1 /* 2 * Nokia N-series internet tablets. 3 * 4 * Copyright (C) 2007 Nokia Corporation 5 * Written by Andrzej Zaborowski <andrew@openedhand.com> 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License as 9 * published by the Free Software Foundation; either version 2 or 10 * (at your option) version 3 of the License. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License along 18 * with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qapi/error.h" 23 #include "cpu.h" 24 #include "qemu/cutils.h" 25 #include "qemu/bswap.h" 26 #include "sysemu/sysemu.h" 27 #include "hw/arm/omap.h" 28 #include "hw/arm/arm.h" 29 #include "hw/irq.h" 30 #include "ui/console.h" 31 #include "hw/boards.h" 32 #include "hw/i2c/i2c.h" 33 #include "hw/devices.h" 34 #include "hw/block/flash.h" 35 #include "hw/hw.h" 36 #include "hw/bt.h" 37 #include "hw/loader.h" 38 #include "sysemu/block-backend.h" 39 #include "hw/sysbus.h" 40 #include "qemu/log.h" 41 #include "exec/address-spaces.h" 42 43 /* Nokia N8x0 support */ 44 struct n800_s { 45 struct omap_mpu_state_s *mpu; 46 47 struct rfbi_chip_s blizzard; 48 struct { 49 void *opaque; 50 uint32_t (*txrx)(void *opaque, uint32_t value, int len); 51 uWireSlave *chip; 52 } ts; 53 54 int keymap[0x80]; 55 DeviceState *kbd; 56 57 DeviceState *usb; 58 void *retu; 59 void *tahvo; 60 DeviceState *nand; 61 }; 62 63 /* GPIO pins */ 64 #define N8X0_TUSB_ENABLE_GPIO 0 65 #define N800_MMC2_WP_GPIO 8 66 #define N800_UNKNOWN_GPIO0 9 /* out */ 67 #define N810_MMC2_VIOSD_GPIO 9 68 #define N810_HEADSET_AMP_GPIO 10 69 #define N800_CAM_TURN_GPIO 12 70 #define N810_GPS_RESET_GPIO 12 71 #define N800_BLIZZARD_POWERDOWN_GPIO 15 72 #define N800_MMC1_WP_GPIO 23 73 #define N810_MMC2_VSD_GPIO 23 74 #define N8X0_ONENAND_GPIO 26 75 #define N810_BLIZZARD_RESET_GPIO 30 76 #define N800_UNKNOWN_GPIO2 53 /* out */ 77 #define N8X0_TUSB_INT_GPIO 58 78 #define N8X0_BT_WKUP_GPIO 61 79 #define N8X0_STI_GPIO 62 80 #define N8X0_CBUS_SEL_GPIO 64 81 #define N8X0_CBUS_DAT_GPIO 65 82 #define N8X0_CBUS_CLK_GPIO 66 83 #define N8X0_WLAN_IRQ_GPIO 87 84 #define N8X0_BT_RESET_GPIO 92 85 #define N8X0_TEA5761_CS_GPIO 93 86 #define N800_UNKNOWN_GPIO 94 87 #define N810_TSC_RESET_GPIO 94 88 #define N800_CAM_ACT_GPIO 95 89 #define N810_GPS_WAKEUP_GPIO 95 90 #define N8X0_MMC_CS_GPIO 96 91 #define N8X0_WLAN_PWR_GPIO 97 92 #define N8X0_BT_HOST_WKUP_GPIO 98 93 #define N810_SPEAKER_AMP_GPIO 101 94 #define N810_KB_LOCK_GPIO 102 95 #define N800_TSC_TS_GPIO 103 96 #define N810_TSC_TS_GPIO 106 97 #define N8X0_HEADPHONE_GPIO 107 98 #define N8X0_RETU_GPIO 108 99 #define N800_TSC_KP_IRQ_GPIO 109 100 #define N810_KEYBOARD_GPIO 109 101 #define N800_BAT_COVER_GPIO 110 102 #define N810_SLIDE_GPIO 110 103 #define N8X0_TAHVO_GPIO 111 104 #define N800_UNKNOWN_GPIO4 112 /* out */ 105 #define N810_SLEEPX_LED_GPIO 112 106 #define N800_TSC_RESET_GPIO 118 /* ? */ 107 #define N810_AIC33_RESET_GPIO 118 108 #define N800_TSC_UNKNOWN_GPIO 119 /* out */ 109 #define N8X0_TMP105_GPIO 125 110 111 /* Config */ 112 #define BT_UART 0 113 #define XLDR_LL_UART 1 114 115 /* Addresses on the I2C bus 0 */ 116 #define N810_TLV320AIC33_ADDR 0x18 /* Audio CODEC */ 117 #define N8X0_TCM825x_ADDR 0x29 /* Camera */ 118 #define N810_LP5521_ADDR 0x32 /* LEDs */ 119 #define N810_TSL2563_ADDR 0x3d /* Light sensor */ 120 #define N810_LM8323_ADDR 0x45 /* Keyboard */ 121 /* Addresses on the I2C bus 1 */ 122 #define N8X0_TMP105_ADDR 0x48 /* Temperature sensor */ 123 #define N8X0_MENELAUS_ADDR 0x72 /* Power management */ 124 125 /* Chipselects on GPMC NOR interface */ 126 #define N8X0_ONENAND_CS 0 127 #define N8X0_USB_ASYNC_CS 1 128 #define N8X0_USB_SYNC_CS 4 129 130 #define N8X0_BD_ADDR 0x00, 0x1a, 0x89, 0x9e, 0x3e, 0x81 131 132 static void n800_mmc_cs_cb(void *opaque, int line, int level) 133 { 134 /* TODO: this seems to actually be connected to the menelaus, to 135 * which also both MMC slots connect. */ 136 omap_mmc_enable((struct omap_mmc_s *) opaque, !level); 137 } 138 139 static void n8x0_gpio_setup(struct n800_s *s) 140 { 141 qdev_connect_gpio_out(s->mpu->gpio, N8X0_MMC_CS_GPIO, 142 qemu_allocate_irq(n800_mmc_cs_cb, s->mpu->mmc, 0)); 143 qemu_irq_lower(qdev_get_gpio_in(s->mpu->gpio, N800_BAT_COVER_GPIO)); 144 } 145 146 #define MAEMO_CAL_HEADER(...) \ 147 'C', 'o', 'n', 'F', 0x02, 0x00, 0x04, 0x00, \ 148 __VA_ARGS__, \ 149 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 150 151 static const uint8_t n8x0_cal_wlan_mac[] = { 152 MAEMO_CAL_HEADER('w', 'l', 'a', 'n', '-', 'm', 'a', 'c') 153 0x1c, 0x00, 0x00, 0x00, 0x47, 0xd6, 0x69, 0xb3, 154 0x30, 0x08, 0xa0, 0x83, 0x00, 0x00, 0x00, 0x00, 155 0x00, 0x00, 0x00, 0x00, 0x1a, 0x00, 0x00, 0x00, 156 0x89, 0x00, 0x00, 0x00, 0x9e, 0x00, 0x00, 0x00, 157 0x5d, 0x00, 0x00, 0x00, 0xc1, 0x00, 0x00, 0x00, 158 }; 159 160 static const uint8_t n8x0_cal_bt_id[] = { 161 MAEMO_CAL_HEADER('b', 't', '-', 'i', 'd', 0, 0, 0) 162 0x0a, 0x00, 0x00, 0x00, 0xa3, 0x4b, 0xf6, 0x96, 163 0xa8, 0xeb, 0xb2, 0x41, 0x00, 0x00, 0x00, 0x00, 164 N8X0_BD_ADDR, 165 }; 166 167 static void n8x0_nand_setup(struct n800_s *s) 168 { 169 char *otp_region; 170 DriveInfo *dinfo; 171 172 s->nand = qdev_create(NULL, "onenand"); 173 qdev_prop_set_uint16(s->nand, "manufacturer_id", NAND_MFR_SAMSUNG); 174 /* Either 0x40 or 0x48 are OK for the device ID */ 175 qdev_prop_set_uint16(s->nand, "device_id", 0x48); 176 qdev_prop_set_uint16(s->nand, "version_id", 0); 177 qdev_prop_set_int32(s->nand, "shift", 1); 178 dinfo = drive_get(IF_MTD, 0, 0); 179 if (dinfo) { 