->txirq);
3010 }
3011 
3012 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3013 {
3014     if ((s->spcr[0] >> 1) & 1)				/* RRDY */
3015         s->spcr[0] |= 1 << 2;				/* RFULL */
3016     s->spcr[0] |= 1 << 1;				/* RRDY */
3017     qemu_irq_raise(s->rxdrq);
3018     omap_mcbsp_intr_update(s);
3019 }
3020 
3021 static void omap_mcbsp_source_tick(void *opaque)
3022 {
3023     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3024     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3025 
3026     if (!s->rx_rate)
3027         return;
3028     if (s->rx_req)
3029         printf("%s: Rx FIFO overrun\n", __FUNCTION__);
3030 
3031     s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3032 
3033     omap_mcbsp_rx_newdata(s);
3034     timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3035                    get_ticks_per_sec());
3036 }
3037 
3038 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3039 {
3040     if (!s->codec || !s->codec->rts)
3041         omap_mcbsp_source_tick(s);
3042     else if (s->codec->in.len) {
3043         s->rx_req = s->codec->in.len;
3044         omap_mcbsp_rx_newdata(s);
3045     }
3046 }
3047 
3048 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3049 {
3050     timer_del(s->source_timer);
3051 }
3052 
3053 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3054 {
3055     s->spcr[0] &= ~(1 << 1);				/* RRDY */
3056     qemu_irq_lower(s->rxdrq);
3057     omap_mcbsp_intr_update(s);
3058 }
3059 
3060 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3061 {
3062     s->spcr[1] |= 1 << 1;				/* XRDY */
3063     qemu_irq_raise(s->txdrq);
3064     omap_mcbsp_intr_update(s);
3065 }
3066 
3067 static void omap_mcbsp_sink_tick(void *opaque)
3068 {
3069     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3070     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3071 
3072     if (!s->tx_rate)
3073         return;
3074     if (s->tx_req)
3075         printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3076 
3077     s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3078 
3079     omap_mcbsp_tx_newdata(s);
3080     timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3081                    get_ticks_per_sec());
3082 }
3083 
3084 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3085 {
3086     if (!s->codec || !s->codec->cts)
3087         omap_mcbsp_sink_tick(s);
3088     else if (s->codec->out.size) {
3089         s->tx_req = s->codec->out.size;
3090         omap_mcbsp_tx_newdata(s);
3091     }
3092 }
3093 
3094 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3095 {
3096     s->spcr[1] &= ~(1 << 1);				/* XRDY */
3097     qemu_irq_lower(s->txdrq);
3098     omap_mcbsp_intr_update(s);
3099     if (s->codec && s->codec->cts)
3100         s->codec->tx_swallow(s->codec->opaque);
3101 }
3102 
3103 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3104 {
3105     s->tx_req = 0;
3106     omap_mcbsp_tx_done(s);
3107     timer_del(s->sink_timer);
3108 }
3109 
3110 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3111 {
3112     int prev_rx_rate, prev_tx_rate;
3113     int rx_rate = 0, tx_rate = 0;
3114     int cpu_rate = 1500000;	/* XXX */
3115 
3116     /* TODO: check CLKSTP bit */
3117     if (s->spcr[1] & (1 << 6)) {			/* GRST */
3118         if (s->spcr[0] & (1 << 0)) {			/* RRST */
3119             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
3120                             (s->pcr & (1 << 8))) {	/* CLKRM */
3121                 if (~s->pcr & (1 << 7))			/* SCLKME */
3122                     rx_rate = cpu_rate /
3123                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
3124             } else
3125                 if (s->codec)
3126                     rx_rate = s->codec->rx_rate;
3127         }
3128 
3129         if (s->spcr[1] & (1 << 0)) {			/* XRST */
3130             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
3131                             (s->pcr & (1 << 9))) {	/* CLKXM */
3132                 if (~s->pcr & (1 << 7))			/* SCLKME */
3133                     tx_rate = cpu_rate /
3134                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
3135             } else
3136                 if (s->codec)
3137                     tx_rate = s->codec->tx_rate;
3138         }
3139     }
3140     prev_tx_rate = s->tx_rate;
3141     prev_rx_rate = s->rx_rate;
3142     s->tx_rate = tx_rate;
3143     s->rx_rate = rx_rate;
3144 
3145     if (s->codec)
3146         s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3147 
3148     if (!prev_tx_rate && tx_rate)
3149         omap_mcbsp_tx_start(s);
3150     else if (s->tx_rate && !tx_rate)
3151         omap_mcbsp_tx_stop(s);
3152 
3153     if (!prev_rx_rate && rx_rate)
3154         omap_mcbsp_rx_start(s);
3155     else if (prev_tx_rate && !tx_rate)
3156         omap_mcbsp_rx_stop(s);
3157 }
3158 
3159 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3160                                 unsigned size)
3161 {
