xref: /openbmc/qemu/hw/arm/omap1.c (revision 0399a381)
1 /*
2  * TI OMAP processors emulation.
3  *
4  * Copyright (C) 2006-2008 Andrzej Zaborowski  <balrog@zabor.org>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 or
9  * (at your option) version 3 of the License.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License along
17  * with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "hw/hw.h"
20 #include "hw/arm/arm.h"
21 #include "hw/arm/omap.h"
22 #include "sysemu/sysemu.h"
23 #include "hw/arm/soc_dma.h"
24 #include "sysemu/blockdev.h"
25 #include "qemu/range.h"
26 #include "hw/sysbus.h"
27 
28 /* Should signal the TCMI/GPMC */
29 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
30 {
31     uint8_t ret;
32 
33     OMAP_8B_REG(addr);
34     cpu_physical_memory_read(addr, &ret, 1);
35     return ret;
36 }
37 
38 void omap_badwidth_write8(void *opaque, hwaddr addr,
39                 uint32_t value)
40 {
41     uint8_t val8 = value;
42 
43     OMAP_8B_REG(addr);
44     cpu_physical_memory_write(addr, &val8, 1);
45 }
46 
47 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
48 {
49     uint16_t ret;
50 
51     OMAP_16B_REG(addr);
52     cpu_physical_memory_read(addr, &ret, 2);
53     return ret;
54 }
55 
56 void omap_badwidth_write16(void *opaque, hwaddr addr,
57                 uint32_t value)
58 {
59     uint16_t val16 = value;
60 
61     OMAP_16B_REG(addr);
62     cpu_physical_memory_write(addr, &val16, 2);
63 }
64 
65 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
66 {
67     uint32_t ret;
68 
69     OMAP_32B_REG(addr);
70     cpu_physical_memory_read(addr, &ret, 4);
71     return ret;
72 }
73 
74 void omap_badwidth_write32(void *opaque, hwaddr addr,
75                 uint32_t value)
76 {
77     OMAP_32B_REG(addr);
78     cpu_physical_memory_write(addr, &value, 4);
79 }
80 
81 /* MPU OS timers */
82 struct omap_mpu_timer_s {
83     MemoryRegion iomem;
84     qemu_irq irq;
85     omap_clk clk;
86     uint32_t val;
87     int64_t time;
88     QEMUTimer *timer;
89     QEMUBH *tick;
90     int64_t rate;
91     int it_ena;
92 
93     int enable;
94     int ptv;
95     int ar;
96     int st;
97     uint32_t reset_val;
98 };
99 
100 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
101 {
102     uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
103 
104     if (timer->st && timer->enable && timer->rate)
105         return timer->val - muldiv64(distance >> (timer->ptv + 1),
106                                      timer->rate, get_ticks_per_sec());
107     else
108         return timer->val;
109 }
110 
111 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
112 {
113     timer->val = omap_timer_read(timer);
114     timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
115 }
116 
117 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
118 {
119     int64_t expires;
120 
121     if (timer->enable && timer->st && timer->rate) {
122         timer->val = timer->reset_val;	/* Should skip this on clk enable */
123         expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
124                            get_ticks_per_sec(), timer->rate);
125 
126         /* If timer expiry would be sooner than in about 1 ms and
127          * auto-reload isn't set, then fire immediately.  This is a hack
128          * to make systems like PalmOS run in acceptable time.  PalmOS
129          * sets the interval to a very low value and polls the status bit
130          * in a busy loop when it wants to sleep just a couple of CPU
131          * ticks.  */
132         if (expires > (get_ticks_per_sec() >> 10) || timer->ar)
133             timer_mod(timer->timer, timer->time + expires);
134         else
135             qemu_bh_schedule(timer->tick);
136     } else
137         timer_del(timer->timer);
138 }
139 
140 static void omap_timer_fire(void *opaque)
141 {
142     struct omap_mpu_timer_s *timer = opaque;
143 
144     if (!timer->ar) {
145         timer->val = 0;
146         timer->st = 0;
147     }
148 
149     if (timer->it_ena)
150         /* Edge-triggered irq */
151         qemu_irq_pulse(timer->irq);
152 }
153 
154 static void omap_timer_tick(void *opaque)
155 {
156     struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
157 
158     omap_timer_sync(timer);
159     omap_timer_fire(timer);
160     omap_timer_update(timer);
161 }
162 
163 static void omap_timer_clk_update(void *opaque, int line, int on)
164 {
165     struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
166 
167     omap_timer_sync(timer);
168     timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
169     omap_timer_update(timer);
170 }
171 
172 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
173 {
174     omap_clk_adduser(timer->clk,
175                     qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]);
176     timer->rate = omap_clk_getrate(timer->clk);
177 }
178 
179 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
180                                     unsigned size)
181 {
182     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
183 
184     if (size != 4) {
185         return omap_badwidth_read32(opaque, addr);
186     }
187 
188     switch (addr) {
189     case 0x00:	/* CNTL_TIMER */
190         return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
191 
192     case 0x04:	/* LOAD_TIM */
193         break;
194 
195     case 0x08:	/* READ_TIM */
196         return omap_timer_read(s);
197     }
198 
199     OMAP_BAD_REG(addr);
200     return 0;
201 }
202 
203 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
204                                  uint64_t value, unsigned size)
205 {
206     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
207 
208     if (size != 4) {
209         return omap_badwidth_write32(opaque, addr, value);
210     }
211 
212     switch (addr) {
213     case 0x00:	/* CNTL_TIMER */
214         omap_timer_sync(s);
215         s->enable = (value >> 5) & 1;
216         s->ptv = (value >> 2) & 7;
217         s->ar = (value >> 1) & 1;
218         s->st = value & 1;
219         omap_timer_update(s);
220         return;
221 
222     case 0x04:	/* LOAD_TIM */
223         s->reset_val = value;
224         return;
225 
226     case 0x08:	/* READ_TIM */
227         OMAP_RO_REG(addr);
228         break;
229 
230     default:
231         OMAP_BAD_REG(addr);
232     }
233 }
234 
235 static const MemoryRegionOps omap_mpu_timer_ops = {
236     .read = omap_mpu_timer_read,
237     .write = omap_mpu_timer_write,
238     .endianness = DEVICE_LITTLE_ENDIAN,
239 };
240 
241 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
242 {
243     timer_del(s->timer);
244     s->enable = 0;
245     s->reset_val = 31337;
246     s->val = 0;
247     s->ptv = 0;
248     s->ar = 0;
249     s->st = 0;
250     s->it_ena = 1;
251 }
252 
253 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
254                 hwaddr base,
255                 qemu_irq irq, omap_clk clk)
256 {
257     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
258             g_malloc0(sizeof(struct omap_mpu_timer_s));
259 
260     s->irq = irq;
261     s->clk = clk;
262     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
263     s->tick = qemu_bh_new(omap_timer_fire, s);
264     omap_mpu_timer_reset(s);
265     omap_timer_clk_setup(s);
266 
267     memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
268                           "omap-mpu-timer", 0x100);
269 
270     memory_region_add_subregion(system_memory, base, &s->iomem);
271 
272     return s;
273 }
274 
275 /* Watchdog timer */
276 struct omap_watchdog_timer_s {
277     struct omap_mpu_timer_s timer;
278     MemoryRegion iomem;
279     uint8_t last_wr;
280     int mode;
281     int free;
282     int reset;
283 };
284 
285 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
286                                    unsigned size)
287 {
288     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
289 
290     if (size != 2) {
291         return omap_badwidth_read16(opaque, addr);
292     }
293 
294     switch (addr) {
295     case 0x00:	/* CNTL_TIMER */
296         return (s->timer.ptv << 9) | (s->timer.ar << 8) |
297                 (s->timer.st << 7) | (s->free << 1);
298 
299     case 0x04:	/* READ_TIMER */
300         return omap_timer_read(&s->timer);
301 
302     case 0x08:	/* TIMER_MODE */
303         return s->mode << 15;
304     }
305 
306     OMAP_BAD_REG(addr);
307     return 0;
308 }
309 
310 static void omap_wd_timer_write(void *opaque, hwaddr addr,
311                                 uint64_t value, unsigned size)
312 {
313     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
314 
315     if (size != 2) {
316         return omap_badwidth_write16(opaque, addr, value);
317     }
318 
319     switch (addr) {
320     case 0x00:	/* CNTL_TIMER */
321         omap_timer_sync(&s->timer);
322         s->timer.ptv = (value >> 9) & 7;
323         s->timer.ar = (value >> 8) & 1;
324         s->timer.st = (value >> 7) & 1;
325         s->free = (value >> 1) & 1;
326         omap_timer_update(&s->timer);
327         break;
328 
329     case 0x04:	/* LOAD_TIMER */
330         s->timer.reset_val = value & 0xffff;
331         break;
332 
333     case 0x08:	/* TIMER_MODE */
334         if (!s->mode && ((value >> 15) & 1))
335             omap_clk_get(s->timer.clk);
336         s->mode |= (value >> 15) & 1;
337         if (s->last_wr == 0xf5) {
338             if ((value & 0xff) == 0xa0) {
339                 if (s->mode) {
340                     s->mode = 0;
341                     omap_clk_put(s->timer.clk);
342                 }
343             } else {
344                 /* XXX: on T|E hardware somehow this has no effect,
345                  * on Zire 71 it works as specified.  */
346                 s->reset = 1;
347                 qemu_system_reset_request();
348             }
349         }
350         s->last_wr = value & 0xff;
351         break;
352 
353     default:
354         OMAP_BAD_REG(addr);
355     }
356 }
357 
358 static const MemoryRegionOps omap_wd_timer_ops = {
359     .read = omap_wd_timer_read,
360     .write = omap_wd_timer_write,
361     .endianness = DEVICE_NATIVE_ENDIAN,
362 };
363 
364 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
365 {
366     timer_del(s->timer.timer);
367     if (!s->mode)
368         omap_clk_get(s->timer.clk);
369     s->mode = 1;
370     s->free = 1;
371     s->reset = 0;
372     s->timer.enable = 1;
373     s->timer.it_ena = 1;
374     s->timer.reset_val = 0xffff;
375     s->timer.val = 0;
376     s->timer.st = 0;
377     s->timer.ptv = 0;
378     s->timer.ar = 0;
379     omap_timer_update(&s->timer);
380 }
381 
382 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
383                 hwaddr base,
384                 qemu_irq irq, omap_clk clk)
385 {
386     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
387             g_malloc0(sizeof(struct omap_watchdog_timer_s));
388 
389     s->timer.irq = irq;
390     s->timer.clk = clk;
391     s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
392     omap_wd_timer_reset(s);
393     omap_timer_clk_setup(&s->timer);
394 
395     memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
396                           "omap-wd-timer", 0x100);
397     memory_region_add_subregion(memory, base, &s->iomem);
398 
399     return s;
400 }
401 
402 /* 32-kHz timer */
403 struct omap_32khz_timer_s {
404     struct omap_mpu_timer_s timer;
405     MemoryRegion iomem;
406 };
407 
408 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
409                                    unsigned size)
410 {
411     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
412     int offset = addr & OMAP_MPUI_REG_MASK;
413 
414     if (size != 4) {
415         return omap_badwidth_read32(opaque, addr);
416     }
417 
418     switch (offset) {
419     case 0x00:	/* TVR */
420         return s->timer.reset_val;
421 
422     case 0x04:	/* TCR */
423         return omap_timer_read(&s->timer);
424 
425     case 0x08:	/* CR */
426         return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
427 
428     default:
429         break;
430     }
431     OMAP_BAD_REG(addr);
432     return 0;
433 }
434 
435 static void omap_os_timer_write(void *opaque, hwaddr addr,
436                                 uint64_t value, unsigned size)
437 {
438     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
439     int offset = addr & OMAP_MPUI_REG_MASK;
440 
441     if (size != 4) {
442         return omap_badwidth_write32(opaque, addr, value);
443     }
444 
445     switch (offset) {
446     case 0x00:	/* TVR */
447         s->timer.reset_val = value & 0x00ffffff;
448         break;
449 
450     case 0x04:	/* TCR */
451         OMAP_RO_REG(addr);
452         break;
453 
454     case 0x08:	/* CR */
455         s->timer.ar = (value >> 3) & 1;
456         s->timer.it_ena = (value >> 2) & 1;
457         if (s->timer.st != (value & 1) || (value & 2)) {
458             omap_timer_sync(&s->timer);
459             s->timer.enable = value & 1;
460             s->timer.st = value & 1;
461             omap_timer_update(&s->timer);
462         }
463         break;
464 
465     default:
466         OMAP_BAD_REG(addr);
467     }
468 }
469 
470 static const MemoryRegionOps omap_os_timer_ops = {
471     .read = omap_os_timer_read,
472     .write = omap_os_timer_write,
473     .endianness = DEVICE_NATIVE_ENDIAN,
474 };
475 
476 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
477 {
478     timer_del(s->timer.timer);
479     s->timer.enable = 0;
480     s->timer.it_ena = 0;
481     s->timer.reset_val = 0x00ffffff;
482     s->timer.val = 0;
483     s->timer.st = 0;
484     s->timer.ptv = 0;
485     s->timer.ar = 1;
486 }
487 
488 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
489                 hwaddr base,
490                 qemu_irq irq, omap_clk clk)
491 {
492     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
493             g_malloc0(sizeof(struct omap_32khz_timer_s));
494 
495     s->timer.irq = irq;
496     s->timer.clk = clk;
497     s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
498     omap_os_timer_reset(s);
499     omap_timer_clk_setup(&s->timer);
500 
501     memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
502                           "omap-os-timer", 0x800);
503     memory_region_add_subregion(memory, base, &s->iomem);
504 
505     return s;
506 }
507 
508 /* Ultra Low-Power Device Module */
509 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
510                                   unsigned size)
511 {
512     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
513     uint16_t ret;
514 
515     if (size != 2) {
516         return omap_badwidth_read16(opaque, addr);
517     }
518 
519     switch (addr) {
520     case 0x14:	/* IT_STATUS */
521         ret = s->ulpd_pm_regs[addr >> 2];
522         s->ulpd_pm_regs[addr >> 2] = 0;
523         qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
524         return ret;
525 
526     case 0x18:	/* Reserved */
527     case 0x1c:	/* Reserved */
528     case 0x20:	/* Reserved */
529     case 0x28:	/* Reserved */
530     case 0x2c:	/* Reserved */
531         OMAP_BAD_REG(addr);
532         /* fall through */
533     case 0x00:	/* COUNTER_32_LSB */
534     case 0x04:	/* COUNTER_32_MSB */
535     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
536     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
537     case 0x10:	/* GAUGING_CTRL */
538     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
539     case 0x30:	/* CLOCK_CTRL */
540     case 0x34:	/* SOFT_REQ */
541     case 0x38:	/* COUNTER_32_FIQ */
542     case 0x3c:	/* DPLL_CTRL */
543     case 0x40:	/* STATUS_REQ */
544         /* XXX: check clk::usecount state for every clock */
545     case 0x48:	/* LOCL_TIME */
546     case 0x4c:	/* APLL_CTRL */
547     case 0x50:	/* POWER_CTRL */
548         return s->ulpd_pm_regs[addr >> 2];
549     }
550 
551     OMAP_BAD_REG(addr);
552     return 0;
553 }
554 
555 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
556                 uint16_t diff, uint16_t value)
557 {
558     if (diff & (1 << 4))				/* USB_MCLK_EN */
559         omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
560     if (diff & (1 << 5))				/* DIS_USB_PVCI_CLK */
561         omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
562 }
563 
564 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
565                 uint16_t diff, uint16_t value)
566 {
567     if (diff & (1 << 0))				/* SOFT_DPLL_REQ */
568         omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
569     if (diff & (1 << 1))				/* SOFT_COM_REQ */
570         omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
571     if (diff & (1 << 2))				/* SOFT_SDW_REQ */
572         omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
573     if (diff & (1 << 3))				/* SOFT_USB_REQ */
574         omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
575 }
576 
577 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