180 qdev_prop_set_drive(s->nand, "drive", blk_by_legacy_dinfo(dinfo), 181 &error_fatal); 182 } 183 qdev_init_nofail(s->nand); 184 sysbus_connect_irq(SYS_BUS_DEVICE(s->nand), 0, 185 qdev_get_gpio_in(s->mpu->gpio, N8X0_ONENAND_GPIO)); 186 omap_gpmc_attach(s->mpu->gpmc, N8X0_ONENAND_CS, 187 sysbus_mmio_get_region(SYS_BUS_DEVICE(s->nand), 0)); 188 otp_region = onenand_raw_otp(s->nand); 189 190 memcpy(otp_region + 0x000, n8x0_cal_wlan_mac, sizeof(n8x0_cal_wlan_mac)); 191 memcpy(otp_region + 0x800, n8x0_cal_bt_id, sizeof(n8x0_cal_bt_id)); 192 /* XXX: in theory should also update the OOB for both pages */ 193 } 194 195 static qemu_irq n8x0_system_powerdown; 196 197 static void n8x0_powerdown_req(Notifier *n, void *opaque) 198 { 199 qemu_irq_raise(n8x0_system_powerdown); 200 } 201 202 static Notifier n8x0_system_powerdown_notifier = { 203 .notify = n8x0_powerdown_req 204 }; 205 206 static void n8x0_i2c_setup(struct n800_s *s) 207 { 208 DeviceState *dev; 209 qemu_irq tmp_irq = qdev_get_gpio_in(s->mpu->gpio, N8X0_TMP105_GPIO); 210 I2CBus *i2c = omap_i2c_bus(s->mpu->i2c[0]); 211 212 /* Attach a menelaus PM chip */ 213 dev = i2c_create_slave(i2c, "twl92230", N8X0_MENELAUS_ADDR); 214 qdev_connect_gpio_out(dev, 3, 215 qdev_get_gpio_in(s->mpu->ih[0], 216 OMAP_INT_24XX_SYS_NIRQ)); 217 218 n8x0_system_powerdown = qdev_get_gpio_in(dev, 3); 219 qemu_register_powerdown_notifier(&n8x0_system_powerdown_notifier); 220 221 /* Attach a TMP105 PM chip (A0 wired to ground) */ 222 dev = i2c_create_slave(i2c, "tmp105", N8X0_TMP105_ADDR); 223 qdev_connect_gpio_out(dev, 0, tmp_irq); 224 } 225 226 /* Touchscreen and keypad controller */ 227 static MouseTransformInfo n800_pointercal = { 228 .x = 800, 229 .y = 480, 230 .a = { 14560, -68, -3455208, -39, -9621, 35152972, 65536 }, 231 }; 232 233 static MouseTransformInfo n810_pointercal = { 234 .x = 800, 235 .y = 480, 236 .a = { 15041, 148, -4731056, 171, -10238, 35933380, 65536 }, 237 }; 238 239 #define RETU_KEYCODE 61 /* F3 */ 240 241 static void n800_key_event(void *opaque, int keycode) 242 { 243 struct n800_s *s = (struct n800_s *) opaque; 244 int code = s->keymap[keycode & 0x7f]; 245 246 if (code == -1) { 247 if ((keycode & 0x7f) == RETU_KEYCODE) { 248 retu_key_event(s->retu, !(keycode & 0x80)); 249 } 250 return; 251 } 252 253 tsc210x_key_event(s->ts.chip, code, !(keycode & 0x80)); 254 } 255 256 static const int n800_keys[16] = { 257 -1, 258 72, /* Up */ 259 63, /* Home (F5) */ 260 -1, 261 75, /* Left */ 262 28, /* Enter */ 263 77, /* Right */ 264 -1, 265 1, /* Cycle (ESC) */ 266 80, /* Down */ 267 62, /* Menu (F4) */ 268 -1, 269 66, /* Zoom- (F8) */ 270 64, /* FullScreen (F6) */ 271 65, /* Zoom+ (F7) */ 272 -1, 273 }; 274 275 static void n800_tsc_kbd_setup(struct n800_s *s) 276 { 277 int i; 278 279 /* XXX: are the three pins inverted inside the chip between the 280 * tsc and the cpu (N4111)? */ 281 qemu_irq penirq = NULL; /* NC */ 282 qemu_irq kbirq = qdev_get_gpio_in(s->mpu->gpio, N800_TSC_KP_IRQ_GPIO); 283 qemu_irq dav = qdev_get_gpio_in(s->mpu->gpio, N800_TSC_TS_GPIO); 284 285 s->ts.chip = tsc2301_init(penirq, kbirq, dav); 286 s->ts.opaque = s->ts.chip->opaque; 287 s->ts.txrx = tsc210x_txrx; 288 289 for (i = 0; i < 0x80; i++) { 290 s->keymap[i] = -1; 291 } 292 for (i = 0; i < 0x10; i++) { 293 if (n800_keys[i] >= 0) { 294 s->keymap[n800_keys[i]] = i; 295 } 296 } 297 298 qemu_add_kbd_event_handler(n800_key_event, s); 299 300 tsc210x_set_transform(s->ts.chip, &n800_pointercal); 301 } 302 303 static void n810_tsc_setup(struct n800_s *s) 304 { 305 qemu_irq pintdav = qdev_get_gpio_in(s->mpu->gpio, N810_TSC_TS_GPIO); 306 307 s->ts.opaque = tsc2005_init(pintdav); 308 s->ts.txrx = tsc2005_txrx; 309 310 tsc2005_set_transform(s->ts.opaque, &n810_pointercal); 311 } 312 313 /* N810 Keyboard controller */ 314 static void n810_key_event(void *opaque, int keycode) 315 { 316 struct n800_s *s = (struct n800_s *) opaque; 317 int code = s->keymap[keycode & 0x7f]; 318 319 if (code == -1) { 320 if ((keycode & 0x7f) == RETU_KEYCODE) { 321 retu_key_event(s->retu, !(keycode & 0x80)); 322 } 323 return; 324 } 325 326 lm832x_key_event(s->kbd, code, !(keycode & 0x80)); 327 } 328 329 #define M 0 330 331 static int n810_keys[0x80] = { 332 [0x01] = 16, /* Q */ 333 [0x02] = 37, /* K */ 334 [0x03] = 24, /* O */ 335 [0x04] = 25, /* P */ 336 [0x05] = 14, /* Backspace */ 337 [0x06] = 30, /* A */ 338 [0x07] = 31, /* S */ 339 [0x08] = 32, /* D */ 340 [0x09] = 33, /* F */ 341 [0x0a] = 34, /* G */ 342 [0x0b] = 35, /* H */ 343 [0x0c] = 36, /* J */ 344 345 [0x11] = 17, /* W */ 346 [0x12] = 62, /* Menu (F4) */ 347 [0x13] = 38, /* L */ 348 [0x14] = 40, /* ' (Apostrophe) */ 349 [0x16] = 44, /* Z */ 350 [0x17] = 45, /* X */ 351 [0x18] = 46, /* C */ 352 [0x19] = 47, /* V */ 353 [0x1a] = 48, /* B */ 354 [0x1b] = 49, /* N */ 355 [0x1c] = 42, /* Shift (Left shift) */ 356 [0x1f] = 65, /* Zoom+ (F7) */ 357 358 [0x21] = 18, /* E */ 359 [0x22] = 39, /* ; (Semicolon) */ 360 [0x23] = 12, /* - (Minus) */ 361 [0x24] = 13, /* = (Equal) */ 362 [0x2b] = 56, /* Fn (Left Alt) */ 363 [0x2c] = 50, /* M */ 364 [0x2f] = 66, /* Zoom- (F8) */ 365 366 [0x31] = 19, /* R */ 367 [0x32] = 29 | M, /* Right Ctrl */ 368 [0x34] = 57, /* Space */ 369 [0x35] = 51, /* , (Comma) */ 370 [0x37] = 72 | M, /* Up */ 371 [0x3c] = 82 | M, /* Compose (Insert) */ 372 [0x3f] = 64, /* FullScreen (F6) */ 373 374 [0x41] = 20, /* T */ 375 [0x44] = 52, /* . (Dot) */ 376 [0x46] = 77 | M, /* Right */ 377 [0x4f] = 63, /* Home (F5) */ 378 [0x51] = 