3162     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3163     int offset = addr & OMAP_MPUI_REG_MASK;
3164     uint16_t ret;
3165 
3166     if (size != 2) {
3167         return omap_badwidth_read16(opaque, addr);
3168     }
3169 
3170     switch (offset) {
3171     case 0x00:	/* DRR2 */
3172         if (((s->rcr[0] >> 5) & 7) < 3)			/* RWDLEN1 */
3173             return 0x0000;
3174         /* Fall through.  */
3175     case 0x02:	/* DRR1 */
3176         if (s->rx_req < 2) {
3177             printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3178             omap_mcbsp_rx_done(s);
3179         } else {
3180             s->tx_req -= 2;
3181             if (s->codec && s->codec->in.len >= 2) {
3182                 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3183                 ret |= s->codec->in.fifo[s->codec->in.start ++];
3184                 s->codec->in.len -= 2;
3185             } else
3186                 ret = 0x0000;
3187             if (!s->tx_req)
3188                 omap_mcbsp_rx_done(s);
3189             return ret;
3190         }
3191         return 0x0000;
3192 
3193     case 0x04:	/* DXR2 */
3194     case 0x06:	/* DXR1 */
3195         return 0x0000;
3196 
3197     case 0x08:	/* SPCR2 */
3198         return s->spcr[1];
3199     case 0x0a:	/* SPCR1 */
3200         return s->spcr[0];
3201     case 0x0c:	/* RCR2 */
3202         return s->rcr[1];
3203     case 0x0e:	/* RCR1 */
3204         return s->rcr[0];
3205     case 0x10:	/* XCR2 */
3206         return s->xcr[1];
3207     case 0x12:	/* XCR1 */
3208         return s->xcr[0];
3209     case 0x14:	/* SRGR2 */
3210         return s->srgr[1];
3211     case 0x16:	/* SRGR1 */
3212         return s->srgr[0];
3213     case 0x18:	/* MCR2 */
3214         return s->mcr[1];
3215     case 0x1a:	/* MCR1 */
3216         return s->mcr[0];
3217     case 0x1c:	/* RCERA */
3218         return s->rcer[0];
3219     case 0x1e:	/* RCERB */
3220         return s->rcer[1];
3221     case 0x20:	/* XCERA */
3222         return s->xcer[0];
3223     case 0x22:	/* XCERB */
3224         return s->xcer[1];
3225     case 0x24:	/* PCR0 */
3226         return s->pcr;
3227     case 0x26:	/* RCERC */
3228         return s->rcer[2];
3229     case 0x28:	/* RCERD */
3230         return s->rcer[3];
3231     case 0x2a:	/* XCERC */
3232         return s->xcer[2];
3233     case 0x2c:	/* XCERD */
3234         return s->xcer[3];
3235     case 0x2e:	/* RCERE */
3236         return s->rcer[4];
3237     case 0x30:	/* RCERF */
3238         return s->rcer[5];
3239     case 0x32:	/* XCERE */
3240         return s->xcer[4];
3241     case 0x34:	/* XCERF */
3242         return s->xcer[5];
3243     case 0x36:	/* RCERG */
3244         return s->rcer[6];
3245     case 0x38:	/* RCERH */
3246         return s->rcer[7];
3247     case 0x3a:	/* XCERG */
3248         return s->xcer[6];
3249     case 0x3c:	/* XCERH */
3250         return s->xcer[7];
3251     }
3252 
3253     OMAP_BAD_REG(addr);
3254     return 0;
3255 }
3256 
3257 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3258                 uint32_t value)
3259 {
3260     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3261     int offset = addr & OMAP_MPUI_REG_MASK;
3262 
3263     switch (offset) {
3264     case 0x00:	/* DRR2 */
3265     case 0x02:	/* DRR1 */
3266         OMAP_RO_REG(addr);
3267         return;
3268 
3269     case 0x04:	/* DXR2 */
3270         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
3271             return;
3272         /* Fall through.  */
3273     case 0x06:	/* DXR1 */
3274         if (s->tx_req > 1) {
3275             s->tx_req -= 2;
3276             if (s->codec && s->codec->cts) {
3277                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3278                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3279             }
3280             if (s->tx_req < 2)
3281                 omap_mcbsp_tx_done(s);
3282         } else
3283             printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3284         return;
3285 
3286     case 0x08:	/* SPCR2 */
3287         s->spcr[1] &= 0x0002;
3288         s->spcr[1] |= 0x03f9 & value;
3289         s->spcr[1] |= 0x0004 & (value << 2);		/* XEMPTY := XRST */
3290         if (~value & 1)					/* XRST */
3291             s->spcr[1] &= ~6;
3292         omap_mcbsp_req_update(s);
3293         return;
3294     case 0x0a:	/* SPCR1 */
3295         s->spcr[0] &= 0x0006;
3296         s->spcr[0] |= 0xf8f9 & value;
3297         if (value & (1 << 15))				/* DLB */
3298             printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
3299         if (~value & 1) {				/* RRST */
3300             s->spcr[0] &= ~6;
3301             s->rx_req = 0;
3302             omap_mcbsp_rx_done(s);
3303         }
3304         omap_mcbsp_req_update(s);
3305         return;
3306 
3307     case 0x0c:	/* RCR2 */
3308         s->rcr[1] = value & 0xffff;
3309         return;
3310     case 0x0e:	/* RCR1 */
