1 /* 2 * Nokia N-series internet tablets. 3 * 4 * Copyright (C) 2007 Nokia Corporation 5 * Written by Andrzej Zaborowski <andrew@openedhand.com> 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License as 9 * published by the Free Software Foundation; either version 2 or 10 * (at your option) version 3 of the License. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License along 18 * with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qapi/error.h" 23 #include "cpu.h" 24 #include "chardev/char.h" 25 #include "qemu/cutils.h" 26 #include "qemu/bswap.h" 27 #include "qemu/hw-version.h" 28 #include "sysemu/reset.h" 29 #include "sysemu/runstate.h" 30 #include "sysemu/sysemu.h" 31 #include "hw/arm/omap.h" 32 #include "hw/arm/boot.h" 33 #include "hw/irq.h" 34 #include "ui/console.h" 35 #include "hw/boards.h" 36 #include "hw/i2c/i2c.h" 37 #include "hw/display/blizzard.h" 38 #include "hw/input/lm832x.h" 39 #include "hw/input/tsc2xxx.h" 40 #include "hw/misc/cbus.h" 41 #include "hw/sensor/tmp105.h" 42 #include "hw/qdev-properties.h" 43 #include "hw/block/flash.h" 44 #include "hw/hw.h" 45 #include "hw/loader.h" 46 #include "hw/sysbus.h" 47 #include "qemu/log.h" 48 #include "qemu/error-report.h" 49 50 51 /* Nokia N8x0 support */ 52 struct n800_s { 53 struct omap_mpu_state_s *mpu; 54 55 struct rfbi_chip_s blizzard; 56 struct { 57 void *opaque; 58 uint32_t (*txrx)(void *opaque, uint32_t value, int len); 59 uWireSlave *chip; 60 } ts; 61 62 int keymap[0x80]; 63 DeviceState *kbd; 64 65 DeviceState *usb; 66 void *retu; 67 void *tahvo; 68 DeviceState *nand; 69 }; 70 71 /* GPIO pins */ 72 #define N8X0_TUSB_ENABLE_GPIO 0 73 #define N800_MMC2_WP_GPIO 8 74 #define N800_UNKNOWN_GPIO0 9 /* out */ 75 #define N810_MMC2_VIOSD_GPIO 9 76 #define N810_HEADSET_AMP_GPIO 10 77 #define N800_CAM_TURN_GPIO 12 78 #define N810_GPS_RESET_GPIO 12 79 #define N800_BLIZZARD_POWERDOWN_GPIO 15 80 #define N800_MMC1_WP_GPIO 23 81 #define N810_MMC2_VSD_GPIO 23 82 #define N8X0_ONENAND_GPIO 26 83 #define N810_BLIZZARD_RESET_GPIO 30 84 #define N800_UNKNOWN_GPIO2 53 /* out */ 85 #define N8X0_TUSB_INT_GPIO 58 86 #define N8X0_BT_WKUP_GPIO 61 87 #define N8X0_STI_GPIO 62 88 #define N8X0_CBUS_SEL_GPIO 64 89 #define N8X0_CBUS_DAT_GPIO 65 90 #define N8X0_CBUS_CLK_GPIO 66 91 #define N8X0_WLAN_IRQ_GPIO 87 92 #define N8X0_BT_RESET_GPIO 92 93 #define N8X0_TEA5761_CS_GPIO 93 94 #define N800_UNKNOWN_GPIO 94 95 #define N810_TSC_RESET_GPIO 94 96 #define N800_CAM_ACT_GPIO 95 97 #define N810_GPS_WAKEUP_GPIO 95 98 #define N8X0_MMC_CS_GPIO 96 99 #define N8X0_WLAN_PWR_GPIO 97 100 #define N8X0_BT_HOST_WKUP_GPIO 98 101 #define N810_SPEAKER_AMP_GPIO 101 102 #define N810_KB_LOCK_GPIO 102 103 #define N800_TSC_TS_GPIO 103 104 #define N810_TSC_TS_GPIO 106 105 #define N8X0_HEADPHONE_GPIO 107 106 #define N8X0_RETU_GPIO 108 107 #define N800_TSC_KP_IRQ_GPIO 109 108 #define N810_KEYBOARD_GPIO 109 109 #define N800_BAT_COVER_GPIO 110 110 #define N810_SLIDE_GPIO 110 111 #define N8X0_TAHVO_GPIO 111 112 #define N800_UNKNOWN_GPIO4 112 /* out */ 113 #define N810_SLEEPX_LED_GPIO 112 114 #define N800_TSC_RESET_GPIO 118 /* ? */ 115 #define N810_AIC33_RESET_GPIO 118 116 #define N800_TSC_UNKNOWN_GPIO 119 /* out */ 117 #define N8X0_TMP105_GPIO 125 118 119 /* Config */ 120 #define BT_UART 0 121 #define XLDR_LL_UART 1 122 123 /* Addresses on the I2C bus 0 */ 124 #define N810_TLV320AIC33_ADDR 0x18 /* Audio CODEC */ 125 #define N8X0_TCM825x_ADDR 0x29 /* Camera */ 126 #define N810_LP5521_ADDR 0x32 /* LEDs */ 127 #define N810_TSL2563_ADDR 0x3d /* Light sensor */ 128 #define N810_LM8323_ADDR 0x45 /* Keyboard */ 129 /* Addresses on the I2C bus 1 */ 130 #define N8X0_TMP105_ADDR 0x48 /* Temperature sensor */ 131 #define N8X0_MENELAUS_ADDR 0x72 /* Power management */ 132 133 /* Chipselects on GPMC NOR interface */ 134 #define N8X0_ONENAND_CS 0 135 #define N8X0_USB_ASYNC_CS 1 136 #define N8X0_USB_SYNC_CS 4 137 138 #define N8X0_BD_ADDR 0x00, 0x1a, 0x89, 0x9e, 0x3e, 0x81 139 140 static void n800_mmc_cs_cb(void *opaque, int line, int level) 141 { 142 /* TODO: this seems to actually be connected to the menelaus, to 143 * which also both MMC slots connect. */ 144 omap_mmc_enable((struct omap_mmc_s *) opaque, !level); 145 } 146 147 static void n8x0_gpio_setup(struct n800_s *s) 148 { 149 qdev_connect_gpio_out(s->mpu->gpio, N8X0_MMC_CS_GPIO, 150 qemu_allocate_irq(n800_mmc_cs_cb, s->mpu->mmc, 0)); 151 qemu_irq_lower(qdev_get_gpio_in(s->mpu->gpio, N800_BAT_COVER_GPIO)); 152 } 153 154 #define MAEMO_CAL_HEADER(...) \ 155 'C', 'o', 'n', 'F', 0x02, 0x00, 0x04, 0x00, \ 156 __VA_ARGS__, \ 157 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 158 159 static const uint8_t n8x0_cal_wlan_mac[] = { 160 MAEMO_CAL_HEADER('w', 'l', 'a', 'n', '-', 'm', 'a', 'c') 161 0x1c, 0x00, 0x00, 0x00, 0x47, 0xd6, 0x69, 0xb3, 162 0x30, 0x08, 0xa0, 0x83, 0x00, 0x00, 0x00, 0x00, 163 0x00, 0x00, 0x00, 0x00, 0x1a, 0x00, 0x00, 0x00, 164 0x89, 0x00, 0x00, 0x00, 0x9e, 0x00, 0x00, 0x00, 165 0x5d, 0x00, 0x00, 0x00, 0xc1, 0x00, 0x00, 0x00, 166 }; 167 168 static const uint8_t n8x0_cal_bt_id[] = { 169 MAEMO_CAL_HEADER('b', 't', '-', 'i', 'd', 0, 0, 0) 170 0x0a, 0x00, 0x00, 0x00, 0xa3, 0x4b, 0xf6, 0x96, 171 0xa8, 0xeb, 0xb2, 0x41, 0x00, 0x00, 0x00, 0x00, 172 N8X0_BD_ADDR, 173 }; 174 175 static void n8x0_nand_setup(struct n800_s *s) 176 { 177 char *otp_region; 178 DriveInfo *dinfo; 179 180 s->nand = qdev_new("onenand"); 181 qdev_prop_set_uint16(s->nand, "manufacturer_id", NAND_MFR_SAMSUNG); 182 /* Either 0x40 or 0x48 are OK for the device ID */ 183 qdev_prop_set_uint16(s->nand, "device_id", 0x48); 