1 /* 2 * Nokia N-series internet tablets. 3 * 4 * Copyright (C) 2007 Nokia Corporation 5 * Written by Andrzej Zaborowski <andrew@openedhand.com> 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License as 9 * published by the Free Software Foundation; either version 2 or 10 * (at your option) version 3 of the License. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License along 18 * with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include "qemu-common.h" 22 #include "sysemu/sysemu.h" 23 #include "hw/omap.h" 24 #include "hw/arm-misc.h" 25 #include "hw/irq.h" 26 #include "ui/console.h" 27 #include "hw/boards.h" 28 #include "hw/i2c.h" 29 #include "hw/devices.h" 30 #include "hw/flash.h" 31 #include "hw/hw.h" 32 #include "hw/bt.h" 33 #include "hw/loader.h" 34 #include "sysemu/blockdev.h" 35 #include "hw/sysbus.h" 36 #include "exec/address-spaces.h" 37 38 /* Nokia N8x0 support */ 39 struct n800_s { 40 struct omap_mpu_state_s *mpu; 41 42 struct rfbi_chip_s blizzard; 43 struct { 44 void *opaque; 45 uint32_t (*txrx)(void *opaque, uint32_t value, int len); 46 uWireSlave *chip; 47 } ts; 48 49 int keymap[0x80]; 50 DeviceState *kbd; 51 52 DeviceState *usb; 53 void *retu; 54 void *tahvo; 55 DeviceState *nand; 56 }; 57 58 /* GPIO pins */ 59 #define N8X0_TUSB_ENABLE_GPIO 0 60 #define N800_MMC2_WP_GPIO 8 61 #define N800_UNKNOWN_GPIO0 9 /* out */ 62 #define N810_MMC2_VIOSD_GPIO 9 63 #define N810_HEADSET_AMP_GPIO 10 64 #define N800_CAM_TURN_GPIO 12 65 #define N810_GPS_RESET_GPIO 12 66 #define N800_BLIZZARD_POWERDOWN_GPIO 15 67 #define N800_MMC1_WP_GPIO 23 68 #define N810_MMC2_VSD_GPIO 23 69 #define N8X0_ONENAND_GPIO 26 70 #define N810_BLIZZARD_RESET_GPIO 30 71 #define N800_UNKNOWN_GPIO2 53 /* out */ 72 #define N8X0_TUSB_INT_GPIO 58 73 #define N8X0_BT_WKUP_GPIO 61 74 #define N8X0_STI_GPIO 62 75 #define N8X0_CBUS_SEL_GPIO 64 76 #define N8X0_CBUS_DAT_GPIO 65 77 #define N8X0_CBUS_CLK_GPIO 66 78 #define N8X0_WLAN_IRQ_GPIO 87 79 #define N8X0_BT_RESET_GPIO 92 80 #define N8X0_TEA5761_CS_GPIO 93 81 #define N800_UNKNOWN_GPIO 94 82 #define N810_TSC_RESET_GPIO 94 83 #define N800_CAM_ACT_GPIO 95 84 #define N810_GPS_WAKEUP_GPIO 95 85 #define N8X0_MMC_CS_GPIO 96 86 #define N8X0_WLAN_PWR_GPIO 97 87 #define N8X0_BT_HOST_WKUP_GPIO 98 88 #define N810_SPEAKER_AMP_GPIO 101 89 #define N810_KB_LOCK_GPIO 102 90 #define N800_TSC_TS_GPIO 103 91 #define N810_TSC_TS_GPIO 106 92 #define N8X0_HEADPHONE_GPIO 107 93 #define N8X0_RETU_GPIO 108 94 #define N800_TSC_KP_IRQ_GPIO 109 95 #define N810_KEYBOARD_GPIO 109 96 #define N800_BAT_COVER_GPIO 110 97 #define N810_SLIDE_GPIO 110 98 #define N8X0_TAHVO_GPIO 111 99 #define N800_UNKNOWN_GPIO4 112 /* out */ 100 #define N810_SLEEPX_LED_GPIO 112 101 #define N800_TSC_RESET_GPIO 118 /* ? */ 102 #define N810_AIC33_RESET_GPIO 118 103 #define N800_TSC_UNKNOWN_GPIO 119 /* out */ 104 #define N8X0_TMP105_GPIO 125 105 106 /* Config */ 107 #define BT_UART 0 108 #define XLDR_LL_UART 1 109 110 /* Addresses on the I2C bus 0 */ 111 #define N810_TLV320AIC33_ADDR 0x18 /* Audio CODEC */ 112 #define N8X0_TCM825x_ADDR 0x29 /* Camera */ 113 #define N810_LP5521_ADDR 0x32 /* LEDs */ 114 #define N810_TSL2563_ADDR 0x3d /* Light sensor */ 115 #define N810_LM8323_ADDR 0x45 /* Keyboard */ 116 /* Addresses on the I2C bus 1 */ 117 #define N8X0_TMP105_ADDR 0x48 /* Temperature sensor */ 118 #define N8X0_MENELAUS_ADDR 0x72 /* Power management */ 119 120 /* Chipselects on GPMC NOR interface */ 121 #define N8X0_ONENAND_CS 0 122 #define N8X0_USB_ASYNC_CS 1 123 #define N8X0_USB_SYNC_CS 4 124 125 #define N8X0_BD_ADDR 0x00, 0x1a, 0x89, 0x9e, 0x3e, 0x81 126 127 static void n800_mmc_cs_cb(void *opaque, int line, int level) 128 { 129 /* TODO: this seems to actually be connected to the menelaus, to 130 * which also both MMC slots connect. */ 131 omap_mmc_enable((struct omap_mmc_s *) opaque, !level); 132 133 printf("%s: MMC slot %i active\n", __FUNCTION__, level + 1); 134 } 135 136 static void n8x0_gpio_setup(struct n800_s *s) 137 { 138 qemu_irq *mmc_cs = qemu_allocate_irqs(n800_mmc_cs_cb, s->mpu->mmc, 1); 139 qdev_connect_gpio_out(s->mpu->gpio, N8X0_MMC_CS_GPIO, mmc_cs[0]); 140 141 qemu_irq_lower(qdev_get_gpio_in(s->mpu->gpio, N800_BAT_COVER_GPIO)); 142 } 143 144 #define MAEMO_CAL_HEADER(...) \ 145 'C', 'o', 'n', 'F', 0x02, 0x00, 0x04, 0x00, \ 146 __VA_ARGS__, \ 147 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 148 149 static const uint8_t n8x0_cal_wlan_mac[] = { 150 MAEMO_CAL_HEADER('w', 'l', 'a', 'n', '-', 'm', 'a', 'c') 151 0x1c, 0x00, 0x00, 0x00, 0x47, 0xd6, 0x69, 0xb3, 152 0x30, 0x08, 0xa0, 0x83, 0x00, 0x00, 0x00, 0x00, 153 0x00, 0x00, 0x00, 0x00, 0x1a, 0x00, 0x00, 0x00, 154 0x89, 0x00, 0x00, 0x00, 0x9e, 0x00, 0x00, 0x00, 155 0x5d, 0x00, 0x00, 0x00, 0xc1, 0x00, 0x00, 0x00, 156 }; 157 158 static const uint8_t n8x0_cal_bt_id[] = { 159 MAEMO_CAL_HEADER('b', 't', '-', 'i', 'd', 0, 0, 0) 160 0x0a, 0x00, 0x00, 0x00, 0xa3, 0x4b, 0xf6, 0x96, 161 0xa8, 0xeb, 0xb2, 0x41, 0x00, 0x00, 0x00, 0x00, 162 N8X0_BD_ADDR, 163 }; 164 165 static void n8x0_nand_setup(struct n800_s *s) 166 { 167 char *otp_region; 168 DriveInfo *dinfo; 169 170 s->nand = qdev_create(NULL, "onenand"); 171 qdev_prop_set_uint16(s->nand, "manufacturer_id", NAND_MFR_SAMSUNG); 172 /* Either 0x40 or 0x48 are OK for the device ID */ 173 qdev_prop_set_uint16(s->nand, "device_id", 0x48); 174 qdev_prop_set_uint16(s->nand, "version_id", 0); 175 qdev_prop_set_int32(s->nand, "shift", 1); 176 dinfo = drive_get(IF_MTD, 0, 0); 177 if (dinfo && dinfo->bdrv) { 178 