3311         s->rcr[0] = value & 0x7fe0;
3312         return;
3313     case 0x10:	/* XCR2 */
3314         s->xcr[1] = value & 0xffff;
3315         return;
3316     case 0x12:	/* XCR1 */
3317         s->xcr[0] = value & 0x7fe0;
3318         return;
3319     case 0x14:	/* SRGR2 */
3320         s->srgr[1] = value & 0xffff;
3321         omap_mcbsp_req_update(s);
3322         return;
3323     case 0x16:	/* SRGR1 */
3324         s->srgr[0] = value & 0xffff;
3325         omap_mcbsp_req_update(s);
3326         return;
3327     case 0x18:	/* MCR2 */
3328         s->mcr[1] = value & 0x03e3;
3329         if (value & 3)					/* XMCM */
3330             printf("%s: Tx channel selection mode enable attempt\n",
3331                             __FUNCTION__);
3332         return;
3333     case 0x1a:	/* MCR1 */
3334         s->mcr[0] = value & 0x03e1;
3335         if (value & 1)					/* RMCM */
3336             printf("%s: Rx channel selection mode enable attempt\n",
3337                             __FUNCTION__);
3338         return;
3339     case 0x1c:	/* RCERA */
3340         s->rcer[0] = value & 0xffff;
3341         return;
3342     case 0x1e:	/* RCERB */
3343         s->rcer[1] = value & 0xffff;
3344         return;
3345     case 0x20:	/* XCERA */
3346         s->xcer[0] = value & 0xffff;
3347         return;
3348     case 0x22:	/* XCERB */
3349         s->xcer[1] = value & 0xffff;
3350         return;
3351     case 0x24:	/* PCR0 */
3352         s->pcr = value & 0x7faf;
3353         return;
3354     case 0x26:	/* RCERC */
3355         s->rcer[2] = value & 0xffff;
3356         return;
3357     case 0x28:	/* RCERD */
3358         s->rcer[3] = value & 0xffff;
3359         return;
3360     case 0x2a:	/* XCERC */
3361         s->xcer[2] = value & 0xffff;
3362         return;
3363     case 0x2c:	/* XCERD */
3364         s->xcer[3] = value & 0xffff;
3365         return;
3366     case 0x2e:	/* RCERE */
3367         s->rcer[4] = value & 0xffff;
3368         return;
3369     case 0x30:	/* RCERF */
3370         s->rcer[5] = value & 0xffff;
3371         return;
3372     case 0x32:	/* XCERE */
3373         s->xcer[4] = value & 0xffff;
3374         return;
3375     case 0x34:	/* XCERF */
3376         s->xcer[5] = value & 0xffff;
3377         return;
3378     case 0x36:	/* RCERG */
3379         s->rcer[6] = value & 0xffff;
3380         return;
3381     case 0x38:	/* RCERH */
3382         s->rcer[7] = value & 0xffff;
3383         return;
3384     case 0x3a:	/* XCERG */
3385         s->xcer[6] = value & 0xffff;
3386         return;
3387     case 0x3c:	/* XCERH */
3388         s->xcer[7] = value & 0xffff;
3389         return;
3390     }
3391 
3392     OMAP_BAD_REG(addr);
3393 }
3394 
3395 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3396                 uint32_t value)
3397 {
3398     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3399     int offset = addr & OMAP_MPUI_REG_MASK;
3400 
3401     if (offset == 0x04) {				/* DXR */
3402         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
3403             return;
3404         if (s->tx_req > 3) {
3405             s->tx_req -= 4;
3406             if (s->codec && s->codec->cts) {
3407                 s->codec->out.fifo[s->codec->out.len ++] =
3408                         (value >> 24) & 0xff;
3409                 s->codec->out.fifo[s->codec->out.len ++] =
3410                         (value >> 16) & 0xff;
3411                 s->codec->out.fifo[s->codec->out.len ++] =
3412                         (value >> 8) & 0xff;
3413                 s->codec->out.fifo[s->codec->out.len ++] =
3414                         (value >> 0) & 0xff;
3415             }
3416             if (s->tx_req < 4)
3417                 omap_mcbsp_tx_done(s);
3418         } else
3419             printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3420         return;
3421     }
3422 
3423     omap_badwidth_write16(opaque, addr, value);
3424 }
3425 
3426 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3427                              uint64_t value, unsigned size)
3428 {
3429     switch (size) {
3430     case 2:
3431         omap_mcbsp_writeh(opaque, addr, value);
3432         break;
3433     case 4:
3434         omap_mcbsp_writew(opaque, addr, value);
3435         break;
3436     default:
3437         omap_badwidth_write16(opaque, addr, value);
3438     }
3439 }
3440 
3441 static const MemoryRegionOps omap_mcbsp_ops = {
3442     .read = omap_mcbsp_read,
3443     .write = omap_mcbsp_write,
3444     .endianness = DEVICE_NATIVE_ENDIAN,
3445 };
3446 
3447 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3448 {
3449     memset(&s->spcr, 0, sizeof(s->spcr));
3450     memset(&s->rcr, 0, sizeof(s->rcr));
3451     memset(&s->xcr, 0, sizeof(s->xcr));
3452     s->srgr[0] = 0x0001;
3453     s->srgr[1] = 0x2000;
3454     memset(&s->mcr, 0, sizeof(s->mcr));
3455     memset(&s->pcr, 0, sizeof(s->pcr));
3456     memset(&s->rcer, 0, sizeof(s->rcer));
3457     memset(&s->xcer, 0, sizeof(s->xcer));