184 qdev_prop_set_uint16(s->nand, "version_id", 0); 185 qdev_prop_set_int32(s->nand, "shift", 1); 186 dinfo = drive_get(IF_MTD, 0, 0); 187 if (dinfo) { 188 qdev_prop_set_drive_err(s->nand, "drive", blk_by_legacy_dinfo(dinfo), 189 &error_fatal); 190 } 191 sysbus_realize_and_unref(SYS_BUS_DEVICE(s->nand), &error_fatal); 192 sysbus_connect_irq(SYS_BUS_DEVICE(s->nand), 0, 193 qdev_get_gpio_in(s->mpu->gpio, N8X0_ONENAND_GPIO)); 194 omap_gpmc_attach(s->mpu->gpmc, N8X0_ONENAND_CS, 195 sysbus_mmio_get_region(SYS_BUS_DEVICE(s->nand), 0)); 196 otp_region = onenand_raw_otp(s->nand); 197 198 memcpy(otp_region + 0x000, n8x0_cal_wlan_mac, sizeof(n8x0_cal_wlan_mac)); 199 memcpy(otp_region + 0x800, n8x0_cal_bt_id, sizeof(n8x0_cal_bt_id)); 200 /* XXX: in theory should also update the OOB for both pages */ 201 } 202 203 static qemu_irq n8x0_system_powerdown; 204 205 static void n8x0_powerdown_req(Notifier *n, void *opaque) 206 { 207 qemu_irq_raise(n8x0_system_powerdown); 208 } 209 210 static Notifier n8x0_system_powerdown_notifier = { 211 .notify = n8x0_powerdown_req 212 }; 213 214 static void n8x0_i2c_setup(struct n800_s *s) 215 { 216 DeviceState *dev; 217 qemu_irq tmp_irq = qdev_get_gpio_in(s->mpu->gpio, N8X0_TMP105_GPIO); 218 I2CBus *i2c = omap_i2c_bus(s->mpu->i2c[0]); 219 220 /* Attach a menelaus PM chip */ 221 dev = DEVICE(i2c_slave_create_simple(i2c, "twl92230", N8X0_MENELAUS_ADDR)); 222 qdev_connect_gpio_out(dev, 3, 223 qdev_get_gpio_in(s->mpu->ih[0], 224 OMAP_INT_24XX_SYS_NIRQ)); 225 226 n8x0_system_powerdown = qdev_get_gpio_in(dev, 3); 227 qemu_register_powerdown_notifier(&n8x0_system_powerdown_notifier); 228 229 /* Attach a TMP105 PM chip (A0 wired to ground) */ 230 dev = DEVICE(i2c_slave_create_simple(i2c, TYPE_TMP105, N8X0_TMP105_ADDR)); 231 qdev_connect_gpio_out(dev, 0, tmp_irq); 232 } 233 234 /* Touchscreen and keypad controller */ 235 static const MouseTransformInfo n800_pointercal = { 236 .x = 800, 237 .y = 480, 238 .a = { 14560, -68, -3455208, -39, -9621, 35152972, 65536 }, 239 }; 240 241 static const MouseTransformInfo n810_pointercal = { 242 .x = 800, 243 .y = 480, 244 .a = { 15041, 148, -4731056, 171, -10238, 35933380, 65536 }, 245 }; 246 247 #define RETU_KEYCODE 61 /* F3 */ 248 249 static void n800_key_event(void *opaque, int keycode) 250 { 251 struct n800_s *s = (struct n800_s *) opaque; 252 int code = s->keymap[keycode & 0x7f]; 253 254 if (code == -1) { 255 if ((keycode & 0x7f) == RETU_KEYCODE) { 256 retu_key_event(s->retu, !(keycode & 0x80)); 257 } 258 return; 259 } 260 261 tsc210x_key_event(s->ts.chip, code, !(keycode & 0x80)); 262 } 263 264 static const int n800_keys[16] = { 265 -1, 266 72, /* Up */ 267 63, /* Home (F5) */ 268 -1, 269 75, /* Left */ 270 28, /* Enter */ 271 77, /* Right */ 272 -1, 273 1, /* Cycle (ESC) */ 274 80, /* Down */ 275 62, /* Menu (F4) */ 276 -1, 277 66, /* Zoom- (F8) */ 278 64, /* FullScreen (F6) */ 279 65, /* Zoom+ (F7) */ 280 -1, 281 }; 282 283 static void n800_tsc_kbd_setup(struct n800_s *s) 284 { 285 int i; 286 287 /* XXX: are the three pins inverted inside the chip between the 288 * tsc and the cpu (N4111)? */ 289 qemu_irq penirq = NULL; /* NC */ 290 qemu_irq kbirq = qdev_get_gpio_in(s->mpu->gpio, N800_TSC_KP_IRQ_GPIO); 291 qemu_irq dav = qdev_get_gpio_in(s->mpu->gpio, N800_TSC_TS_GPIO); 292 293 s->ts.chip = tsc2301_init(penirq, kbirq, dav); 294 s->ts.opaque = s->ts.chip->opaque; 295 s->ts.txrx = tsc210x_txrx; 296 297 for (i = 0; i < 0x80; i++) { 298 s->keymap[i] = -1; 299 } 300 for (i = 0; i < 0x10; i++) { 301 if (n800_keys[i] >= 0) { 302 s->keymap[n800_keys[i]] = i; 303 } 304 } 305 306 qemu_add_kbd_event_handler(n800_key_event, s); 307 308 tsc210x_set_transform(s->ts.chip, &n800_pointercal); 309 } 310 311 static void n810_tsc_setup(struct n800_s *s) 312 { 313 qemu_irq pintdav = qdev_get_gpio_in(s->mpu->gpio, N810_TSC_TS_GPIO); 314 315 s->ts.opaque = tsc2005_init(pintdav); 316 s->ts.txrx = tsc2005_txrx; 317 318 tsc2005_set_transform(s->ts.opaque, &n810_pointercal); 319 } 320 321 /* N810 Keyboard controller */ 322 static void n810_key_event(void *opaque, int keycode) 323 { 324 struct n800_s *s = (struct n800_s *) opaque; 325 int code = s->keymap[keycode & 0x7f]; 326 327 if (code == -1) { 328 if ((keycode & 0x7f) == RETU_KEYCODE) { 329 retu_key_event(s->retu, !(keycode & 0x80)); 330 } 331 return; 332 } 333 334 lm832x_key_event(s->kbd, code, !(keycode & 0x80)); 335 } 336 337 #define M 0 338 339 static const int n810_keys[0x80] = { 340 [0x01] = 16, /* Q */ 341 [0x02] = 37, /* K */ 342 [0x03] = 24, /* O */ 343 [0x04] = 25, /* P */ 344 [0x05] = 14, /* Backspace */ 345 [0x06] = 30, /* A */ 346 [0x07] = 31, /* S */ 347 [0x08] = 32, /* D */ 348 [0x09] = 33, /* F */ 349 [0x0a] = 34, /* G */ 350 [0x0b] = 35, /* H */ 351 [0x0c] = 36, /* J */ 352 353 [0x11] = 17, /* W */ 354 [0x12] = 62, /* Menu (F4) */ 355 [0x13] = 38, /* L */ 356 [0x14] = 40, /* ' (Apostrophe) */ 357 [0x16] = 44, /* Z */ 358 [0x17] = 45, /* X */ 359 [0x18] = 46, /* C */ 360 [0x19] = 47, /* V */ 361 [0x1a] = 48, /* B */ 362 [0x1b] = 49, /* N */ 363 [0x1c] = 42, /* Shift (Left shift) */ 364 [0x1f] = 65, /* Zoom+ (F7) */ 365 366 [0x21] = 18, /* E */ 367 [0x22] = 39, /* ; (Semicolon) */ 368 [0x23] = 12, /* - (Minus) */ 369 [0x24] = 13, /* = (Equal) */ 370 [0x2b] = 56, /* Fn (Left Alt) */ 371 [0x2c] = 50, /* M */ 372 [0x2f] = 66, /* Zoom- (F8) */ 373 374 [0x31] = 19, /* R */ 375 [0x32] = 29 | M, /* Right Ctrl */ 376 [0x34] = 57, /* Space */ 377 [0x35] = 51, /* , (Comma) */ 378 [0x37] = 72 | M, /* Up */ 379 [0x3c] = 82 | M, /* Compose (Insert) */ 380 [0x3f] = 