qdev_prop_set_drive_nofail(s->nand, "drive", dinfo->bdrv); 179 } 180 qdev_init_nofail(s->nand); 181 sysbus_connect_irq(SYS_BUS_DEVICE(s->nand), 0, 182 qdev_get_gpio_in(s->mpu->gpio, N8X0_ONENAND_GPIO)); 183 omap_gpmc_attach(s->mpu->gpmc, N8X0_ONENAND_CS, 184 sysbus_mmio_get_region(SYS_BUS_DEVICE(s->nand), 0)); 185 otp_region = onenand_raw_otp(s->nand); 186 187 memcpy(otp_region + 0x000, n8x0_cal_wlan_mac, sizeof(n8x0_cal_wlan_mac)); 188 memcpy(otp_region + 0x800, n8x0_cal_bt_id, sizeof(n8x0_cal_bt_id)); 189 /* XXX: in theory should also update the OOB for both pages */ 190 } 191 192 static qemu_irq n8x0_system_powerdown; 193 194 static void n8x0_powerdown_req(Notifier *n, void *opaque) 195 { 196 qemu_irq_raise(n8x0_system_powerdown); 197 } 198 199 static Notifier n8x0_system_powerdown_notifier = { 200 .notify = n8x0_powerdown_req 201 }; 202 203 static void n8x0_i2c_setup(struct n800_s *s) 204 { 205 DeviceState *dev; 206 qemu_irq tmp_irq = qdev_get_gpio_in(s->mpu->gpio, N8X0_TMP105_GPIO); 207 i2c_bus *i2c = omap_i2c_bus(s->mpu->i2c[0]); 208 209 /* Attach a menelaus PM chip */ 210 dev = i2c_create_slave(i2c, "twl92230", N8X0_MENELAUS_ADDR); 211 qdev_connect_gpio_out(dev, 3, 212 qdev_get_gpio_in(s->mpu->ih[0], 213 OMAP_INT_24XX_SYS_NIRQ)); 214 215 n8x0_system_powerdown = qdev_get_gpio_in(dev, 3); 216 qemu_register_powerdown_notifier(&n8x0_system_powerdown_notifier); 217 218 /* Attach a TMP105 PM chip (A0 wired to ground) */ 219 dev = i2c_create_slave(i2c, "tmp105", N8X0_TMP105_ADDR); 220 qdev_connect_gpio_out(dev, 0, tmp_irq); 221 } 222 223 /* Touchscreen and keypad controller */ 224 static MouseTransformInfo n800_pointercal = { 225 .x = 800, 226 .y = 480, 227 .a = { 14560, -68, -3455208, -39, -9621, 35152972, 65536 }, 228 }; 229 230 static MouseTransformInfo n810_pointercal = { 231 .x = 800, 232 .y = 480, 233 .a = { 15041, 148, -4731056, 171, -10238, 35933380, 65536 }, 234 }; 235 236 #define RETU_KEYCODE 61 /* F3 */ 237 238 static void n800_key_event(void *opaque, int keycode) 239 { 240 struct n800_s *s = (struct n800_s *) opaque; 241 int code = s->keymap[keycode & 0x7f]; 242 243 if (code == -1) { 244 if ((keycode & 0x7f) == RETU_KEYCODE) 245 retu_key_event(s->retu, !(keycode & 0x80)); 246 return; 247 } 248 249 tsc210x_key_event(s->ts.chip, code, !(keycode & 0x80)); 250 } 251 252 static const int n800_keys[16] = { 253 -1, 254 72, /* Up */ 255 63, /* Home (F5) */ 256 -1, 257 75, /* Left */ 258 28, /* Enter */ 259 77, /* Right */ 260 -1, 261 1, /* Cycle (ESC) */ 262 80, /* Down */ 263 62, /* Menu (F4) */ 264 -1, 265 66, /* Zoom- (F8) */ 266 64, /* FullScreen (F6) */ 267 65, /* Zoom+ (F7) */ 268 -1, 269 }; 270 271 static void n800_tsc_kbd_setup(struct n800_s *s) 272 { 273 int i; 274 275 /* XXX: are the three pins inverted inside the chip between the 276 * tsc and the cpu (N4111)? */ 277 qemu_irq penirq = NULL; /* NC */ 278 qemu_irq kbirq = qdev_get_gpio_in(s->mpu->gpio, N800_TSC_KP_IRQ_GPIO); 279 qemu_irq dav = qdev_get_gpio_in(s->mpu->gpio, N800_TSC_TS_GPIO); 280 281 s->ts.chip = tsc2301_init(penirq, kbirq, dav); 282 s->ts.opaque = s->ts.chip->opaque; 283 s->ts.txrx = tsc210x_txrx; 284 285 for (i = 0; i < 0x80; i ++) 286 s->keymap[i] = -1; 287 for (i = 0; i < 0x10; i ++) 288 if (n800_keys[i] >= 0) 289 s->keymap[n800_keys[i]] = i; 290 291 qemu_add_kbd_event_handler(n800_key_event, s); 292 293 tsc210x_set_transform(s->ts.chip, &n800_pointercal); 294 } 295 296 static void n810_tsc_setup(struct n800_s *s) 297 { 298 qemu_irq pintdav = qdev_get_gpio_in(s->mpu->gpio, N810_TSC_TS_GPIO); 299 300 s->ts.opaque = tsc2005_init(pintdav); 301 s->ts.txrx = tsc2005_txrx; 302 303 tsc2005_set_transform(s->ts.opaque, &n810_pointercal); 304 } 305 306 /* N810 Keyboard controller */ 307 static void n810_key_event(void *opaque, int keycode) 308 { 309 struct n800_s *s = (struct n800_s *) opaque; 310 int code = s->keymap[keycode & 0x7f]; 311 312 if (code == -1) { 313 if ((keycode & 0x7f) == RETU_KEYCODE) 314 retu_key_event(s->retu, !(keycode & 0x80)); 315 return; 316 } 317 318 lm832x_key_event(s->kbd, code, !(keycode & 0x80)); 319 } 320 321 #define M 0 322 323 static int n810_keys[0x80] = { 324 [0x01] = 16, /* Q */ 325 [0x02] = 37, /* K */ 326 [0x03] = 24, /* O */ 327 [0x04] = 25, /* P */ 328 [0x05] = 14, /* Backspace */ 329 [0x06] = 30, /* A */ 330 [0x07] = 31, /* S */ 331 [0x08] = 32, /* D */ 332 [0x09] = 33, /* F */ 333 [0x0a] = 34, /* G */ 334 [0x0b] = 35, /* H */ 335 [0x0c] = 36, /* J */ 336 337 [0x11] = 17, /* W */ 338 [0x12] = 62, /* Menu (F4) */ 339 [0x13] = 38, /* L */ 340 [0x14] = 40, /* ' (Apostrophe) */ 341 [0x16] = 44, /* Z */ 342 [0x17] = 45, /* X */ 343 [0x18] = 46, /* C */ 344 [0x19] = 47, /* V */ 345 [0x1a] = 48, /* B */ 346 [0x1b] = 49, /* N */ 347 [0x1c] = 42, /* Shift (Left shift) */ 348 [0x1f] = 65, /* Zoom+ (F7) */ 349 350 [0x21] = 18, /* E */ 351 [0x22] = 39, /* ; (Semicolon) */ 352 [0x23] = 12, /* - (Minus) */ 353 [0x24] = 13, /* = (Equal) */ 354 [0x2b] = 56, /* Fn (Left Alt) */ 355 [0x2c] = 50, /* M */ 356 [0x2f] = 66, /* Zoom- (F8) */ 357 358 [0x31] = 19, /* R */ 359 [0x32] = 29 | M, /* Right Ctrl */ 360 [0x34] = 57, /* Space */ 361 [0x35] = 51, /* , (Comma) */ 362 [0x37] = 72 | M, /* Up */ 363 [0x3c] = 82 | M, /* Compose (Insert) */ 364 [0x3f] = 64, /* FullScreen (F6) */ 365 366 [0x41] = 20, /* T */ 367 [0x44] = 52, /* . (Dot) */ 368 [0x46] = 77 | M, /* Right */ 369 [0x4f] = 63, /* Home (F5) */ 370 [0x51] = 21, /* Y */ 371 [0x53] = 80 | M, /* Down */ 372 [0x55] = 28, /* Enter */ 373 [0x5f] = 1, /* Cycle (ESC) */ 374 375 [0x61] = 22, /* U */ 376 [0x64] = 75 | M, /* Left */ 377 378 [0x71] = 23, /* I */ 379 #if 0 380 [0x75] = 28 | M, /* KP Enter (KP Enter) */ 381 #else 382 [0x75] = 15, /* KP Enter (Tab) */ 383 #endif 384 }; 385 386 #undef M 387 388 static void n810_kbd_setup(struct n800_s *s) 389 { 390 qemu_irq kbd_irq = qdev_get_gpio_in(s->mpu->gpio, N810_KEYBOARD_GPIO); 391 int i; 392 393 for (i = 0; i < 0x80; i ++) 394 s->keymap[i] = -1; 395 for (i = 0; i < 0x80; i ++) 396 if (n810_keys[i] > 0) 397 s->keymap[n810_keys[i]] = i; 398 399 qemu_add_kbd_event_handler(n810_key_event, s); 400 401 /* Attach the LM8322 keyboard to the I2C bus, 402 * should happen in n8x0_i2c_setup and s->kbd be initialised here. */ 403 s->kbd = i2c_create_slave(omap_i2c_bus(s->mpu->i2c[0]), 404 "lm8323", N810_LM8323_ADDR); 405 qdev_connect_gpio_out(s->kbd, 0, kbd_irq); 406 } 407 408 /* LCD MIPI DBI-C controller (URAL) */ 409 struct mipid_s { 410 int resp[4]; 411 int param[4]; 412 int p; 413 int pm; 414 int cmd; 415 416 int sleep; 417 int booster; 418 int te; 419 int selfcheck; 420 int partial; 421 int normal; 422 int vscr; 423 int invert; 424 int onoff; 425 int gamma; 426 uint32_t id; 427 }; 428 429 static void mipid_reset(struct mipid_s *s) 430 { 431 if (!s->sleep) 432 fprintf(stderr, "%s: Display off\n", __FUNCTION__); 433 434 s->pm = 0; 435 s->cmd = 0; 436 437 s->sleep = 1; 438 s->booster = 0; 439 s->selfcheck = 440 (1 << 7) | /* Register loading OK. */ 441 (1 << 5) | /* The chip is attached. */ 442 (1 << 4); /* Display glass still in one piece. */ 443 s->te = 0; 444 s->partial = 0; 445 s->normal = 1; 446 s->vscr = 0; 447 s->invert = 0; 448 s->onoff = 1; 449 s->gamma = 0; 450 } 451 452 static uint32_t mipid_txrx(void *opaque, uint32_t cmd, int len) 453 { 454 struct mipid_s *s = (struct mipid_s *) opaque; 455 uint8_t ret; 456 457 if (len > 9) 458 hw_error("%s: FIXME: bad SPI word width %i\n", __FUNCTION__, len); 459 460 if (s->p >= ARRAY_SIZE(s->resp)) 461 ret = 0; 462 else 463 ret = s->resp[s->p ++]; 464 if (s->pm --> 0) 465 s->param[s->pm] = cmd; 466 else 467 s->cmd = cmd; 468 469 switch (s->cmd) { 470 case 0x00: /* NOP */ 471 break; 472 473 case 0x01: /* SWRESET */ 474 mipid_reset(s); 475 break; 476 477 case 0x02: /* BSTROFF */ 478 s->booster = 0; 479 break; 480 case 0x03: /* BSTRON */ 481 s->booster = 1; 482 break; 483 484 case 0x04: /* RDDID */ 485 s->p = 0; 486 s->resp[0] = (s->id >> 16) & 0xff; 487 s->resp[1] = (s->id >> 8) & 0xff; 488 s->resp[2] = (s->id >> 0) & 0xff; 489 break; 490 491 case 0x06: /* RD_RED */ 492 case 0x07: /* RD_GREEN */ 493 /* XXX the bootloader sometimes issues RD_BLUE meaning RDDID so 494 * for the bootloader one needs to change this. */ 495 case 0x08: /* RD_BLUE */ 496 s->p = 0; 497 /* TODO: return first pixel components */ 498 s->resp[0] = 0x01; 499 break; 500 501 case 0x09: /* RDDST */ 502 s->p = 0; 503 s->resp[0] = s->booster << 7; 504 s->resp[1] = (5 << 4) | (s->partial << 2) | 505 (s->sleep << 1) | s->normal; 506 s->resp[2] = (s->vscr << 7) | (s->invert << 5) | 507 (s->onoff << 2) | (s->te << 1) | (s->gamma >> 2); 508 s->resp[3] = s->gamma << 6; 509 break; 510 511 case 0x0a: /* RDDPM */ 512 s->p = 0; 513 s->resp[0] = (s->onoff << 2) | (s->normal << 3) | (s->sleep << 4) | 514 (s->partial << 5) | (s->sleep << 6) | (s->booster << 7); 515 break; 516 case 0x0b: /* RDDMADCTR */ 517 s->p = 0; 518 s->resp[0] = 0; 519 break; 520 case 0x0c: /* RDDCOLMOD */ 521 s->p = 0; 522 s->resp[0] = 5; /* 65K colours */ 523 break; 524 case 0x0d: /* RDDIM */ 525 s->p = 0; 526 s->resp[0] = (s->invert << 5) | (s->vscr << 7) | s->gamma; 527 break; 528 case 0x0e: /* RDDSM */ 529 s->p = 0; 530 s->resp[0] = s->te << 7; 531 break; 532 case 0x0f: /* RDDSDR */ 533 s->p = 0; 534 s->resp[0] = s->selfcheck; 535 break; 536 537 case 0x10: /* SLPIN */ 538 s->sleep = 1; 539 break; 540 case 0x11: /* SLPOUT */ 541 s->sleep = 0; 542 s->selfcheck ^= 1 << 6; /* POFF self-diagnosis Ok */ 543 break; 544 545 case 0x12: /* PTLON */ 546 s->partial = 1; 547 s->normal = 0; 548 s->vscr = 0; 549 break; 550 case 0x13: /* NORON */ 551 s->partial = 0; 552 s->normal = 1; 553 s->vscr = 0; 554 break; 555 556 case 0x20: /* INVOFF */ 557 s->invert = 0; 558 break; 559 case 0x21: /* INVON */ 560 s->invert = 1; 561 break; 562 563 case 0x22: /* APOFF */ 564 case 0x23: /* APON */ 565 goto bad_cmd; 566 567 case 0x25: /* WRCNTR */ 568 if (s->pm < 0) 569 s->pm = 1; 570 goto bad_cmd; 571 572 case 0x26: /* GAMSET */ 573 if (!s->pm) 574 s->gamma = ffs(s->param[0] & 0xf) - 1; 575 else if (s->pm < 0) 576 s->pm = 1; 577 break; 578 579 case 0x28: /* DISPOFF */ 580 s->onoff = 0; 581 fprintf(stderr, "%s: Display off\n", __FUNCTION__); 582 break; 583 case 0x29: /* DISPON */ 584 s->onoff = 1; 585 fprintf(stderr, "%s: Display on\n", __FUNCTION__); 586 break; 587 588 case 0x2a: /* CASET */ 589 case 0x2b: /* RASET */ 590 case 0x2c: /* RAMWR */ 591 case 0x2d: /* RGBSET */ 592 case 0x2e: /* RAMRD */ 593 case 0x30: /* PTLAR */ 594 case 0x33: /* SCRLAR */ 595 goto bad_cmd; 596 597 case 0x34: /* TEOFF */ 598 s->te = 0; 599 break; 600 case 0x35: /* TEON */ 601 if (!s->pm) 602 s->te = 1; 603 else if (s->pm < 0) 604 s->pm = 1; 605 break; 606 607 case 0x36: /* MADCTR */ 608 goto bad_cmd; 609 610 case 0x37: /* VSCSAD */ 611 s->partial = 0; 612 s->normal = 0; 613 s->vscr = 1; 614 break; 615 616 case 0x38: /* IDMOFF */ 617 case 0x39: /* IDMON */ 618 case 0x3a: /* COLMOD */ 619 goto bad_cmd; 620 621 case 0xb0: /* CLKINT / DISCTL */ 622 case 0xb1: /* CLKEXT */ 623 if (s->pm < 0) 624 s->pm = 2; 625 break; 626 627 case 0xb4: /* FRMSEL */ 628 break; 629 630 case 0xb5: /* FRM8SEL */ 631 case 0xb6: /* TMPRNG / INIESC */ 632 case 0xb7: /* TMPHIS / NOP2 */ 633 case 0xb8: /* TMPREAD / MADCTL */ 634 case 0xba: /* DISTCTR */ 635 case 0xbb: /* EPVOL */ 636 goto bad_cmd; 637 638 case 0xbd: /* Unknown */ 639 s->p = 0; 640 s->resp[0] = 0; 641 s->resp[1] = 1; 642 break; 643 644 case 0xc2: /* IFMOD */ 645 if (s->pm < 0) 646 s->pm = 2; 647 break; 648 649 case 0xc6: /* PWRCTL */ 650 case 0xc7: /* PPWRCTL */ 651 case 0xd0: /* EPWROUT */ 652 case 0xd1: /* EPWRIN */ 653 case 0xd4: /* RDEV */ 654 case 0xd5: /* RDRR */ 655 goto bad_cmd; 656 657 case 0xda: /* RDID1 */ 658 s->p = 0; 659 s->resp[0] = (s->id >> 16) & 0xff; 660 break; 661 case 0xdb: /* RDID2 */ 662 s->p = 0; 663 s->resp[0] = (s->id >> 8) & 0xff; 664 break; 665 case 0xdc: /* RDID3 */ 666 s->p = 0; 667 s->resp[0] = (s->id >> 0) & 0xff; 668 break; 669 670 default: 671 bad_cmd: 672 fprintf(stderr, "%s: unknown command %02x\n", __FUNCTION__, s->cmd); 673 break; 674 } 675 676 return ret; 677 } 678 679 static void *mipid_init(void) 680 { 681 struct mipid_s *s = (struct mipid_s *) g_malloc0(sizeof(*s)); 682 683 s->id = 0x838f03; 684 mipid_reset(s); 685 686 return s; 687 } 688 689 static void n8x0_spi_setup(struct n800_s *s) 690 { 691 void *tsc = s->ts.opaque; 692 void *mipid = mipid_init(); 693 694 omap_mcspi_attach(s->mpu->mcspi[0], s->ts.txrx, tsc, 0); 695 omap_mcspi_attach(s->mpu->mcspi[0], mipid_txrx, mipid, 1); 696 } 697 698 /* This task is normally performed by the bootloader. If we're loading 699 * a kernel directly, we need to enable the Blizzard ourselves. */ 700 static void n800_dss_init(struct rfbi_chip_s *chip) 701 { 702 uint8_t *fb_blank; 703 704 chip->write(chip->opaque, 0, 0x2a); /* LCD Width register */ 705 chip->write(chip->opaque, 1, 0x64); 706 chip->write(chip->opaque, 0, 0x2c); /* LCD HNDP register */ 707 chip->write(chip->opaque, 1, 0x1e); 708 chip->write(chip->opaque, 0, 0x2e); /* LCD Height 0 register */ 709 chip->write(chip->opaque, 1, 0xe0); 710 chip->write(chip->opaque, 0, 0x30); /* LCD Height 1 register */ 711 chip->write(chip->opaque, 1, 0x01); 712 chip->write(chip->opaque, 0, 0x32); /* LCD VNDP register */ 713 chip->write(chip->opaque, 1, 0x06); 714 chip->write(chip->opaque, 0, 0x68); /* Display Mode register */ 715 chip->write(chip->opaque, 1, 1); /* Enable bit */ 716 717 chip->write(chip->opaque, 0, 0x6c); 718 chip->write(chip->opaque, 1, 0x00); /* Input X Start Position */ 719 chip->write(chip->opaque, 1, 0x00); /* Input X Start Position */ 720 chip->write(chip->opaque, 1, 0x00); /* Input Y Start Position */ 721 chip->write(chip->opaque, 1, 0x00); /* Input Y Start Position */ 722 chip->write(chip->opaque, 1, 0x1f); /* Input X End Position */ 723 chip->write(chip->opaque, 1, 0x03); /* Input X End Position */ 724 chip->write(chip->opaque, 1, 0xdf); /* Input Y End Position */ 725 chip->write(chip->opaque, 1, 0x01); /* Input Y End Position */ 726 chip->write(chip->opaque, 1, 0x00); /* Output X Start Position */ 727 chip->write(chip->opaque, 1, 0x00); /* Output X Start Position */ 728 chip->write(chip->opaque, 1, 0x00); /* Output Y Start Position */ 729 chip->write(chip->opaque, 1, 0x00); /* Output Y Start Position */ 730 chip->write(chip->opaque, 1, 0x1f); /* Output X End Position */ 731 chip->write(chip->opaque, 1, 0x03); /* Output X End Position */ 732 chip->write(chip->opaque, 1, 0xdf); /* Output Y End Position */ 733 chip->write(chip->opaque, 1, 0x01); /* Output Y End Position */ 734 chip->write(chip->opaque, 1, 0x01); /* Input Data Format */ 735 chip->write(chip->opaque, 1, 0x01); /* Data Source Select */ 736 737 fb_blank = memset(g_malloc(800 * 480 * 2), 0xff, 800 * 480 * 2); 738 /* Display Memory Data Port */ 739 chip->block(chip->opaque, 1, fb_blank, 800 * 480 * 2, 800); 740 g_free(fb_blank); 741 } 742 743 static void n8x0_dss_setup(struct n800_s *s) 744 { 745 s->blizzard.opaque = s1d13745_init(NULL); 746 s->blizzard.block = s1d13745_write_block; 747 s->blizzard.write = s1d13745_write; 748 s->blizzard.read = s1d13745_read; 749 750 omap_rfbi_attach(s->mpu->dss, 0, &s->blizzard); 751 } 752 753 static void n8x0_cbus_setup(struct n800_s *s) 754 { 755 qemu_irq dat_out = qdev_get_gpio_in(s->mpu->gpio, N8X0_CBUS_DAT_GPIO); 756 qemu_irq retu_irq = qdev_get_gpio_in(s->mpu->gpio, N8X0_RETU_GPIO); 757 qemu_irq tahvo_irq = qdev_get_gpio_in(s->mpu->gpio, N8X0_TAHVO_GPIO); 758 759 CBus *cbus = cbus_init(dat_out); 760 761 qdev_connect_gpio_out(s->mpu->gpio, N8X0_CBUS_CLK_GPIO, cbus->clk); 762 qdev_connect_gpio_out(s->mpu->gpio, N8X0_CBUS_DAT_GPIO, cbus->dat); 763 qdev_connect_gpio_out(s->mpu->gpio, N8X0_CBUS_SEL_GPIO, cbus->sel); 764 765 cbus_attach(cbus, s->retu = retu_init(retu_irq, 1)); 766 cbus_attach(cbus, s->tahvo = tahvo_init(tahvo_irq, 1)); 767 } 768 769 static void n8x0_uart_setup(struct n800_s *s) 770 { 771 CharDriverState *radio = uart_hci_init( 772 qdev_get_gpio_in(s->mpu->gpio, N8X0_BT_HOST_WKUP_GPIO)); 773 774 qdev_connect_gpio_out(s->mpu->gpio, N8X0_BT_RESET_GPIO, 775 csrhci_pins_get(radio)[csrhci_pin_reset]); 776 qdev_connect_gpio_out(s->mpu->gpio, N8X0_BT_WKUP_GPIO, 777 csrhci_pins_get(radio)[csrhci_pin_wakeup]); 778 779 omap_uart_attach(s->mpu->uart[BT_UART], radio); 780 } 781 782 static void n8x0_usb_setup(struct n800_s *s) 783 { 784 SysBusDevice *dev; 785 s->usb = qdev_create(NULL, "tusb6010"); 786 dev = SYS_BUS_DEVICE(s->usb); 787 qdev_init_nofail(s->usb); 788 sysbus_connect_irq(dev, 0, 789 qdev_get_gpio_in(s->mpu->gpio, N8X0_TUSB_INT_GPIO)); 790 /* Using the