3458     s->tx_req = 0;
3459     s->rx_req = 0;
3460     s->tx_rate = 0;
3461     s->rx_rate = 0;
3462     timer_del(s->source_timer);
3463     timer_del(s->sink_timer);
3464 }
3465 
3466 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3467                                             hwaddr base,
3468                                             qemu_irq txirq, qemu_irq rxirq,
3469                                             qemu_irq *dma, omap_clk clk)
3470 {
3471     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *)
3472             g_malloc0(sizeof(struct omap_mcbsp_s));
3473 
3474     s->txirq = txirq;
3475     s->rxirq = rxirq;
3476     s->txdrq = dma[0];
3477     s->rxdrq = dma[1];
3478     s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3479     s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3480     omap_mcbsp_reset(s);
3481 
3482     memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3483     memory_region_add_subregion(system_memory, base, &s->iomem);
3484 
3485     return s;
3486 }
3487 
3488 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3489 {
3490     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3491 
3492     if (s->rx_rate) {
3493         s->rx_req = s->codec->in.len;
3494         omap_mcbsp_rx_newdata(s);
3495     }
3496 }
3497 
3498 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3499 {
3500     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3501 
3502     if (s->tx_rate) {
3503         s->tx_req = s->codec->out.size;
3504         omap_mcbsp_tx_newdata(s);
3505     }
3506 }
3507 
3508 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3509 {
3510     s->codec = slave;
3511     slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3512     slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3513 }
3514 
3515 /* LED Pulse Generators */
3516 struct omap_lpg_s {
3517     MemoryRegion iomem;
3518     QEMUTimer *tm;
3519 
3520     uint8_t control;
3521     uint8_t power;
3522     int64_t on;
3523     int64_t period;
3524     int clk;
3525     int cycle;
3526 };
3527 
3528 static void omap_lpg_tick(void *opaque)
3529 {
3530     struct omap_lpg_s *s = opaque;
3531 
3532     if (s->cycle)
3533         timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3534     else
3535         timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3536 
3537     s->cycle = !s->cycle;
3538     printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
3539 }
3540 
3541 static void omap_lpg_update(struct omap_lpg_s *s)
3542 {
3543     int64_t on, period = 1, ticks = 1000;
3544     static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3545 
3546     if (~s->control & (1 << 6))					/* LPGRES */
3547         on = 0;
3548     else if (s->control & (1 << 7))				/* PERM_ON */
3549         on = period;
3550     else {
3551         period = muldiv64(ticks, per[s->control & 7],		/* PERCTRL */
3552                         256 / 32);
3553         on = (s->clk && s->power) ? muldiv64(ticks,
3554                         per[(s->control >> 3) & 7], 256) : 0;	/* ONCTRL */
3555     }
3556 
3557     timer_del(s->tm);
3558     if (on == period && s->on < s->period)
3559         printf("%s: LED is on\n", __FUNCTION__);
3560     else if (on == 0 && s->on)
3561         printf("%s: LED is off\n", __FUNCTION__);
3562     else if (on && (on != s->on || period != s->period)) {
3563         s->cycle = 0;
3564         s->on = on;
3565         s->period = period;
3566         omap_lpg_tick(s);
3567         return;
3568     }
3569 
3570     s->on = on;
3571     s->period = period;
3572 }
3573 
3574 static void omap_lpg_reset(struct omap_lpg_s *s)
3575 {
3576     s->control = 0x00;
3577     s->power = 0x00;
3578     s->clk = 1;
3579     omap_lpg_update(s);
3580 }
3581 
3582 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3583                               unsigned size)
3584 {
3585     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3586     int offset = addr & OMAP_MPUI_REG_MASK;
3587 
3588     if (size != 1) {
3589         return omap_badwidth_read8(opaque, addr);
3590     }
3591 
3592     switch (offset) {
3593     case 0x00:	/* LCR */
3594         return s->control;
3595 
3596     case 0x04:	/* PMR */
3597         return s->power;
3598     }
3599 
3600     OMAP_BAD_REG(addr);
3601     return 0;
3602 }
3603 
3604 static void omap_lpg_write(void *opaque, hwaddr addr,
3605                            uint64_t value, unsigned size)
3606 {
3607     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3608     int offset = addr & OMAP_MPUI_REG_MASK;
3609 
3610     if (size != 1) {
3611         omap_badwidth_write8(opaque, addr, value);
3612         return;
3613     }
3614 
3615     switch (offset) {
3616     case 0x00:	/* LCR */
3617         if (~value & (1 << 6))					/* LPGRES */
3618             omap_lpg_reset(s);
3619         s->control = value & 0xff;
3620         omap_lpg_update(s);
3621         return;
3622 
3623     case 0x04:	/* PMR */