64, /* FullScreen (F6) */ 381 382 [0x41] = 20, /* T */ 383 [0x44] = 52, /* . (Dot) */ 384 [0x46] = 77 | M, /* Right */ 385 [0x4f] = 63, /* Home (F5) */ 386 [0x51] = 21, /* Y */ 387 [0x53] = 80 | M, /* Down */ 388 [0x55] = 28, /* Enter */ 389 [0x5f] = 1, /* Cycle (ESC) */ 390 391 [0x61] = 22, /* U */ 392 [0x64] = 75 | M, /* Left */ 393 394 [0x71] = 23, /* I */ 395 #if 0 396 [0x75] = 28 | M, /* KP Enter (KP Enter) */ 397 #else 398 [0x75] = 15, /* KP Enter (Tab) */ 399 #endif 400 }; 401 402 #undef M 403 404 static void n810_kbd_setup(struct n800_s *s) 405 { 406 qemu_irq kbd_irq = qdev_get_gpio_in(s->mpu->gpio, N810_KEYBOARD_GPIO); 407 int i; 408 409 for (i = 0; i < 0x80; i++) { 410 s->keymap[i] = -1; 411 } 412 for (i = 0; i < 0x80; i++) { 413 if (n810_keys[i] > 0) { 414 s->keymap[n810_keys[i]] = i; 415 } 416 } 417 418 qemu_add_kbd_event_handler(n810_key_event, s); 419 420 /* Attach the LM8322 keyboard to the I2C bus, 421 * should happen in n8x0_i2c_setup and s->kbd be initialised here. */ 422 s->kbd = DEVICE(i2c_slave_create_simple(omap_i2c_bus(s->mpu->i2c[0]), 423 TYPE_LM8323, N810_LM8323_ADDR)); 424 qdev_connect_gpio_out(s->kbd, 0, kbd_irq); 425 } 426 427 /* LCD MIPI DBI-C controller (URAL) */ 428 struct mipid_s { 429 int resp[4]; 430 int param[4]; 431 int p; 432 int pm; 433 int cmd; 434 435 int sleep; 436 int booster; 437 int te; 438 int selfcheck; 439 int partial; 440 int normal; 441 int vscr; 442 int invert; 443 int onoff; 444 int gamma; 445 uint32_t id; 446 }; 447 448 static void mipid_reset(struct mipid_s *s) 449 { 450 s->pm = 0; 451 s->cmd = 0; 452 453 s->sleep = 1; 454 s->booster = 0; 455 s->selfcheck = 456 (1 << 7) | /* Register loading OK. */ 457 (1 << 5) | /* The chip is attached. */ 458 (1 << 4); /* Display glass still in one piece. */ 459 s->te = 0; 460 s->partial = 0; 461 s->normal = 1; 462 s->vscr = 0; 463 s->invert = 0; 464 s->onoff = 1; 465 s->gamma = 0; 466 } 467 468 static uint32_t mipid_txrx(void *opaque, uint32_t cmd, int len) 469 { 470 struct mipid_s *s = (struct mipid_s *) opaque; 471 uint8_t ret; 472 473 if (len > 9) { 474 hw_error("%s: FIXME: bad SPI word width %i\n", __func__, len); 475 } 476 477 if (s->p >= ARRAY_SIZE(s->resp)) { 478 ret = 0; 479 } else { 480 ret = s->resp[s->p++]; 481 } 482 if (s->pm-- > 0) { 483 s->param[s->pm] = cmd; 484 } else { 485 s->cmd = cmd; 486 } 487 488 switch (s->cmd) { 489 case 0x00: /* NOP */ 490 break; 491 492 case 0x01: /* SWRESET */ 493 mipid_reset(s); 494 break; 495 496 case 0x02: /* BSTROFF */ 497 s->booster = 0; 498 break; 499 case 0x03: /* BSTRON */ 500 s->booster = 1; 501 break; 502 503 case 0x04: /* RDDID */ 504 s->p = 0; 505 s->resp[0] = (s->id >> 16) & 0xff; 506 s->resp[1] = (s->id >> 8) & 0xff; 507 s->resp[2] = (s->id >> 0) & 0xff; 508 break; 509 510 case 0x06: /* RD_RED */ 511 case 0x07: /* RD_GREEN */ 512 /* XXX the bootloader sometimes issues RD_BLUE meaning RDDID so 513 * for the bootloader one needs to change this. */ 514 case 0x08: /* RD_BLUE */ 515 s->p = 0; 516 /* TODO: return first pixel components */ 517 s->resp[0] = 0x01; 518 break; 519 520 case 0x09: /* RDDST */ 521 s->p = 0; 522 s->resp[0] = s->booster << 7; 523 s->resp[1] = (5 << 4) | (s->partial << 2) | 524 (s->sleep << 1) | s->normal; 525 s->resp[2] = (s->vscr << 7) | (s->invert << 5) | 526 (s->onoff << 2) | (s->te << 1) | (s->gamma >> 2); 527 s->resp[3] = s->gamma << 6; 528 break; 529 530 case 0x0a: /* RDDPM */ 531 s->p = 0; 532 s->resp[0] = (s->onoff << 2) | (s->normal << 3) | (s->sleep << 4) | 533 (s->partial << 5) | (s->sleep << 6) | (s->booster << 7); 534 break; 535 case 0x0b: /* RDDMADCTR */ 536 s->p = 0; 537 s->resp[0] = 0; 538 break; 539 case 0x0c: /* RDDCOLMOD */ 540 s->p = 0; 541 s->resp[0] = 5; /* 65K colours */ 542 break; 543 case 0x0d: /* RDDIM */ 544 s->p = 0; 545 s->resp[0] = (s->invert << 5) | (s->vscr << 7) | s->gamma; 546 break; 547 case 0x0e: /* RDDSM */ 548 s->p = 0; 549 s->resp[0] = s->te << 7; 550 break; 551 case 0x0f: /* RDDSDR */ 552 s->p = 0; 553 s->resp[0] = s->selfcheck; 554 break; 555 556 case 0x10: /* SLPIN */ 557 s->sleep = 1; 558 break; 559 case 0x11: /* SLPOUT */ 560 s->sleep = 0; 561 s->selfcheck ^= 1 << 6; /* POFF self-diagnosis Ok */ 562 break; 563 564 case 0x12: /* PTLON */ 565 s->partial = 1; 566 s->normal = 0; 567 s->vscr = 0; 568 break; 569 case 0x13: /* NORON */ 570 s->partial = 0; 571 s->normal = 1; 572 s->vscr = 0; 573 break; 574 575 case 0x20: /* INVOFF */ 576 s->invert = 0; 577 break; 578 case 0x21: /* INVON */ 579 s->invert = 1; 580 break; 581 582 case 0x22: /* APOFF */ 583 case 0x23: /* APON */ 584 goto bad_cmd; 585 586 case 0x25: /* WRCNTR */ 587 if (s->pm < 0) { 588 s->pm = 1; 589 } 590 goto bad_cmd; 591 592 case 0x26: /* GAMSET */ 593 if (!s->pm) { 594 s->gamma = ctz32(s->param[0] & 0xf); 595 if (s->gamma == 32) { 596 s->gamma = -1; /* XXX: should this be 0? */ 597 } 598 } else if (s->pm < 0) { 599 s->pm = 1; 600 } 601 break; 602 603 case 0x28: /* DISPOFF */ 604 s->onoff = 0; 605 break; 606 case 0x29: /* DISPON */ 607 s->onoff = 1; 608 break; 609 610 case 0x2a: /* CASET */ 611 case 0x2b: /* RASET */ 612 case 0x2c: /* RAMWR */ 613 case 0x2d: /* RGBSET */ 614 case 0x2e: /* RAMRD */ 615 case 0x30: /* PTLAR */ 616 case 0x33: /* SCRLAR */ 617 goto bad_cmd; 618 619 case 0x34: /* TEOFF */ 620 s->te = 0; 621 break; 622 case 0x35: /* TEON */ 623 if (!s->pm) { 624 s->te = 1; 625 } else if (s->pm < 0) { 626 s->pm = 1; 627 } 628 break; 629 630 case 0x36: /* MADCTR */ 631 goto bad_cmd; 632 633 case 0x37: /* VSCSAD */ 634 s->partial = 0; 635 s->normal = 0; 636 s->vscr = 1; 637 break; 