NOR interface */ 791 omap_gpmc_attach(s->mpu->gpmc, N8X0_USB_ASYNC_CS, 792 sysbus_mmio_get_region(dev, 0)); 793 omap_gpmc_attach(s->mpu->gpmc, N8X0_USB_SYNC_CS, 794 sysbus_mmio_get_region(dev, 1)); 795 qdev_connect_gpio_out(s->mpu->gpio, N8X0_TUSB_ENABLE_GPIO, 796 qdev_get_gpio_in(s->usb, 0)); /* tusb_pwr */ 797 } 798 799 /* Setup done before the main bootloader starts by some early setup code 800 * - used when we want to run the main bootloader in emulation. This 801 * isn't documented. */ 802 static uint32_t n800_pinout[104] = { 803 0x080f00d8, 0x00d40808, 0x03080808, 0x080800d0, 804 0x00dc0808, 0x0b0f0f00, 0x080800b4, 0x00c00808, 805 0x08080808, 0x180800c4, 0x00b80000, 0x08080808, 806 0x080800bc, 0x00cc0808, 0x08081818, 0x18180128, 807 0x01241800, 0x18181818, 0x000000f0, 0x01300000, 808 0x00001b0b, 0x1b0f0138, 0x00e0181b, 0x1b031b0b, 809 0x180f0078, 0x00740018, 0x0f0f0f1a, 0x00000080, 810 0x007c0000, 0x00000000, 0x00000088, 0x00840000, 811 0x00000000, 0x00000094, 0x00980300, 0x0f180003, 812 0x0000008c, 0x00900f0f, 0x0f0f1b00, 0x0f00009c, 813 0x01140000, 0x1b1b0f18, 0x0818013c, 0x01400008, 814 0x00001818, 0x000b0110, 0x010c1800, 0x0b030b0f, 815 0x181800f4, 0x00f81818, 0x00000018, 0x000000fc, 816 0x00401808, 0x00000000, 0x0f1b0030, 0x003c0008, 817 0x00000000, 0x00000038, 0x00340000, 0x00000000, 818 0x1a080070, 0x00641a1a, 0x08080808, 0x08080060, 819 0x005c0808, 0x08080808, 0x08080058, 0x00540808, 820 0x08080808, 0x0808006c, 0x00680808, 0x08080808, 821 0x000000a8, 0x00b00000, 0x08080808, 0x000000a0, 822 0x00a40000, 0x00000000, 0x08ff0050, 0x004c0808, 823 0xffffffff, 0xffff0048, 0x0044ffff, 0xffffffff, 824 0x000000ac, 0x01040800, 0x08080b0f, 0x18180100, 825 0x01081818, 0x0b0b1808, 0x1a0300e4, 0x012c0b1a, 826 0x02020018, 0x0b000134, 0x011c0800, 0x0b1b1b00, 827 0x0f0000c8, 0x00ec181b, 0x000f0f02, 0x00180118, 828 0x01200000, 0x0f0b1b1b, 0x0f0200e8, 0x0000020b, 829 }; 830 831 static void n800_setup_nolo_tags(void *sram_base) 832 { 833 int i; 834 uint32_t *p = sram_base + 0x8000; 835 uint32_t *v = sram_base + 0xa000; 836 837 memset(p, 0, 0x3000); 838 839 strcpy((void *) (p + 0), "QEMU N800"); 840 841 strcpy((void *) (p + 8), "F5"); 842 843 stl_raw(p + 10, 0x04f70000); 844 strcpy((void *) (p + 9), "RX-34"); 845 846 /* RAM size in MB? */ 847 stl_raw(p + 12, 0x80); 848 849 /* Pointer to the list of tags */ 850 stl_raw(p + 13, OMAP2_SRAM_BASE + 0x9000); 851 852 /* The NOLO tags start here */ 853 p = sram_base + 0x9000; 854 #define ADD_TAG(tag, len) \ 855 stw_raw((uint16_t *) p + 0, tag); \ 856 stw_raw((uint16_t *) p + 1, len); p ++; \ 857 stl_raw(p ++, OMAP2_SRAM_BASE | (((void *) v - sram_base) & 0xffff)); 858 859 /* OMAP STI console? Pin out settings? */ 860 ADD_TAG(0x6e01, 414); 861 for (i = 0; i < ARRAY_SIZE(n800_pinout); i ++) 862 stl_raw(v ++, n800_pinout[i]); 863 864 /* Kernel memsize? */ 865 ADD_TAG(0x6e05, 1); 866 stl_raw(v ++, 2); 867 868 /* NOLO serial console */ 869 ADD_TAG(0x6e02, 4); 870 stl_raw(v ++, XLDR_LL_UART); /* UART number (1 - 3) */ 871 872 #if 0 873 /* CBUS settings (Retu/AVilma) */ 874 ADD_TAG(0x6e03, 6); 875 stw_raw((uint16_t *) v + 0, 65); /* CBUS GPIO0 */ 876 stw_raw((uint16_t *) v + 1, 66); /* CBUS GPIO1 */ 877 stw_raw((uint16_t *) v + 2, 64); /* CBUS GPIO2 */ 878 v += 2; 879 #endif 880 881 /* Nokia ASIC BB5 (Retu/Tahvo) */ 882 ADD_TAG(0x6e0a, 4); 883 stw_raw((uint16_t *) v + 0, 111); /* "Retu" interrupt GPIO */ 884 stw_raw((uint16_t *) v + 1, 108); /* "Tahvo" interrupt GPIO */ 885 v ++; 886 887 /* LCD console? */ 888 ADD_TAG(0x6e04, 4); 889 stw_raw((uint16_t *) v + 0, 30); /* ??? */ 890 stw_raw((uint16_t *) v + 1, 24); /* ??? */ 891 v ++; 892 893 #if 0 894 /* LCD settings */ 895 ADD_TAG(0x6e06, 2); 896 stw_raw((uint16_t *) (v ++), 15); /* ??? */ 897 #endif 898 899 /* I^2C (Menelaus) */ 900 ADD_TAG(0x6e07, 4); 901 stl_raw(v ++, 0x00720000); /* ??? */ 902 903 /* Unknown */ 904 ADD_TAG(0x6e0b, 6); 905 stw_raw((uint16_t *) v + 0, 94); /* ??? */ 906 stw_raw((uint16_t *) v + 1, 23); /* ??? */ 907 stw_raw((uint16_t *) v + 2, 0); /* ??? */ 908 v += 2; 909 910 /* OMAP gpio switch info */ 911 ADD_TAG(0x6e0c, 80); 912 strcpy((void *) v, "bat_cover"); v += 3; 913 stw_raw((uint16_t *) v + 0, 110); /* GPIO num ??? */ 914 stw_raw((uint16_t *) v + 1, 1); /* GPIO num ??? */ 915 v += 2; 916 strcpy((void *) v, "cam_act"); v += 3; 917 stw_raw((uint16_t *) v + 0, 95); /* GPIO num ??? */ 918 stw_raw((uint16_t *) v + 1, 32); /* GPIO num ??? */ 919 v += 2; 920 strcpy((void *) v, "cam_turn"); v += 3; 921 stw_raw((uint16_t *) v + 0, 12); /* GPIO num ??? */ 922 stw_raw((uint16_t *) v + 1, 33); /* GPIO num ??? */ 923 v += 2; 924 strcpy((void *) v, "headphone"); v += 3; 925 stw_raw((uint16_t *) v + 0, 107); /* GPIO num ??? */ 926 stw_raw((uint16_t *) v + 1, 17); /* GPIO num ??? */ 927 v += 2; 928 929 /* Bluetooth */ 930 ADD_TAG(0x6e0e, 12); 931 stl_raw(v ++, 0x5c623d01); /* ??? */ 932 stl_raw(v ++, 0x00000201); /* ??? */ 933 stl_raw(v ++, 0x00000000); /* ??? */ 934 935 /* CX3110x WLAN settings */ 936 ADD_TAG(0x6e0f, 8); 937 stl_raw(v ++, 0x00610025); /* ??? */ 938 stl_raw(v ++, 0xffff0057); /* ??? */ 939 940 /* MMC host settings */ 941 ADD_TAG(0x6e10, 12); 942 stl_raw(v ++, 0xffff000f); /* ??? */ 943 stl_raw(v ++, 0xffffffff); /* ??? */ 944 stl_raw(v ++, 0x00000060); /* ??? */ 945 946 /* OneNAND chip select */ 947 ADD_TAG(0x6e11, 10); 948 stl_raw(v ++, 0x00000401); /* ??? */ 949 stl_raw(v ++, 0x0002003a); /* ??? */ 950 stl_raw(v ++, 0x00000002); /* ??? */ 951 952 /* TEA5761 sensor settings */ 953 ADD_TAG(0x6e12, 2); 