578                                uint64_t value, unsigned size)
579 {
580     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
581     int64_t now, ticks;
582     int div, mult;
583     static const int bypass_div[4] = { 1, 2, 4, 4 };
584     uint16_t diff;
585 
586     if (size != 2) {
587         return omap_badwidth_write16(opaque, addr, value);
588     }
589 
590     switch (addr) {
591     case 0x00:	/* COUNTER_32_LSB */
592     case 0x04:	/* COUNTER_32_MSB */
593     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
594     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
595     case 0x14:	/* IT_STATUS */
596     case 0x40:	/* STATUS_REQ */
597         OMAP_RO_REG(addr);
598         break;
599 
600     case 0x10:	/* GAUGING_CTRL */
601         /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
602         if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
603             now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
604 
605             if (value & 1)
606                 s->ulpd_gauge_start = now;
607             else {
608                 now -= s->ulpd_gauge_start;
609 
610                 /* 32-kHz ticks */
611                 ticks = muldiv64(now, 32768, get_ticks_per_sec());
612                 s->ulpd_pm_regs[0x00 >> 2] = (ticks >>  0) & 0xffff;
613                 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
614                 if (ticks >> 32)	/* OVERFLOW_32K */
615                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
616 
617                 /* High frequency ticks */
618                 ticks = muldiv64(now, 12000000, get_ticks_per_sec());
619                 s->ulpd_pm_regs[0x08 >> 2] = (ticks >>  0) & 0xffff;
620                 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
621                 if (ticks >> 32)	/* OVERFLOW_HI_FREQ */
622                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
623 
624                 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0;	/* IT_GAUGING */
625                 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
626             }
627         }
628         s->ulpd_pm_regs[addr >> 2] = value;
629         break;
630 
631     case 0x18:	/* Reserved */
632     case 0x1c:	/* Reserved */
633     case 0x20:	/* Reserved */
634     case 0x28:	/* Reserved */
635     case 0x2c:	/* Reserved */
636         OMAP_BAD_REG(addr);
637         /* fall through */
638     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
639     case 0x38:	/* COUNTER_32_FIQ */
640     case 0x48:	/* LOCL_TIME */
641     case 0x50:	/* POWER_CTRL */
642         s->ulpd_pm_regs[addr >> 2] = value;
643         break;
644 
645     case 0x30:	/* CLOCK_CTRL */
646         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
647         s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
648         omap_ulpd_clk_update(s, diff, value);
649         break;
650 
651     case 0x34:	/* SOFT_REQ */
652         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
653         s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
654         omap_ulpd_req_update(s, diff, value);
655         break;
656 
657     case 0x3c:	/* DPLL_CTRL */
658         /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
659          * omitted altogether, probably a typo.  */
660         /* This register has identical semantics with DPLL(1:3) control
661          * registers, see omap_dpll_write() */
662         diff = s->ulpd_pm_regs[addr >> 2] & value;
663         s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
664         if (diff & (0x3ff << 2)) {
665             if (value & (1 << 4)) {			/* PLL_ENABLE */
666                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
667                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
668             } else {
669                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
670                 mult = 1;
671             }
672             omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
673         }
674 
675         /* Enter the desired mode.  */
676         s->ulpd_pm_regs[addr >> 2] =
677                 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
678                 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
679 
680         /* Act as if the lock is restored.  */
681         s->ulpd_pm_regs[addr >> 2] |= 2;
682         break;
683 
684     case 0x4c:	/* APLL_CTRL */
685         diff = s->ulpd_pm_regs[addr >> 2] & value;
686         s->ulpd_pm_regs[addr >> 2] = value & 0xf;
687         if (diff & (1 << 0))				/* APLL_NDPLL_SWITCH */
688             omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
689                                     (value & (1 << 0)) ? "apll" : "dpll4"));
690         break;
691 
692     default:
693         OMAP_BAD_REG(addr);
694     }
695 }
696 
697 static const MemoryRegionOps omap_ulpd_pm_ops = {
698     .read = omap_ulpd_pm_read,
699     .write = omap_ulpd_pm_write,
700     .endianness = DEVICE_NATIVE_ENDIAN,
701 };
702 
703 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
704 {
705     mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
706     mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
707     mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
708     mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
709     mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
710     mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
711     mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
712     mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
713     mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
714     mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
715     mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
716     omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
717     mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
718     omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
719     mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
720     mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
721     mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
722     mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
723     mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
724     mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
725     mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
726     omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
727     omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
728 }
729 
730 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
731                 hwaddr base,
732                 struct omap_mpu_state_s *mpu)
733 {
734     memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
735                           "omap-ulpd-pm", 0x800);
736     memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
737     omap_ulpd_pm_reset(mpu);
738 }
739 
740 /* OMAP Pin Configuration */
741 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
742                                   unsigned size)
743 {
744     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
745 
746     if (size != 4) {
747         return omap_badwidth_read32(opaque, addr);
748     }
749 
750     switch (addr) {
751     case 0x00:	/* FUNC_MUX_CTRL_0 */
752     case 0x04:	/* FUNC_MUX_CTRL_1 */
753     case 0x08:	/* FUNC_MUX_CTRL_2 */
754         return s->func_mux_ctrl[addr >> 2];
755 
756     case 0x0c:	/* COMP_MODE_CTRL_0 */
757         return s->comp_mode_ctrl[0];
758 
759     case 0x10:	/* FUNC_MUX_CTRL_3 */
760     case 0x14:	/* FUNC_MUX_CTRL_4 */
761     case 0x18:	/* FUNC_MUX_CTRL_5 */
762     case 0x1c:	/* FUNC_MUX_CTRL_6 */
763     case 0x20:	/* FUNC_MUX_CTRL_7 */
764     case 0x24:	/* FUNC_MUX_CTRL_8 */
765     case 0x28:	/* FUNC_MUX_CTRL_9 */
766     case 0x2c:	/* FUNC_MUX_CTRL_A */
767     case 0x30:	/* FUNC_MUX_CTRL_B */
768     case 0x34:	/* FUNC_MUX_CTRL_C */
769     case 0x38:	/* FUNC_MUX_CTRL_D */
770         return s->func_mux_ctrl[(addr >> 2) - 1];
771 
772     case 0x40:	/* PULL_DWN_CTRL_0 */
773     case 0x44:	/* PULL_DWN_CTRL_1 */
774     case 0x48:	/* PULL_DWN_CTRL_2 */
775     case 0x4c:	/* PULL_DWN_CTRL_3 */
776         return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
777 
778     case 0x50:	/* GATE_INH_CTRL_0 */
779         return s->gate_inh_ctrl[0];
780 
781     case 0x60:	/* VOLTAGE_CTRL_0 */
782         return s->voltage_ctrl[0];
783 
784     case 0x70:	/* TEST_DBG_CTRL_0 */
785         return s->test_dbg_ctrl[0];
786 
787     case 0x80:	/* MOD_CONF_CTRL_0 */
788         return s->mod_conf_ctrl[0];
789     }
790 
791     OMAP_BAD_REG(addr);
792     return 0;
793 }
794 
795 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
796                 uint32_t diff, uint32_t value)
797 {
798     if (s->compat1509) {
799         if (diff & (1 << 9))			/* BLUETOOTH */
800             omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
801                             (~value >> 9) & 1);
802         if (diff & (1 << 7))			/* USB.CLKO */
803             omap_clk_onoff(omap_findclk(s, "usb.clko"),
804                             (value >> 7) & 1);
805     }
806 }
807 
808 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
809                 uint32_t diff, uint32_t value)
810 {
811     if (s->compat1509) {
812         if (diff & (1U << 31)) {
813             /* MCBSP3_CLK_HIZ_DI */
814             omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
815         }
816         if (diff & (1 << 1)) {
817             /* CLK32K */
818             omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
819         }
820     }
821 }
822 
823 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
824                 uint32_t diff, uint32_t value)
825 {
826     if (diff & (1U << 31)) {
827         /* CONF_MOD_UART3_CLK_MODE_R */
828         omap_clk_reparent(omap_findclk(s, "uart3_ck"),
829                           omap_findclk(s, ((value >> 31) & 1) ?
830                                        "ck_48m" : "armper_ck"));
831     }
832     if (diff & (1 << 30))			/* CONF_MOD_UART2_CLK_MODE_R */
833          omap_clk_reparent(omap_findclk(s, "uart2_ck"),
834                          omap_findclk(s, ((value >> 30) & 1) ?
835                                  "ck_48m" : "armper_ck"));
836     if (diff & (1 << 29))			/* CONF_MOD_UART1_CLK_MODE_R */
837          omap_clk_reparent(omap_findclk(s, "uart1_ck"),
838                          omap_findclk(s, ((value >> 29) & 1) ?
839                                  "ck_48m" : "armper_ck"));
840     if (diff & (1 << 23))			/* CONF_MOD_MMC_SD_CLK_REQ_R */
841          omap_clk_reparent(omap_findclk(s, "mmc_ck"),
842                          omap_findclk(s, ((value >> 23) & 1) ?
843                                  "ck_48m" : "armper_ck"));
844     if (diff & (1 << 12))			/* CONF_MOD_COM_MCLK_12_48_S */
845          omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
846                          omap_findclk(s, ((value >> 12) & 1) ?
847                                  "ck_48m" : "armper_ck"));
848     if (diff & (1 << 9))			/* CONF_MOD_USB_HOST_HHC_UHO */
849          omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
850 }
851 
852 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
853                                uint64_t value, unsigned size)
854 {
855     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
856     uint32_t diff;
857 
858     if (size != 4) {
859         return omap_badwidth_write32(opaque, addr, value);
860     }
861 
862     switch (addr) {
863     case 0x00:	/* FUNC_MUX_CTRL_0 */
864         diff = s->func_mux_ctrl[addr >> 2] ^ value;
865         s->func_mux_ctrl[addr >> 2] = value;
866         omap_pin_funcmux0_update(s, diff, value);
867         return;
868 
869     case 0x04:	/* FUNC_MUX_CTRL_1 */
870         diff = s->func_mux_ctrl[addr >> 2] ^ value;
871         s->func_mux_ctrl[addr >> 2] = value;
872         omap_pin_funcmux1_update(s, diff, value);
873         return;
874 
875     case 0x08:	/* FUNC_MUX_CTRL_2 */
876         s->func_mux_ctrl[addr >> 2] = value;
877         return;
878 
879     case 0x0c:	/* COMP_MODE_CTRL_0 */
880         s->comp_mode_ctrl[0] = value;
881         s->compat1509 = (value != 0x0000eaef);
882         omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
883         omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
884         return;
885 
886     case 0x10:	/* FUNC_MUX_CTRL_3 */
887     case 0x14:	/* FUNC_MUX_CTRL_4 */
888     case 0x18:	/* FUNC_MUX_CTRL_5 */
889     case 0x1c:	/* FUNC_MUX_CTRL_6 */
890     case 0x20:	/* FUNC_MUX_CTRL_7 */
891     case 0x24:	/* FUNC_MUX_CTRL_8 */
892     case 0x28:	/* FUNC_MUX_CTRL_9 */
893     case 0x2c:	/* FUNC_MUX_CTRL_A */
894     case 0x30:	/* FUNC_MUX_CTRL_B */
895     case 0x34:	/* FUNC_MUX_CTRL_C */
896     case 0x38:	/* FUNC_MUX_CTRL_D */
897         s->func_mux_ctrl[(addr >> 2) - 1] = value;
898         return;
899 
900     case 0x40:	/* PULL_DWN_CTRL_0 */
901     case 0x44:	/* PULL_DWN_CTRL_1 */
902     case 0x48:	/* PULL_DWN_CTRL_2 */
903     case 0x4c:	/* PULL_DWN_CTRL_3 */
904         s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
905         return;
906 
907     case 0x50:	/* GATE_INH_CTRL_0 */
908         s->gate_inh_ctrl[0] = value;
909         return;
910 
911     case 0x60:	/* VOLTAGE_CTRL_0 */
912         s->voltage_ctrl[0] = value;
913         return;
914 
915     case 0x70:	/* TEST_DBG_CTRL_0 */
916         s->test_dbg_ctrl[0] = value;
917         return;
918 
919     case 0x80:	/* MOD_CONF_CTRL_0 */
920         diff = s->mod_conf_ctrl[0] ^ value;
921         s->mod_conf_ctrl[0] = value;
922         omap_pin_modconf1_update(s, diff, value);
923         return;
924 
925     default:
926         OMAP_BAD_REG(addr);
927     }
928 }
929 
930 static const MemoryRegionOps omap_pin_cfg_ops = {
931     .read = omap_pin_cfg_read,
932     .write = omap_pin_cfg_write,
933     .endianness = DEVICE_NATIVE_ENDIAN,
934 };
935 
936 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
937 {
938     /* Start in Compatibility Mode.  */
939     mpu->compat1509 = 1;
940     omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
941     omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
942     omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
943     memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
944     memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
945     memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
946     memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
947     memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
948     memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
949     memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
950 }
951 
952 static void omap_pin_cfg_init(MemoryRegion *system_memory,
953                 hwaddr base,
954                 struct omap_mpu_state_s *mpu)
955 {
956     memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
957                           "omap-pin-cfg", 0x800);
958     memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
959     omap_pin_cfg_reset(mpu);
960 }
961 
962 /* Device Identification, Die Identification */
963 static uint64_t omap_id_read(void *opaque, hwaddr addr,
964                              unsigned size)
965 {
966     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
967 
968     if (size != 4) {
969         return omap_badwidth_read32(opaque, addr);
970     }
971 
972     switch (addr) {
973     case 0xfffe1800:	/* DIE_ID_LSB */
974         return 0xc9581f0e;
975     case 0xfffe1804:	/* DIE_ID_MSB */
976         return 0xa8858bfa;
977 
978     case 0xfffe2000:	/* PRODUCT_ID_LSB */
979         return 0x00aaaafc;
980     case 0xfffe2004:	/* PRODUCT_ID_MSB */
981         return 0xcafeb574;
982 
983     case 0xfffed400:	/* JTAG_ID_LSB */
984         switch (s->mpu_model) {
985         case omap310:
986             return 0x03310315;
987         case omap1510:
988             return 0x03310115;
989         default:
990             hw_error("%s: bad mpu model\n", __FUNCTION__);
991         }
992         break;
993 
994     case 0xfffed404:	/* JTAG_ID_MSB */
995         switch (s->mpu_model) {
996         case omap310:
997             return 0xfb57402f;
998         case omap1510:
999             return 0xfb47002f;
1000         default:
1001             hw_error("%s: bad mpu model\n", __FUNCTION__);
1002         }
1003         break;
1004     }
1005 
1006     OMAP_BAD_REG(addr);
1007     return 0;
1008 }
1009 
1010 static void omap_id_write(void *opaque, hwaddr addr,
1011                           uint64_t value, unsigned size)
1012 {
1013     if (size != 4) {
1014         return omap_badwidth_write32(opaque, addr, value);
1015     }
1016 
1017     OMAP_BAD_REG(addr);
1018 }
1019 
1020 static const MemoryRegionOps omap_id_ops = {
1021     .read = omap_id_read,
1022     .write = omap_id_write,
1023     .endianness = DEVICE_NATIVE_ENDIAN,