638 639 case 0x38: /* IDMOFF */ 640 case 0x39: /* IDMON */ 641 case 0x3a: /* COLMOD */ 642 goto bad_cmd; 643 644 case 0xb0: /* CLKINT / DISCTL */ 645 case 0xb1: /* CLKEXT */ 646 if (s->pm < 0) { 647 s->pm = 2; 648 } 649 break; 650 651 case 0xb4: /* FRMSEL */ 652 break; 653 654 case 0xb5: /* FRM8SEL */ 655 case 0xb6: /* TMPRNG / INIESC */ 656 case 0xb7: /* TMPHIS / NOP2 */ 657 case 0xb8: /* TMPREAD / MADCTL */ 658 case 0xba: /* DISTCTR */ 659 case 0xbb: /* EPVOL */ 660 goto bad_cmd; 661 662 case 0xbd: /* Unknown */ 663 s->p = 0; 664 s->resp[0] = 0; 665 s->resp[1] = 1; 666 break; 667 668 case 0xc2: /* IFMOD */ 669 if (s->pm < 0) { 670 s->pm = 2; 671 } 672 break; 673 674 case 0xc6: /* PWRCTL */ 675 case 0xc7: /* PPWRCTL */ 676 case 0xd0: /* EPWROUT */ 677 case 0xd1: /* EPWRIN */ 678 case 0xd4: /* RDEV */ 679 case 0xd5: /* RDRR */ 680 goto bad_cmd; 681 682 case 0xda: /* RDID1 */ 683 s->p = 0; 684 s->resp[0] = (s->id >> 16) & 0xff; 685 break; 686 case 0xdb: /* RDID2 */ 687 s->p = 0; 688 s->resp[0] = (s->id >> 8) & 0xff; 689 break; 690 case 0xdc: /* RDID3 */ 691 s->p = 0; 692 s->resp[0] = (s->id >> 0) & 0xff; 693 break; 694 695 default: 696 bad_cmd: 697 qemu_log_mask(LOG_GUEST_ERROR, 698 "%s: unknown command 0x%02x\n", __func__, s->cmd); 699 break; 700 } 701 702 return ret; 703 } 704 705 static void *mipid_init(void) 706 { 707 struct mipid_s *s = g_malloc0(sizeof(*s)); 708 709 s->id = 0x838f03; 710 mipid_reset(s); 711 712 return s; 713 } 714 715 static void n8x0_spi_setup(struct n800_s *s) 716 { 717 void *tsc = s->ts.opaque; 718 void *mipid = mipid_init(); 719 720 omap_mcspi_attach(s->mpu->mcspi[0], s->ts.txrx, tsc, 0); 721 omap_mcspi_attach(s->mpu->mcspi[0], mipid_txrx, mipid, 1); 722 } 723 724 /* This task is normally performed by the bootloader. If we're loading 725 * a kernel directly, we need to enable the Blizzard ourselves. */ 726 static void n800_dss_init(struct rfbi_chip_s *chip) 727 { 728 uint8_t *fb_blank; 729 730 chip->write(chip->opaque, 0, 0x2a); /* LCD Width register */ 731 chip->write(chip->opaque, 1, 0x64); 732 chip->write(chip->opaque, 0, 0x2c); /* LCD HNDP register */ 733 chip->write(chip->opaque, 1, 0x1e); 734 chip->write(chip->opaque, 0, 0x2e); /* LCD Height 0 register */ 735 chip->write(chip->opaque, 1, 0xe0); 736 chip->write(chip->opaque, 0, 0x30); /* LCD Height 1 register */ 737 chip->write(chip->opaque, 1, 0x01); 738 chip->write(chip->opaque, 0, 0x32); /* LCD VNDP register */ 739 chip->write(chip->opaque, 1, 0x06); 740 chip->write(chip->opaque, 0, 0x68); /* Display Mode register */ 741 chip->write(chip->opaque, 1, 1); /* Enable bit */ 742 743 chip->write(chip->opaque, 0, 0x6c); 744 chip->write(chip->opaque, 1, 0x00); /* Input X Start Position */ 745 chip->write(chip->opaque, 1, 0x00); /* Input X Start Position */ 746 chip->write(chip->opaque, 1, 0x00); /* Input Y Start Position */ 747 chip->write(chip->opaque, 1, 0x00); /* Input Y Start Position */ 748 chip->write(chip->opaque, 1, 0x1f); /* Input X End Position */ 749 chip->write(chip->opaque, 1, 0x03); /* Input X End Position */ 750 chip->write(chip->opaque, 1, 0xdf); /* Input Y End Position */ 751 chip->write(chip->opaque, 1, 0x01); /* Input Y End Position */ 752 chip->write(chip->opaque, 1, 0x00); /* Output X Start Position */ 753 chip->write(chip->opaque, 1, 0x00); /* Output X Start Position */ 754 chip->write(chip->opaque, 1, 0x00); /* Output Y Start Position */ 755 chip->write(chip->opaque, 1, 0x00); /* Output Y Start Position */ 756 chip->write(chip->opaque, 1, 0x1f); /* Output X End Position */ 757 chip->write(chip->opaque, 1, 0x03); /* Output X End Position */ 758 chip->write(chip->opaque, 1, 0xdf); /* Output Y End Position */ 759 chip->write(chip->opaque, 1, 0x01); /* Output Y End Position */ 760 chip->write(chip->opaque, 1, 0x01); /* Input Data Format */ 761 chip->write(chip->opaque, 1, 0x01); /* Data Source Select */ 762 763 fb_blank = memset(g_malloc(800 * 480 * 2), 0xff, 800 * 480 * 2); 764 /* Display Memory Data Port */ 765 chip->block(chip->opaque, 1, fb_blank, 800 * 480 * 2, 800); 766 g_free(fb_blank); 767 } 768 769 static void n8x0_dss_setup(struct n800_s *s) 770 { 771 s->blizzard.opaque = s1d13745_init(NULL); 772 s->blizzard.block = s1d13745_write_block; 773 s->blizzard.write = s1d13745_write; 774 s->blizzard.read = s1d13745_read; 775 776 omap_rfbi_attach(s->mpu->dss, 0, &s->blizzard); 777 } 778 779 static void n8x0_cbus_setup(struct n800_s *s) 780 { 781 qemu_irq dat_out = qdev_get_gpio_in(s->mpu->gpio, N8X0_CBUS_DAT_GPIO); 782 qemu_irq retu_irq = qdev_get_gpio_in(s->mpu->gpio, N8X0_RETU_GPIO); 783 qemu_irq tahvo_irq = qdev_get_gpio_in(s->mpu->gpio, N8X0_TAHVO_GPIO); 784 785 CBus *cbus = cbus_init(dat_out); 786 787 qdev_connect_gpio_out(s->mpu->gpio, N8X0_CBUS_CLK_GPIO, cbus->clk); 788 qdev_connect_gpio_out(s->mpu->gpio, N8X0_CBUS_DAT_GPIO, cbus->dat); 789 qdev_connect_gpio_out(s->mpu->gpio, N8X0_CBUS_SEL_GPIO, cbus->sel); 790 791 cbus_attach(cbus, s->retu = retu_init(retu_irq, 1)); 792 cbus_attach(cbus, s->tahvo = tahvo_init(tahvo_irq, 1)); 793 } 794 795 static void n8x0_usb_setup(struct n800_s *s) 796 { 797 SysBusDevice *dev; 798 s->usb = qdev_new("tusb6010"); 799 dev = SYS_BUS_DEVICE(s->usb); 800 sysbus_realize_and_unref(dev, &error_fatal); 801 sysbus_connect_irq(dev, 0, 802 qdev_get_gpio_in(s->mpu->gpio, N8X0_TUSB_INT_GPIO)); 803 /* Using the NOR interface */ 804 omap_gpmc_attach(s->mpu->gpmc, N8X0_USB_ASYNC_CS, 805 sysbus_mmio_get_region(dev, 0)); 806 omap_gpmc_attach(s->mpu->gpmc, N8X0_USB_SYNC_CS, 807 sysbus_mmio_get_region(dev, 1)); 808 