954 stl_raw(v ++, 93); /* GPIO num ??? */ 955 956 #if 0 957 /* Unknown tag */ 958 ADD_TAG(6e09, 0); 959 960 /* Kernel UART / console */ 961 ADD_TAG(6e12, 0); 962 #endif 963 964 /* End of the list */ 965 stl_raw(p ++, 0x00000000); 966 stl_raw(p ++, 0x00000000); 967 } 968 969 /* This task is normally performed by the bootloader. If we're loading 970 * a kernel directly, we need to set up GPMC mappings ourselves. */ 971 static void n800_gpmc_init(struct n800_s *s) 972 { 973 uint32_t config7 = 974 (0xf << 8) | /* MASKADDRESS */ 975 (1 << 6) | /* CSVALID */ 976 (4 << 0); /* BASEADDRESS */ 977 978 cpu_physical_memory_write(0x6800a078, /* GPMC_CONFIG7_0 */ 979 (void *) &config7, sizeof(config7)); 980 } 981 982 /* Setup sequence done by the bootloader */ 983 static void n8x0_boot_init(void *opaque) 984 { 985 struct n800_s *s = (struct n800_s *) opaque; 986 uint32_t buf; 987 988 /* PRCM setup */ 989 #define omap_writel(addr, val) \ 990 buf = (val); \ 991 cpu_physical_memory_write(addr, (void *) &buf, sizeof(buf)) 992 993 omap_writel(0x48008060, 0x41); /* PRCM_CLKSRC_CTRL */ 994 omap_writel(0x48008070, 1); /* PRCM_CLKOUT_CTRL */ 995 omap_writel(0x48008078, 0); /* PRCM_CLKEMUL_CTRL */ 996 omap_writel(0x48008090, 0); /* PRCM_VOLTSETUP */ 997 omap_writel(0x48008094, 0); /* PRCM_CLKSSETUP */ 998 omap_writel(0x48008098, 0); /* PRCM_POLCTRL */ 999 omap_writel(0x48008140, 2); /* CM_CLKSEL_MPU */ 1000 omap_writel(0x48008148, 0); /* CM_CLKSTCTRL_MPU */ 1001 omap_writel(0x48008158, 1); /* RM_RSTST_MPU */ 1002 omap_writel(0x480081c8, 0x15); /* PM_WKDEP_MPU */ 1003 omap_writel(0x480081d4, 0x1d4); /* PM_EVGENCTRL_MPU */ 1004 omap_writel(0x480081d8, 0); /* PM_EVEGENONTIM_MPU */ 1005 omap_writel(0x480081dc, 0); /* PM_EVEGENOFFTIM_MPU */ 1006 omap_writel(0x480081e0, 0xc); /* PM_PWSTCTRL_MPU */ 1007 omap_writel(0x48008200, 0x047e7ff7); /* CM_FCLKEN1_CORE */ 1008 omap_writel(0x48008204, 0x00000004); /* CM_FCLKEN2_CORE */ 1009 omap_writel(0x48008210, 0x047e7ff1); /* CM_ICLKEN1_CORE */ 1010 omap_writel(0x48008214, 0x00000004); /* CM_ICLKEN2_CORE */ 1011 omap_writel(0x4800821c, 0x00000000); /* CM_ICLKEN4_CORE */ 1012 omap_writel(0x48008230, 0); /* CM_AUTOIDLE1_CORE */ 1013 omap_writel(0x48008234, 0); /* CM_AUTOIDLE2_CORE */ 1014 omap_writel(0x48008238, 7); /* CM_AUTOIDLE3_CORE */ 1015 omap_writel(0x4800823c, 0); /* CM_AUTOIDLE4_CORE */ 1016 omap_writel(0x48008240, 0x04360626); /* CM_CLKSEL1_CORE */ 1017 omap_writel(0x48008244, 0x00000014); /* CM_CLKSEL2_CORE */ 1018 omap_writel(0x48008248, 0); /* CM_CLKSTCTRL_CORE */ 1019 omap_writel(0x48008300, 0x00000000); /* CM_FCLKEN_GFX */ 1020 omap_writel(0x48008310, 0x00000000); /* CM_ICLKEN_GFX */ 1021 omap_writel(0x48008340, 0x00000001); /* CM_CLKSEL_GFX */ 1022 omap_writel(0x48008400, 0x00000004); /* CM_FCLKEN_WKUP */ 1023 omap_writel(0x48008410, 0x00000004); /* CM_ICLKEN_WKUP */ 1024 omap_writel(0x48008440, 0x00000000); /* CM_CLKSEL_WKUP */ 1025 omap_writel(0x48008500, 0x000000cf); /* CM_CLKEN_PLL */ 1026 omap_writel(0x48008530, 0x0000000c); /* CM_AUTOIDLE_PLL */ 1027 omap_writel(0x48008540, /* CM_CLKSEL1_PLL */ 1028 (0x78 << 12) | (6 << 8)); 1029 omap_writel(0x48008544, 2); /* CM_CLKSEL2_PLL */ 1030 1031 /* GPMC setup */ 1032 n800_gpmc_init(s); 1033 1034 /* Video setup */ 1035 n800_dss_init(&s->blizzard); 1036 1037 /* CPU setup */ 1038 s->mpu->cpu->env.GE = 0x5; 1039 1040 /* If the machine has a slided keyboard, open it */ 1041 if (s->kbd) 1042 qemu_irq_raise(qdev_get_gpio_in(s->mpu->gpio, N810_SLIDE_GPIO)); 1043 } 1044 1045 #define OMAP_TAG_NOKIA_BT 0x4e01 1046 #define OMAP_TAG_WLAN_CX3110X 0x4e02 1047 #define OMAP_TAG_CBUS 0x4e03 1048 #define OMAP_TAG_EM_ASIC_BB5 0x4e04 1049 1050 static struct omap_gpiosw_info_s { 1051 const char *name; 1052 int line; 1053 int type; 1054 } n800_gpiosw_info[] = { 1055 { 1056 "bat_cover", N800_BAT_COVER_GPIO, 1057 OMAP_GPIOSW_TYPE_COVER | OMAP_GPIOSW_INVERTED, 1058 }, { 1059 "cam_act", N800_CAM_ACT_GPIO, 1060 OMAP_GPIOSW_TYPE_ACTIVITY, 1061 }, { 1062 "cam_turn", N800_CAM_TURN_GPIO, 1063 OMAP_GPIOSW_TYPE_ACTIVITY | OMAP_GPIOSW_INVERTED, 1064 }, { 1065 "headphone", N8X0_HEADPHONE_GPIO, 1066 OMAP_GPIOSW_TYPE_CONNECTION | OMAP_GPIOSW_INVERTED, 1067 }, 1068 { NULL } 1069 }, n810_gpiosw_info[] = { 1070 { 1071 "gps_reset", N810_GPS_RESET_GPIO, 1072 OMAP_GPIOSW_TYPE_ACTIVITY | OMAP_GPIOSW_OUTPUT, 1073 }, { 1074 "gps_wakeup", N810_GPS_WAKEUP_GPIO, 1075 OMAP_GPIOSW_TYPE_ACTIVITY | OMAP_GPIOSW_OUTPUT, 1076 }, { 1077 "headphone", N8X0_HEADPHONE_GPIO, 1078 OMAP_GPIOSW_TYPE_CONNECTION | OMAP_GPIOSW_INVERTED, 1079 }, { 1080 "kb_lock", N810_KB_LOCK_GPIO, 1081 OMAP_GPIOSW_TYPE_COVER | OMAP_GPIOSW_INVERTED, 1082 }, { 1083 "sleepx_led", N810_SLEEPX_LED_GPIO, 1084 OMAP_GPIOSW_TYPE_ACTIVITY | OMAP_GPIOSW_INVERTED | OMAP_GPIOSW_OUTPUT, 1085 }, { 1086 "slide", N810_SLIDE_GPIO, 1087 OMAP_GPIOSW_TYPE_COVER | OMAP_GPIOSW_INVERTED, 1088 }, 1089 { NULL } 1090 }; 1091 1092 static struct omap_partition_info_s { 1093 uint32_t offset; 1094 uint32_t size; 1095 int mask; 1096 const char *name; 1097 } n800_part_info[] = { 1098 { 0x00000000, 0x00020000, 0x3, "bootloader" }, 1099 { 0x00020000, 0x00060000, 0x0, "config" }, 1100 { 0x00080000, 0x00200000, 0x0, "kernel" }, 1101 { 0x00280000, 0x00200000, 0x3, "initfs" }, 1102 { 0x00480000, 0x0fb80000, 0x3, "rootfs" }, 1103 1104 { 0, 0, 0, NULL } 1105 }, n810_part_info[] = { 1106 { 0x00000000, 0x00020000, 0x3, "bootloader" }, 1107 { 0x00020000, 0x00060000, 0x0, "config" }, 1108 { 0x00080000, 0x00220000, 0x0, "kernel" }, 1109 { 0x002a0000, 0x00400000, 