1024 };
1025 
1026 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1027 {
1028     memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1029                           "omap-id", 0x100000000ULL);
1030     memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1031                              0xfffe1800, 0x800);
1032     memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1033     memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1034                              0xfffed400, 0x100);
1035     memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1036     if (!cpu_is_omap15xx(mpu)) {
1037         memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1038                                  &mpu->id_iomem, 0xfffe2000, 0x800);
1039         memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1040     }
1041 }
1042 
1043 /* MPUI Control (Dummy) */
1044 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1045                                unsigned size)
1046 {
1047     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1048 
1049     if (size != 4) {
1050         return omap_badwidth_read32(opaque, addr);
1051     }
1052 
1053     switch (addr) {
1054     case 0x00:	/* CTRL */
1055         return s->mpui_ctrl;
1056     case 0x04:	/* DEBUG_ADDR */
1057         return 0x01ffffff;
1058     case 0x08:	/* DEBUG_DATA */
1059         return 0xffffffff;
1060     case 0x0c:	/* DEBUG_FLAG */
1061         return 0x00000800;
1062     case 0x10:	/* STATUS */
1063         return 0x00000000;
1064 
1065     /* Not in OMAP310 */
1066     case 0x14:	/* DSP_STATUS */
1067     case 0x18:	/* DSP_BOOT_CONFIG */
1068         return 0x00000000;
1069     case 0x1c:	/* DSP_MPUI_CONFIG */
1070         return 0x0000ffff;
1071     }
1072 
1073     OMAP_BAD_REG(addr);
1074     return 0;
1075 }
1076 
1077 static void omap_mpui_write(void *opaque, hwaddr addr,
1078                             uint64_t value, unsigned size)
1079 {
1080     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1081 
1082     if (size != 4) {
1083         return omap_badwidth_write32(opaque, addr, value);
1084     }
1085 
1086     switch (addr) {
1087     case 0x00:	/* CTRL */
1088         s->mpui_ctrl = value & 0x007fffff;
1089         break;
1090 
1091     case 0x04:	/* DEBUG_ADDR */
1092     case 0x08:	/* DEBUG_DATA */
1093     case 0x0c:	/* DEBUG_FLAG */
1094     case 0x10:	/* STATUS */
1095     /* Not in OMAP310 */
1096     case 0x14:	/* DSP_STATUS */
1097         OMAP_RO_REG(addr);
1098         break;
1099     case 0x18:	/* DSP_BOOT_CONFIG */
1100     case 0x1c:	/* DSP_MPUI_CONFIG */
1101         break;
1102 
1103     default:
1104         OMAP_BAD_REG(addr);
1105     }
1106 }
1107 
1108 static const MemoryRegionOps omap_mpui_ops = {
1109     .read = omap_mpui_read,
1110     .write = omap_mpui_write,
1111     .endianness = DEVICE_NATIVE_ENDIAN,
1112 };
1113 
1114 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1115 {
1116     s->mpui_ctrl = 0x0003ff1b;
1117 }
1118 
1119 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1120                 struct omap_mpu_state_s *mpu)
1121 {
1122     memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1123                           "omap-mpui", 0x100);
1124     memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1125 
1126     omap_mpui_reset(mpu);
1127 }
1128 
1129 /* TIPB Bridges */
1130 struct omap_tipb_bridge_s {
1131     qemu_irq abort;
1132     MemoryRegion iomem;
1133 
1134     int width_intr;
1135     uint16_t control;
1136     uint16_t alloc;
1137     uint16_t buffer;
1138     uint16_t enh_control;
1139 };
1140 
1141 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1142                                       unsigned size)
1143 {
1144     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1145 
1146     if (size < 2) {
1147         return omap_badwidth_read16(opaque, addr);
1148     }
1149 
1150     switch (addr) {
1151     case 0x00:	/* TIPB_CNTL */
1152         return s->control;
1153     case 0x04:	/* TIPB_BUS_ALLOC */
1154         return s->alloc;
1155     case 0x08:	/* MPU_TIPB_CNTL */
1156         return s->buffer;
1157     case 0x0c:	/* ENHANCED_TIPB_CNTL */
1158         return s->enh_control;
1159     case 0x10:	/* ADDRESS_DBG */
1160     case 0x14:	/* DATA_DEBUG_LOW */
1161     case 0x18:	/* DATA_DEBUG_HIGH */
1162         return 0xffff;
1163     case 0x1c:	/* DEBUG_CNTR_SIG */
1164         return 0x00f8;
1165     }
1166 
1167     OMAP_BAD_REG(addr);
1168     return 0;
1169 }
1170 
1171 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1172                                    uint64_t value, unsigned size)
1173 {
1174     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1175 
1176     if (size < 2) {
1177         return omap_badwidth_write16(opaque, addr, value);
1178     }
1179 
1180     switch (addr) {
1181     case 0x00:	/* TIPB_CNTL */
1182         s->control = value & 0xffff;
1183         break;
1184 
1185     case 0x04:	/* TIPB_BUS_ALLOC */
1186         s->alloc = value & 0x003f;
1187         break;
1188 
1189     case 0x08:	/* MPU_TIPB_CNTL */
1190         s->buffer = value & 0x0003;
1191         break;
1192 
1193     case 0x0c:	/* ENHANCED_TIPB_CNTL */
1194         s->width_intr = !(value & 2);
1195         s->enh_control = value & 0x000f;
1196         break;
1197 
1198     case 0x10:	/* ADDRESS_DBG */
1199     case 0x14:	/* DATA_DEBUG_LOW */
1200     case 0x18:	/* DATA_DEBUG_HIGH */
1201     case 0x1c:	/* DEBUG_CNTR_SIG */
1202         OMAP_RO_REG(addr);
1203         break;
1204 
1205     default:
1206         OMAP_BAD_REG(addr);
1207     }
1208 }
1209 
1210 static const MemoryRegionOps omap_tipb_bridge_ops = {
1211     .read = omap_tipb_bridge_read,
1212     .write = omap_tipb_bridge_write,
1213     .endianness = DEVICE_NATIVE_ENDIAN,
1214 };
1215 
1216 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1217 {
1218     s->control = 0xffff;
1219     s->alloc = 0x0009;
1220     s->buffer = 0x0000;
1221     s->enh_control = 0x000f;
1222 }
1223 
1224 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1225     MemoryRegion *memory, hwaddr base,
1226     qemu_irq abort_irq, omap_clk clk)
1227 {
1228     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
1229             g_malloc0(sizeof(struct omap_tipb_bridge_s));
1230 
1231     s->abort = abort_irq;
1232     omap_tipb_bridge_reset(s);
1233 
1234     memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1235                           "omap-tipb-bridge", 0x100);
1236     memory_region_add_subregion(memory, base, &s->iomem);
1237 
1238     return s;
1239 }
1240 
1241 /* Dummy Traffic Controller's Memory Interface */
1242 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1243                                unsigned size)
1244 {
1245     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1246     uint32_t ret;
1247 
1248     if (size != 4) {
1249         return omap_badwidth_read32(opaque, addr);
1250     }
1251 
1252     switch (addr) {
1253     case 0x00:	/* IMIF_PRIO */
1254     case 0x04:	/* EMIFS_PRIO */
1255     case 0x08:	/* EMIFF_PRIO */
1256     case 0x0c:	/* EMIFS_CONFIG */
1257     case 0x10:	/* EMIFS_CS0_CONFIG */
1258     case 0x14:	/* EMIFS_CS1_CONFIG */
1259     case 0x18:	/* EMIFS_CS2_CONFIG */
1260     case 0x1c:	/* EMIFS_CS3_CONFIG */
1261     case 0x24:	/* EMIFF_MRS */
1262     case 0x28:	/* TIMEOUT1 */
1263     case 0x2c:	/* TIMEOUT2 */
1264     case 0x30:	/* TIMEOUT3 */
1265     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
1266     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
1267         return s->tcmi_regs[addr >> 2];
1268 
1269     case 0x20:	/* EMIFF_SDRAM_CONFIG */
1270         ret = s->tcmi_regs[addr >> 2];
1271         s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1272         /* XXX: We can try using the VGA_DIRTY flag for this */
1273         return ret;
1274     }
1275 
1276     OMAP_BAD_REG(addr);
1277     return 0;
1278 }
1279 
1280 static void omap_tcmi_write(void *opaque, hwaddr addr,
1281                             uint64_t value, unsigned size)
1282 {
1283     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1284 
1285     if (size != 4) {
1286         return omap_badwidth_write32(opaque, addr, value);
1287     }
1288 
1289     switch (addr) {
1290     case 0x00:	/* IMIF_PRIO */
1291     case 0x04:	/* EMIFS_PRIO */
1292     case 0x08:	/* EMIFF_PRIO */
1293     case 0x10:	/* EMIFS_CS0_CONFIG */
1294     case 0x14:	/* EMIFS_CS1_CONFIG */
1295     case 0x18:	/* EMIFS_CS2_CONFIG */
1296     case 0x1c:	/* EMIFS_CS3_CONFIG */
1297     case 0x20:	/* EMIFF_SDRAM_CONFIG */
1298     case 0x24:	/* EMIFF_MRS */
1299     case 0x28:	/* TIMEOUT1 */
1300     case 0x2c:	/* TIMEOUT2 */
1301     case 0x30:	/* TIMEOUT3 */
1302     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
1303     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
1304         s->tcmi_regs[addr >> 2] = value;
1305         break;
1306     case 0x0c:	/* EMIFS_CONFIG */
1307         s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1308         break;
1309 
1310     default:
1311         OMAP_BAD_REG(addr);
1312     }
1313 }
1314 
1315 static const MemoryRegionOps omap_tcmi_ops = {
1316     .read = omap_tcmi_read,
1317     .write = omap_tcmi_write,
1318     .endianness = DEVICE_NATIVE_ENDIAN,
1319 };
1320 
1321 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1322 {
1323     mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1324     mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1325     mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1326     mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1327     mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1328     mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1329     mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1330     mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1331     mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1332     mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1333     mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1334     mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1335     mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1336     mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1337     mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1338 }
1339 
1340 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1341                 struct omap_mpu_state_s *mpu)
1342 {
1343     memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1344                           "omap-tcmi", 0x100);
1345     memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1346     omap_tcmi_reset(mpu);
1347 }
1348 
1349 /* Digital phase-locked loops control */
1350 struct dpll_ctl_s {
1351     MemoryRegion iomem;
1352     uint16_t mode;
1353     omap_clk dpll;
1354 };
1355 
1356 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1357                                unsigned size)
1358 {
1359     struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1360 
1361     if (size != 2) {
1362         return omap_badwidth_read16(opaque, addr);
1363     }
1364 
1365     if (addr == 0x00)	/* CTL_REG */
1366         return s->mode;
1367 
1368     OMAP_BAD_REG(addr);
1369     return 0;
1370 }
1371 
1372 static void omap_dpll_write(void *opaque, hwaddr addr,
1373                             uint64_t value, unsigned size)
1374 {
1375     struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1376     uint16_t diff;
1377     static const int bypass_div[4] = { 1, 2, 4, 4 };
1378     int div, mult;
1379 
1380     if (size != 2) {
1381         return omap_badwidth_write16(opaque, addr, value);
1382     }
1383 
1384     if (addr == 0x00) {	/* CTL_REG */
1385         /* See omap_ulpd_pm_write() too */
1386         diff = s->mode & value;
1387         s->mode = value & 0x2fff;
1388         if (diff & (0x3ff << 2)) {
1389             if (value & (1 << 4)) {			/* PLL_ENABLE */
1390                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
1391                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
1392             } else {
1393                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
1394                 mult = 1;
1395             }
1396             omap_clk_setrate(s->dpll, div, mult);
1397         }
1398 
1399         /* Enter the desired mode.  */
1400         s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1401 
1402         /* Act as if the lock is restored.  */
1403         s->mode |= 2;
1404     } else {
1405         OMAP_BAD_REG(addr);
1406     }
1407 }
1408 
1409 static const MemoryRegionOps omap_dpll_ops = {
1410     .read = omap_dpll_read,
1411     .write = omap_dpll_write,
1412     .endianness = DEVICE_NATIVE_ENDIAN,
1413 };
1414 
1415 static void omap_dpll_reset(struct dpll_ctl_s *s)
1416 {
1417     s->mode = 0x2002;
1418     omap_clk_setrate(s->dpll, 1, 1);
1419 }
1420 
1421 static struct dpll_ctl_s  *omap_dpll_init(MemoryRegion *memory,
1422                            hwaddr base, omap_clk clk)
1423 {
1424     struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1425     memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1426 
1427     s->dpll = clk;
1428     omap_dpll_reset(s);
1429 
1430     memory_region_add_subregion(memory, base, &s->iomem);
1431     return s;
1432 }
1433 
1434 /* MPU Clock/Reset/Power Mode Control */
1435 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1436                                unsigned size)
1437 {
1438     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1439 
1440     if (size != 2) {
1441         return omap_badwidth_read16(opaque, addr);
1442     }
1443 
1444     switch (addr) {
1445     case 0x00:	/* ARM_CKCTL */
1446         return s->clkm.arm_ckctl;
1447 
1448     case 0x04:	/* ARM_IDLECT1 */
1449         return s->clkm.arm_idlect1;
1450 
1451     case 0x08:	/* ARM_IDLECT2 */
1452         return s->clkm.arm_idlect2;
1453 
1454     case 0x0c:	/* ARM_EWUPCT */
1455         return s->clkm.arm_ewupct;
1456 
1457     case 0x10:	/* ARM_RSTCT1 */
1458         return s->clkm.arm_rstct1;
1459 
1460     case 0x14:	/* ARM_RSTCT2 */
1461         return s->clkm.arm_rstct2;
1462 
1463     case 0x18:	/* ARM_SYSST */
1464         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1465 
1466     case 0x1c:	/* ARM_CKOUT1 */
1467         return s->clkm.arm_ckout1;
1468 
1469     case 0x20:	/* ARM_CKOUT2 */
1470         break;
1471     }
1472 
1473     OMAP_BAD_REG(addr);
1474     return 0;
1475 }
1476 
1477 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1478                 uint16_t diff, uint16_t value)
1479 {
1480     omap_clk clk;
1481 
1482     if (diff & (1 << 14)) {				/* ARM_INTHCK_SEL */
1483         if (value & (1 << 14))
1484             /* Reserved */;
1485         else {
1486             clk = omap_findclk(s, "arminth_ck");
1487             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1488         }
1489     }
1490     if (diff & (1 << 12)) {				/* ARM_TIMXO */
1491         clk = omap_findclk(s, "armtim_ck");
1492         if (value & (1 << 12))
1493             omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1494         else
1495             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1496     }
1497     /* XXX: en_dspck */
1498     if (diff & (3 << 10)) {				/* DSPMMUDIV */
1499         clk = omap_findclk(s, "dspmmu_ck");
1500         omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1501     }
1502     if (diff & (3 << 8)) {				/* TCDIV */
1503         clk = omap_findclk(s, "tc_ck");
1504         omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1505     }
1506     if (diff & (3 << 6)) {				/* DSPDIV */
1507         clk = omap_findclk(s, "dsp_ck");
1508         omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1509     }
1510     if (diff & (3 << 4)) {				/* ARMDIV */
1511         clk = omap_findclk(s, "arm_ck");
1512         omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1513     }
1514     if (diff & (3 << 2)) {				/* LCDDIV */
1515         clk = omap_findclk(s, "lcd_ck");
1516         omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1517     }
1518     if (diff & (3 << 0)) {				/* PERDIV */
1519         clk = omap_findclk(s, "armper_ck");
1520         omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1521     }
1522 }
1523 
1524 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1525                 uint16_t diff, uint16_t value)
1526 {
1527     omap_clk clk;
1528 
1529     if (value & (1 << 11)) {                            /* SETARM_IDLE */
1530         cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1531     }
1532     if (!(value & (1 << 10)))				/* WKUP_MODE */
1533         qemu_system_shutdown_request();	/* XXX: disable wakeup from IRQ */
1534 
1535 #define SET_CANIDLE(clock, bit)				\
1536     if (diff & (1 << bit)) {				\
1537         clk = omap_findclk(s, clock);			\
1538         omap_clk_canidle(clk, (value >> bit) & 1);	\