21, /* Y */ 379 [0x53] = 80 | M, /* Down */ 380 [0x55] = 28, /* Enter */ 381 [0x5f] = 1, /* Cycle (ESC) */ 382 383 [0x61] = 22, /* U */ 384 [0x64] = 75 | M, /* Left */ 385 386 [0x71] = 23, /* I */ 387 #if 0 388 [0x75] = 28 | M, /* KP Enter (KP Enter) */ 389 #else 390 [0x75] = 15, /* KP Enter (Tab) */ 391 #endif 392 }; 393 394 #undef M 395 396 static void n810_kbd_setup(struct n800_s *s) 397 { 398 qemu_irq kbd_irq = qdev_get_gpio_in(s->mpu->gpio, N810_KEYBOARD_GPIO); 399 int i; 400 401 for (i = 0; i < 0x80; i++) { 402 s->keymap[i] = -1; 403 } 404 for (i = 0; i < 0x80; i++) { 405 if (n810_keys[i] > 0) { 406 s->keymap[n810_keys[i]] = i; 407 } 408 } 409 410 qemu_add_kbd_event_handler(n810_key_event, s); 411 412 /* Attach the LM8322 keyboard to the I2C bus, 413 * should happen in n8x0_i2c_setup and s->kbd be initialised here. */ 414 s->kbd = i2c_create_slave(omap_i2c_bus(s->mpu->i2c[0]), 415 "lm8323", N810_LM8323_ADDR); 416 qdev_connect_gpio_out(s->kbd, 0, kbd_irq); 417 } 418 419 /* LCD MIPI DBI-C controller (URAL) */ 420 struct mipid_s { 421 int resp[4]; 422 int param[4]; 423 int p; 424 int pm; 425 int cmd; 426 427 int sleep; 428 int booster; 429 int te; 430 int selfcheck; 431 int partial; 432 int normal; 433 int vscr; 434 int invert; 435 int onoff; 436 int gamma; 437 uint32_t id; 438 }; 439 440 static void mipid_reset(struct mipid_s *s) 441 { 442 s->pm = 0; 443 s->cmd = 0; 444 445 s->sleep = 1; 446 s->booster = 0; 447 s->selfcheck = 448 (1 << 7) | /* Register loading OK. */ 449 (1 << 5) | /* The chip is attached. */ 450 (1 << 4); /* Display glass still in one piece. */ 451 s->te = 0; 452 s->partial = 0; 453 s->normal = 1; 454 s->vscr = 0; 455 s->invert = 0; 456 s->onoff = 1; 457 s->gamma = 0; 458 } 459 460 static uint32_t mipid_txrx(void *opaque, uint32_t cmd, int len) 461 { 462 struct mipid_s *s = (struct mipid_s *) opaque; 463 uint8_t ret; 464 465 if (len > 9) { 466 hw_error("%s: FIXME: bad SPI word width %i\n", __func__, len); 467 } 468 469 if (s->p >= ARRAY_SIZE(s->resp)) { 470 ret = 0; 471 } else { 472 ret = s->resp[s->p++]; 473 } 474 if (s->pm-- > 0) { 475 s->param[s->pm] = cmd; 476 } else { 477 s->cmd = cmd; 478 } 479 480 switch (s->cmd) { 481 case 0x00: /* NOP */ 482 break; 483 484 case 0x01: /* SWRESET */ 485 mipid_reset(s); 486 break; 487 488 case 0x02: /* BSTROFF */ 489 s->booster = 0; 490 break; 491 case 0x03: /* BSTRON */ 492 s->booster = 1; 493 break; 494 495 case 0x04: /* RDDID */ 496 s->p = 0; 497 s->resp[0] = (s->id >> 16) & 0xff; 498 s->resp[1] = (s->id >> 8) & 0xff; 499 s->resp[2] = (s->id >> 0) & 0xff; 500 break; 501 502 case 0x06: /* RD_RED */ 503 case 0x07: /* RD_GREEN */ 504 /* XXX the bootloader sometimes issues RD_BLUE meaning RDDID so 505 * for the bootloader one needs to change this. */ 506 case 0x08: /* RD_BLUE */ 507 s->p = 0; 508 /* TODO: return first pixel components */ 509 s->resp[0] = 0x01; 510 break; 511 512 case 0x09: /* RDDST */ 513 s->p = 0; 514 s->resp[0] = s->booster << 7; 515 s->resp[1] = (5 << 4) | (s->partial << 2) | 516 (s->sleep << 1) | s->normal; 517 s->resp[2] = (s->vscr << 7) | (s->invert << 5) | 518 (s->onoff << 2) | (s->te << 1) | (s->gamma >> 2); 519 s->resp[3] = s->gamma << 6; 520 break; 521 522 case 0x0a: /* RDDPM */ 523 s->p = 0; 524 s->resp[0] = (s->onoff << 2) | (s->normal << 3) | (s->sleep << 4) | 525 (s->partial << 5) | (s->sleep << 6) | (s->booster << 7); 526 break; 527 case 0x0b: /* RDDMADCTR */ 528 s->p = 0; 529 s->resp[0] = 0; 530 break; 531 case 0x0c: /* RDDCOLMOD */ 532 s->p = 0; 533 s->resp[0] = 5; /* 65K colours */ 534 break; 535 case 0x0d: /* RDDIM */ 536 s->p = 0; 537 s->resp[0] = (s->invert << 5) | (s->vscr << 7) | s->gamma; 538 break; 539 case 0x0e: /* RDDSM */ 540 s->p = 0; 541 s->resp[0] = s->te << 7; 542 break; 543 case 0x0f: /* RDDSDR */ 544 s->p = 0; 545 s->resp[0] = s->selfcheck; 546 break; 547 548 case 0x10: /* SLPIN */ 549 s->sleep = 1; 550 break; 551 case 0x11: /* SLPOUT */ 552 s->sleep = 0; 553 s->selfcheck ^= 1 << 6; /* POFF self-diagnosis Ok */ 554 break; 555 556 case 0x12: /* PTLON */ 557 s->partial = 1; 558 s->normal = 0; 559 s->vscr = 0; 560 break; 561 case 0x13: /* NORON */ 562 s->partial = 0; 563 s->normal = 1; 564 s->vscr = 0; 565 break; 566 567 case 0x20: /* INVOFF */ 568 s->invert = 0; 569 break; 570 case 0x21: /* INVON */ 571 s->invert = 1; 572 break; 573 574 case 0x22: /* APOFF */ 575 case 0x23: /* APON */ 576 goto bad_cmd; 577 578 case 0x25: /* WRCNTR */ 579 if (s->pm < 0) { 580 s->pm = 1; 581 } 582 goto bad_cmd; 583 584 case 0x26: /* GAMSET */ 585 if (!s->pm) { 586 s->gamma = ctz32(s->param[0] & 0xf); 587 if (s->gamma == 32) { 588 s->gamma = -1; /* XXX: should this be 0? */ 589 } 590 } else if (s->pm < 0) { 591 s->pm = 1; 592 } 593 break; 594 595 case 0x28: /* DISPOFF */ 596 s->onoff = 0; 597 break; 598 case 0x29: /* DISPON */ 599 s->onoff = 1; 600 break; 601 602 case 0x2a: /* CASET */ 603 case 0x2b: /* RASET */ 604 case 0x2c: /* RAMWR */ 605 case 0x2d: /* RGBSET */ 606 case 0x2e: /* RAMRD */ 607 case 0x30: /* PTLAR */ 608 case 0x33: /* SCRLAR */ 609 goto bad_cmd; 610 611 case 0x34: /* TEOFF */ 612 s->te = 0; 613 break; 614 case 0x35: /* TEON */ 615 if (!s->pm) { 616 s->te = 1; 617 } else if (s->pm < 0) { 618 s->pm = 1; 619 } 620 break; 621 622 case 0x36: /* MADCTR */ 623 goto bad_cmd; 624 625 case 0x37: /* VSCSAD */ 626 s->partial = 0; 627 s->normal = 0; 628 s->vscr = 1; 629 break; 630 631 case 0x38: /* IDMOFF */ 632 case 0x39: /* IDMON */ 633 case 0x3a: /* COLMOD */ 634 goto bad_cmd; 