0x0, "initfs" }, 1110 { 0x006a0000, 0x0f960000, 0x0, "rootfs" }, 1111 1112 { 0, 0, 0, NULL } 1113 }; 1114 1115 static bdaddr_t n8x0_bd_addr = {{ N8X0_BD_ADDR }}; 1116 1117 static int n8x0_atag_setup(void *p, int model) 1118 { 1119 uint8_t *b; 1120 uint16_t *w; 1121 uint32_t *l; 1122 struct omap_gpiosw_info_s *gpiosw; 1123 struct omap_partition_info_s *partition; 1124 const char *tag; 1125 1126 w = p; 1127 1128 stw_raw(w ++, OMAP_TAG_UART); /* u16 tag */ 1129 stw_raw(w ++, 4); /* u16 len */ 1130 stw_raw(w ++, (1 << 2) | (1 << 1) | (1 << 0)); /* uint enabled_uarts */ 1131 w ++; 1132 1133 #if 0 1134 stw_raw(w ++, OMAP_TAG_SERIAL_CONSOLE); /* u16 tag */ 1135 stw_raw(w ++, 4); /* u16 len */ 1136 stw_raw(w ++, XLDR_LL_UART + 1); /* u8 console_uart */ 1137 stw_raw(w ++, 115200); /* u32 console_speed */ 1138 #endif 1139 1140 stw_raw(w ++, OMAP_TAG_LCD); /* u16 tag */ 1141 stw_raw(w ++, 36); /* u16 len */ 1142 strcpy((void *) w, "QEMU LCD panel"); /* char panel_name[16] */ 1143 w += 8; 1144 strcpy((void *) w, "blizzard"); /* char ctrl_name[16] */ 1145 w += 8; 1146 stw_raw(w ++, N810_BLIZZARD_RESET_GPIO); /* TODO: n800 s16 nreset_gpio */ 1147 stw_raw(w ++, 24); /* u8 data_lines */ 1148 1149 stw_raw(w ++, OMAP_TAG_CBUS); /* u16 tag */ 1150 stw_raw(w ++, 8); /* u16 len */ 1151 stw_raw(w ++, N8X0_CBUS_CLK_GPIO); /* s16 clk_gpio */ 1152 stw_raw(w ++, N8X0_CBUS_DAT_GPIO); /* s16 dat_gpio */ 1153 stw_raw(w ++, N8X0_CBUS_SEL_GPIO); /* s16 sel_gpio */ 1154 w ++; 1155 1156 stw_raw(w ++, OMAP_TAG_EM_ASIC_BB5); /* u16 tag */ 1157 stw_raw(w ++, 4); /* u16 len */ 1158 stw_raw(w ++, N8X0_RETU_GPIO); /* s16 retu_irq_gpio */ 1159 stw_raw(w ++, N8X0_TAHVO_GPIO); /* s16 tahvo_irq_gpio */ 1160 1161 gpiosw = (model == 810) ? n810_gpiosw_info : n800_gpiosw_info; 1162 for (; gpiosw->name; gpiosw ++) { 1163 stw_raw(w ++, OMAP_TAG_GPIO_SWITCH); /* u16 tag */ 1164 stw_raw(w ++, 20); /* u16 len */ 1165 strcpy((void *) w, gpiosw->name); /* char name[12] */ 1166 w += 6; 1167 stw_raw(w ++, gpiosw->line); /* u16 gpio */ 1168 stw_raw(w ++, gpiosw->type); 1169 stw_raw(w ++, 0); 1170 stw_raw(w ++, 0); 1171 } 1172 1173 stw_raw(w ++, OMAP_TAG_NOKIA_BT); /* u16 tag */ 1174 stw_raw(w ++, 12); /* u16 len */ 1175 b = (void *) w; 1176 stb_raw(b ++, 0x01); /* u8 chip_type (CSR) */ 1177 stb_raw(b ++, N8X0_BT_WKUP_GPIO); /* u8 bt_wakeup_gpio */ 1178 stb_raw(b ++, N8X0_BT_HOST_WKUP_GPIO); /* u8 host_wakeup_gpio */ 1179 stb_raw(b ++, N8X0_BT_RESET_GPIO); /* u8 reset_gpio */ 1180 stb_raw(b ++, BT_UART + 1); /* u8 bt_uart */ 1181 memcpy(b, &n8x0_bd_addr, 6); /* u8 bd_addr[6] */ 1182 b += 6; 1183 stb_raw(b ++, 0x02); /* u8 bt_sysclk (38.4) */ 1184 w = (void *) b; 1185 1186 stw_raw(w ++, OMAP_TAG_WLAN_CX3110X); /* u16 tag */ 1187 stw_raw(w ++, 8); /* u16 len */ 1188 stw_raw(w ++, 0x25); /* u8 chip_type */ 1189 stw_raw(w ++, N8X0_WLAN_PWR_GPIO); /* s16 power_gpio */ 1190 stw_raw(w ++, N8X0_WLAN_IRQ_GPIO); /* s16 irq_gpio */ 1191 stw_raw(w ++, -1); /* s16 spi_cs_gpio */ 1192 1193 stw_raw(w ++, OMAP_TAG_MMC); /* u16 tag */ 1194 stw_raw(w ++, 16); /* u16 len */ 1195 if (model == 810) { 1196 stw_raw(w ++, 0x23f); /* unsigned flags */ 1197 stw_raw(w ++, -1); /* s16 power_pin */ 1198 stw_raw(w ++, -1); /* s16 switch_pin */ 1199 stw_raw(w ++, -1); /* s16 wp_pin */ 1200 stw_raw(w ++, 0x240); /* unsigned flags */ 1201 stw_raw(w ++, 0xc000); /* s16 power_pin */ 1202 stw_raw(w ++, 0x0248); /* s16 switch_pin */ 1203 stw_raw(w ++, 0xc000); /* s16 wp_pin */ 1204 } else { 1205 stw_raw(w ++, 0xf); /* unsigned flags */ 1206 stw_raw(w ++, -1); /* s16 power_pin */ 1207 stw_raw(w ++, -1); /* s16 switch_pin */ 1208 stw_raw(w ++, -1); /* s16 wp_pin */ 1209 stw_raw(w ++, 0); /* unsigned flags */ 1210 stw_raw(w ++, 0); /* s16 power_pin */ 1211 stw_raw(w ++, 0); /* s16 switch_pin */ 1212 stw_raw(w ++, 0); /* s16 wp_pin */ 1213 } 1214 1215 stw_raw(w ++, OMAP_TAG_TEA5761); /* u16 tag */ 1216 stw_raw(w ++, 4); /* u16 len */ 1217 stw_raw(w ++, N8X0_TEA5761_CS_GPIO); /* u16 enable_gpio */ 1218 w ++; 1219 1220 partition = (model == 810) ? n810_part_info : n800_part_info; 1221 for (; partition->name; partition ++) { 1222 stw_raw(w ++, OMAP_TAG_PARTITION); /* u16 tag */ 1223 stw_raw(w ++, 28); /* u16 len */ 1224 strcpy((void *) w, partition->name); /* char name[16] */ 1225 l = (void *) (w + 8); 1226 stl_raw(l ++, partition->size); /* unsigned int size */ 1227 stl_raw(l ++, partition->offset); /* unsigned int offset */ 1228 stl_raw(l ++, partition->mask); /* unsigned int mask_flags */ 1229 w = (void *) l; 1230 } 1231 1232 stw_raw(w ++, OMAP_TAG_BOOT_REASON); /* u16 tag */ 1233 stw_raw(w ++, 12); /* u16 len */ 1234 #if 0 1235 strcpy((void *) w, "por"); /* char reason_str[12] */ 1236 strcpy((void *) w, "charger"); /* char reason_str[12] */ 1237 strcpy((void *) w, "32wd_to"); /* char reason_str[12] */ 1238 strcpy((void *) w, "sw_rst"); /* char reason_str[12] */ 1239 strcpy((void *) w, "mbus"); /* char reason_str[12] */ 1240 strcpy((void *) w, "unknown"); /* char reason_str[12] */ 1241 strcpy((void *) w, "swdg_to"); /* char reason_str[12] */ 1242 strcpy((void *) w, "sec_vio"); /* char reason_str[12] */ 1243 strcpy((void *) w, "pwr_key"); /* char reason_str[12] */ 1244 strcpy((void *) w, "rtc_alarm"); /* char reason_str[12] */ 1245 #else 1246 strcpy((void *) w, "pwr_key"); /* char reason_str[12] */ 1247 #endif 1248 w += 6; 1249 1250 tag = (model == 810) ? "RX-44" : "RX-34"; 1251 stw_raw(w ++, OMAP_TAG_VERSION_STR); /* u16 tag */ 1252 stw_raw(w ++, 24); /* u16 len */ 1253 strcpy((void *) w, "product"); /* char