1539     }
1540     SET_CANIDLE("mpuwd_ck", 0)				/* IDLWDT_ARM */
1541     SET_CANIDLE("armxor_ck", 1)				/* IDLXORP_ARM */
1542     SET_CANIDLE("mpuper_ck", 2)				/* IDLPER_ARM */
1543     SET_CANIDLE("lcd_ck", 3)				/* IDLLCD_ARM */
1544     SET_CANIDLE("lb_ck", 4)				/* IDLLB_ARM */
1545     SET_CANIDLE("hsab_ck", 5)				/* IDLHSAB_ARM */
1546     SET_CANIDLE("tipb_ck", 6)				/* IDLIF_ARM */
1547     SET_CANIDLE("dma_ck", 6)				/* IDLIF_ARM */
1548     SET_CANIDLE("tc_ck", 6)				/* IDLIF_ARM */
1549     SET_CANIDLE("dpll1", 7)				/* IDLDPLL_ARM */
1550     SET_CANIDLE("dpll2", 7)				/* IDLDPLL_ARM */
1551     SET_CANIDLE("dpll3", 7)				/* IDLDPLL_ARM */
1552     SET_CANIDLE("mpui_ck", 8)				/* IDLAPI_ARM */
1553     SET_CANIDLE("armtim_ck", 9)				/* IDLTIM_ARM */
1554 }
1555 
1556 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1557                 uint16_t diff, uint16_t value)
1558 {
1559     omap_clk clk;
1560 
1561 #define SET_ONOFF(clock, bit)				\
1562     if (diff & (1 << bit)) {				\
1563         clk = omap_findclk(s, clock);			\
1564         omap_clk_onoff(clk, (value >> bit) & 1);	\
1565     }
1566     SET_ONOFF("mpuwd_ck", 0)				/* EN_WDTCK */
1567     SET_ONOFF("armxor_ck", 1)				/* EN_XORPCK */
1568     SET_ONOFF("mpuper_ck", 2)				/* EN_PERCK */
1569     SET_ONOFF("lcd_ck", 3)				/* EN_LCDCK */
1570     SET_ONOFF("lb_ck", 4)				/* EN_LBCK */
1571     SET_ONOFF("hsab_ck", 5)				/* EN_HSABCK */
1572     SET_ONOFF("mpui_ck", 6)				/* EN_APICK */
1573     SET_ONOFF("armtim_ck", 7)				/* EN_TIMCK */
1574     SET_CANIDLE("dma_ck", 8)				/* DMACK_REQ */
1575     SET_ONOFF("arm_gpio_ck", 9)				/* EN_GPIOCK */
1576     SET_ONOFF("lbfree_ck", 10)				/* EN_LBFREECK */
1577 }
1578 
1579 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1580                 uint16_t diff, uint16_t value)
1581 {
1582     omap_clk clk;
1583 
1584     if (diff & (3 << 4)) {				/* TCLKOUT */
1585         clk = omap_findclk(s, "tclk_out");
1586         switch ((value >> 4) & 3) {
1587         case 1:
1588             omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1589             omap_clk_onoff(clk, 1);
1590             break;
1591         case 2:
1592             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1593             omap_clk_onoff(clk, 1);
1594             break;
1595         default:
1596             omap_clk_onoff(clk, 0);
1597         }
1598     }
1599     if (diff & (3 << 2)) {				/* DCLKOUT */
1600         clk = omap_findclk(s, "dclk_out");
1601         switch ((value >> 2) & 3) {
1602         case 0:
1603             omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1604             break;
1605         case 1:
1606             omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1607             break;
1608         case 2:
1609             omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1610             break;
1611         case 3:
1612             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1613             break;
1614         }
1615     }
1616     if (diff & (3 << 0)) {				/* ACLKOUT */
1617         clk = omap_findclk(s, "aclk_out");
1618         switch ((value >> 0) & 3) {
1619         case 1:
1620             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1621             omap_clk_onoff(clk, 1);
1622             break;
1623         case 2:
1624             omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1625             omap_clk_onoff(clk, 1);
1626             break;
1627         case 3:
1628             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1629             omap_clk_onoff(clk, 1);
1630             break;
1631         default:
1632             omap_clk_onoff(clk, 0);
1633         }
1634     }
1635 }
1636 
1637 static void omap_clkm_write(void *opaque, hwaddr addr,
1638                             uint64_t value, unsigned size)
1639 {
1640     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1641     uint16_t diff;
1642     omap_clk clk;
1643     static const char *clkschemename[8] = {
1644         "fully synchronous", "fully asynchronous", "synchronous scalable",
1645         "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1646     };
1647 
1648     if (size != 2) {
1649         return omap_badwidth_write16(opaque, addr, value);
1650     }
1651 
1652     switch (addr) {
1653     case 0x00:	/* ARM_CKCTL */
1654         diff = s->clkm.arm_ckctl ^ value;
1655         s->clkm.arm_ckctl = value & 0x7fff;
1656         omap_clkm_ckctl_update(s, diff, value);
1657         return;
1658 
1659     case 0x04:	/* ARM_IDLECT1 */
1660         diff = s->clkm.arm_idlect1 ^ value;
1661         s->clkm.arm_idlect1 = value & 0x0fff;
1662         omap_clkm_idlect1_update(s, diff, value);
1663         return;
1664 
1665     case 0x08:	/* ARM_IDLECT2 */
1666         diff = s->clkm.arm_idlect2 ^ value;
1667         s->clkm.arm_idlect2 = value & 0x07ff;
1668         omap_clkm_idlect2_update(s, diff, value);
1669         return;
1670 
1671     case 0x0c:	/* ARM_EWUPCT */
1672         s->clkm.arm_ewupct = value & 0x003f;
1673         return;
1674 
1675     case 0x10:	/* ARM_RSTCT1 */
1676         diff = s->clkm.arm_rstct1 ^ value;
1677         s->clkm.arm_rstct1 = value & 0x0007;
1678         if (value & 9) {
1679             qemu_system_reset_request();
1680             s->clkm.cold_start = 0xa;
1681         }
1682         if (diff & ~value & 4) {				/* DSP_RST */
1683             omap_mpui_reset(s);
1684             omap_tipb_bridge_reset(s->private_tipb);
1685             omap_tipb_bridge_reset(s->public_tipb);
1686         }
1687         if (diff & 2) {						/* DSP_EN */
1688             clk = omap_findclk(s, "dsp_ck");
1689             omap_clk_canidle(clk, (~value >> 1) & 1);
1690         }
1691         return;
1692 
1693     case 0x14:	/* ARM_RSTCT2 */
1694         s->clkm.arm_rstct2 = value & 0x0001;
1695         return;
1696 
1697     case 0x18:	/* ARM_SYSST */
1698         if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1699             s->clkm.clocking_scheme = (value >> 11) & 7;
1700             printf("%s: clocking scheme set to %s\n", __FUNCTION__,
1701                             clkschemename[s->clkm.clocking_scheme]);
1702         }
1703         s->clkm.cold_start &= value & 0x3f;
1704         return;
1705 
1706     case 0x1c:	/* ARM_CKOUT1 */
1707         diff = s->clkm.arm_ckout1 ^ value;
1708         s->clkm.arm_ckout1 = value & 0x003f;
1709         omap_clkm_ckout1_update(s, diff, value);
1710         return;
1711 
1712     case 0x20:	/* ARM_CKOUT2 */
1713     default:
1714         OMAP_BAD_REG(addr);
1715     }
1716 }
1717 
1718 static const MemoryRegionOps omap_clkm_ops = {
1719     .read = omap_clkm_read,
1720     .write = omap_clkm_write,
1721     .endianness = DEVICE_NATIVE_ENDIAN,
1722 };
1723 
1724 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1725                                  unsigned size)
1726 {
1727     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1728     CPUState *cpu = CPU(s->cpu);
1729 
1730     if (size != 2) {
1731         return omap_badwidth_read16(opaque, addr);
1732     }
1733 
1734     switch (addr) {
1735     case 0x04:	/* DSP_IDLECT1 */
1736         return s->clkm.dsp_idlect1;
1737 
1738     case 0x08:	/* DSP_IDLECT2 */
1739         return s->clkm.dsp_idlect2;
1740 
1741     case 0x14:	/* DSP_RSTCT2 */
1742         return s->clkm.dsp_rstct2;
1743 
1744     case 0x18:	/* DSP_SYSST */
1745         cpu = CPU(s->cpu);
1746         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1747                 (cpu->halted << 6);      /* Quite useless... */
1748     }
1749 
1750     OMAP_BAD_REG(addr);
1751     return 0;
1752 }
1753 
1754 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1755                 uint16_t diff, uint16_t value)
1756 {
1757     omap_clk clk;
1758 
1759     SET_CANIDLE("dspxor_ck", 1);			/* IDLXORP_DSP */
1760 }
1761 
1762 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1763                 uint16_t diff, uint16_t value)
1764 {
1765     omap_clk clk;
1766 
1767     SET_ONOFF("dspxor_ck", 1);				/* EN_XORPCK */
1768 }
1769 
1770 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1771                               uint64_t value, unsigned size)
1772 {
1773     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1774     uint16_t diff;
1775 
1776     if (size != 2) {
1777         return omap_badwidth_write16(opaque, addr, value);
1778     }
1779 
1780     switch (addr) {
1781     case 0x04:	/* DSP_IDLECT1 */
1782         diff = s->clkm.dsp_idlect1 ^ value;
1783         s->clkm.dsp_idlect1 = value & 0x01f7;
1784         omap_clkdsp_idlect1_update(s, diff, value);
1785         break;
1786 
1787     case 0x08:	/* DSP_IDLECT2 */
1788         s->clkm.dsp_idlect2 = value & 0x0037;
1789         diff = s->clkm.dsp_idlect1 ^ value;
1790         omap_clkdsp_idlect2_update(s, diff, value);
1791         break;
1792 
1793     case 0x14:	/* DSP_RSTCT2 */
1794         s->clkm.dsp_rstct2 = value & 0x0001;
1795         break;
1796 
1797     case 0x18:	/* DSP_SYSST */
1798         s->clkm.cold_start &= value & 0x3f;
1799         break;
1800 
1801     default:
1802         OMAP_BAD_REG(addr);
1803     }
1804 }
1805 
1806 static const MemoryRegionOps omap_clkdsp_ops = {
1807     .read = omap_clkdsp_read,
1808     .write = omap_clkdsp_write,
1809     .endianness = DEVICE_NATIVE_ENDIAN,
1810 };
1811 
1812 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1813 {
1814     if (s->wdt && s->wdt->reset)
1815         s->clkm.cold_start = 0x6;
1816     s->clkm.clocking_scheme = 0;
1817     omap_clkm_ckctl_update(s, ~0, 0x3000);
1818     s->clkm.arm_ckctl = 0x3000;
1819     omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1820     s->clkm.arm_idlect1 = 0x0400;
1821     omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1822     s->clkm.arm_idlect2 = 0x0100;
1823     s->clkm.arm_ewupct = 0x003f;
1824     s->clkm.arm_rstct1 = 0x0000;
1825     s->clkm.arm_rstct2 = 0x0000;
1826     s->clkm.arm_ckout1 = 0x0015;
1827     s->clkm.dpll1_mode = 0x2002;
1828     omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1829     s->clkm.dsp_idlect1 = 0x0040;
1830     omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1831     s->clkm.dsp_idlect2 = 0x0000;
1832     s->clkm.dsp_rstct2 = 0x0000;
1833 }
1834 
1835 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1836                 hwaddr dsp_base, struct omap_mpu_state_s *s)
1837 {
1838     memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1839                           "omap-clkm", 0x100);
1840     memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1841                           "omap-clkdsp", 0x1000);
1842 
1843     s->clkm.arm_idlect1 = 0x03ff;
1844     s->clkm.arm_idlect2 = 0x0100;
1845     s->clkm.dsp_idlect1 = 0x0002;
1846     omap_clkm_reset(s);
1847     s->clkm.cold_start = 0x3a;
1848 
1849     memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1850     memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1851 }
1852 
1853 /* MPU I/O */
1854 struct omap_mpuio_s {
1855     qemu_irq irq;
1856     qemu_irq kbd_irq;
1857     qemu_irq *in;
1858     qemu_irq handler[16];
1859     qemu_irq wakeup;
1860     MemoryRegion iomem;
1861 
1862     uint16_t inputs;
1863     uint16_t outputs;
1864     uint16_t dir;
1865     uint16_t edge;
1866     uint16_t mask;
1867     uint16_t ints;
1868 
1869     uint16_t debounce;
1870     uint16_t latch;
1871     uint8_t event;
1872 
1873     uint8_t buttons[5];
1874     uint8_t row_latch;
1875     uint8_t cols;
1876     int kbd_mask;
1877     int clk;
1878 };
1879 
1880 static void omap_mpuio_set(void *opaque, int line, int level)
1881 {
1882     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1883     uint16_t prev = s->inputs;
1884 
1885     if (level)
1886         s->inputs |= 1 << line;
1887     else
1888         s->inputs &= ~(1 << line);
1889 
1890     if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1891         if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1892             s->ints |= 1 << line;
1893             qemu_irq_raise(s->irq);
1894             /* TODO: wakeup */
1895         }
1896         if ((s->event & (1 << 0)) &&		/* SET_GPIO_EVENT_MODE */
1897                 (s->event >> 1) == line)	/* PIN_SELECT */
1898             s->latch = s->inputs;
1899     }
1900 }
1901 
1902 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1903 {
1904     int i;
1905     uint8_t *row, rows = 0, cols = ~s->cols;
1906 
1907     for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1908         if (*row & cols)
1909             rows |= i;
1910 
1911     qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1912     s->row_latch = ~rows;
1913 }
1914 
1915 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1916                                 unsigned size)
1917 {
1918     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1919     int offset = addr & OMAP_MPUI_REG_MASK;
1920     uint16_t ret;
1921 
1922     if (size != 2) {
1923         return omap_badwidth_read16(opaque, addr);
1924     }
1925 
1926     switch (offset) {
1927     case 0x00:	/* INPUT_LATCH */
1928         return s->inputs;
1929 
1930     case 0x04:	/* OUTPUT_REG */
1931         return s->outputs;
1932 
1933     case 0x08:	/* IO_CNTL */
1934         return s->dir;
1935 
1936     case 0x10:	/* KBR_LATCH */
1937         return s->row_latch;
1938 
1939     case 0x14:	/* KBC_REG */
1940         return s->cols;
1941 
1942     case 0x18:	/* GPIO_EVENT_MODE_REG */
1943         return s->event;
1944 
1945     case 0x1c:	/* GPIO_INT_EDGE_REG */
1946         return s->edge;
1947 
1948     case 0x20:	/* KBD_INT */
1949         return (~s->row_latch & 0x1f) && !s->kbd_mask;
1950 
1951     case 0x24:	/* GPIO_INT */
1952         ret = s->ints;
1953         s->ints &= s->mask;
1954         if (ret)
1955             qemu_irq_lower(s->irq);
1956         return ret;
1957 
1958     case 0x28:	/* KBD_MASKIT */
1959         return s->kbd_mask;
1960 
1961     case 0x2c:	/* GPIO_MASKIT */
1962         return s->mask;
1963 
1964     case 0x30:	/* GPIO_DEBOUNCING_REG */
1965         return s->debounce;
1966 
1967     case 0x34:	/* GPIO_LATCH_REG */
1968         return s->latch;
1969     }
1970 
1971     OMAP_BAD_REG(addr);
1972     return 0;
1973 }
1974 
1975 static void omap_mpuio_write(void *opaque, hwaddr addr,
1976                              uint64_t value, unsigned size)
1977 {
1978     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1979     int offset = addr & OMAP_MPUI_REG_MASK;
1980     uint16_t diff;
1981     int ln;
1982 
1983     if (size != 2) {
1984         return omap_badwidth_write16(opaque, addr, value);
1985     }
1986 
1987     switch (offset) {
1988     case 0x04:	/* OUTPUT_REG */
1989         diff = (s->outputs ^ value) & ~s->dir;
1990         s->outputs = value;
1991         while ((ln = ffs(diff))) {
1992             ln --;
1993             if (s->handler[ln])
1994                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
1995             diff &= ~(1 << ln);
1996         }
1997         break;
1998 
1999     case 0x08:	/* IO_CNTL */
2000         diff = s->outputs & (s->dir ^ value);
2001         s->dir = value;
2002 
2003         value = s->outputs & ~s->dir;
2004         while ((ln = ffs(diff))) {
2005             ln --;
2006             if (s->handler[ln])
2007                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2008             diff &= ~(1 << ln);
2009         }
2010         break;
2011 
2012     case 0x14:	/* KBC_REG */
2013         s->cols = value;
2014         omap_mpuio_kbd_update(s);
2015         break;
2016 
2017     case 0x18:	/* GPIO_EVENT_MODE_REG */
2018         s->event = value & 0x1f;
2019         break;
2020 
2021     case 0x1c:	/* GPIO_INT_EDGE_REG */
2022         s->edge = value;
2023         break;
2024 
2025     case 0x28:	/* KBD_MASKIT */
2026         s->kbd_mask = value & 1;
2027         omap_mpuio_kbd_update(s);
2028         break;
2029 
2030     case 0x2c:	/* GPIO_MASKIT */
2031         s->mask = value;
2032         break;
2033 
2034     case 0x30:	/* GPIO_DEBOUNCING_REG */
2035         s->debounce = value & 0x1ff;
2036         break;
2037 
2038     case 0x00:	/* INPUT_LATCH */
2039     case 0x10:	/* KBR_LATCH */
2040     case 0x20:	/* KBD_INT */
2041     case 0x24:	/* GPIO_INT */
2042     case 0x34:	/* GPIO_LATCH_REG */
2043         OMAP_RO_REG(addr);
2044         return;
2045 
2046     default:
2047         OMAP_BAD_REG(addr);
2048         return;
2049     }
2050 }
2051 
2052 static const MemoryRegionOps omap_mpuio_ops  = {
2053     .read = omap_mpuio_read,
2054     .write = omap_mpuio_write,
2055     .endianness = DEVICE_NATIVE_ENDIAN,
2056 };
2057 
2058 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2059 {
2060     s->inputs = 0;
2061     s->outputs = 0;
2062     s->dir = ~0;
2063     s->event = 0;
2064     s->edge = 0;
2065     s->kbd_mask = 0;
2066     s->mask = 0;
2067     s->debounce = 0;
2068     s->latch = 0;