635 636 case 0xb0: /* CLKINT / DISCTL */ 637 case 0xb1: /* CLKEXT */ 638 if (s->pm < 0) { 639 s->pm = 2; 640 } 641 break; 642 643 case 0xb4: /* FRMSEL */ 644 break; 645 646 case 0xb5: /* FRM8SEL */ 647 case 0xb6: /* TMPRNG / INIESC */ 648 case 0xb7: /* TMPHIS / NOP2 */ 649 case 0xb8: /* TMPREAD / MADCTL */ 650 case 0xba: /* DISTCTR */ 651 case 0xbb: /* EPVOL */ 652 goto bad_cmd; 653 654 case 0xbd: /* Unknown */ 655 s->p = 0; 656 s->resp[0] = 0; 657 s->resp[1] = 1; 658 break; 659 660 case 0xc2: /* IFMOD */ 661 if (s->pm < 0) { 662 s->pm = 2; 663 } 664 break; 665 666 case 0xc6: /* PWRCTL */ 667 case 0xc7: /* PPWRCTL */ 668 case 0xd0: /* EPWROUT */ 669 case 0xd1: /* EPWRIN */ 670 case 0xd4: /* RDEV */ 671 case 0xd5: /* RDRR */ 672 goto bad_cmd; 673 674 case 0xda: /* RDID1 */ 675 s->p = 0; 676 s->resp[0] = (s->id >> 16) & 0xff; 677 break; 678 case 0xdb: /* RDID2 */ 679 s->p = 0; 680 s->resp[0] = (s->id >> 8) & 0xff; 681 break; 682 case 0xdc: /* RDID3 */ 683 s->p = 0; 684 s->resp[0] = (s->id >> 0) & 0xff; 685 break; 686 687 default: 688 bad_cmd: 689 qemu_log_mask(LOG_GUEST_ERROR, 690 "%s: unknown command %02x\n", __func__, s->cmd); 691 break; 692 } 693 694 return ret; 695 } 696 697 static void *mipid_init(void) 698 { 699 struct mipid_s *s = (struct mipid_s *) g_malloc0(sizeof(*s)); 700 701 s->id = 0x838f03; 702 mipid_reset(s); 703 704 return s; 705 } 706 707 static void n8x0_spi_setup(struct n800_s *s) 708 { 709 void *tsc = s->ts.opaque; 710 void *mipid = mipid_init(); 711 712 omap_mcspi_attach(s->mpu->mcspi[0], s->ts.txrx, tsc, 0); 713 omap_mcspi_attach(s->mpu->mcspi[0], mipid_txrx, mipid, 1); 714 } 715 716 /* This task is normally performed by the bootloader. If we're loading 717 * a kernel directly, we need to enable the Blizzard ourselves. */ 718 static void n800_dss_init(struct rfbi_chip_s *chip) 719 { 720 uint8_t *fb_blank; 721 722 chip->write(chip->opaque, 0, 0x2a); /* LCD Width register */ 723 chip->write(chip->opaque, 1, 0x64); 724 chip->write(chip->opaque, 0, 0x2c); /* LCD HNDP register */ 725 chip->write(chip->opaque, 1, 0x1e); 726 chip->write(chip->opaque, 0, 0x2e); /* LCD Height 0 register */ 727 chip->write(chip->opaque, 1, 0xe0); 728 chip->write(chip->opaque, 0, 0x30); /* LCD Height 1 register */ 729 chip->write(chip->opaque, 1, 0x01); 730 chip->write(chip->opaque, 0, 0x32); /* LCD VNDP register */ 731 chip->write(chip->opaque, 1, 0x06); 732 chip->write(chip->opaque, 0, 0x68); /* Display Mode register */ 733 chip->write(chip->opaque, 1, 1); /* Enable bit */ 734 735 chip->write(chip->opaque, 0, 0x6c); 736 chip->write(chip->opaque, 1, 0x00); /* Input X Start Position */ 737 chip->write(chip->opaque, 1, 0x00); /* Input X Start Position */ 738 chip->write(chip->opaque, 1, 0x00); /* Input Y Start Position */ 739 chip->write(chip->opaque, 1, 0x00); /* Input Y Start Position */ 740 chip->write(chip->opaque, 1, 0x1f); /* Input X End Position */ 741 chip->write(chip->opaque, 1, 0x03); /* Input X End Position */ 742 chip->write(chip->opaque, 1, 0xdf); /* Input Y End Position */ 743 chip->write(chip->opaque, 1, 0x01); /* Input Y End Position */ 744 chip->write(chip->opaque, 1, 0x00); /* Output X Start Position */ 745 chip->write(chip->opaque, 1, 0x00); /* Output X Start Position */ 746 chip->write(chip->opaque, 1, 0x00); /* Output Y Start Position */ 747 chip->write(chip->opaque, 1, 0x00); /* Output Y Start Position */ 748 chip->write(chip->opaque, 1, 0x1f); /* Output X End Position */ 749 chip->write(chip->opaque, 1, 0x03); /* Output X End Position */ 750 chip->write(chip->opaque, 1, 0xdf); /* Output Y End Position */ 751 chip->write(chip->opaque, 1, 0x01); /* Output Y End Position */ 752 chip->write(chip->opaque, 1, 0x01); /* Input Data Format */ 753 chip->write(chip->opaque, 1, 0x01); /* Data Source Select */ 754 755 fb_blank = memset(g_malloc(800 * 480 * 2), 0xff, 800 * 480 * 2); 756 /* Display Memory Data Port */ 757 chip->block(chip->opaque, 1, fb_blank, 800 * 480 * 2, 800); 758 g_free(fb_blank); 759 } 760 761 static void n8x0_dss_setup(struct n800_s *s) 762 { 763 s->blizzard.opaque = s1d13745_init(NULL); 764 s->blizzard.block = s1d13745_write_block; 765 s->blizzard.write = s1d13745_write; 766 s->blizzard.read = s1d13745_read; 767 768 omap_rfbi_attach(s->mpu->dss, 0, &s->blizzard); 769 } 770 771 static void n8x0_cbus_setup(struct n800_s *s) 772 { 773 qemu_irq dat_out = qdev_get_gpio_in(s->mpu->gpio, N8X0_CBUS_DAT_GPIO); 774 qemu_irq retu_irq = qdev_get_gpio_in(s->mpu->gpio, N8X0_RETU_GPIO); 775 qemu_irq tahvo_irq = qdev_get_gpio_in(s->mpu->gpio, N8X0_TAHVO_GPIO); 776 777 CBus *cbus = cbus_init(dat_out); 778 779 qdev_connect_gpio_out(s->mpu->gpio, N8X0_CBUS_CLK_GPIO, cbus->clk); 780 qdev_connect_gpio_out(s->mpu->gpio, N8X0_CBUS_DAT_GPIO, cbus->dat); 781 qdev_connect_gpio_out(s->mpu->gpio, N8X0_CBUS_SEL_GPIO, cbus->sel); 782 783 cbus_attach(cbus, s->retu = retu_init(retu_irq, 1)); 784 cbus_attach(cbus, s->tahvo = tahvo_init(tahvo_irq, 1)); 785 } 786 787 static void n8x0_uart_setup(struct n800_s *s) 788 { 789 Chardev *radio = uart_hci_init(); 790 791 qdev_connect_gpio_out(s->mpu->gpio, N8X0_BT_RESET_GPIO, 792 csrhci_pins_get(radio)[csrhci_pin_reset]); 793 qdev_connect_gpio_out(s->mpu->gpio, N8X0_BT_WKUP_GPIO, 794 csrhci_pins_get(radio)[csrhci_pin_wakeup]); 795 796 omap_uart_attach(s->mpu->uart[BT_UART], radio); 797 } 798 799 static void n8x0_usb_setup(struct n800_s *s) 800 { 801 SysBusDevice *dev; 802 s->usb = qdev_create(NULL, "tusb6010"); 803 dev = SYS_BUS_DEVICE(s->usb); 