qdev_connect_gpio_out(s->mpu->gpio, N8X0_TUSB_ENABLE_GPIO, 809 qdev_get_gpio_in(s->usb, 0)); /* tusb_pwr */ 810 } 811 812 /* Setup done before the main bootloader starts by some early setup code 813 * - used when we want to run the main bootloader in emulation. This 814 * isn't documented. */ 815 static const uint32_t n800_pinout[104] = { 816 0x080f00d8, 0x00d40808, 0x03080808, 0x080800d0, 817 0x00dc0808, 0x0b0f0f00, 0x080800b4, 0x00c00808, 818 0x08080808, 0x180800c4, 0x00b80000, 0x08080808, 819 0x080800bc, 0x00cc0808, 0x08081818, 0x18180128, 820 0x01241800, 0x18181818, 0x000000f0, 0x01300000, 821 0x00001b0b, 0x1b0f0138, 0x00e0181b, 0x1b031b0b, 822 0x180f0078, 0x00740018, 0x0f0f0f1a, 0x00000080, 823 0x007c0000, 0x00000000, 0x00000088, 0x00840000, 824 0x00000000, 0x00000094, 0x00980300, 0x0f180003, 825 0x0000008c, 0x00900f0f, 0x0f0f1b00, 0x0f00009c, 826 0x01140000, 0x1b1b0f18, 0x0818013c, 0x01400008, 827 0x00001818, 0x000b0110, 0x010c1800, 0x0b030b0f, 828 0x181800f4, 0x00f81818, 0x00000018, 0x000000fc, 829 0x00401808, 0x00000000, 0x0f1b0030, 0x003c0008, 830 0x00000000, 0x00000038, 0x00340000, 0x00000000, 831 0x1a080070, 0x00641a1a, 0x08080808, 0x08080060, 832 0x005c0808, 0x08080808, 0x08080058, 0x00540808, 833 0x08080808, 0x0808006c, 0x00680808, 0x08080808, 834 0x000000a8, 0x00b00000, 0x08080808, 0x000000a0, 835 0x00a40000, 0x00000000, 0x08ff0050, 0x004c0808, 836 0xffffffff, 0xffff0048, 0x0044ffff, 0xffffffff, 837 0x000000ac, 0x01040800, 0x08080b0f, 0x18180100, 838 0x01081818, 0x0b0b1808, 0x1a0300e4, 0x012c0b1a, 839 0x02020018, 0x0b000134, 0x011c0800, 0x0b1b1b00, 840 0x0f0000c8, 0x00ec181b, 0x000f0f02, 0x00180118, 841 0x01200000, 0x0f0b1b1b, 0x0f0200e8, 0x0000020b, 842 }; 843 844 static void n800_setup_nolo_tags(void *sram_base) 845 { 846 int i; 847 uint32_t *p = sram_base + 0x8000; 848 uint32_t *v = sram_base + 0xa000; 849 850 memset(p, 0, 0x3000); 851 852 strcpy((void *) (p + 0), "QEMU N800"); 853 854 strcpy((void *) (p + 8), "F5"); 855 856 stl_p(p + 10, 0x04f70000); 857 strcpy((void *) (p + 9), "RX-34"); 858 859 /* RAM size in MB? */ 860 stl_p(p + 12, 0x80); 861 862 /* Pointer to the list of tags */ 863 stl_p(p + 13, OMAP2_SRAM_BASE + 0x9000); 864 865 /* The NOLO tags start here */ 866 p = sram_base + 0x9000; 867 #define ADD_TAG(tag, len) \ 868 stw_p((uint16_t *) p + 0, tag); \ 869 stw_p((uint16_t *) p + 1, len); p++; \ 870 stl_p(p++, OMAP2_SRAM_BASE | (((void *) v - sram_base) & 0xffff)); 871 872 /* OMAP STI console? Pin out settings? */ 873 ADD_TAG(0x6e01, 414); 874 for (i = 0; i < ARRAY_SIZE(n800_pinout); i++) { 875 stl_p(v++, n800_pinout[i]); 876 } 877 878 /* Kernel memsize? */ 879 ADD_TAG(0x6e05, 1); 880 stl_p(v++, 2); 881 882 /* NOLO serial console */ 883 ADD_TAG(0x6e02, 4); 884 stl_p(v++, XLDR_LL_UART); /* UART number (1 - 3) */ 885 886 #if 0 887 /* CBUS settings (Retu/AVilma) */ 888 ADD_TAG(0x6e03, 6); 889 stw_p((uint16_t *) v + 0, 65); /* CBUS GPIO0 */ 890 stw_p((uint16_t *) v + 1, 66); /* CBUS GPIO1 */ 891 stw_p((uint16_t *) v + 2, 64); /* CBUS GPIO2 */ 892 v += 2; 893 #endif 894 895 /* Nokia ASIC BB5 (Retu/Tahvo) */ 896 ADD_TAG(0x6e0a, 4); 897 stw_p((uint16_t *) v + 0, 111); /* "Retu" interrupt GPIO */ 898 stw_p((uint16_t *) v + 1, 108); /* "Tahvo" interrupt GPIO */ 899 v++; 900 901 /* LCD console? */ 902 ADD_TAG(0x6e04, 4); 903 stw_p((uint16_t *) v + 0, 30); /* ??? */ 904 stw_p((uint16_t *) v + 1, 24); /* ??? */ 905 v++; 906 907 #if 0 908 /* LCD settings */ 909 ADD_TAG(0x6e06, 2); 910 stw_p((uint16_t *) (v++), 15); /* ??? */ 911 #endif 912 913 /* I^2C (Menelaus) */ 914 ADD_TAG(0x6e07, 4); 915 stl_p(v++, 0x00720000); /* ??? */ 916 917 /* Unknown */ 918 ADD_TAG(0x6e0b, 6); 919 stw_p((uint16_t *) v + 0, 94); /* ??? */ 920 stw_p((uint16_t *) v + 1, 23); /* ??? */ 921 stw_p((uint16_t *) v + 2, 0); /* ??? */ 922 v += 2; 923 924 /* OMAP gpio switch info */ 925 ADD_TAG(0x6e0c, 80); 926 strcpy((void *) v, "bat_cover"); v += 3; 927 stw_p((uint16_t *) v + 0, 110); /* GPIO num ??? */ 928 stw_p((uint16_t *) v + 1, 1); /* GPIO num ??? */ 929 v += 2; 930 strcpy((void *) v, "cam_act"); v += 3; 931 stw_p((uint16_t *) v + 0, 95); /* GPIO num ??? */ 932 stw_p((uint16_t *) v + 1, 32); /* GPIO num ??? */ 933 v += 2; 934 strcpy((void *) v, "cam_turn"); v += 3; 935 stw_p((uint16_t *) v + 0, 12); /* GPIO num ??? */ 936 stw_p((uint16_t *) v + 1, 33); /* GPIO num ??? */ 937 v += 2; 938 strcpy((void *) v, "headphone"); v += 3; 939 stw_p((uint16_t *) v + 0, 107); /* GPIO num ??? */ 940 stw_p((uint16_t *) v + 1, 17); /* GPIO num ??? */ 941 v += 2; 942 943 /* Bluetooth */ 944 ADD_TAG(0x6e0e, 12); 945 stl_p(v++, 0x5c623d01); /* ??? */ 946 stl_p(v++, 0x00000201); /* ??? */ 947 stl_p(v++, 0x00000000); /* ??? */ 948 949 /* CX3110x WLAN settings */ 950 ADD_TAG(0x6e0f, 8); 951 stl_p(v++, 0x00610025); /* ??? */ 952 stl_p(v++, 0xffff0057); /* ??? */ 953 954 /* MMC host settings */ 955 ADD_TAG(0x6e10, 12); 956 stl_p(v++, 0xffff000f); /* ??? */ 957 stl_p(v++, 0xffffffff); /* ??? */ 958 stl_p(v++, 0x00000060); /* ??? */ 959 960 /* OneNAND chip select */ 961 ADD_TAG(0x6e11, 10); 962 stl_p(v++, 0x00000401); /* ??? */ 963 stl_p(v++, 0x0002003a); /* ??? */ 964 stl_p(v++, 0x00000002); /* ??? */ 965 966 /* TEA5761 sensor settings */ 967 ADD_TAG(0x6e12, 2); 968 stl_p(v++, 93); /* GPIO num ??? */ 969 970 #if 0 971 /* Unknown tag */ 972 ADD_TAG(6e09, 0); 973 974 /* Kernel UART / console */ 975 ADD_TAG(6e12, 0); 976 #endif 977 978 /* End of the list */ 979 stl_p(p++, 0x00000000); 980 stl_p(p++, 0x00000000); 981 } 982 983 /* This task is normally performed by the bootloader. If we're loading 984 * a kernel