3624         s->power = value & 0x01;
3625         omap_lpg_update(s);
3626         return;
3627 
3628     default:
3629         OMAP_BAD_REG(addr);
3630         return;
3631     }
3632 }
3633 
3634 static const MemoryRegionOps omap_lpg_ops = {
3635     .read = omap_lpg_read,
3636     .write = omap_lpg_write,
3637     .endianness = DEVICE_NATIVE_ENDIAN,
3638 };
3639 
3640 static void omap_lpg_clk_update(void *opaque, int line, int on)
3641 {
3642     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3643 
3644     s->clk = on;
3645     omap_lpg_update(s);
3646 }
3647 
3648 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3649                                         hwaddr base, omap_clk clk)
3650 {
3651     struct omap_lpg_s *s = (struct omap_lpg_s *)
3652             g_malloc0(sizeof(struct omap_lpg_s));
3653 
3654     s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3655 
3656     omap_lpg_reset(s);
3657 
3658     memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3659     memory_region_add_subregion(system_memory, base, &s->iomem);
3660 
3661     omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3662 
3663     return s;
3664 }
3665 
3666 /* MPUI Peripheral Bridge configuration */
3667 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3668                                   unsigned size)
3669 {
3670     if (size != 2) {
3671         return omap_badwidth_read16(opaque, addr);
3672     }
3673 
3674     if (addr == OMAP_MPUI_BASE)	/* CMR */
3675         return 0xfe4d;
3676 
3677     OMAP_BAD_REG(addr);
3678     return 0;
3679 }
3680 
3681 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3682                                uint64_t value, unsigned size)
3683 {
3684     /* FIXME: infinite loop */
3685     omap_badwidth_write16(opaque, addr, value);
3686 }
3687 
3688 static const MemoryRegionOps omap_mpui_io_ops = {
3689     .read = omap_mpui_io_read,
3690     .write = omap_mpui_io_write,
3691     .endianness = DEVICE_NATIVE_ENDIAN,
3692 };
3693 
3694 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3695                                struct omap_mpu_state_s *mpu)
3696 {
3697     memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3698                           "omap-mpui-io", 0x7fff);
3699     memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3700                                 &mpu->mpui_io_iomem);
3701 }
3702 
3703 /* General chip reset */
3704 static void omap1_mpu_reset(void *opaque)
3705 {
3706     struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3707 
3708     omap_dma_reset(mpu->dma);
3709     omap_mpu_timer_reset(mpu->timer[0]);
3710     omap_mpu_timer_reset(mpu->timer[1]);
3711     omap_mpu_timer_reset(mpu->timer[2]);
3712     omap_wd_timer_reset(mpu->wdt);
3713     omap_os_timer_reset(mpu->os_timer);
3714     omap_lcdc_reset(mpu->lcd);
3715     omap_ulpd_pm_reset(mpu);
3716     omap_pin_cfg_reset(mpu);
3717     omap_mpui_reset(mpu);
3718     omap_tipb_bridge_reset(mpu->private_tipb);
3719     omap_tipb_bridge_reset(mpu->public_tipb);
3720     omap_dpll_reset(mpu->dpll[0]);
3721     omap_dpll_reset(mpu->dpll[1]);
3722     omap_dpll_reset(mpu->dpll[2]);
3723     omap_uart_reset(mpu->uart[0]);
3724     omap_uart_reset(mpu->uart[1]);
3725     omap_uart_reset(mpu->uart[2]);
3726     omap_mmc_reset(mpu->mmc);
3727     omap_mpuio_reset(mpu->mpuio);
3728     omap_uwire_reset(mpu->microwire);
3729     omap_pwl_reset(mpu->pwl);
3730     omap_pwt_reset(mpu->pwt);
3731     omap_rtc_reset(mpu->rtc);
3732     omap_mcbsp_reset(mpu->mcbsp1);
3733     omap_mcbsp_reset(mpu->mcbsp2);
3734     omap_mcbsp_reset(mpu->mcbsp3);
3735     omap_lpg_reset(mpu->led[0]);
3736     omap_lpg_reset(mpu->led[1]);
3737     omap_clkm_reset(mpu);
3738     cpu_reset(CPU(mpu->cpu));
3739 }
3740 
3741 static const struct omap_map_s {
3742     hwaddr phys_dsp;
3743     hwaddr phys_mpu;
3744     uint32_t size;
3745     const char *name;
3746 } omap15xx_dsp_mm[] = {
3747     /* Strobe 0 */
3748     { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" },		/* CS0 */
3749     { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" },		/* CS1 */
3750     { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" },		/* CS3 */
3751     { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" },	/* CS4 */
3752     { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" },	/* CS5 */
3753     { 0xe1013000, 0xfffb3000, 0x800, "uWire" },			/* CS6 */
3754     { 0xe1013800, 0xfffb3800, 0x800, "I^2C" },			/* CS7 */
3755     { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" },		/* CS8 */
3756     { 0xe1014800, 0xfffb4800, 0x800, "RTC" },			/* CS9 */
3757     { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" },			/* CS10 */
3758     { 0xe1015800, 0xfffb5800, 0x800, "PWL" },			/* CS11 */
3759     { 0xe1016000, 0xfffb6000, 0x800, "PWT" },			/* CS12 */
3760     { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" },		/* CS14 */
3761     { 0xe1017800, 0xfffb7800, 0x800, "MMC" },			/* CS15 */