2069     s->ints = 0;
2070     s->row_latch = 0x1f;
2071     s->clk = 1;
2072 }
2073 
2074 static void omap_mpuio_onoff(void *opaque, int line, int on)
2075 {
2076     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2077 
2078     s->clk = on;
2079     if (on)
2080         omap_mpuio_kbd_update(s);
2081 }
2082 
2083 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2084                 hwaddr base,
2085                 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2086                 omap_clk clk)
2087 {
2088     struct omap_mpuio_s *s = (struct omap_mpuio_s *)
2089             g_malloc0(sizeof(struct omap_mpuio_s));
2090 
2091     s->irq = gpio_int;
2092     s->kbd_irq = kbd_int;
2093     s->wakeup = wakeup;
2094     s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2095     omap_mpuio_reset(s);
2096 
2097     memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2098                           "omap-mpuio", 0x800);
2099     memory_region_add_subregion(memory, base, &s->iomem);
2100 
2101     omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]);
2102 
2103     return s;
2104 }
2105 
2106 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2107 {
2108     return s->in;
2109 }
2110 
2111 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2112 {
2113     if (line >= 16 || line < 0)
2114         hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
2115     s->handler[line] = handler;
2116 }
2117 
2118 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2119 {
2120     if (row >= 5 || row < 0)
2121         hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
2122 
2123     if (down)
2124         s->buttons[row] |= 1 << col;
2125     else
2126         s->buttons[row] &= ~(1 << col);
2127 
2128     omap_mpuio_kbd_update(s);
2129 }
2130 
2131 /* MicroWire Interface */
2132 struct omap_uwire_s {
2133     MemoryRegion iomem;
2134     qemu_irq txirq;
2135     qemu_irq rxirq;
2136     qemu_irq txdrq;
2137 
2138     uint16_t txbuf;
2139     uint16_t rxbuf;
2140     uint16_t control;
2141     uint16_t setup[5];
2142 
2143     uWireSlave *chip[4];
2144 };
2145 
2146 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2147 {
2148     int chipselect = (s->control >> 10) & 3;		/* INDEX */
2149     uWireSlave *slave = s->chip[chipselect];
2150 
2151     if ((s->control >> 5) & 0x1f) {			/* NB_BITS_WR */
2152         if (s->control & (1 << 12))			/* CS_CMD */
2153             if (slave && slave->send)
2154                 slave->send(slave->opaque,
2155                                 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2156         s->control &= ~(1 << 14);			/* CSRB */
2157         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2158          * a DRQ.  When is the level IRQ supposed to be reset?  */
2159     }
2160 
2161     if ((s->control >> 0) & 0x1f) {			/* NB_BITS_RD */
2162         if (s->control & (1 << 12))			/* CS_CMD */
2163             if (slave && slave->receive)
2164                 s->rxbuf = slave->receive(slave->opaque);
2165         s->control |= 1 << 15;				/* RDRB */
2166         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2167          * a DRQ.  When is the level IRQ supposed to be reset?  */
2168     }
2169 }
2170 
2171 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2172                                 unsigned size)
2173 {
2174     struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2175     int offset = addr & OMAP_MPUI_REG_MASK;
2176 
2177     if (size != 2) {
2178         return omap_badwidth_read16(opaque, addr);
2179     }
2180 
2181     switch (offset) {
2182     case 0x00:	/* RDR */
2183         s->control &= ~(1 << 15);			/* RDRB */
2184         return s->rxbuf;
2185 
2186     case 0x04:	/* CSR */
2187         return s->control;
2188 
2189     case 0x08:	/* SR1 */
2190         return s->setup[0];
2191     case 0x0c:	/* SR2 */
2192         return s->setup[1];
2193     case 0x10:	/* SR3 */
2194         return s->setup[2];
2195     case 0x14:	/* SR4 */
2196         return s->setup[3];
2197     case 0x18:	/* SR5 */
2198         return s->setup[4];
2199     }
2200 
2201     OMAP_BAD_REG(addr);
2202     return 0;
2203 }
2204 
2205 static void omap_uwire_write(void *opaque, hwaddr addr,
2206                              uint64_t value, unsigned size)
2207 {
2208     struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2209     int offset = addr & OMAP_MPUI_REG_MASK;
2210 
2211     if (size != 2) {
2212         return omap_badwidth_write16(opaque, addr, value);
2213     }
2214 
2215     switch (offset) {
2216     case 0x00:	/* TDR */
2217         s->txbuf = value;				/* TD */
2218         if ((s->setup[4] & (1 << 2)) &&			/* AUTO_TX_EN */
2219                         ((s->setup[4] & (1 << 3)) ||	/* CS_TOGGLE_TX_EN */
2220                          (s->control & (1 << 12)))) {	/* CS_CMD */
2221             s->control |= 1 << 14;			/* CSRB */
2222             omap_uwire_transfer_start(s);
2223         }
2224         break;
2225 
2226     case 0x04:	/* CSR */
2227         s->control = value & 0x1fff;
2228         if (value & (1 << 13))				/* START */
2229             omap_uwire_transfer_start(s);
2230         break;
2231 
2232     case 0x08:	/* SR1 */
2233         s->setup[0] = value & 0x003f;
2234         break;
2235 
2236     case 0x0c:	/* SR2 */
2237         s->setup[1] = value & 0x0fc0;
2238         break;
2239 
2240     case 0x10:	/* SR3 */
2241         s->setup[2] = value & 0x0003;
2242         break;
2243 
2244     case 0x14:	/* SR4 */
2245         s->setup[3] = value & 0x0001;
2246         break;
2247 
2248     case 0x18:	/* SR5 */
2249         s->setup[4] = value & 0x000f;
2250         break;
2251 
2252     default:
2253         OMAP_BAD_REG(addr);
2254         return;
2255     }
2256 }
2257 
2258 static const MemoryRegionOps omap_uwire_ops = {
2259     .read = omap_uwire_read,
2260     .write = omap_uwire_write,
2261     .endianness = DEVICE_NATIVE_ENDIAN,
2262 };
2263 
2264 static void omap_uwire_reset(struct omap_uwire_s *s)
2265 {
2266     s->control = 0;
2267     s->setup[0] = 0;
2268     s->setup[1] = 0;
2269     s->setup[2] = 0;
2270     s->setup[3] = 0;
2271     s->setup[4] = 0;
2272 }
2273 
2274 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2275                                             hwaddr base,
2276                                             qemu_irq txirq, qemu_irq rxirq,
2277                                             qemu_irq dma,
2278                                             omap_clk clk)
2279 {
2280     struct omap_uwire_s *s = (struct omap_uwire_s *)
2281             g_malloc0(sizeof(struct omap_uwire_s));
2282 
2283     s->txirq = txirq;
2284     s->rxirq = rxirq;
2285     s->txdrq = dma;
2286     omap_uwire_reset(s);
2287 
2288     memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2289     memory_region_add_subregion(system_memory, base, &s->iomem);
2290 
2291     return s;
2292 }
2293 
2294 void omap_uwire_attach(struct omap_uwire_s *s,
2295                 uWireSlave *slave, int chipselect)
2296 {
2297     if (chipselect < 0 || chipselect > 3) {
2298         fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
2299         exit(-1);
2300     }
2301 
2302     s->chip[chipselect] = slave;
2303 }
2304 
2305 /* Pseudonoise Pulse-Width Light Modulator */
2306 struct omap_pwl_s {
2307     MemoryRegion iomem;
2308     uint8_t output;
2309     uint8_t level;
2310     uint8_t enable;
2311     int clk;
2312 };
2313 
2314 static void omap_pwl_update(struct omap_pwl_s *s)
2315 {
2316     int output = (s->clk && s->enable) ? s->level : 0;
2317 
2318     if (output != s->output) {
2319         s->output = output;
2320         printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
2321     }
2322 }
2323 
2324 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2325                               unsigned size)
2326 {
2327     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2328     int offset = addr & OMAP_MPUI_REG_MASK;
2329 
2330     if (size != 1) {
2331         return omap_badwidth_read8(opaque, addr);
2332     }
2333 
2334     switch (offset) {
2335     case 0x00:	/* PWL_LEVEL */
2336         return s->level;
2337     case 0x04:	/* PWL_CTRL */
2338         return s->enable;
2339     }
2340     OMAP_BAD_REG(addr);
2341     return 0;
2342 }
2343 
2344 static void omap_pwl_write(void *opaque, hwaddr addr,
2345                            uint64_t value, unsigned size)
2346 {
2347     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2348     int offset = addr & OMAP_MPUI_REG_MASK;
2349 
2350     if (size != 1) {
2351         return omap_badwidth_write8(opaque, addr, value);
2352     }
2353 
2354     switch (offset) {
2355     case 0x00:	/* PWL_LEVEL */
2356         s->level = value;
2357         omap_pwl_update(s);
2358         break;
2359     case 0x04:	/* PWL_CTRL */
2360         s->enable = value & 1;
2361         omap_pwl_update(s);
2362         break;
2363     default:
2364         OMAP_BAD_REG(addr);
2365         return;
2366     }
2367 }
2368 
2369 static const MemoryRegionOps omap_pwl_ops = {
2370     .read = omap_pwl_read,
2371     .write = omap_pwl_write,
2372     .endianness = DEVICE_NATIVE_ENDIAN,
2373 };
2374 
2375 static void omap_pwl_reset(struct omap_pwl_s *s)
2376 {
2377     s->output = 0;
2378     s->level = 0;
2379     s->enable = 0;
2380     s->clk = 1;
2381     omap_pwl_update(s);
2382 }
2383 
2384 static void omap_pwl_clk_update(void *opaque, int line, int on)
2385 {
2386     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2387 
2388     s->clk = on;
2389     omap_pwl_update(s);
2390 }
2391 
2392 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2393                                         hwaddr base,
2394                                         omap_clk clk)
2395 {
2396     struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2397 
2398     omap_pwl_reset(s);
2399 
2400     memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2401                           "omap-pwl", 0x800);
2402     memory_region_add_subregion(system_memory, base, &s->iomem);
2403 
2404     omap_clk_adduser(clk, qemu_allocate_irqs(omap_pwl_clk_update, s, 1)[0]);
2405     return s;
2406 }
2407 
2408 /* Pulse-Width Tone module */
2409 struct omap_pwt_s {
2410     MemoryRegion iomem;
2411     uint8_t frc;
2412     uint8_t vrc;
2413     uint8_t gcr;
2414     omap_clk clk;
2415 };
2416 
2417 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2418                               unsigned size)
2419 {
2420     struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2421     int offset = addr & OMAP_MPUI_REG_MASK;
2422 
2423     if (size != 1) {
2424         return omap_badwidth_read8(opaque, addr);
2425     }
2426 
2427     switch (offset) {
2428     case 0x00:	/* FRC */
2429         return s->frc;
2430     case 0x04:	/* VCR */
2431         return s->vrc;
2432     case 0x08:	/* GCR */
2433         return s->gcr;
2434     }
2435     OMAP_BAD_REG(addr);
2436     return 0;
2437 }
2438 
2439 static void omap_pwt_write(void *opaque, hwaddr addr,
2440                            uint64_t value, unsigned size)
2441 {
2442     struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2443     int offset = addr & OMAP_MPUI_REG_MASK;
2444 
2445     if (size != 1) {
2446         return omap_badwidth_write8(opaque, addr, value);
2447     }
2448 
2449     switch (offset) {
2450     case 0x00:	/* FRC */
2451         s->frc = value & 0x3f;
2452         break;
2453     case 0x04:	/* VRC */
2454         if ((value ^ s->vrc) & 1) {
2455             if (value & 1)
2456                 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
2457                                 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2458                                 ((omap_clk_getrate(s->clk) >> 3) /
2459                                  /* Pre-multiplexer divider */
2460                                  ((s->gcr & 2) ? 1 : 154) /
2461                                  /* Octave multiplexer */
2462                                  (2 << (value & 3)) *
2463                                  /* 101/107 divider */
2464                                  ((value & (1 << 2)) ? 101 : 107) *
2465                                  /*  49/55 divider */
2466                                  ((value & (1 << 3)) ?  49 : 55) *
2467                                  /*  50/63 divider */
2468                                  ((value & (1 << 4)) ?  50 : 63) *
2469                                  /*  80/127 divider */
2470                                  ((value & (1 << 5)) ?  80 : 127) /
2471                                  (107 * 55 * 63 * 127)));
2472             else
2473                 printf("%s: silence!\n", __FUNCTION__);
2474         }
2475         s->vrc = value & 0x7f;
2476         break;
2477     case 0x08:	/* GCR */
2478         s->gcr = value & 3;
2479         break;
2480     default:
2481         OMAP_BAD_REG(addr);
2482         return;
2483     }
2484 }
2485 
2486 static const MemoryRegionOps omap_pwt_ops = {
2487     .read =omap_pwt_read,
2488     .write = omap_pwt_write,
2489     .endianness = DEVICE_NATIVE_ENDIAN,
2490 };
2491 
2492 static void omap_pwt_reset(struct omap_pwt_s *s)
2493 {
2494     s->frc = 0;
2495     s->vrc = 0;
2496     s->gcr = 0;
2497 }
2498 
2499 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2500                                         hwaddr base,
2501                                         omap_clk clk)
2502 {
2503     struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2504     s->clk = clk;
2505     omap_pwt_reset(s);
2506 
2507     memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2508                           "omap-pwt", 0x800);
2509     memory_region_add_subregion(system_memory, base, &s->iomem);
2510     return s;
2511 }
2512 
2513 /* Real-time Clock module */
2514 struct omap_rtc_s {
2515     MemoryRegion iomem;
2516     qemu_irq irq;
2517     qemu_irq alarm;
2518     QEMUTimer *clk;
2519 
2520     uint8_t interrupts;
2521     uint8_t status;
2522     int16_t comp_reg;
2523     int running;
2524     int pm_am;
2525     int auto_comp;
2526     int round;
2527     struct tm alarm_tm;
2528     time_t alarm_ti;
2529 
2530     struct tm current_tm;
2531     time_t ti;
2532     uint64_t tick;
2533 };
2534 
2535 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2536 {
2537     /* s->alarm is level-triggered */
2538     qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2539 }
2540 
2541 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2542 {
2543     s->alarm_ti = mktimegm(&s->alarm_tm);
2544     if (s->alarm_ti == -1)
2545         printf("%s: conversion failed\n", __FUNCTION__);
2546 }
2547 
2548 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2549                               unsigned size)
2550 {
2551     struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2552     int offset = addr & OMAP_MPUI_REG_MASK;
2553     uint8_t i;
2554 
2555     if (size != 1) {
2556         return omap_badwidth_read8(opaque, addr);
2557     }
2558 
2559     switch (offset) {
2560     case 0x00:	/* SECONDS_REG */
2561         return to_bcd(s->current_tm.tm_sec);
2562 
2563     case 0x04:	/* MINUTES_REG */
2564         return to_bcd(s->current_tm.tm_min);
2565 
2566     case 0x08:	/* HOURS_REG */
2567         if (s->pm_am)
2568             return ((s->current_tm.tm_hour > 11) << 7) |
2569                     to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2570         else
2571             return to_bcd(s->current_tm.tm_hour);
2572 
2573     case 0x0c:	/* DAYS_REG */
2574         return to_bcd(s->current_tm.tm_mday);
2575 
2576     case 0x10:	/* MONTHS_REG */
2577         return to_bcd(s->current_tm.tm_mon + 1);
2578 
2579     case 0x14:	/* YEARS_REG */
2580         return to_bcd(s->current_tm.tm_year % 100);
2581 
2582     case 0x18:	/* WEEK_REG */
2583         return s->current_tm.tm_wday;
2584 
2585     case 0x20:	/* ALARM_SECONDS_REG */
2586         return to_bcd(s->alarm_tm.tm_sec);
2587 
2588     case 0x24:	/* ALARM_MINUTES_REG */
2589         return to_bcd(s->alarm_tm.tm_min);
2590 
2591     case 0x28:	/* ALARM_HOURS_REG */
2592         if (s->pm_am)
2593             return ((s->alarm_tm.tm_hour > 11) << 7) |
2594                     to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2595         else
2596             return to_bcd(s->alarm_tm.tm_hour);
2597 
2598     case 0x2c:	/* ALARM_DAYS_REG */
2599         return to_bcd(s->alarm_tm.tm_mday);
2600 
2601     case 0x30:	/* ALARM_MONTHS_REG */
2602         return to_bcd(s->alarm_tm.tm_mon + 1);
2603 
2604     case 0x34:	/* ALARM_YEARS_REG */
2605         return to_bcd(s->alarm_tm.tm_year % 100);
2606 
2607     case 0x40:	/* RTC_CTRL_REG */
2608         return (s->pm_am << 3) | (s->auto_comp << 2) |
2609                 (s->round << 1) | s->running;
2610 
2611     case 0x44:	/* RTC_STATUS_REG */
2612         i = s->status;
2613         s->status &= ~0x3d;
2614         return i;