804 qdev_init_nofail(s->usb); 805 sysbus_connect_irq(dev, 0, 806 qdev_get_gpio_in(s->mpu->gpio, N8X0_TUSB_INT_GPIO)); 807 /* Using the NOR interface */ 808 omap_gpmc_attach(s->mpu->gpmc, N8X0_USB_ASYNC_CS, 809 sysbus_mmio_get_region(dev, 0)); 810 omap_gpmc_attach(s->mpu->gpmc, N8X0_USB_SYNC_CS, 811 sysbus_mmio_get_region(dev, 1)); 812 qdev_connect_gpio_out(s->mpu->gpio, N8X0_TUSB_ENABLE_GPIO, 813 qdev_get_gpio_in(s->usb, 0)); /* tusb_pwr */ 814 } 815 816 /* Setup done before the main bootloader starts by some early setup code 817 * - used when we want to run the main bootloader in emulation. This 818 * isn't documented. */ 819 static uint32_t n800_pinout[104] = { 820 0x080f00d8, 0x00d40808, 0x03080808, 0x080800d0, 821 0x00dc0808, 0x0b0f0f00, 0x080800b4, 0x00c00808, 822 0x08080808, 0x180800c4, 0x00b80000, 0x08080808, 823 0x080800bc, 0x00cc0808, 0x08081818, 0x18180128, 824 0x01241800, 0x18181818, 0x000000f0, 0x01300000, 825 0x00001b0b, 0x1b0f0138, 0x00e0181b, 0x1b031b0b, 826 0x180f0078, 0x00740018, 0x0f0f0f1a, 0x00000080, 827 0x007c0000, 0x00000000, 0x00000088, 0x00840000, 828 0x00000000, 0x00000094, 0x00980300, 0x0f180003, 829 0x0000008c, 0x00900f0f, 0x0f0f1b00, 0x0f00009c, 830 0x01140000, 0x1b1b0f18, 0x0818013c, 0x01400008, 831 0x00001818, 0x000b0110, 0x010c1800, 0x0b030b0f, 832 0x181800f4, 0x00f81818, 0x00000018, 0x000000fc, 833 0x00401808, 0x00000000, 0x0f1b0030, 0x003c0008, 834 0x00000000, 0x00000038, 0x00340000, 0x00000000, 835 0x1a080070, 0x00641a1a, 0x08080808, 0x08080060, 836 0x005c0808, 0x08080808, 0x08080058, 0x00540808, 837 0x08080808, 0x0808006c, 0x00680808, 0x08080808, 838 0x000000a8, 0x00b00000, 0x08080808, 0x000000a0, 839 0x00a40000, 0x00000000, 0x08ff0050, 0x004c0808, 840 0xffffffff, 0xffff0048, 0x0044ffff, 0xffffffff, 841 0x000000ac, 0x01040800, 0x08080b0f, 0x18180100, 842 0x01081818, 0x0b0b1808, 0x1a0300e4, 0x012c0b1a, 843 0x02020018, 0x0b000134, 0x011c0800, 0x0b1b1b00, 844 0x0f0000c8, 0x00ec181b, 0x000f0f02, 0x00180118, 845 0x01200000, 0x0f0b1b1b, 0x0f0200e8, 0x0000020b, 846 }; 847 848 static void n800_setup_nolo_tags(void *sram_base) 849 { 850 int i; 851 uint32_t *p = sram_base + 0x8000; 852 uint32_t *v = sram_base + 0xa000; 853 854 memset(p, 0, 0x3000); 855 856 strcpy((void *) (p + 0), "QEMU N800"); 857 858 strcpy((void *) (p + 8), "F5"); 859 860 stl_p(p + 10, 0x04f70000); 861 strcpy((void *) (p + 9), "RX-34"); 862 863 /* RAM size in MB? */ 864 stl_p(p + 12, 0x80); 865 866 /* Pointer to the list of tags */ 867 stl_p(p + 13, OMAP2_SRAM_BASE + 0x9000); 868 869 /* The NOLO tags start here */ 870 p = sram_base + 0x9000; 871 #define ADD_TAG(tag, len) \ 872 stw_p((uint16_t *) p + 0, tag); \ 873 stw_p((uint16_t *) p + 1, len); p++; \ 874 stl_p(p++, OMAP2_SRAM_BASE | (((void *) v - sram_base) & 0xffff)); 875 876 /* OMAP STI console? Pin out settings? */ 877 ADD_TAG(0x6e01, 414); 878 for (i = 0; i < ARRAY_SIZE(n800_pinout); i++) { 879 stl_p(v++, n800_pinout[i]); 880 } 881 882 /* Kernel memsize? */ 883 ADD_TAG(0x6e05, 1); 884 stl_p(v++, 2); 885 886 /* NOLO serial console */ 887 ADD_TAG(0x6e02, 4); 888 stl_p(v++, XLDR_LL_UART); /* UART number (1 - 3) */ 889 890 #if 0 891 /* CBUS settings (Retu/AVilma) */ 892 ADD_TAG(0x6e03, 6); 893 stw_p((uint16_t *) v + 0, 65); /* CBUS GPIO0 */ 894 stw_p((uint16_t *) v + 1, 66); /* CBUS GPIO1 */ 895 stw_p((uint16_t *) v + 2, 64); /* CBUS GPIO2 */ 896 v += 2; 897 #endif 898 899 /* Nokia ASIC BB5 (Retu/Tahvo) */ 900 ADD_TAG(0x6e0a, 4); 901 stw_p((uint16_t *) v + 0, 111); /* "Retu" interrupt GPIO */ 902 stw_p((uint16_t *) v + 1, 108); /* "Tahvo" interrupt GPIO */ 903 v++; 904 905 /* LCD console? */ 906 ADD_TAG(0x6e04, 4); 907 stw_p((uint16_t *) v + 0, 30); /* ??? */ 908 stw_p((uint16_t *) v + 1, 24); /* ??? */ 909 v++; 910 911 #if 0 912 /* LCD settings */ 913 ADD_TAG(0x6e06, 2); 914 stw_p((uint16_t *) (v++), 15); /* ??? */ 915 #endif 916 917 /* I^2C (Menelaus) */ 918 ADD_TAG(0x6e07, 4); 919 stl_p(v++, 0x00720000); /* ??? */ 920 921 /* Unknown */ 922 ADD_TAG(0x6e0b, 6); 923 stw_p((uint16_t *) v + 0, 94); /* ??? */ 924 stw_p((uint16_t *) v + 1, 23); /* ??? */ 925 stw_p((uint16_t *) v + 2, 0); /* ??? */ 926 v += 2; 927 928 /* OMAP gpio switch info */ 929 ADD_TAG(0x6e0c, 80); 930 strcpy((void *) v, "bat_cover"); v += 3; 931 stw_p((uint16_t *) v + 0, 110); /* GPIO num ??? */ 932 stw_p((uint16_t *) v + 1, 1); /* GPIO num ??? */ 933 v += 2; 934 strcpy((void *) v, "cam_act"); v += 3; 935 stw_p((uint16_t *) v + 0, 95); /* GPIO num ??? */ 936 stw_p((uint16_t *) v + 1, 32); /* GPIO num ??? */ 937 v += 2; 938 strcpy((void *) v, "cam_turn"); v += 3; 939 stw_p((uint16_t *) v + 0, 12); /* GPIO num ??? */ 940 stw_p((uint16_t *) v + 1, 33); /* GPIO num ??? */ 941 v += 2; 942 strcpy((void *) v, "headphone"); v += 3; 943 stw_p((uint16_t *) v + 0, 107); /* GPIO num ??? */ 944 stw_p((uint16_t *) v + 1, 17); /* GPIO num ??? */ 945 v += 2; 946 947 /* Bluetooth */ 948 ADD_TAG(0x6e0e, 12); 949 stl_p(v++, 0x5c623d01); /* ??? */ 950 stl_p(v++, 0x00000201); /* ??? */ 951 stl_p(v++, 0x00000000); /* ??? */ 952 953 /* CX3110x WLAN settings */ 954 ADD_TAG(0x6e0f, 8); 955 stl_p(v++, 0x00610025); /* ??? */ 956 stl_p(v++, 0xffff0057); /* ??? */ 957 958 /* MMC host settings */ 959 ADD_TAG(0x6e10, 12); 960 stl_p(v++, 0xffff000f); /* ??? */ 961 stl_p(v++, 0xffffffff); /* ??? */ 962 stl_p(v++, 0x00000060); /* ??? */ 963 964 /* OneNAND chip select */ 965 ADD_TAG(0x6e11, 10); 966 stl_p(v++, 0x00000401); /* ??? */ 967 stl_p(v++, 0x0002003a); /* ??? */ 968 stl_p(v++, 