3762     { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" },		/* CS18 */
3763     { 0xe1019800, 0xfffb9800, 0x800, "UART3" },			/* CS19 */
3764     { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" },		/* CS25 */
3765     /* Strobe 1 */
3766     { 0xe101e000, 0xfffce000, 0x800, "GPIOs" },			/* CS28 */
3767 
3768     { 0 }
3769 };
3770 
3771 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3772                                    const struct omap_map_s *map)
3773 {
3774     MemoryRegion *io;
3775 
3776     for (; map->phys_dsp; map ++) {
3777         io = g_new(MemoryRegion, 1);
3778         memory_region_init_alias(io, NULL, map->name,
3779                                  system_memory, map->phys_mpu, map->size);
3780         memory_region_add_subregion(system_memory, map->phys_dsp, io);
3781     }
3782 }
3783 
3784 void omap_mpu_wakeup(void *opaque, int irq, int req)
3785 {
3786     struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3787     CPUState *cpu = CPU(mpu->cpu);
3788 
3789     if (cpu->halted) {
3790         cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3791     }
3792 }
3793 
3794 static const struct dma_irq_map omap1_dma_irq_map[] = {
3795     { 0, OMAP_INT_DMA_CH0_6 },
3796     { 0, OMAP_INT_DMA_CH1_7 },
3797     { 0, OMAP_INT_DMA_CH2_8 },
3798     { 0, OMAP_INT_DMA_CH3 },
3799     { 0, OMAP_INT_DMA_CH4 },
3800     { 0, OMAP_INT_DMA_CH5 },
3801     { 1, OMAP_INT_1610_DMA_CH6 },
3802     { 1, OMAP_INT_1610_DMA_CH7 },
3803     { 1, OMAP_INT_1610_DMA_CH8 },
3804     { 1, OMAP_INT_1610_DMA_CH9 },
3805     { 1, OMAP_INT_1610_DMA_CH10 },
3806     { 1, OMAP_INT_1610_DMA_CH11 },
3807     { 1, OMAP_INT_1610_DMA_CH12 },
3808     { 1, OMAP_INT_1610_DMA_CH13 },
3809     { 1, OMAP_INT_1610_DMA_CH14 },
3810     { 1, OMAP_INT_1610_DMA_CH15 }
3811 };
3812 
3813 /* DMA ports for OMAP1 */
3814 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3815                 hwaddr addr)
3816 {
3817     return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3818 }
3819 
3820 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3821                 hwaddr addr)
3822 {
3823     return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3824                              addr);
3825 }
3826 
3827 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3828                 hwaddr addr)
3829 {
3830     return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3831 }
3832 
3833 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3834                 hwaddr addr)
3835 {
3836     return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3837 }
3838 
3839 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3840                 hwaddr addr)
3841 {
3842     return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3843 }
3844 
3845 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3846                 hwaddr addr)
3847 {
3848     return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3849 }
3850 
3851 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3852                 unsigned long sdram_size,
3853                 const char *core)
3854 {
3855     int i;
3856     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
3857             g_malloc0(sizeof(struct omap_mpu_state_s));
3858     qemu_irq dma_irqs[6];
3859     DriveInfo *dinfo;
3860     SysBusDevice *busdev;
3861 
3862     if (!core)
3863         core = "ti925t";
3864 
3865     /* Core */
3866     s->mpu_model = omap310;
3867     s->cpu = cpu_arm_init(core);
3868     if (s->cpu == NULL) {
3869         fprintf(stderr, "Unable to find CPU definition\n");
3870         exit(1);
3871     }
3872     s->sdram_size = sdram_size;
3873     s->sram_size = OMAP15XX_SRAM_SIZE;
3874 
3875     s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3876 
3877     /* Clocks */
3878     omap_clk_init(s);
3879 
3880     /* Memory-mapped stuff */
3881     memory_region_init_ram(&s->emiff_ram, NULL, "omap1.dram", s->sdram_size,
3882                            &error_abort);
3883     vmstate_register_ram_global(&s->emiff_ram);
3884     memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3885     memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3886                            &error_abort);
3887     vmstate_register_ram_global(&s->imif_ram);
3888     memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3889 
3890     omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3891 
3892     s->ih[0] = qdev_create(NULL, "omap-intc");
3893     qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3894     qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3895     qdev_init_nofail(s->ih[0]);
3896     busdev = SYS_BUS_DEVICE(s->ih[0]);
3897     sysbus_connect_irq(busdev, 0,
3898                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3899     sysbus_connect_irq(busdev, 1,
3900                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3901     sysbus_mmio_map(busdev, 0, 0xfffecb00);