2615 
2616     case 0x48:	/* RTC_INTERRUPTS_REG */
2617         return s->interrupts;
2618 
2619     case 0x4c:	/* RTC_COMP_LSB_REG */
2620         return ((uint16_t) s->comp_reg) & 0xff;
2621 
2622     case 0x50:	/* RTC_COMP_MSB_REG */
2623         return ((uint16_t) s->comp_reg) >> 8;
2624     }
2625 
2626     OMAP_BAD_REG(addr);
2627     return 0;
2628 }
2629 
2630 static void omap_rtc_write(void *opaque, hwaddr addr,
2631                            uint64_t value, unsigned size)
2632 {
2633     struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2634     int offset = addr & OMAP_MPUI_REG_MASK;
2635     struct tm new_tm;
2636     time_t ti[2];
2637 
2638     if (size != 1) {
2639         return omap_badwidth_write8(opaque, addr, value);
2640     }
2641 
2642     switch (offset) {
2643     case 0x00:	/* SECONDS_REG */
2644 #ifdef ALMDEBUG
2645         printf("RTC SEC_REG <-- %02x\n", value);
2646 #endif
2647         s->ti -= s->current_tm.tm_sec;
2648         s->ti += from_bcd(value);
2649         return;
2650 
2651     case 0x04:	/* MINUTES_REG */
2652 #ifdef ALMDEBUG
2653         printf("RTC MIN_REG <-- %02x\n", value);
2654 #endif
2655         s->ti -= s->current_tm.tm_min * 60;
2656         s->ti += from_bcd(value) * 60;
2657         return;
2658 
2659     case 0x08:	/* HOURS_REG */
2660 #ifdef ALMDEBUG
2661         printf("RTC HRS_REG <-- %02x\n", value);
2662 #endif
2663         s->ti -= s->current_tm.tm_hour * 3600;
2664         if (s->pm_am) {
2665             s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2666             s->ti += ((value >> 7) & 1) * 43200;
2667         } else
2668             s->ti += from_bcd(value & 0x3f) * 3600;
2669         return;
2670 
2671     case 0x0c:	/* DAYS_REG */
2672 #ifdef ALMDEBUG
2673         printf("RTC DAY_REG <-- %02x\n", value);
2674 #endif
2675         s->ti -= s->current_tm.tm_mday * 86400;
2676         s->ti += from_bcd(value) * 86400;
2677         return;
2678 
2679     case 0x10:	/* MONTHS_REG */
2680 #ifdef ALMDEBUG
2681         printf("RTC MTH_REG <-- %02x\n", value);
2682 #endif
2683         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2684         new_tm.tm_mon = from_bcd(value);
2685         ti[0] = mktimegm(&s->current_tm);
2686         ti[1] = mktimegm(&new_tm);
2687 
2688         if (ti[0] != -1 && ti[1] != -1) {
2689             s->ti -= ti[0];
2690             s->ti += ti[1];
2691         } else {
2692             /* A less accurate version */
2693             s->ti -= s->current_tm.tm_mon * 2592000;
2694             s->ti += from_bcd(value) * 2592000;
2695         }
2696         return;
2697 
2698     case 0x14:	/* YEARS_REG */
2699 #ifdef ALMDEBUG
2700         printf("RTC YRS_REG <-- %02x\n", value);
2701 #endif
2702         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2703         new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2704         ti[0] = mktimegm(&s->current_tm);
2705         ti[1] = mktimegm(&new_tm);
2706 
2707         if (ti[0] != -1 && ti[1] != -1) {
2708             s->ti -= ti[0];
2709             s->ti += ti[1];
2710         } else {
2711             /* A less accurate version */
2712             s->ti -= (s->current_tm.tm_year % 100) * 31536000;
2713             s->ti += from_bcd(value) * 31536000;
2714         }
2715         return;
2716 
2717     case 0x18:	/* WEEK_REG */
2718         return;	/* Ignored */
2719 
2720     case 0x20:	/* ALARM_SECONDS_REG */
2721 #ifdef ALMDEBUG
2722         printf("ALM SEC_REG <-- %02x\n", value);
2723 #endif
2724         s->alarm_tm.tm_sec = from_bcd(value);
2725         omap_rtc_alarm_update(s);
2726         return;
2727 
2728     case 0x24:	/* ALARM_MINUTES_REG */
2729 #ifdef ALMDEBUG
2730         printf("ALM MIN_REG <-- %02x\n", value);
2731 #endif
2732         s->alarm_tm.tm_min = from_bcd(value);
2733         omap_rtc_alarm_update(s);
2734         return;
2735 
2736     case 0x28:	/* ALARM_HOURS_REG */
2737 #ifdef ALMDEBUG
2738         printf("ALM HRS_REG <-- %02x\n", value);
2739 #endif
2740         if (s->pm_am)
2741             s->alarm_tm.tm_hour =
2742                     ((from_bcd(value & 0x3f)) % 12) +
2743                     ((value >> 7) & 1) * 12;
2744         else
2745             s->alarm_tm.tm_hour = from_bcd(value);
2746         omap_rtc_alarm_update(s);
2747         return;
2748 
2749     case 0x2c:	/* ALARM_DAYS_REG */
2750 #ifdef ALMDEBUG
2751         printf("ALM DAY_REG <-- %02x\n", value);
2752 #endif
2753         s->alarm_tm.tm_mday = from_bcd(value);
2754         omap_rtc_alarm_update(s);
2755         return;
2756 
2757     case 0x30:	/* ALARM_MONTHS_REG */
2758 #ifdef ALMDEBUG
2759         printf("ALM MON_REG <-- %02x\n", value);
2760 #endif
2761         s->alarm_tm.tm_mon = from_bcd(value);
2762         omap_rtc_alarm_update(s);
2763         return;
2764 
2765     case 0x34:	/* ALARM_YEARS_REG */
2766 #ifdef ALMDEBUG
2767         printf("ALM YRS_REG <-- %02x\n", value);
2768 #endif
2769         s->alarm_tm.tm_year = from_bcd(value);
2770         omap_rtc_alarm_update(s);
2771         return;
2772 
2773     case 0x40:	/* RTC_CTRL_REG */
2774 #ifdef ALMDEBUG
2775         printf("RTC CONTROL <-- %02x\n", value);
2776 #endif
2777         s->pm_am = (value >> 3) & 1;
2778         s->auto_comp = (value >> 2) & 1;
2779         s->round = (value >> 1) & 1;
2780         s->running = value & 1;
2781         s->status &= 0xfd;
2782         s->status |= s->running << 1;
2783         return;
2784 
2785     case 0x44:	/* RTC_STATUS_REG */
2786 #ifdef ALMDEBUG
2787         printf("RTC STATUSL <-- %02x\n", value);
2788 #endif
2789         s->status &= ~((value & 0xc0) ^ 0x80);
2790         omap_rtc_interrupts_update(s);
2791         return;
2792 
2793     case 0x48:	/* RTC_INTERRUPTS_REG */
2794 #ifdef ALMDEBUG
2795         printf("RTC INTRS <-- %02x\n", value);
2796 #endif
2797         s->interrupts = value;
2798         return;
2799 
2800     case 0x4c:	/* RTC_COMP_LSB_REG */
2801 #ifdef ALMDEBUG
2802         printf("RTC COMPLSB <-- %02x\n", value);
2803 #endif
2804         s->comp_reg &= 0xff00;
2805         s->comp_reg |= 0x00ff & value;
2806         return;
2807 
2808     case 0x50:	/* RTC_COMP_MSB_REG */
2809 #ifdef ALMDEBUG
2810         printf("RTC COMPMSB <-- %02x\n", value);
2811 #endif
2812         s->comp_reg &= 0x00ff;
2813         s->comp_reg |= 0xff00 & (value << 8);
2814         return;
2815 
2816     default:
2817         OMAP_BAD_REG(addr);
2818         return;
2819     }
2820 }
2821 
2822 static const MemoryRegionOps omap_rtc_ops = {
2823     .read = omap_rtc_read,
2824     .write = omap_rtc_write,
2825     .endianness = DEVICE_NATIVE_ENDIAN,
2826 };
2827 
2828 static void omap_rtc_tick(void *opaque)
2829 {
2830     struct omap_rtc_s *s = opaque;
2831 
2832     if (s->round) {
2833         /* Round to nearest full minute.  */
2834         if (s->current_tm.tm_sec < 30)
2835             s->ti -= s->current_tm.tm_sec;
2836         else
2837             s->ti += 60 - s->current_tm.tm_sec;
2838 
2839         s->round = 0;
2840     }
2841 
2842     localtime_r(&s->ti, &s->current_tm);
2843 
2844     if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2845         s->status |= 0x40;
2846         omap_rtc_interrupts_update(s);
2847     }
2848 
2849     if (s->interrupts & 0x04)
2850         switch (s->interrupts & 3) {
2851         case 0:
2852             s->status |= 0x04;
2853             qemu_irq_pulse(s->irq);
2854             break;
2855         case 1:
2856             if (s->current_tm.tm_sec)
2857                 break;
2858             s->status |= 0x08;
2859             qemu_irq_pulse(s->irq);
2860             break;
2861         case 2:
2862             if (s->current_tm.tm_sec || s->current_tm.tm_min)
2863                 break;
2864             s->status |= 0x10;
2865             qemu_irq_pulse(s->irq);
2866             break;
2867         case 3:
2868             if (s->current_tm.tm_sec ||
2869                             s->current_tm.tm_min || s->current_tm.tm_hour)
2870                 break;
2871             s->status |= 0x20;
2872             qemu_irq_pulse(s->irq);
2873             break;
2874         }
2875 
2876     /* Move on */
2877     if (s->running)
2878         s->ti ++;
2879     s->tick += 1000;
2880 
2881     /*
2882      * Every full hour add a rough approximation of the compensation
2883      * register to the 32kHz Timer (which drives the RTC) value.
2884      */
2885     if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2886         s->tick += s->comp_reg * 1000 / 32768;
2887 
2888     timer_mod(s->clk, s->tick);
2889 }
2890 
2891 static void omap_rtc_reset(struct omap_rtc_s *s)
2892 {
2893     struct tm tm;
2894 
2895     s->interrupts = 0;
2896     s->comp_reg = 0;
2897     s->running = 0;
2898     s->pm_am = 0;
2899     s->auto_comp = 0;
2900     s->round = 0;
2901     s->tick = qemu_clock_get_ms(rtc_clock);
2902     memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2903     s->alarm_tm.tm_mday = 0x01;
2904     s->status = 1 << 7;
2905     qemu_get_timedate(&tm, 0);
2906     s->ti = mktimegm(&tm);
2907 
2908     omap_rtc_alarm_update(s);
2909     omap_rtc_tick(s);
2910 }
2911 
2912 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2913                                         hwaddr base,
2914                                         qemu_irq timerirq, qemu_irq alarmirq,
2915                                         omap_clk clk)
2916 {
2917     struct omap_rtc_s *s = (struct omap_rtc_s *)
2918             g_malloc0(sizeof(struct omap_rtc_s));
2919 
2920     s->irq = timerirq;
2921     s->alarm = alarmirq;
2922     s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2923 
2924     omap_rtc_reset(s);
2925 
2926     memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2927                           "omap-rtc", 0x800);
2928     memory_region_add_subregion(system_memory, base, &s->iomem);
2929 
2930     return s;
2931 }
2932 
2933 /* Multi-channel Buffered Serial Port interfaces */
2934 struct omap_mcbsp_s {
2935     MemoryRegion iomem;
2936     qemu_irq txirq;
2937     qemu_irq rxirq;
2938     qemu_irq txdrq;
2939     qemu_irq rxdrq;
2940 
2941     uint16_t spcr[2];
2942     uint16_t rcr[2];
2943     uint16_t xcr[2];
2944     uint16_t srgr[2];
2945     uint16_t mcr[2];
2946     uint16_t pcr;
2947     uint16_t rcer[8];
2948     uint16_t xcer[8];
2949     int tx_rate;
2950     int rx_rate;
2951     int tx_req;
2952     int rx_req;
2953 
2954     I2SCodec *codec;
2955     QEMUTimer *source_timer;
2956     QEMUTimer *sink_timer;
2957 };
2958 
2959 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2960 {
2961     int irq;
2962 
2963     switch ((s->spcr[0] >> 4) & 3) {			/* RINTM */
2964     case 0:
2965         irq = (s->spcr[0] >> 1) & 1;			/* RRDY */
2966         break;
2967     case 3:
2968         irq = (s->spcr[0] >> 3) & 1;			/* RSYNCERR */
2969         break;
2970     default:
2971         irq = 0;
2972         break;
2973     }
2974 
2975     if (irq)
2976         qemu_irq_pulse(s->rxirq);
2977 
2978     switch ((s->spcr[1] >> 4) & 3) {			/* XINTM */
2979     case 0:
2980         irq = (s->spcr[1] >> 1) & 1;			/* XRDY */
2981         break;
2982     case 3:
2983         irq = (s->spcr[1] >> 3) & 1;			/* XSYNCERR */
2984         break;
2985     default:
2986         irq = 0;
2987         break;
2988     }
2989 
2990     if (irq)
2991         qemu_irq_pulse(s->txirq);
2992 }
2993 
2994 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
2995 {
2996     if ((s->spcr[0] >> 1) & 1)				/* RRDY */
2997         s->spcr[0] |= 1 << 2;				/* RFULL */
2998     s->spcr[0] |= 1 << 1;				/* RRDY */
2999     qemu_irq_raise(s->rxdrq);
3000     omap_mcbsp_intr_update(s);
3001 }
3002 
3003 static void omap_mcbsp_source_tick(void *opaque)
3004 {
3005     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3006     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3007 
3008     if (!s->rx_rate)
3009         return;
3010     if (s->rx_req)
3011         printf("%s: Rx FIFO overrun\n", __FUNCTION__);
3012 
3013     s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3014 
3015     omap_mcbsp_rx_newdata(s);
3016     timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3017                    get_ticks_per_sec());
3018 }
3019 
3020 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3021 {
3022     if (!s->codec || !s->codec->rts)
3023         omap_mcbsp_source_tick(s);
3024     else if (s->codec->in.len) {
3025         s->rx_req = s->codec->in.len;
3026         omap_mcbsp_rx_newdata(s);
3027     }
3028 }
3029 
3030 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3031 {
3032     timer_del(s->source_timer);
3033 }
3034 
3035 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3036 {
3037     s->spcr[0] &= ~(1 << 1);				/* RRDY */
3038     qemu_irq_lower(s->rxdrq);
3039     omap_mcbsp_intr_update(s);
3040 }
3041 
3042 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3043 {
3044     s->spcr[1] |= 1 << 1;				/* XRDY */
3045     qemu_irq_raise(s->txdrq);
3046     omap_mcbsp_intr_update(s);
3047 }
3048 
3049 static void omap_mcbsp_sink_tick(void *opaque)
3050 {
3051     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3052     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3053 
3054     if (!s->tx_rate)
3055         return;
3056     if (s->tx_req)
3057         printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3058 
3059     s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3060 
3061     omap_mcbsp_tx_newdata(s);
3062     timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3063                    get_ticks_per_sec());
3064 }
3065 
3066 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3067 {
3068     if (!s->codec || !s->codec->cts)
3069         omap_mcbsp_sink_tick(s);
3070     else if (s->codec->out.size) {
3071         s->tx_req = s->codec->out.size;
3072         omap_mcbsp_tx_newdata(s);
3073     }
3074 }
3075 
3076 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3077 {
3078     s->spcr[1] &= ~(1 << 1);				/* XRDY */
3079     qemu_irq_lower(s->txdrq);
3080     omap_mcbsp_intr_update(s);
3081     if (s->codec && s->codec->cts)
3082         s->codec->tx_swallow(s->codec->opaque);
3083 }
3084 
3085 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3086 {
3087     s->tx_req = 0;
3088     omap_mcbsp_tx_done(s);
3089     timer_del(s->sink_timer);
3090 }
3091 
3092 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3093 {
3094     int prev_rx_rate, prev_tx_rate;
3095     int rx_rate = 0, tx_rate = 0;
3096     int cpu_rate = 1500000;	/* XXX */
3097 
3098     /* TODO: check CLKSTP bit */
3099     if (s->spcr[1] & (1 << 6)) {			/* GRST */
3100         if (s->spcr[0] & (1 << 0)) {			/* RRST */
3101             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
3102                             (s->pcr & (1 << 8))) {	/* CLKRM */
3103                 if (~s->pcr & (1 << 7))			/* SCLKME */
3104                     rx_rate = cpu_rate /
3105                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
3106             } else
3107                 if (s->codec)
3108                     rx_rate = s->codec->rx_rate;
3109         }
3110 
3111         if (s->spcr[1] & (1 << 0)) {			/* XRST */
3112             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
3113                             (s->pcr & (1 << 9))) {	/* CLKXM */
3114                 if (~s->pcr & (1 << 7))			/* SCLKME */
3115                     tx_rate = cpu_rate /
3116                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
3117             } else
3118                 if (s->codec)
3119                     tx_rate = s->codec->tx_rate;
3120         }
3121     }
3122     prev_tx_rate = s->tx_rate;
3123     prev_rx_rate = s->rx_rate;
3124     s->tx_rate = tx_rate;
3125     s->rx_rate = rx_rate;
3126 
3127     if (s->codec)
3128         s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3129 
3130     if (!prev_tx_rate && tx_rate)
3131         omap_mcbsp_tx_start(s);
3132     else if (s->tx_rate && !tx_rate)
3133         omap_mcbsp_tx_stop(s);
3134 
3135     if (!prev_rx_rate && rx_rate)
3136         omap_mcbsp_rx_start(s);
3137     else if (prev_tx_rate && !tx_rate)
3138         omap_mcbsp_rx_stop(s);
3139 }
3140 
3141 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3142                                 unsigned size)
3143 {
3144     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3145     int offset = addr & OMAP_MPUI_REG_MASK;
3146     uint16_t ret;
3147 
3148     if (size != 2) {
3149         return omap_badwidth_read16(opaque, addr);
3150     }
3151 
3152     switch (offset) {
3153     case 0x00:	/* DRR2 */
3154         if (((s->rcr[0] >> 5) & 7) < 3)			/* RWDLEN1 */
3155             return 0x0000;
3156         /* Fall through.  */
3157     case 0x02:	/* DRR1 */
3158         if (s->rx_req < 2) {
3159             printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3160             omap_mcbsp_rx_done(s);
3161         } else {