0x00000002); /* ??? */ 969 970 /* TEA5761 sensor settings */ 971 ADD_TAG(0x6e12, 2); 972 stl_p(v++, 93); /* GPIO num ??? */ 973 974 #if 0 975 /* Unknown tag */ 976 ADD_TAG(6e09, 0); 977 978 /* Kernel UART / console */ 979 ADD_TAG(6e12, 0); 980 #endif 981 982 /* End of the list */ 983 stl_p(p++, 0x00000000); 984 stl_p(p++, 0x00000000); 985 } 986 987 /* This task is normally performed by the bootloader. If we're loading 988 * a kernel directly, we need to set up GPMC mappings ourselves. */ 989 static void n800_gpmc_init(struct n800_s *s) 990 { 991 uint32_t config7 = 992 (0xf << 8) | /* MASKADDRESS */ 993 (1 << 6) | /* CSVALID */ 994 (4 << 0); /* BASEADDRESS */ 995 996 cpu_physical_memory_write(0x6800a078, /* GPMC_CONFIG7_0 */ 997 &config7, sizeof(config7)); 998 } 999 1000 /* Setup sequence done by the bootloader */ 1001 static void n8x0_boot_init(void *opaque) 1002 { 1003 struct n800_s *s = (struct n800_s *) opaque; 1004 uint32_t buf; 1005 1006 /* PRCM setup */ 1007 #define omap_writel(addr, val) \ 1008 buf = (val); \ 1009 cpu_physical_memory_write(addr, &buf, sizeof(buf)) 1010 1011 omap_writel(0x48008060, 0x41); /* PRCM_CLKSRC_CTRL */ 1012 omap_writel(0x48008070, 1); /* PRCM_CLKOUT_CTRL */ 1013 omap_writel(0x48008078, 0); /* PRCM_CLKEMUL_CTRL */ 1014 omap_writel(0x48008090, 0); /* PRCM_VOLTSETUP */ 1015 omap_writel(0x48008094, 0); /* PRCM_CLKSSETUP */ 1016 omap_writel(0x48008098, 0); /* PRCM_POLCTRL */ 1017 omap_writel(0x48008140, 2); /* CM_CLKSEL_MPU */ 1018 omap_writel(0x48008148, 0); /* CM_CLKSTCTRL_MPU */ 1019 omap_writel(0x48008158, 1); /* RM_RSTST_MPU */ 1020 omap_writel(0x480081c8, 0x15); /* PM_WKDEP_MPU */ 1021 omap_writel(0x480081d4, 0x1d4); /* PM_EVGENCTRL_MPU */ 1022 omap_writel(0x480081d8, 0); /* PM_EVEGENONTIM_MPU */ 1023 omap_writel(0x480081dc, 0); /* PM_EVEGENOFFTIM_MPU */ 1024 omap_writel(0x480081e0, 0xc); /* PM_PWSTCTRL_MPU */ 1025 omap_writel(0x48008200, 0x047e7ff7); /* CM_FCLKEN1_CORE */ 1026 omap_writel(0x48008204, 0x00000004); /* CM_FCLKEN2_CORE */ 1027 omap_writel(0x48008210, 0x047e7ff1); /* CM_ICLKEN1_CORE */ 1028 omap_writel(0x48008214, 0x00000004); /* CM_ICLKEN2_CORE */ 1029 omap_writel(0x4800821c, 0x00000000); /* CM_ICLKEN4_CORE */ 1030 omap_writel(0x48008230, 0); /* CM_AUTOIDLE1_CORE */ 1031 omap_writel(0x48008234, 0); /* CM_AUTOIDLE2_CORE */ 1032 omap_writel(0x48008238, 7); /* CM_AUTOIDLE3_CORE */ 1033 omap_writel(0x4800823c, 0); /* CM_AUTOIDLE4_CORE */ 1034 omap_writel(0x48008240, 0x04360626); /* CM_CLKSEL1_CORE */ 1035 omap_writel(0x48008244, 0x00000014); /* CM_CLKSEL2_CORE */ 1036 omap_writel(0x48008248, 0); /* CM_CLKSTCTRL_CORE */ 1037 omap_writel(0x48008300, 0x00000000); /* CM_FCLKEN_GFX */ 1038 omap_writel(0x48008310, 0x00000000); /* CM_ICLKEN_GFX */ 1039 omap_writel(0x48008340, 0x00000001); /* CM_CLKSEL_GFX */ 1040 omap_writel(0x48008400, 0x00000004); /* CM_FCLKEN_WKUP */ 1041 omap_writel(0x48008410, 0x00000004); /* CM_ICLKEN_WKUP */ 1042 omap_writel(0x48008440, 0x00000000); /* CM_CLKSEL_WKUP */ 1043 omap_writel(0x48008500, 0x000000cf); /* CM_CLKEN_PLL */ 1044 omap_writel(0x48008530, 0x0000000c); /* CM_AUTOIDLE_PLL */ 1045 omap_writel(0x48008540, /* CM_CLKSEL1_PLL */ 1046 (0x78 << 12) | (6 << 8)); 1047 omap_writel(0x48008544, 2); /* CM_CLKSEL2_PLL */ 1048 1049 /* GPMC setup */ 1050 n800_gpmc_init(s); 1051 1052 /* Video setup */ 1053 n800_dss_init(&s->blizzard); 1054 1055 /* CPU setup */ 1056 s->mpu->cpu->env.GE = 0x5; 1057 1058 /* If the machine has a slided keyboard, open it */ 1059 if (s->kbd) { 1060 qemu_irq_raise(qdev_get_gpio_in(s->mpu->gpio, N810_SLIDE_GPIO)); 1061 } 1062 } 1063 1064 #define OMAP_TAG_NOKIA_BT 0x4e01 1065 #define OMAP_TAG_WLAN_CX3110X 0x4e02 1066 #define OMAP_TAG_CBUS 0x4e03 1067 #define OMAP_TAG_EM_ASIC_BB5 0x4e04 1068 1069 static struct omap_gpiosw_info_s { 1070 const char *name; 1071 int line; 1072 int type; 1073 } n800_gpiosw_info[] = { 1074 { 1075 "bat_cover", N800_BAT_COVER_GPIO, 1076 OMAP_GPIOSW_TYPE_COVER | OMAP_GPIOSW_INVERTED, 1077 }, { 1078 "cam_act", N800_CAM_ACT_GPIO, 1079 OMAP_GPIOSW_TYPE_ACTIVITY, 1080 }, { 1081 "cam_turn", N800_CAM_TURN_GPIO, 1082 OMAP_GPIOSW_TYPE_ACTIVITY | OMAP_GPIOSW_INVERTED, 1083 }, { 1084 "headphone", N8X0_HEADPHONE_GPIO, 1085 OMAP_GPIOSW_TYPE_CONNECTION | OMAP_GPIOSW_INVERTED, 1086 }, 1087 { NULL } 1088 }, n810_gpiosw_info[] = { 1089 { 1090 "gps_reset", N810_GPS_RESET_GPIO, 1091 OMAP_GPIOSW_TYPE_ACTIVITY | OMAP_GPIOSW_OUTPUT, 1092 }, { 1093 "gps_wakeup", N810_GPS_WAKEUP_GPIO, 1094 OMAP_GPIOSW_TYPE_ACTIVITY | OMAP_GPIOSW_OUTPUT, 1095 }, { 1096 "headphone", N8X0_HEADPHONE_GPIO, 1097 OMAP_GPIOSW_TYPE_CONNECTION | OMAP_GPIOSW_INVERTED, 1098 }, { 1099 "kb_lock", N810_KB_LOCK_GPIO, 1100 OMAP_GPIOSW_TYPE_COVER | OMAP_GPIOSW_INVERTED, 1101 }, { 1102 "sleepx_led", N810_SLEEPX_LED_GPIO, 1103 OMAP_GPIOSW_TYPE_ACTIVITY | OMAP_GPIOSW_INVERTED | OMAP_GPIOSW_OUTPUT, 1104 }, { 1105 "slide", N810_SLIDE_GPIO, 1106 OMAP_GPIOSW_TYPE_COVER | OMAP_GPIOSW_INVERTED, 1107 }, 1108 { NULL } 1109 }; 1110 1111 static struct omap_partition_info_s { 1112 uint32_t offset; 1113 uint32_t size; 1114 int mask; 1115 const char *name; 1116 } n800_part_info[] = { 1117 { 0x00000000, 0x00020000, 0x3, "bootloader" }, 1118 { 0x00020000, 0x00060000, 0x0, "config" }, 1119 { 0x00080000, 0x00200000, 0x0, "kernel" }, 1120 { 0x00280000, 0x00200000, 0x3, "initfs" }, 1121 { 0x00480000, 0x0fb80000, 0x3, "rootfs" }, 1122 1123 { 0, 0, 0, NULL } 1124 }, n810_part_info[] = { 1125 { 0x00000000, 0x00020000, 0x3, "bootloader" }, 1126 { 0x00020000, 