3902     s->ih[1] = qdev_create(NULL, "omap-intc");
3903     qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3904     qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3905     qdev_init_nofail(s->ih[1]);
3906     busdev = SYS_BUS_DEVICE(s->ih[1]);
3907     sysbus_connect_irq(busdev, 0,
3908                        qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3909     /* The second interrupt controller's FIQ output is not wired up */
3910     sysbus_mmio_map(busdev, 0, 0xfffe0000);
3911 
3912     for (i = 0; i < 6; i++) {
3913         dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3914                                        omap1_dma_irq_map[i].intr);
3915     }
3916     s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3917                            qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3918                            s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3919 
3920     s->port[emiff    ].addr_valid = omap_validate_emiff_addr;
3921     s->port[emifs    ].addr_valid = omap_validate_emifs_addr;
3922     s->port[imif     ].addr_valid = omap_validate_imif_addr;
3923     s->port[tipb     ].addr_valid = omap_validate_tipb_addr;
3924     s->port[local    ].addr_valid = omap_validate_local_addr;
3925     s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3926 
3927     /* Register SDRAM and SRAM DMA ports for fast transfers.  */
3928     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3929                          OMAP_EMIFF_BASE, s->sdram_size);
3930     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3931                          OMAP_IMIF_BASE, s->sram_size);
3932 
3933     s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3934                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3935                     omap_findclk(s, "mputim_ck"));
3936     s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3937                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3938                     omap_findclk(s, "mputim_ck"));
3939     s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3940                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3941                     omap_findclk(s, "mputim_ck"));
3942 
3943     s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3944                     qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3945                     omap_findclk(s, "armwdt_ck"));
3946 
3947     s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3948                     qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3949                     omap_findclk(s, "clk32-kHz"));
3950 
3951     s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3952                             qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3953                             omap_dma_get_lcdch(s->dma),
3954                             omap_findclk(s, "lcd_ck"));
3955 
3956     omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3957     omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3958     omap_id_init(system_memory, s);
3959 
3960     omap_mpui_init(system_memory, 0xfffec900, s);
3961 
3962     s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3963                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3964                     omap_findclk(s, "tipb_ck"));
3965     s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3966                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3967                     omap_findclk(s, "tipb_ck"));
3968 
3969     omap_tcmi_init(system_memory, 0xfffecc00, s);
3970 
3971     s->uart[0] = omap_uart_init(0xfffb0000,
3972                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3973                     omap_findclk(s, "uart1_ck"),
3974                     omap_findclk(s, "uart1_ck"),
3975                     s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3976                     "uart1",
3977                     serial_hds[0]);
3978     s->uart[1] = omap_uart_init(0xfffb0800,
3979                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3980                     omap_findclk(s, "uart2_ck"),
3981                     omap_findclk(s, "uart2_ck"),
3982                     s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3983                     "uart2",
3984                     serial_hds[0] ? serial_hds[1] : NULL);
3985     s->uart[2] = omap_uart_init(0xfffb9800,
3986                                 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3987                     omap_findclk(s, "uart3_ck"),
3988                     omap_findclk(s, "uart3_ck"),
3989                     s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3990                     "uart3",
3991                     serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
3992 
3993     s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3994                                 omap_findclk(s, "dpll1"));