3162             s->tx_req -= 2;
3163             if (s->codec && s->codec->in.len >= 2) {
3164                 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3165                 ret |= s->codec->in.fifo[s->codec->in.start ++];
3166                 s->codec->in.len -= 2;
3167             } else
3168                 ret = 0x0000;
3169             if (!s->tx_req)
3170                 omap_mcbsp_rx_done(s);
3171             return ret;
3172         }
3173         return 0x0000;
3174 
3175     case 0x04:	/* DXR2 */
3176     case 0x06:	/* DXR1 */
3177         return 0x0000;
3178 
3179     case 0x08:	/* SPCR2 */
3180         return s->spcr[1];
3181     case 0x0a:	/* SPCR1 */
3182         return s->spcr[0];
3183     case 0x0c:	/* RCR2 */
3184         return s->rcr[1];
3185     case 0x0e:	/* RCR1 */
3186         return s->rcr[0];
3187     case 0x10:	/* XCR2 */
3188         return s->xcr[1];
3189     case 0x12:	/* XCR1 */
3190         return s->xcr[0];
3191     case 0x14:	/* SRGR2 */
3192         return s->srgr[1];
3193     case 0x16:	/* SRGR1 */
3194         return s->srgr[0];
3195     case 0x18:	/* MCR2 */
3196         return s->mcr[1];
3197     case 0x1a:	/* MCR1 */
3198         return s->mcr[0];
3199     case 0x1c:	/* RCERA */
3200         return s->rcer[0];
3201     case 0x1e:	/* RCERB */
3202         return s->rcer[1];
3203     case 0x20:	/* XCERA */
3204         return s->xcer[0];
3205     case 0x22:	/* XCERB */
3206         return s->xcer[1];
3207     case 0x24:	/* PCR0 */
3208         return s->pcr;
3209     case 0x26:	/* RCERC */
3210         return s->rcer[2];
3211     case 0x28:	/* RCERD */
3212         return s->rcer[3];
3213     case 0x2a:	/* XCERC */
3214         return s->xcer[2];
3215     case 0x2c:	/* XCERD */
3216         return s->xcer[3];
3217     case 0x2e:	/* RCERE */
3218         return s->rcer[4];
3219     case 0x30:	/* RCERF */
3220         return s->rcer[5];
3221     case 0x32:	/* XCERE */
3222         return s->xcer[4];
3223     case 0x34:	/* XCERF */
3224         return s->xcer[5];
3225     case 0x36:	/* RCERG */
3226         return s->rcer[6];
3227     case 0x38:	/* RCERH */
3228         return s->rcer[7];
3229     case 0x3a:	/* XCERG */
3230         return s->xcer[6];
3231     case 0x3c:	/* XCERH */
3232         return s->xcer[7];
3233     }
3234 
3235     OMAP_BAD_REG(addr);
3236     return 0;
3237 }
3238 
3239 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3240                 uint32_t value)
3241 {
3242     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3243     int offset = addr & OMAP_MPUI_REG_MASK;
3244 
3245     switch (offset) {
3246     case 0x00:	/* DRR2 */
3247     case 0x02:	/* DRR1 */
3248         OMAP_RO_REG(addr);
3249         return;
3250 
3251     case 0x04:	/* DXR2 */
3252         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
3253             return;
3254         /* Fall through.  */
3255     case 0x06:	/* DXR1 */
3256         if (s->tx_req > 1) {
3257             s->tx_req -= 2;
3258             if (s->codec && s->codec->cts) {
3259                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3260                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3261             }
3262             if (s->tx_req < 2)
3263                 omap_mcbsp_tx_done(s);
3264         } else
3265             printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3266         return;
3267 
3268     case 0x08:	/* SPCR2 */
3269         s->spcr[1] &= 0x0002;
3270         s->spcr[1] |= 0x03f9 & value;
3271         s->spcr[1] |= 0x0004 & (value << 2);		/* XEMPTY := XRST */
3272         if (~value & 1)					/* XRST */
3273             s->spcr[1] &= ~6;
3274         omap_mcbsp_req_update(s);
3275         return;
3276     case 0x0a:	/* SPCR1 */
3277         s->spcr[0] &= 0x0006;
3278         s->spcr[0] |= 0xf8f9 & value;
3279         if (value & (1 << 15))				/* DLB */
3280             printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
3281         if (~value & 1) {				/* RRST */
3282             s->spcr[0] &= ~6;
3283             s->rx_req = 0;
3284             omap_mcbsp_rx_done(s);
3285         }
3286         omap_mcbsp_req_update(s);
3287         return;
3288 
3289     case 0x0c:	/* RCR2 */
3290         s->rcr[1] = value & 0xffff;
3291         return;
3292     case 0x0e:	/* RCR1 */
3293         s->rcr[0] = value & 0x7fe0;
3294         return;
3295     case 0x10:	/* XCR2 */
3296         s->xcr[1] = value & 0xffff;
3297         return;
3298     case 0x12:	/* XCR1 */
3299         s->xcr[0] = value & 0x7fe0;
3300         return;
3301     case 0x14:	/* SRGR2 */
3302         s->srgr[1] = value & 0xffff;
3303         omap_mcbsp_req_update(s);
3304         return;
3305     case 0x16:	/* SRGR1 */
3306         s->srgr[0] = value & 0xffff;
3307         omap_mcbsp_req_update(s);
3308         return;
3309     case 0x18:	/* MCR2 */
3310         s->mcr[1] = value & 0x03e3;
3311         if (value & 3)					/* XMCM */
3312             printf("%s: Tx channel selection mode enable attempt\n",
3313                             __FUNCTION__);
3314         return;
3315     case 0x1a:	/* MCR1 */
3316         s->mcr[0] = value & 0x03e1;
3317         if (value & 1)					/* RMCM */
3318             printf("%s: Rx channel selection mode enable attempt\n",
3319                             __FUNCTION__);
3320         return;
3321     case 0x1c:	/* RCERA */
3322         s->rcer[0] = value & 0xffff;
3323         return;
3324     case 0x1e:	/* RCERB */
3325         s->rcer[1] = value & 0xffff;
3326         return;
3327     case 0x20:	/* XCERA */
3328         s->xcer[0] = value & 0xffff;
3329         return;
3330     case 0x22:	/* XCERB */
3331         s->xcer[1] = value & 0xffff;
3332         return;
3333     case 0x24:	/* PCR0 */
3334         s->pcr = value & 0x7faf;
3335         return;
3336     case 0x26:	/* RCERC */
3337         s->rcer[2] = value & 0xffff;
3338         return;
3339     case 0x28:	/* RCERD */
3340         s->rcer[3] = value & 0xffff;
3341         return;
3342     case 0x2a:	/* XCERC */
3343         s->xcer[2] = value & 0xffff;
3344         return;
3345     case 0x2c:	/* XCERD */
3346         s->xcer[3] = value & 0xffff;
3347         return;
3348     case 0x2e:	/* RCERE */
3349         s->rcer[4] = value & 0xffff;
3350         return;
3351     case 0x30:	/* RCERF */
3352         s->rcer[5] = value & 0xffff;
3353         return;
3354     case 0x32:	/* XCERE */
3355         s->xcer[4] = value & 0xffff;
3356         return;
3357     case 0x34:	/* XCERF */
3358         s->xcer[5] = value & 0xffff;
3359         return;
3360     case 0x36:	/* RCERG */
3361         s->rcer[6] = value & 0xffff;
3362         return;
3363     case 0x38:	/* RCERH */
3364         s->rcer[7] = value & 0xffff;
3365         return;
3366     case 0x3a:	/* XCERG */
3367         s->xcer[6] = value & 0xffff;
3368         return;
3369     case 0x3c:	/* XCERH */
3370         s->xcer[7] = value & 0xffff;
3371         return;
3372     }
3373 
3374     OMAP_BAD_REG(addr);
3375 }
3376 
3377 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3378                 uint32_t value)
3379 {
3380     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3381     int offset = addr & OMAP_MPUI_REG_MASK;
3382 
3383     if (offset == 0x04) {				/* DXR */
3384         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
3385             return;
3386         if (s->tx_req > 3) {
3387             s->tx_req -= 4;
3388             if (s->codec && s->codec->cts) {
3389                 s->codec->out.fifo[s->codec->out.len ++] =
3390                         (value >> 24) & 0xff;
3391                 s->codec->out.fifo[s->codec->out.len ++] =
3392                         (value >> 16) & 0xff;
3393                 s->codec->out.fifo[s->codec->out.len ++] =
3394                         (value >> 8) & 0xff;
3395                 s->codec->out.fifo[s->codec->out.len ++] =
3396                         (value >> 0) & 0xff;
3397             }
3398             if (s->tx_req < 4)
3399                 omap_mcbsp_tx_done(s);
3400         } else
3401             printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3402         return;
3403     }
3404 
3405     omap_badwidth_write16(opaque, addr, value);
3406 }
3407 
3408 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3409                              uint64_t value, unsigned size)
3410 {
3411     switch (size) {
3412     case 2: return omap_mcbsp_writeh(opaque, addr, value);
3413     case 4: return omap_mcbsp_writew(opaque, addr, value);
3414     default: return omap_badwidth_write16(opaque, addr, value);
3415     }
3416 }
3417 
3418 static const MemoryRegionOps omap_mcbsp_ops = {
3419     .read = omap_mcbsp_read,
3420     .write = omap_mcbsp_write,
3421     .endianness = DEVICE_NATIVE_ENDIAN,
3422 };
3423 
3424 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3425 {
3426     memset(&s->spcr, 0, sizeof(s->spcr));
3427     memset(&s->rcr, 0, sizeof(s->rcr));
3428     memset(&s->xcr, 0, sizeof(s->xcr));
3429     s->srgr[0] = 0x0001;
3430     s->srgr[1] = 0x2000;
3431     memset(&s->mcr, 0, sizeof(s->mcr));
3432     memset(&s->pcr, 0, sizeof(s->pcr));
3433     memset(&s->rcer, 0, sizeof(s->rcer));
3434     memset(&s->xcer, 0, sizeof(s->xcer));
3435     s->tx_req = 0;
3436     s->rx_req = 0;
3437     s->tx_rate = 0;
3438     s->rx_rate = 0;
3439     timer_del(s->source_timer);
3440     timer_del(s->sink_timer);
3441 }
3442 
3443 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3444                                             hwaddr base,
3445                                             qemu_irq txirq, qemu_irq rxirq,
3446                                             qemu_irq *dma, omap_clk clk)
3447 {
3448     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *)
3449             g_malloc0(sizeof(struct omap_mcbsp_s));
3450 
3451     s->txirq = txirq;
3452     s->rxirq = rxirq;
3453     s->txdrq = dma[0];
3454     s->rxdrq = dma[1];
3455     s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3456     s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3457     omap_mcbsp_reset(s);
3458 
3459     memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3460     memory_region_add_subregion(system_memory, base, &s->iomem);
3461 
3462     return s;
3463 }
3464 
3465 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3466 {
3467     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3468 
3469     if (s->rx_rate) {
3470         s->rx_req = s->codec->in.len;
3471         omap_mcbsp_rx_newdata(s);
3472     }
3473 }
3474 
3475 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3476 {
3477     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3478 
3479     if (s->tx_rate) {
3480         s->tx_req = s->codec->out.size;
3481         omap_mcbsp_tx_newdata(s);
3482     }
3483 }
3484 
3485 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3486 {
3487     s->codec = slave;
3488     slave->rx_swallow = qemu_allocate_irqs(omap_mcbsp_i2s_swallow, s, 1)[0];
3489     slave->tx_start = qemu_allocate_irqs(omap_mcbsp_i2s_start, s, 1)[0];
3490 }
3491 
3492 /* LED Pulse Generators */
3493 struct omap_lpg_s {
3494     MemoryRegion iomem;
3495     QEMUTimer *tm;
3496 
3497     uint8_t control;
3498     uint8_t power;
3499     int64_t on;
3500     int64_t period;
3501     int clk;
3502     int cycle;
3503 };
3504 
3505 static void omap_lpg_tick(void *opaque)
3506 {
3507     struct omap_lpg_s *s = opaque;
3508 
3509     if (s->cycle)
3510         timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3511     else
3512         timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3513 
3514     s->cycle = !s->cycle;
3515     printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
3516 }
3517 
3518 static void omap_lpg_update(struct omap_lpg_s *s)
3519 {
3520     int64_t on, period = 1, ticks = 1000;
3521     static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3522 
3523     if (~s->control & (1 << 6))					/* LPGRES */
3524         on = 0;
3525     else if (s->control & (1 << 7))				/* PERM_ON */
3526         on = period;
3527     else {
3528         period = muldiv64(ticks, per[s->control & 7],		/* PERCTRL */
3529                         256 / 32);
3530         on = (s->clk && s->power) ? muldiv64(ticks,
3531                         per[(s->control >> 3) & 7], 256) : 0;	/* ONCTRL */
3532     }
3533 
3534     timer_del(s->tm);
3535     if (on == period && s->on < s->period)
3536         printf("%s: LED is on\n", __FUNCTION__);
3537     else if (on == 0 && s->on)
3538         printf("%s: LED is off\n", __FUNCTION__);
3539     else if (on && (on != s->on || period != s->period)) {
3540         s->cycle = 0;
3541         s->on = on;
3542         s->period = period;
3543         omap_lpg_tick(s);
3544         return;
3545     }
3546 
3547     s->on = on;
3548     s->period = period;
3549 }
3550 
3551 static void omap_lpg_reset(struct omap_lpg_s *s)
3552 {
3553     s->control = 0x00;
3554     s->power = 0x00;
3555     s->clk = 1;
3556     omap_lpg_update(s);
3557 }
3558 
3559 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3560                               unsigned size)
3561 {
3562     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3563     int offset = addr & OMAP_MPUI_REG_MASK;
3564 
3565     if (size != 1) {
3566         return omap_badwidth_read8(opaque, addr);
3567     }
3568 
3569     switch (offset) {
3570     case 0x00:	/* LCR */
3571         return s->control;
3572 
3573     case 0x04:	/* PMR */
3574         return s->power;
3575     }
3576 
3577     OMAP_BAD_REG(addr);
3578     return 0;
3579 }
3580 
3581 static void omap_lpg_write(void *opaque, hwaddr addr,
3582                            uint64_t value, unsigned size)
3583 {
3584     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3585     int offset = addr & OMAP_MPUI_REG_MASK;
3586 
3587     if (size != 1) {
3588         return omap_badwidth_write8(opaque, addr, value);
3589     }
3590 
3591     switch (offset) {
3592     case 0x00:	/* LCR */
3593         if (~value & (1 << 6))					/* LPGRES */
3594             omap_lpg_reset(s);
3595         s->control = value & 0xff;
3596         omap_lpg_update(s);
3597         return;
3598 
3599     case 0x04:	/* PMR */
3600         s->power = value & 0x01;
3601         omap_lpg_update(s);
3602         return;
3603 
3604     default:
3605         OMAP_BAD_REG(addr);
3606         return;
3607     }
3608 }
3609 
3610 static const MemoryRegionOps omap_lpg_ops = {
3611     .read = omap_lpg_read,
3612     .write = omap_lpg_write,
3613     .endianness = DEVICE_NATIVE_ENDIAN,
3614 };
3615 
3616 static void omap_lpg_clk_update(void *opaque, int line, int on)
3617 {
3618     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3619 
3620     s->clk = on;
3621     omap_lpg_update(s);
3622 }
3623 
3624 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3625                                         hwaddr base, omap_clk clk)
3626 {
3627     struct omap_lpg_s *s = (struct omap_lpg_s *)
3628             g_malloc0(sizeof(struct omap_lpg_s));
3629 
3630     s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3631 
3632     omap_lpg_reset(s);
3633 
3634     memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3635     memory_region_add_subregion(system_memory, base, &s->iomem);
3636 
3637     omap_clk_adduser(clk, qemu_allocate_irqs(omap_lpg_clk_update, s, 1)[0]);
3638 
3639     return s;
3640 }
3641 
3642 /* MPUI Peripheral Bridge configuration */
3643 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3644                                   unsigned size)
3645 {
3646     if (size != 2) {
3647         return omap_badwidth_read16(opaque, addr);
3648     }
3649 
3650     if (addr == OMAP_MPUI_BASE)	/* CMR */
3651         return 0xfe4d;
3652 
3653     OMAP_BAD_REG(addr);
3654     return 0;
3655 }
3656 
3657 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3658                                uint64_t value, unsigned size)
3659 {
3660     /* FIXME: infinite loop */
3661     omap_badwidth_write16(opaque, addr, value);
3662 }
3663 
3664 static const MemoryRegionOps omap_mpui_io_ops = {
3665     .read = omap_mpui_io_read,
3666     .write = omap_mpui_io_write,
3667     .endianness = DEVICE_NATIVE_ENDIAN,
3668 };
3669 
3670 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3671                                struct omap_mpu_state_s *mpu)
3672 {
3673     memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3674                           "omap-mpui-io", 0x7fff);
3675     memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3676                                 &mpu->mpui_io_iomem);
3677 }
3678 
3679 /* General chip reset */
3680 static void omap1_mpu_reset(void *opaque)
3681 {
3682     struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3683 
3684     omap_dma_reset(mpu->dma);
3685     omap_mpu_timer_reset(mpu->timer[0]);
3686     omap_mpu_timer_reset(mpu->timer[1]);
3687     omap_mpu_timer_reset(mpu->timer[2]);
3688     omap_wd_timer_reset(mpu->wdt);