directly, we need to set up GPMC mappings ourselves. */ 985 static void n800_gpmc_init(struct n800_s *s) 986 { 987 uint32_t config7 = 988 (0xf << 8) | /* MASKADDRESS */ 989 (1 << 6) | /* CSVALID */ 990 (4 << 0); /* BASEADDRESS */ 991 992 cpu_physical_memory_write(0x6800a078, /* GPMC_CONFIG7_0 */ 993 &config7, sizeof(config7)); 994 } 995 996 /* Setup sequence done by the bootloader */ 997 static void n8x0_boot_init(void *opaque) 998 { 999 struct n800_s *s = (struct n800_s *) opaque; 1000 uint32_t buf; 1001 1002 /* PRCM setup */ 1003 #define omap_writel(addr, val) \ 1004 buf = (val); \ 1005 cpu_physical_memory_write(addr, &buf, sizeof(buf)) 1006 1007 omap_writel(0x48008060, 0x41); /* PRCM_CLKSRC_CTRL */ 1008 omap_writel(0x48008070, 1); /* PRCM_CLKOUT_CTRL */ 1009 omap_writel(0x48008078, 0); /* PRCM_CLKEMUL_CTRL */ 1010 omap_writel(0x48008090, 0); /* PRCM_VOLTSETUP */ 1011 omap_writel(0x48008094, 0); /* PRCM_CLKSSETUP */ 1012 omap_writel(0x48008098, 0); /* PRCM_POLCTRL */ 1013 omap_writel(0x48008140, 2); /* CM_CLKSEL_MPU */ 1014 omap_writel(0x48008148, 0); /* CM_CLKSTCTRL_MPU */ 1015 omap_writel(0x48008158, 1); /* RM_RSTST_MPU */ 1016 omap_writel(0x480081c8, 0x15); /* PM_WKDEP_MPU */ 1017 omap_writel(0x480081d4, 0x1d4); /* PM_EVGENCTRL_MPU */ 1018 omap_writel(0x480081d8, 0); /* PM_EVEGENONTIM_MPU */ 1019 omap_writel(0x480081dc, 0); /* PM_EVEGENOFFTIM_MPU */ 1020 omap_writel(0x480081e0, 0xc); /* PM_PWSTCTRL_MPU */ 1021 omap_writel(0x48008200, 0x047e7ff7); /* CM_FCLKEN1_CORE */ 1022 omap_writel(0x48008204, 0x00000004); /* CM_FCLKEN2_CORE */ 1023 omap_writel(0x48008210, 0x047e7ff1); /* CM_ICLKEN1_CORE */ 1024 omap_writel(0x48008214, 0x00000004); /* CM_ICLKEN2_CORE */ 1025 omap_writel(0x4800821c, 0x00000000); /* CM_ICLKEN4_CORE */ 1026 omap_writel(0x48008230, 0); /* CM_AUTOIDLE1_CORE */ 1027 omap_writel(0x48008234, 0); /* CM_AUTOIDLE2_CORE */ 1028 omap_writel(0x48008238, 7); /* CM_AUTOIDLE3_CORE */ 1029 omap_writel(0x4800823c, 0); /* CM_AUTOIDLE4_CORE */ 1030 omap_writel(0x48008240, 0x04360626); /* CM_CLKSEL1_CORE */ 1031 omap_writel(0x48008244, 0x00000014); /* CM_CLKSEL2_CORE */ 1032 omap_writel(0x48008248, 0); /* CM_CLKSTCTRL_CORE */ 1033 omap_writel(0x48008300, 0x00000000); /* CM_FCLKEN_GFX */ 1034 omap_writel(0x48008310, 0x00000000); /* CM_ICLKEN_GFX */ 1035 omap_writel(0x48008340, 0x00000001); /* CM_CLKSEL_GFX */ 1036 omap_writel(0x48008400, 0x00000004); /* CM_FCLKEN_WKUP */ 1037 omap_writel(0x48008410, 0x00000004); /* CM_ICLKEN_WKUP */ 1038 omap_writel(0x48008440, 0x00000000); /* CM_CLKSEL_WKUP */ 1039 omap_writel(0x48008500, 0x000000cf); /* CM_CLKEN_PLL */ 1040 omap_writel(0x48008530, 0x0000000c); /* CM_AUTOIDLE_PLL */ 1041 omap_writel(0x48008540, /* CM_CLKSEL1_PLL */ 1042 (0x78 << 12) | (6 << 8)); 1043 omap_writel(0x48008544, 2); /* CM_CLKSEL2_PLL */ 1044 1045 /* GPMC setup */ 1046 n800_gpmc_init(s); 1047 1048 /* Video setup */ 1049 n800_dss_init(&s->blizzard); 1050 1051 /* CPU setup */ 1052 s->mpu->cpu->env.GE = 0x5; 1053 1054 /* If the machine has a slided keyboard, open it */ 1055 if (s->kbd) { 1056 qemu_irq_raise(qdev_get_gpio_in(s->mpu->gpio, N810_SLIDE_GPIO)); 1057 } 1058 } 1059 1060 #define OMAP_TAG_NOKIA_BT 0x4e01 1061 #define OMAP_TAG_WLAN_CX3110X 0x4e02 1062 #define OMAP_TAG_CBUS 0x4e03 1063 #define OMAP_TAG_EM_ASIC_BB5 0x4e04 1064 1065 static const struct omap_gpiosw_info_s { 1066 const char *name; 1067 int line; 1068 int type; 1069 } n800_gpiosw_info[] = { 1070 { 1071 "bat_cover", N800_BAT_COVER_GPIO, 1072 OMAP_GPIOSW_TYPE_COVER | OMAP_GPIOSW_INVERTED, 1073 }, { 1074 "cam_act", N800_CAM_ACT_GPIO, 1075 OMAP_GPIOSW_TYPE_ACTIVITY, 1076 }, { 1077 "cam_turn", N800_CAM_TURN_GPIO, 1078 OMAP_GPIOSW_TYPE_ACTIVITY | OMAP_GPIOSW_INVERTED, 1079 }, { 1080 "headphone", N8X0_HEADPHONE_GPIO, 1081 OMAP_GPIOSW_TYPE_CONNECTION | OMAP_GPIOSW_INVERTED, 1082 }, 1083 { /* end of list */ } 1084 }, n810_gpiosw_info[] = { 1085 { 1086 "gps_reset", N810_GPS_RESET_GPIO, 1087 OMAP_GPIOSW_TYPE_ACTIVITY | OMAP_GPIOSW_OUTPUT, 1088 }, { 1089 "gps_wakeup", N810_GPS_WAKEUP_GPIO, 1090 OMAP_GPIOSW_TYPE_ACTIVITY | OMAP_GPIOSW_OUTPUT, 1091 }, { 1092 "headphone", N8X0_HEADPHONE_GPIO, 1093 OMAP_GPIOSW_TYPE_CONNECTION | OMAP_GPIOSW_INVERTED, 1094 }, { 1095 "kb_lock", N810_KB_LOCK_GPIO, 1096 OMAP_GPIOSW_TYPE_COVER | OMAP_GPIOSW_INVERTED, 1097 }, { 1098 "sleepx_led", N810_SLEEPX_LED_GPIO, 1099 OMAP_GPIOSW_TYPE_ACTIVITY | OMAP_GPIOSW_INVERTED | OMAP_GPIOSW_OUTPUT, 1100 }, { 1101 "slide", N810_SLIDE_GPIO, 1102 OMAP_GPIOSW_TYPE_COVER | OMAP_GPIOSW_INVERTED, 1103 }, 1104 { /* end of list */ } 1105 }; 1106 1107 static const struct omap_partition_info_s { 1108 uint32_t offset; 1109 uint32_t size; 1110 int mask; 1111 const char *name; 1112 } n800_part_info[] = { 1113 { 0x00000000, 0x00020000, 0x3, "bootloader" }, 1114 { 0x00020000, 0x00060000, 0x0, "config" }, 1115 { 0x00080000, 0x00200000, 0x0, "kernel" }, 1116 { 0x00280000, 0x00200000, 0x3, "initfs" }, 1117 { 0x00480000, 0x0fb80000, 0x3, "rootfs" }, 1118 { /* end of list */ } 1119 }, n810_part_info[] = { 1120 { 0x00000000, 0x00020000, 0x3, "bootloader" }, 1121 { 0x00020000, 0x00060000, 0x0, "config" }, 1122 { 0x00080000, 0x00220000, 0x0, "kernel" }, 1123 { 0x002a0000, 0x00400000, 0x0, "initfs" }, 1124 { 0x006a0000, 0x0f960000, 0x0, "rootfs" }, 1125 { /* end of list */ } 1126 }; 1127 1128 static const uint8_t n8x0_bd_addr[6] = { N8X0_BD_ADDR }; 1129 1130 static int n8x0_atag_setup(void *p, int model) 1131 { 1132 uint8_t *b; 1133 uint16_t *w; 1134 uint32_t *l; 1135 const struct omap_gpiosw_info_s *gpiosw; 1136 const struct omap_partition_info_s *partition; 1137 const char *tag; 1138 1139 w = p; 1140 1141 stw_p(w++, OMAP_TAG_UART); /* u16 tag */ 1142 stw_p(w++, 4); /* u16 len */ 1143 stw_p(w++, (1 << 2) | (1 << 1) | (1 << 0)); /* uint enabled_uarts */ 1144 w++; 1145 1146 #if 0 1147 stw_p(w++, OMAP_TAG_SERIAL_CONSOLE); /* u16 tag */ 1148 stw_p(w++, 4); /* u16 len */ 1149 stw_p(w++, XLDR_LL_UART + 1); /* u8 console_uart */ 1150 stw_p(w++, 115200); /* u32 console_speed */ 1151 #endif 1152 1153 stw_p(w++, OMAP_TAG_LCD); /* u16 tag */ 1154 stw_p(w++, 36); /* u16 len */ 1155 strcpy((void *) w, "QEMU LCD panel"); /* char panel_name[16] */ 1156 w += 8; 1157 strcpy((void *) w, "blizzard"); /* char ctrl_name[16] */ 1158 w += 8; 1159 stw_p(w++, N810_BLIZZARD_RESET_GPIO); /* TODO: n800 s16 nreset_gpio */ 1160 stw_p(w++, 24); /* u8 data_lines */ 1161 1162 stw_p(w++, OMAP_TAG_CBUS); /* u16 tag */ 1163 stw_p(w++, 8); /* u16 len */ 1164 stw_p(w++, N8X0_CBUS_CLK_GPIO); /* s16 clk_gpio */ 1165 stw_p(w++, N8X0_CBUS_DAT_GPIO); /* s16 dat_gpio */ 1166 stw_p(w++, N8X0_CBUS_SEL_GPIO); /* s16 sel_gpio */ 1167 w++; 1168 1169 stw_p(w++, OMAP_TAG_EM_ASIC_BB5); /* u16 tag */ 1170 stw_p(w++, 4); /* u16 len */ 1171 stw_p(w++, N8X0_RETU_GPIO); /* s16 retu_irq_gpio */ 1172 stw_p(w++, N8X0_TAHVO_GPIO); /* s16 tahvo_irq_gpio */ 1173 1174 gpiosw = (model == 810) ? n810_gpiosw_info : n800_gpiosw_info; 1175 for (; gpiosw->name; gpiosw++) { 1176 stw_p(w++, OMAP_TAG_GPIO_SWITCH); /* u16 tag */ 1177 stw_p(w++, 20); /* u16 len */ 1178 strcpy((void *) w, gpiosw->name); /* char name[12] */ 1179 w += 6; 1180 stw_p(w++, gpiosw->line); /* u16 gpio */ 1181 stw_p(w++, gpiosw->type); 1182 stw_p(w++, 0); 1183 stw_p(w++, 0); 1184 } 1185 1186 stw_p(w++, OMAP_TAG_NOKIA_BT); /* u16 tag */ 1187 stw_p(w++, 12); /* u16 len */ 1188 b = (void *) w; 1189 stb_p(b++, 0x01); /* u8 chip_type (CSR) */ 1190 stb_p(b++, N8X0_BT_WKUP_GPIO); /* u8 bt_wakeup_gpio */ 1191 stb_p(b++, N8X0_BT_HOST_WKUP_GPIO); /* u8 host_wakeup_gpio */ 1192 stb_p(b++, N8X0_BT_RESET_GPIO); /* u8 reset_gpio */ 1193 stb_p(b++, BT_UART + 1); /* u8 bt_uart */ 1194 memcpy(b, &n8x0_bd_addr, 6); /* u8 bd_addr[6] */ 1195 b += 6; 1196 stb_p(b++, 0x02); /* u8 bt_sysclk (38.4) */ 1197 w = (void *) b; 1198 1199 stw_p(w++, OMAP_TAG_WLAN_CX3110X); /* u16 tag */ 1200 stw_p(w++, 8); /* u16 len */ 1201 stw_p(w++, 0x25); /* u8 chip_type */ 1202 stw_p(w++, N8X0_WLAN_PWR_GPIO); /* s16 power_gpio */ 1203 stw_p(w++, N8X0_WLAN_IRQ_GPIO); /* s16 irq_gpio */ 1204 stw_p(w++, -1); /* s16 spi_cs_gpio */ 1205 1206 stw_p(w++, OMAP_TAG_MMC); /* u16 tag */ 1207 stw_p(w++, 16); /* u16 len */ 1208 if (model == 810) { 1209 stw_p(w++, 0x23f); /* unsigned flags */ 1210 stw_p(w++, -1); /* s16 power_pin */ 1211 stw_p(w++, -1); /* s16 switch_pin */ 1212 stw_p(w++, -1); /* s16 wp_pin */ 1213 stw_p(w++, 0x240); /* unsigned flags */ 1214 stw_p(w++, 0xc000); /* s16 power_pin */ 1215 stw_p(w++, 0x0248); /* s16 switch_pin */ 1216 stw_p(w++, 0xc000); /* s16 wp_pin */ 1217 } else { 1218 stw_p(w++, 0xf); /* unsigned flags */ 1219 stw_p(w++, -1); /* s16 power_pin */ 1220 stw_p(w++, -1); /* s16 switch_pin */ 1221 stw_p(w++, -1); /* s16 wp_pin */ 1222 stw_p(w++, 0); /* unsigned flags */ 1223 stw_p(w++, 0); /* s16 power_pin */ 1224 stw_p(w++, 0); /* s16 switch_pin */ 1225 stw_p(w++, 0); /* s16 wp_pin */ 1226 } 1227 1228 stw_p(w++, OMAP_TAG_TEA5761); /* u16 tag */ 1229 stw_p(w++, 4); /* u16 len */ 1230 stw_p(w++, N8X0_TEA5761_CS_GPIO); /* u16 enable_gpio */ 1231 w++; 1232 1233 partition = (model == 810) ? n810_part_info : n800_part_info; 1234 for (; partition->name; partition++) { 1235 stw_p(w++, OMAP_TAG_PARTITION); /* u16 tag */ 1236 stw_p(w++, 28); /* u16 len */ 1237 strcpy((void *) w, partition->name); /* char name[16] */ 1238 l = (void *) (w + 8); 1239 stl_p(l++, partition->size); /* unsigned int size */ 1240 stl_p(l++, partition->offset); /* unsigned int offset */ 1241 stl_p(l++, partition->mask); /* unsigned int mask_flags */ 1242 w = (void *) l; 1243 } 1244 1245 stw_p(w++, OMAP_TAG_BOOT_REASON); /* u16 tag */ 1246 stw_p(w++, 12); /* u16 len */ 1247 #if 0 1248 strcpy((void *) w, "por"); /* char reason_str[12] */ 1249 strcpy((void *) w, "charger"); /* char reason_str[12] */ 1250 strcpy((void *) w, "32wd_to"); /* char reason_str[12] */ 1251 strcpy((void *) w, "sw_rst"); /* char reason_str[12] */ 1252 strcpy((void *) w, "mbus"); /* char reason_str[12] */ 1253 strcpy((void *) w, "unknown"); /* char reason_str[12] */ 1254 strcpy((void *) w, "swdg_to"); /* char reason_str[12] */ 1255 strcpy((void *) w, "sec_vio"); /* char reason_str[12] */ 1256 strcpy((void *) w, "pwr_key"); /* char reason_str[12] */ 1257 strcpy((void *) w, "rtc_alarm"); /* char reason_str[12] */ 1258 #else 1259 strcpy((void *) w, "pwr_key"); /* char reason_str[12] */ 1260 #endif 1261 w += 6; 1262 1263 tag = (model == 810) ? "RX-44" : "RX-34"; 1264 stw_p(w++, OMAP_TAG_VERSION_STR); /* u16 tag */ 1265 stw_p(w++, 24); /* u16 len */ 1266 strcpy((void *) w, "product"); /* char component[12] */ 1267 w += 6; 1268 strcpy((void *) w, tag); /* char version[12] */ 1269 w += 6; 1270 1271 stw_p(w++, OMAP_TAG_VERSION_STR); /* u16 tag */ 1272 stw_p(w++, 24); /* u16 len */ 1273 strcpy((void *) w, "hw-build"); /* char component[12] */ 1274 w += 6; 1275 strcpy((void *) w, "QEMU "); 1276 pstrcat((void *) w, 12, qemu_hw_version()); /* char version[12] */ 1277 w += 6; 1278 1279 tag = (model == 810) ? "1.1.10-qemu" : "1.1.6-qemu"; 1280 stw_p(w++, OMAP_TAG_VERSION_STR); /* u16 tag */ 1281 stw_p(w++, 24); /* u16 len */ 1282 strcpy((void *) w, "nolo"); /* char component[12] */ 1283 w += 6; 1284 strcpy((void *) w, tag); /* char version[12] */ 1285 w += 6; 1286 1287 return (void *) w - p; 1288 } 1289 1290 static int n800_atag_setup(const struct arm_boot_info *info, void *p) 1291 { 1292 return n8x0_atag_setup(p, 800); 1293 } 1294 1295 static int n810_atag_setup(const struct arm_boot_info *info, void *p) 1296 { 1297 return n8x0_atag_setup(p, 810); 1298 } 1299 1300 static void n8x0_init(MachineState *machine, 1301 struct arm_boot_info *binfo, int model) 1302 { 1303 struct n800_s *s = g_malloc0(sizeof(*s)); 1304 MachineClass *mc = MACHINE_GET_CLASS(machine); 1305 1306 if (machine->ram_size != mc->default_ram_size) { 1307 char *sz = size_to_str(mc->default_ram_size); 1308 error_report("Invalid RAM size, should be %s", sz); 1309 g_free(sz); 1310 exit(EXIT_FAILURE); 1311 } 1312 binfo->ram_size = machine->ram_size; 1313 1314 memory_region_add_subregion(get_system_memory(), OMAP2_Q2_BASE, 1315 machine->ram); 1316 1317 s->mpu = omap2420_mpu_init(machine->ram, machine->cpu_type); 1318 1319 /* Setup peripherals 1320 * 1321 * Believed external peripherals layout in the N810: 1322 * (spi bus 1) 1323 * tsc2005 1324 * lcd_mipid 1325 * (spi bus 2) 1326 * Conexant cx3110x (WLAN) 1327 * optional: pc2400m (WiMAX) 1328 * (i2c bus 0) 1329 * TLV320AIC33 (audio codec) 1330 * TCM825x (camera by Toshiba) 1331 * lp5521 (clever LEDs) 1332 * tsl2563 (light sensor, hwmon, model 7, rev. 0) 1333 * lm8323 (keypad, manf 00, rev 04) 1334 * (i2c bus 1) 1335 * tmp105 (temperature sensor, hwmon) 1336 * menelaus (pm) 1337 * (somewhere on i2c - maybe N800-only) 1338 * tea5761 (FM tuner) 1339 * (serial 0) 1340 * GPS 1341 * (some serial port) 1342 * csr41814 (Bluetooth) 1343 */ 1344 n8x0_gpio_setup(s); 1345 n8x0_nand_setup(s); 1346 n8x0_i2c_setup(s); 1347 if (model == 800) { 1348 n800_tsc_kbd_setup(s); 1349 } else if (model == 810) { 1350 n810_tsc_setup(s); 1351 n810_kbd_setup(s); 1352 } 1353 n8x0_spi_setup(s); 1354 n8x0_dss_setup(s); 1355 n8x0_cbus_setup(s); 1356 if (machine_usb(machine)) { 1357 n8x0_usb_setup(s); 1358 } 1359 1360 if (machine->kernel_filename) { 1361 /* Or at the linux loader. */ 1362 arm_load_kernel(s->mpu->cpu, machine, binfo); 1363 1364 qemu_register_reset(n8x0_boot_init, s); 1365 } 1366 1367 if (option_rom[0].name && 1368 (machine->boot_config.order[0] == 'n' || !machine->kernel_filename)) { 1369 uint8_t *nolo_tags = g_new(uint8_t, 0x10000); 1370 /* No, wait, better start at the ROM. */ 1371 s->mpu->cpu->env.regs[15] = OMAP2_Q2_BASE + 0x400000; 1372 1373 /* 1374 * This is intended for loading the `secondary.bin' program from 1375 * Nokia images (the NOLO bootloader). The entry point seems 1376 * to be at OMAP2_Q2_BASE + 0x400000. 1377 * 1378 * The `2nd.bin' files contain some kind of earlier boot code and 1379 * for them the entry point needs to be set to OMAP2_SRAM_BASE. 1380 * 1381 * The code above is for loading the `zImage' file from Nokia 1382 * images. 1383 */ 1384 if (load_image_targphys(option_rom[0].name, 1385 OMAP2_Q2_BASE + 0x400000, 1386 machine->ram_size - 0x400000) < 0) { 1387 error_report("Failed to load secondary bootloader %s", 1388 option_rom[0].name); 1389 exit(EXIT_FAILURE); 1390 } 1391 1392 n800_setup_nolo_tags(nolo_tags); 1393 cpu_physical_memory_write(OMAP2_SRAM_BASE, nolo_tags, 0x10000); 1394 g_free(nolo_tags); 1395 } 1396 } 1397 1398 static struct arm_boot_info n800_binfo = { 1399 .loader_start = OMAP2_Q2_BASE, 1400 .board_id = 0x4f7, 1401 .atag_board = n800_atag_setup, 1402 }; 1403 1404 static struct arm_boot_info n810_binfo = { 1405 .loader_start = OMAP2_Q2_BASE, 1406 /* 0x60c and 0x6bf (WiMAX Edition) have been assigned but are not 1407 * used by some older versions of the bootloader and 5555 is used 1408 * instead (including versions that shipped with many devices). */ 1409 .board_id = 0x60c, 1410 .atag_board = n810_atag_setup, 1411 }; 1412 1413 static void n800_init(MachineState *machine) 1414 { 1415 n8x0_init(machine, &n800_binfo, 800); 1416 } 1417 1418 static void n810_init(MachineState *machine) 1419 { 1420 n8x0_init(machine, &n810_binfo, 810); 1421 } 1422 1423 static void n800_class_init(ObjectClass *oc, void *data) 1424 { 1425 MachineClass *mc = MACHINE_CLASS(oc); 1426 1427 mc->desc = "Nokia N800 tablet aka. RX-34 (OMAP2420)"; 1428 mc->init = n800_init; 1429 mc->default_boot_order = ""; 1430 mc->ignore_memory_transaction_failures = true; 1431 mc->default_cpu_type = ARM_CPU_TYPE_NAME("arm1136-r2"); 1432 /* Actually two chips of 0x4000000 bytes each */ 1433 mc->default_ram_size = 0x08000000; 1434 mc->default_ram_id = "omap2.dram"; 1435 } 1436 1437 static const TypeInfo n800_type = { 1438 .name = MACHINE_TYPE_NAME("n800"), 1439 .parent = TYPE_MACHINE, 1440 .class_init = n800_class_init, 1441 }; 1442 1443 static void n810_class_init(ObjectClass *oc, void *data) 1444 { 1445 MachineClass *mc = MACHINE_CLASS(oc); 1446 1447 mc->desc = "Nokia N810 tablet aka. RX-44 (OMAP2420)"; 1448 mc->init = n810_init; 1449 mc->default_boot_order = ""; 1450 mc->ignore_memory_transaction_failures = true; 1451 mc->default_cpu_type = ARM_CPU_TYPE_NAME("arm1136-r2"); 1452 /* Actually two chips of 0x4000000 bytes each */ 1453 mc->default_ram_size = 0x08000000; 1454 mc->default_ram_id = "omap2.dram"; 1455 } 1456 1457 static const TypeInfo n810_type = { 1458 .name = MACHINE_TYPE_NAME("n810"), 1459 .parent = TYPE_MACHINE, 1460 .class_init = n810_class_init, 1461 }; 1462 1463 static void nseries_machine_init(void) 1464 { 1465 type_register_static(&n800_type); 1466 type_register_static(&n810_type); 1467 } 1468 1469 type_init(nseries_machine_init) 1470