0x00060000, 0x0, "config" }, 1127 { 0x00080000, 0x00220000, 0x0, "kernel" }, 1128 { 0x002a0000, 0x00400000, 0x0, "initfs" }, 1129 { 0x006a0000, 0x0f960000, 0x0, "rootfs" }, 1130 1131 { 0, 0, 0, NULL } 1132 }; 1133 1134 static bdaddr_t n8x0_bd_addr = {{ N8X0_BD_ADDR }}; 1135 1136 static int n8x0_atag_setup(void *p, int model) 1137 { 1138 uint8_t *b; 1139 uint16_t *w; 1140 uint32_t *l; 1141 struct omap_gpiosw_info_s *gpiosw; 1142 struct omap_partition_info_s *partition; 1143 const char *tag; 1144 1145 w = p; 1146 1147 stw_p(w++, OMAP_TAG_UART); /* u16 tag */ 1148 stw_p(w++, 4); /* u16 len */ 1149 stw_p(w++, (1 << 2) | (1 << 1) | (1 << 0)); /* uint enabled_uarts */ 1150 w++; 1151 1152 #if 0 1153 stw_p(w++, OMAP_TAG_SERIAL_CONSOLE); /* u16 tag */ 1154 stw_p(w++, 4); /* u16 len */ 1155 stw_p(w++, XLDR_LL_UART + 1); /* u8 console_uart */ 1156 stw_p(w++, 115200); /* u32 console_speed */ 1157 #endif 1158 1159 stw_p(w++, OMAP_TAG_LCD); /* u16 tag */ 1160 stw_p(w++, 36); /* u16 len */ 1161 strcpy((void *) w, "QEMU LCD panel"); /* char panel_name[16] */ 1162 w += 8; 1163 strcpy((void *) w, "blizzard"); /* char ctrl_name[16] */ 1164 w += 8; 1165 stw_p(w++, N810_BLIZZARD_RESET_GPIO); /* TODO: n800 s16 nreset_gpio */ 1166 stw_p(w++, 24); /* u8 data_lines */ 1167 1168 stw_p(w++, OMAP_TAG_CBUS); /* u16 tag */ 1169 stw_p(w++, 8); /* u16 len */ 1170 stw_p(w++, N8X0_CBUS_CLK_GPIO); /* s16 clk_gpio */ 1171 stw_p(w++, N8X0_CBUS_DAT_GPIO); /* s16 dat_gpio */ 1172 stw_p(w++, N8X0_CBUS_SEL_GPIO); /* s16 sel_gpio */ 1173 w++; 1174 1175 stw_p(w++, OMAP_TAG_EM_ASIC_BB5); /* u16 tag */ 1176 stw_p(w++, 4); /* u16 len */ 1177 stw_p(w++, N8X0_RETU_GPIO); /* s16 retu_irq_gpio */ 1178 stw_p(w++, N8X0_TAHVO_GPIO); /* s16 tahvo_irq_gpio */ 1179 1180 gpiosw = (model == 810) ? n810_gpiosw_info : n800_gpiosw_info; 1181 for (; gpiosw->name; gpiosw++) { 1182 stw_p(w++, OMAP_TAG_GPIO_SWITCH); /* u16 tag */ 1183 stw_p(w++, 20); /* u16 len */ 1184 strcpy((void *) w, gpiosw->name); /* char name[12] */ 1185 w += 6; 1186 stw_p(w++, gpiosw->line); /* u16 gpio */ 1187 stw_p(w++, gpiosw->type); 1188 stw_p(w++, 0); 1189 stw_p(w++, 0); 1190 } 1191 1192 stw_p(w++, OMAP_TAG_NOKIA_BT); /* u16 tag */ 1193 stw_p(w++, 12); /* u16 len */ 1194 b = (void *) w; 1195 stb_p(b++, 0x01); /* u8 chip_type (CSR) */ 1196 stb_p(b++, N8X0_BT_WKUP_GPIO); /* u8 bt_wakeup_gpio */ 1197 stb_p(b++, N8X0_BT_HOST_WKUP_GPIO); /* u8 host_wakeup_gpio */ 1198 stb_p(b++, N8X0_BT_RESET_GPIO); /* u8 reset_gpio */ 1199 stb_p(b++, BT_UART + 1); /* u8 bt_uart */ 1200 memcpy(b, &n8x0_bd_addr, 6); /* u8 bd_addr[6] */ 1201 b += 6; 1202 stb_p(b++, 0x02); /* u8 bt_sysclk (38.4) */ 1203 w = (void *) b; 1204 1205 stw_p(w++, OMAP_TAG_WLAN_CX3110X); /* u16 tag */ 1206 stw_p(w++, 8); /* u16 len */ 1207 stw_p(w++, 0x25); /* u8 chip_type */ 1208 stw_p(w++, N8X0_WLAN_PWR_GPIO); /* s16 power_gpio */ 1209 stw_p(w++, N8X0_WLAN_IRQ_GPIO); /* s16 irq_gpio */ 1210 stw_p(w++, -1); /* s16 spi_cs_gpio */ 1211 1212 stw_p(w++, OMAP_TAG_MMC); /* u16 tag */ 1213 stw_p(w++, 16); /* u16 len */ 1214 if (model == 810) { 1215 stw_p(w++, 0x23f); /* unsigned flags */ 1216 stw_p(w++, -1); /* s16 power_pin */ 1217 stw_p(w++, -1); /* s16 switch_pin */ 1218 stw_p(w++, -1); /* s16 wp_pin */ 1219 stw_p(w++, 0x240); /* unsigned flags */ 1220 stw_p(w++, 0xc000); /* s16 power_pin */ 1221 stw_p(w++, 0x0248); /* s16 switch_pin */ 1222 stw_p(w++, 0xc000); /* s16 wp_pin */ 1223 } else { 1224 stw_p(w++, 0xf); /* unsigned flags */ 1225 stw_p(w++, -1); /* s16 power_pin */ 1226 stw_p(w++, -1); /* s16 switch_pin */ 1227 stw_p(w++, -1); /* s16 wp_pin */ 1228 stw_p(w++, 0); /* unsigned flags */ 1229 stw_p(w++, 0); /* s16 power_pin */ 1230 stw_p(w++, 0); /* s16 switch_pin */ 1231 stw_p(w++, 0); /* s16 wp_pin */ 1232 } 1233 1234 stw_p(w++, OMAP_TAG_TEA5761); /* u16 tag */ 1235 stw_p(w++, 4); /* u16 len */ 1236 stw_p(w++, N8X0_TEA5761_CS_GPIO); /* u16 enable_gpio */ 1237 w++; 1238 1239 partition = (model == 810) ? n810_part_info : n800_part_info; 1240 for (; partition->name; partition++) { 1241 stw_p(w++, OMAP_TAG_PARTITION); /* u16 tag */ 1242 stw_p(w++, 28); /* u16 len */ 1243 strcpy((void *) w, partition->name); /* char name[16] */ 1244 l = (void *) (w + 8); 1245 stl_p(l++, partition->size); /* unsigned int size */ 1246 stl_p(l++, partition->offset); /* unsigned int offset */ 1247 stl_p(l++, partition->mask); /* unsigned int mask_flags */ 1248 w = (void *) l; 1249 } 1250 1251 stw_p(w++, OMAP_TAG_BOOT_REASON); /* u16 tag */ 1252 stw_p(w++, 12); /* u16 len */ 1253 #if 0 1254 strcpy((void *) w, "por"); /* char reason_str[12] */ 1255 strcpy((void *) w, "charger"); /* char reason_str[12] */ 1256 strcpy((void *) w, "32wd_to"); /* char reason_str[12] */ 1257 strcpy((void *) w, "sw_rst"); /* char reason_str[12] */ 1258 strcpy((void *) w, "mbus"); /* char reason_str[12] */ 1259 strcpy((void *) w, "unknown"); /* char reason_str[12] */ 1260 strcpy((void *) w, "swdg_to"); /* char reason_str[12] */ 1261 strcpy((void *) w, "sec_vio"); /* char reason_str[12] */ 1262 strcpy((void *) w, "pwr_key"); /* char reason_str[12] */ 1263 strcpy((void *) w, "rtc_alarm"); /* char reason_str[12] */ 1264 #else 1265 strcpy((void *) w, "pwr_key"); /* char reason_str[12] */ 1266 #endif 1267 w += 6; 1268 1269 tag = (model == 810) ? "RX-44" : "RX-34"; 1270 stw_p(w++, OMAP_TAG_VERSION_STR); /* u16 tag */ 1271 stw_p(w++, 24); /* u16 len */ 1272 strcpy((void *) w, "product"); /* char component[12] */ 1273 w += 6; 1274 strcpy((void *) w, tag); /* char