3689     omap_os_timer_reset(mpu->os_timer);
3690     omap_lcdc_reset(mpu->lcd);
3691     omap_ulpd_pm_reset(mpu);
3692     omap_pin_cfg_reset(mpu);
3693     omap_mpui_reset(mpu);
3694     omap_tipb_bridge_reset(mpu->private_tipb);
3695     omap_tipb_bridge_reset(mpu->public_tipb);
3696     omap_dpll_reset(mpu->dpll[0]);
3697     omap_dpll_reset(mpu->dpll[1]);
3698     omap_dpll_reset(mpu->dpll[2]);
3699     omap_uart_reset(mpu->uart[0]);
3700     omap_uart_reset(mpu->uart[1]);
3701     omap_uart_reset(mpu->uart[2]);
3702     omap_mmc_reset(mpu->mmc);
3703     omap_mpuio_reset(mpu->mpuio);
3704     omap_uwire_reset(mpu->microwire);
3705     omap_pwl_reset(mpu->pwl);
3706     omap_pwt_reset(mpu->pwt);
3707     omap_rtc_reset(mpu->rtc);
3708     omap_mcbsp_reset(mpu->mcbsp1);
3709     omap_mcbsp_reset(mpu->mcbsp2);
3710     omap_mcbsp_reset(mpu->mcbsp3);
3711     omap_lpg_reset(mpu->led[0]);
3712     omap_lpg_reset(mpu->led[1]);
3713     omap_clkm_reset(mpu);
3714     cpu_reset(CPU(mpu->cpu));
3715 }
3716 
3717 static const struct omap_map_s {
3718     hwaddr phys_dsp;
3719     hwaddr phys_mpu;
3720     uint32_t size;
3721     const char *name;
3722 } omap15xx_dsp_mm[] = {
3723     /* Strobe 0 */
3724     { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" },		/* CS0 */
3725     { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" },		/* CS1 */
3726     { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" },		/* CS3 */
3727     { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" },	/* CS4 */
3728     { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" },	/* CS5 */
3729     { 0xe1013000, 0xfffb3000, 0x800, "uWire" },			/* CS6 */
3730     { 0xe1013800, 0xfffb3800, 0x800, "I^2C" },			/* CS7 */
3731     { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" },		/* CS8 */
3732     { 0xe1014800, 0xfffb4800, 0x800, "RTC" },			/* CS9 */
3733     { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" },			/* CS10 */
3734     { 0xe1015800, 0xfffb5800, 0x800, "PWL" },			/* CS11 */
3735     { 0xe1016000, 0xfffb6000, 0x800, "PWT" },			/* CS12 */
3736     { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" },		/* CS14 */
3737     { 0xe1017800, 0xfffb7800, 0x800, "MMC" },			/* CS15 */
3738     { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" },		/* CS18 */
3739     { 0xe1019800, 0xfffb9800, 0x800, "UART3" },			/* CS19 */
3740     { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" },		/* CS25 */
3741     /* Strobe 1 */
3742     { 0xe101e000, 0xfffce000, 0x800, "GPIOs" },			/* CS28 */
3743 
3744     { 0 }
3745 };
3746 
3747 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3748                                    const struct omap_map_s *map)
3749 {
3750     MemoryRegion *io;
3751 
3752     for (; map->phys_dsp; map ++) {
3753         io = g_new(MemoryRegion, 1);
3754         memory_region_init_alias(io, NULL, map->name,
3755                                  system_memory, map->phys_mpu, map->size);
3756         memory_region_add_subregion(system_memory, map->phys_dsp, io);
3757     }
3758 }
3759 
3760 void omap_mpu_wakeup(void *opaque, int irq, int req)
3761 {
3762     struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3763     CPUState *cpu = CPU(mpu->cpu);
3764 
3765     if (cpu->halted) {
3766         cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3767     }
3768 }
3769 
3770 static const struct dma_irq_map omap1_dma_irq_map[] = {
3771     { 0, OMAP_INT_DMA_CH0_6 },
3772     { 0, OMAP_INT_DMA_CH1_7 },
3773     { 0, OMAP_INT_DMA_CH2_8 },
3774     { 0, OMAP_INT_DMA_CH3 },
3775     { 0, OMAP_INT_DMA_CH4 },
3776     { 0, OMAP_INT_DMA_CH5 },
3777     { 1, OMAP_INT_1610_DMA_CH6 },
3778     { 1, OMAP_INT_1610_DMA_CH7 },
3779     { 1, OMAP_INT_1610_DMA_CH8 },
3780     { 1, OMAP_INT_1610_DMA_CH9 },
3781     { 1, OMAP_INT_1610_DMA_CH10 },
3782     { 1, OMAP_INT_1610_DMA_CH11 },
3783     { 1, OMAP_INT_1610_DMA_CH12 },
3784     { 1, OMAP_INT_1610_DMA_CH13 },
3785     { 1, OMAP_INT_1610_DMA_CH14 },
3786     { 1, OMAP_INT_1610_DMA_CH15 }
3787 };
3788 
3789 /* DMA ports for OMAP1 */
3790 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3791                 hwaddr addr)
3792 {
3793     return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3794 }
3795 
3796 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3797                 hwaddr addr)
3798 {
3799     return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3800                              addr);
3801 }
3802 
3803 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3804                 hwaddr addr)
3805 {
3806     return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3807 }
3808 
3809 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3810                 hwaddr addr)
3811 {
3812     return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3813 }
3814 
3815 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3816                 hwaddr addr)
3817 {
3818     return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3819 }
3820 
3821 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3822                 hwaddr addr)
3823 {
3824     return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3825 }
3826 
3827 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3828                 unsigned long sdram_size,
3829                 const char *core)
3830 {
3831     int i;
3832     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
3833             g_malloc0(sizeof(struct omap_mpu_state_s));
3834     qemu_irq dma_irqs[6];
3835     DriveInfo *dinfo;
3836     SysBusDevice *busdev;
3837 
3838     if (!core)
3839         core = "ti925t";
3840 
3841     /* Core */
3842     s->mpu_model = omap310;
3843     s->cpu = cpu_arm_init(core);
3844     if (s->cpu == NULL) {
3845         fprintf(stderr, "Unable to find CPU definition\n");
3846         exit(1);
3847     }
3848     s->sdram_size = sdram_size;
3849     s->sram_size = OMAP15XX_SRAM_SIZE;
3850 
3851     s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0];
3852 
3853     /* Clocks */
3854     omap_clk_init(s);
3855 
3856     /* Memory-mapped stuff */
3857     memory_region_init_ram(&s->emiff_ram, NULL, "omap1.dram", s->sdram_size);
3858     vmstate_register_ram_global(&s->emiff_ram);
3859     memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3860     memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size);
3861     vmstate_register_ram_global(&s->imif_ram);
3862     memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3863 
3864     omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3865 
3866     s->ih[0] = qdev_create(NULL, "omap-intc");
3867     qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3868     qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3869     qdev_init_nofail(s->ih[0]);
3870     busdev = SYS_BUS_DEVICE(s->ih[0]);
3871     sysbus_connect_irq(busdev, 0,
3872                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3873     sysbus_connect_irq(busdev, 1,
3874                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3875     sysbus_mmio_map(busdev, 0, 0xfffecb00);
3876     s->ih[1] = qdev_create(NULL, "omap-intc");
3877     qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3878     qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3879     qdev_init_nofail(s->ih[1]);
3880     busdev = SYS_BUS_DEVICE(s->ih[1]);
3881     sysbus_connect_irq(busdev, 0,
3882                        qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3883     /* The second interrupt controller's FIQ output is not wired up */
3884     sysbus_mmio_map(busdev, 0, 0xfffe0000);
3885 
3886     for (i = 0; i < 6; i++) {
3887         dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3888                                        omap1_dma_irq_map[i].intr);
3889     }
3890     s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3891                            qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3892                            s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3893 
3894     s->port[emiff    ].addr_valid = omap_validate_emiff_addr;
3895     s->port[emifs    ].addr_valid = omap_validate_emifs_addr;
3896     s->port[imif     ].addr_valid = omap_validate_imif_addr;
3897     s->port[tipb     ].addr_valid = omap_validate_tipb_addr;
3898     s->port[local    ].addr_valid = omap_validate_local_addr;
3899     s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3900 
3901     /* Register SDRAM and SRAM DMA ports for fast transfers.  */
3902     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3903                          OMAP_EMIFF_BASE, s->sdram_size);
3904     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3905                          OMAP_IMIF_BASE, s->sram_size);
3906 
3907     s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3908                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3909                     omap_findclk(s, "mputim_ck"));
3910     s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3911                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3912                     omap_findclk(s, "mputim_ck"));
3913     s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3914                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3915                     omap_findclk(s, "mputim_ck"));
3916 
3917     s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3918                     qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3919                     omap_findclk(s, "armwdt_ck"));
3920 
3921     s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3922                     qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3923                     omap_findclk(s, "clk32-kHz"));
3924 
3925     s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3926                             qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3927                             omap_dma_get_lcdch(s->dma),
3928                             omap_findclk(s, "lcd_ck"));
3929 
3930     omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3931     omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3932     omap_id_init(system_memory, s);
3933 
3934     omap_mpui_init(system_memory, 0xfffec900, s);
3935 
3936     s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3937                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3938                     omap_findclk(s, "tipb_ck"));
3939     s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3940                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3941                     omap_findclk(s, "tipb_ck"));
3942 
3943     omap_tcmi_init(system_memory, 0xfffecc00, s);
3944 
3945     s->uart[0] = omap_uart_init(0xfffb0000,
3946                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3947                     omap_findclk(s, "uart1_ck"),
3948                     omap_findclk(s, "uart1_ck"),
3949                     s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3950                     "uart1",
3951                     serial_hds[0]);
3952     s->uart[1] = omap_uart_init(0xfffb0800,
3953                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3954                     omap_findclk(s, "uart2_ck"),
3955                     omap_findclk(s, "uart2_ck"),
3956                     s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3957                     "uart2",
3958                     serial_hds[0] ? serial_hds[1] : NULL);
3959     s->uart[2] = omap_uart_init(0xfffb9800,
3960                                 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3961                     omap_findclk(s, "uart3_ck"),
3962                     omap_findclk(s, "uart3_ck"),
3963                     s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3964                     "uart3",
3965                     serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
3966 
3967     s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3968                                 omap_findclk(s, "dpll1"));
3969     s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3970                                 omap_findclk(s, "dpll2"));
3971     s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3972                                 omap_findclk(s, "dpll3"));
3973 
3974     dinfo = drive_get(IF_SD, 0, 0);
3975     if (!dinfo) {
3976         fprintf(stderr, "qemu: missing SecureDigital device\n");
3977         exit(1);
3978     }
3979     s->mmc = omap_mmc_init(0xfffb7800, system_memory, dinfo->bdrv,
3980                            qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
3981                            &s->drq[OMAP_DMA_MMC_TX],
3982                     omap_findclk(s, "mmc_ck"));
3983 
3984     s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
3985                                qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
3986                                qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
3987                                s->wakeup, omap_findclk(s, "clk32-kHz"));
3988 
3989     s->gpio = qdev_create(NULL, "omap-gpio");
3990     qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
3991     qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
3992     qdev_init_nofail(s->gpio);
3993     sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
3994                        qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
3995     sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
3996 
3997     s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
3998                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
3999                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4000                     s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4001 
4002     s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4003                            omap_findclk(s, "armxor_ck"));
4004     s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4005                            omap_findclk(s, "armxor_ck"));
4006 
4007     s->i2c[0] = qdev_create(NULL, "omap_i2c");
4008     qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4009     qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4010     qdev_init_nofail(s->i2c[0]);
4011     busdev = SYS_BUS_DEVICE(s->i2c[0]);
4012     sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4013     sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4014     sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4015     sysbus_mmio_map(busdev, 0, 0xfffb3800);
4016 
4017     s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4018                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4019                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4020                     omap_findclk(s, "clk32-kHz"));
4021 
4022     s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4023                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4024                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4025                     &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4026     s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4027                                 qdev_get_gpio_in(s->ih[0],
4028                                                  OMAP_INT_310_McBSP2_TX),
4029                                 qdev_get_gpio_in(s->ih[0],
4030                                                  OMAP_INT_310_McBSP2_RX),
4031                     &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4032     s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4033                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4034                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4035                     &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4036 
4037     s->led[0] = omap_lpg_init(system_memory,
4038                               0xfffbd000, omap_findclk(s, "clk32-kHz"));
4039     s->led[1] = omap_lpg_init(system_memory,
4040                               0xfffbd800, omap_findclk(s, "clk32-kHz"));
4041 
4042     /* Register mappings not currenlty implemented:
4043      * MCSI2 Comm	fffb2000 - fffb27ff (not mapped on OMAP310)
4044      * MCSI1 Bluetooth	fffb2800 - fffb2fff (not mapped on OMAP310)
4045      * USB W2FC		fffb4000 - fffb47ff
4046      * Camera Interface	fffb6800 - fffb6fff
4047      * USB Host		fffba000 - fffba7ff
4048      * FAC		fffba800 - fffbafff
4049      * HDQ/1-Wire	fffbc000 - fffbc7ff
4050      * TIPB switches	fffbc800 - fffbcfff
4051      * Mailbox		fffcf000 - fffcf7ff
4052      * Local bus IF	fffec100 - fffec1ff
4053      * Local bus MMU	fffec200 - fffec2ff
4054      * DSP MMU		fffed200 - fffed2ff
4055      */
4056 
4057     omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4058     omap_setup_mpui_io(system_memory, s);
4059 
4060     qemu_register_reset(omap1_mpu_reset, s);
4061 
4062     return s;
4063 }
4064