3995     s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3996                                 omap_findclk(s, "dpll2"));
3997     s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3998                                 omap_findclk(s, "dpll3"));
3999 
4000     dinfo = drive_get(IF_SD, 0, 0);
4001     if (!dinfo) {
4002         fprintf(stderr, "qemu: missing SecureDigital device\n");
4003         exit(1);
4004     }
4005     s->mmc = omap_mmc_init(0xfffb7800, system_memory,
4006                            blk_by_legacy_dinfo(dinfo),
4007                            qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
4008                            &s->drq[OMAP_DMA_MMC_TX],
4009                     omap_findclk(s, "mmc_ck"));
4010 
4011     s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4012                                qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4013                                qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4014                                s->wakeup, omap_findclk(s, "clk32-kHz"));
4015 
4016     s->gpio = qdev_create(NULL, "omap-gpio");
4017     qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4018     qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
4019     qdev_init_nofail(s->gpio);
4020     sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4021                        qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4022     sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4023 
4024     s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4025                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4026                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4027                     s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4028 
4029     s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4030                            omap_findclk(s, "armxor_ck"));
4031     s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4032                            omap_findclk(s, "armxor_ck"));
4033 
4034     s->i2c[0] = qdev_create(NULL, "omap_i2c");
4035     qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4036     qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4037     qdev_init_nofail(s->i2c[0]);
4038     busdev = SYS_BUS_DEVICE(s->i2c[0]);
4039     sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4040     sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4041     sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4042     sysbus_mmio_map(busdev, 0, 0xfffb3800);
4043 
4044     s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4045                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4046                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4047                     omap_findclk(s, "clk32-kHz"));
4048 
4049     s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4050                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4051                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4052                     &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4053     s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4054                                 qdev_get_gpio_in(s->ih[0],
4055                                                  OMAP_INT_310_McBSP2_TX),
4056                                 qdev_get_gpio_in(s->ih[0],
4057                                                  OMAP_INT_310_McBSP2_RX),
4058                     &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4059     s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4060                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4061                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4062                     &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4063 
4064     s->led[0] = omap_lpg_init(system_memory,
4065                               0xfffbd000, omap_findclk(s, "clk32-kHz"));
4066     s->led[1] = omap_lpg_init(system_memory,
4067                               0xfffbd800, omap_findclk(s, "clk32-kHz"));
4068 
4069     /* Register mappings not currenlty implemented:
4070      * MCSI2 Comm	fffb2000 - fffb27ff (not mapped on OMAP310)
4071      * MCSI1 Bluetooth	fffb2800 - fffb2fff (not mapped on OMAP310)
4072      * USB W2FC		fffb4000 - fffb47ff
4073      * Camera Interface	fffb6800 - fffb6fff
4074      * USB Host		fffba000 - fffba7ff
4075      * FAC		fffba800 - fffbafff
4076      * HDQ/1-Wire	fffbc000 - fffbc7ff
4077      * TIPB switches	fffbc800 - fffbcfff
4078      * Mailbox		fffcf000 - fffcf7ff
4079      * Local bus IF	fffec100 - fffec1ff
4080      * Local bus MMU	fffec200 - fffec2ff
4081      * DSP MMU		fffed200 - fffed2ff
4082      */
4083 
4084     omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4085     omap_setup_mpui_io(system_memory, s);
4086 
4087     qemu_register_reset(omap1_mpu_reset, s);
4088 
4089     return s;
4090 }
4091