component[12] */ 1254 w += 6; 1255 strcpy((void *) w, tag); /* char version[12] */ 1256 w += 6; 1257 1258 stw_raw(w ++, OMAP_TAG_VERSION_STR); /* u16 tag */ 1259 stw_raw(w ++, 24); /* u16 len */ 1260 strcpy((void *) w, "hw-build"); /* char component[12] */ 1261 w += 6; 1262 strcpy((void *) w, "QEMU "); 1263 pstrcat((void *) w, 12, qemu_get_version()); /* char version[12] */ 1264 w += 6; 1265 1266 tag = (model == 810) ? "1.1.10-qemu" : "1.1.6-qemu"; 1267 stw_raw(w ++, OMAP_TAG_VERSION_STR); /* u16 tag */ 1268 stw_raw(w ++, 24); /* u16 len */ 1269 strcpy((void *) w, "nolo"); /* char component[12] */ 1270 w += 6; 1271 strcpy((void *) w, tag); /* char version[12] */ 1272 w += 6; 1273 1274 return (void *) w - p; 1275 } 1276 1277 static int n800_atag_setup(const struct arm_boot_info *info, void *p) 1278 { 1279 return n8x0_atag_setup(p, 800); 1280 } 1281 1282 static int n810_atag_setup(const struct arm_boot_info *info, void *p) 1283 { 1284 return n8x0_atag_setup(p, 810); 1285 } 1286 1287 static void n8x0_init(QEMUMachineInitArgs *args, 1288 struct arm_boot_info *binfo, int model) 1289 { 1290 MemoryRegion *sysmem = get_system_memory(); 1291 struct n800_s *s = (struct n800_s *) g_malloc0(sizeof(*s)); 1292 int sdram_size = binfo->ram_size; 1293 DisplayState *ds; 1294 1295 s->mpu = omap2420_mpu_init(sysmem, sdram_size, args->cpu_model); 1296 1297 /* Setup peripherals 1298 * 1299 * Believed external peripherals layout in the N810: 1300 * (spi bus 1) 1301 * tsc2005 1302 * lcd_mipid 1303 * (spi bus 2) 1304 * Conexant cx3110x (WLAN) 1305 * optional: pc2400m (WiMAX) 1306 * (i2c bus 0) 1307 * TLV320AIC33 (audio codec) 1308 * TCM825x (camera by Toshiba) 1309 * lp5521 (clever LEDs) 1310 * tsl2563 (light sensor, hwmon, model 7, rev. 0) 1311 * lm8323 (keypad, manf 00, rev 04) 1312 * (i2c bus 1) 1313 * tmp105 (temperature sensor, hwmon) 1314 * menelaus (pm) 1315 * (somewhere on i2c - maybe N800-only) 1316 * tea5761 (FM tuner) 1317 * (serial 0) 1318 * GPS 1319 * (some serial port) 1320 * csr41814 (Bluetooth) 1321 */ 1322 n8x0_gpio_setup(s); 1323 n8x0_nand_setup(s); 1324 n8x0_i2c_setup(s); 1325 if (model == 800) 1326 n800_tsc_kbd_setup(s); 1327 else if (model == 810) { 1328 n810_tsc_setup(s); 1329 n810_kbd_setup(s); 1330 } 1331 n8x0_spi_setup(s); 1332 n8x0_dss_setup(s); 1333 n8x0_cbus_setup(s); 1334 n8x0_uart_setup(s); 1335 if (usb_enabled(false)) { 1336 n8x0_usb_setup(s); 1337 } 1338 1339 if (args->kernel_filename) { 1340 /* Or at the linux loader. */ 1341 binfo->kernel_filename = args->kernel_filename; 1342 binfo->kernel_cmdline = args->kernel_cmdline; 1343 binfo->initrd_filename = args->initrd_filename; 1344 arm_load_kernel(s->mpu->cpu, binfo); 1345 1346 qemu_register_reset(n8x0_boot_init, s); 1347 } 1348 1349 if (option_rom[0].name && 1350 (args->boot_device[0] == 'n' || !args->kernel_filename)) { 1351 int rom_size; 1352 uint8_t nolo_tags[0x10000]; 1353 /* No, wait, better start at the ROM. */ 1354 s->mpu->cpu->env.regs[15] = OMAP2_Q2_BASE + 0x400000; 1355 1356 /* This is intended for loading the `secondary.bin' program from 1357 * Nokia images (the NOLO bootloader). The entry point seems 1358 * to be at OMAP2_Q2_BASE + 0x400000. 1359 * 1360 * The `2nd.bin' files contain some kind of earlier boot code and 1361 * for them the entry point needs to be set to OMAP2_SRAM_BASE. 1362 * 1363 * The code above is for loading the `zImage' file from Nokia 1364 * images. */ 1365 rom_size = load_image_targphys(option_rom[0].name, 1366 OMAP2_Q2_BASE + 0x400000, 1367 sdram_size - 0x400000); 1368 printf("%i bytes of image loaded\n", rom_size); 1369 1370 n800_setup_nolo_tags(nolo_tags); 1371 cpu_physical_memory_write(OMAP2_SRAM_BASE, nolo_tags, 0x10000); 1372 } 1373 /* FIXME: We shouldn't really be doing this here. The LCD controller 1374 will set the size once configured, so this just sets an initial 1375 size until the guest activates the display. */ 1376 ds = get_displaystate(); 1377 ds->surface = qemu_resize_displaysurface(ds, 800, 480); 1378 dpy_gfx_resize(ds); 1379 } 1380 1381 static struct arm_boot_info n800_binfo = { 1382 .loader_start = OMAP2_Q2_BASE, 1383 /* Actually two chips of 0x4000000 bytes each */ 1384 .ram_size = 0x08000000, 1385 .board_id = 0x4f7, 1386 .atag_board = n800_atag_setup, 1387 }; 1388 1389 static struct arm_boot_info n810_binfo = { 1390 .loader_start = OMAP2_Q2_BASE, 1391 /* Actually two chips of 0x4000000 bytes each */ 1392 .ram_size = 0x08000000, 1393 /* 0x60c and 0x6bf (WiMAX Edition) have been assigned but are not 1394 * used by some older versions of the bootloader and 5555 is used 1395 * instead (including versions that shipped with many devices). */ 1396 .board_id = 0x60c, 1397 .atag_board = n810_atag_setup, 1398 }; 1399 1400 static void n800_init(QEMUMachineInitArgs *args) 1401 { 1402 return n8x0_init(args, &n800_binfo, 800); 1403 } 1404 1405 static void n810_init(QEMUMachineInitArgs *args) 1406 { 1407 return n8x0_init(args, &n810_binfo, 810); 1408 } 1409 1410 static QEMUMachine n800_machine = { 1411 .name = "n800", 1412 .desc = "Nokia N800 tablet aka. RX-34 (OMAP2420)", 1413 .init = n800_init, 1414 DEFAULT_MACHINE_OPTIONS, 1415 }; 1416 1417 static QEMUMachine n810_machine = { 1418 .name = "n810", 1419 .desc = "Nokia N810 tablet aka. RX-44 (OMAP2420)", 1420 .init = n810_init, 1421 DEFAULT_MACHINE_OPTIONS, 1422 }; 1423 1424 static void nseries_machine_init(void) 1425 { 1426 qemu_register_machine(&n800_machine); 1427 qemu_register_machine(&n810_machine); 1428 } 1429 1430 machine_init(nseries_machine_init); 1431