version[12] */ 1275 w += 6; 1276 1277 stw_p(w++, OMAP_TAG_VERSION_STR); /* u16 tag */ 1278 stw_p(w++, 24); /* u16 len */ 1279 strcpy((void *) w, "hw-build"); /* char component[12] */ 1280 w += 6; 1281 strcpy((void *) w, "QEMU "); 1282 pstrcat((void *) w, 12, qemu_hw_version()); /* char version[12] */ 1283 w += 6; 1284 1285 tag = (model == 810) ? "1.1.10-qemu" : "1.1.6-qemu"; 1286 stw_p(w++, OMAP_TAG_VERSION_STR); /* u16 tag */ 1287 stw_p(w++, 24); /* u16 len */ 1288 strcpy((void *) w, "nolo"); /* char component[12] */ 1289 w += 6; 1290 strcpy((void *) w, tag); /* char version[12] */ 1291 w += 6; 1292 1293 return (void *) w - p; 1294 } 1295 1296 static int n800_atag_setup(const struct arm_boot_info *info, void *p) 1297 { 1298 return n8x0_atag_setup(p, 800); 1299 } 1300 1301 static int n810_atag_setup(const struct arm_boot_info *info, void *p) 1302 { 1303 return n8x0_atag_setup(p, 810); 1304 } 1305 1306 static void n8x0_init(MachineState *machine, 1307 struct arm_boot_info *binfo, int model) 1308 { 1309 MemoryRegion *sysmem = get_system_memory(); 1310 struct n800_s *s = (struct n800_s *) g_malloc0(sizeof(*s)); 1311 int sdram_size = binfo->ram_size; 1312 1313 s->mpu = omap2420_mpu_init(sysmem, sdram_size, machine->cpu_type); 1314 1315 /* Setup peripherals 1316 * 1317 * Believed external peripherals layout in the N810: 1318 * (spi bus 1) 1319 * tsc2005 1320 * lcd_mipid 1321 * (spi bus 2) 1322 * Conexant cx3110x (WLAN) 1323 * optional: pc2400m (WiMAX) 1324 * (i2c bus 0) 1325 * TLV320AIC33 (audio codec) 1326 * TCM825x (camera by Toshiba) 1327 * lp5521 (clever LEDs) 1328 * tsl2563 (light sensor, hwmon, model 7, rev. 0) 1329 * lm8323 (keypad, manf 00, rev 04) 1330 * (i2c bus 1) 1331 * tmp105 (temperature sensor, hwmon) 1332 * menelaus (pm) 1333 * (somewhere on i2c - maybe N800-only) 1334 * tea5761 (FM tuner) 1335 * (serial 0) 1336 * GPS 1337 * (some serial port) 1338 * csr41814 (Bluetooth) 1339 */ 1340 n8x0_gpio_setup(s); 1341 n8x0_nand_setup(s); 1342 n8x0_i2c_setup(s); 1343 if (model == 800) { 1344 n800_tsc_kbd_setup(s); 1345 } else if (model == 810) { 1346 n810_tsc_setup(s); 1347 n810_kbd_setup(s); 1348 } 1349 n8x0_spi_setup(s); 1350 n8x0_dss_setup(s); 1351 n8x0_cbus_setup(s); 1352 n8x0_uart_setup(s); 1353 if (machine_usb(machine)) { 1354 n8x0_usb_setup(s); 1355 } 1356 1357 if (machine->kernel_filename) { 1358 /* Or at the linux loader. */ 1359 binfo->kernel_filename = machine->kernel_filename; 1360 binfo->kernel_cmdline = machine->kernel_cmdline; 1361 binfo->initrd_filename = machine->initrd_filename; 1362 arm_load_kernel(s->mpu->cpu, binfo); 1363 1364 qemu_register_reset(n8x0_boot_init, s); 1365 } 1366 1367 if (option_rom[0].name && 1368 (machine->boot_order[0] == 'n' || !machine->kernel_filename)) { 1369 uint8_t *nolo_tags = g_new(uint8_t, 0x10000); 1370 /* No, wait, better start at the ROM. */ 1371 s->mpu->cpu->env.regs[15] = OMAP2_Q2_BASE + 0x400000; 1372 1373 /* This is intended for loading the `secondary.bin' program from 1374 * Nokia images (the NOLO bootloader). The entry point seems 1375 * to be at OMAP2_Q2_BASE + 0x400000. 1376 * 1377 * The `2nd.bin' files contain some kind of earlier boot code and 1378 * for them the entry point needs to be set to OMAP2_SRAM_BASE. 1379 * 1380 * The code above is for loading the `zImage' file from Nokia 1381 * images. */ 1382 load_image_targphys(option_rom[0].name, 1383 OMAP2_Q2_BASE + 0x400000, 1384 sdram_size - 0x400000); 1385 1386 n800_setup_nolo_tags(nolo_tags); 1387 cpu_physical_memory_write(OMAP2_SRAM_BASE, nolo_tags, 0x10000); 1388 g_free(nolo_tags); 1389 } 1390 } 1391 1392 static struct arm_boot_info n800_binfo = { 1393 .loader_start = OMAP2_Q2_BASE, 1394 /* Actually two chips of 0x4000000 bytes each */ 1395 .ram_size = 0x08000000, 1396 .board_id = 0x4f7, 1397 .atag_board = n800_atag_setup, 1398 }; 1399 1400 static struct arm_boot_info n810_binfo = { 1401 .loader_start = OMAP2_Q2_BASE, 1402 /* Actually two chips of 0x4000000 bytes each */ 1403 .ram_size = 0x08000000, 1404 /* 0x60c and 0x6bf (WiMAX Edition) have been assigned but are not 1405 * used by some older versions of the bootloader and 5555 is used 1406 * instead (including versions that shipped with many devices). */ 1407 .board_id = 0x60c, 1408 .atag_board = n810_atag_setup, 1409 }; 1410 1411 static void n800_init(MachineState *machine) 1412 { 1413 n8x0_init(machine, &n800_binfo, 800); 1414 } 1415 1416 static void n810_init(MachineState *machine) 1417 { 1418 n8x0_init(machine, &n810_binfo, 810); 1419 } 1420 1421 static void n800_class_init(ObjectClass *oc, void *data) 1422 { 1423 MachineClass *mc = MACHINE_CLASS(oc); 1424 1425 mc->desc = "Nokia N800 tablet aka. RX-34 (OMAP2420)"; 1426 mc->init = n800_init; 1427 mc->default_boot_order = ""; 1428 mc->ignore_memory_transaction_failures = true; 1429 mc->default_cpu_type = ARM_CPU_TYPE_NAME("arm1136-r2"); 1430 } 1431 1432 static const TypeInfo n800_type = { 1433 .name = MACHINE_TYPE_NAME("n800"), 1434 .parent = TYPE_MACHINE, 1435 .class_init = n800_class_init, 1436 }; 1437 1438 static void n810_class_init(ObjectClass *oc, void *data) 1439 { 1440 MachineClass *mc = MACHINE_CLASS(oc); 1441 1442 mc->desc = "Nokia N810 tablet aka. RX-44 (OMAP2420)"; 1443 mc->init = n810_init; 1444 mc->default_boot_order = ""; 1445 mc->ignore_memory_transaction_failures = true; 1446 mc->default_cpu_type = ARM_CPU_TYPE_NAME("arm1136-r2"); 1447 } 1448 1449 static const TypeInfo n810_type = { 1450 .name = MACHINE_TYPE_NAME("n810"), 1451 .parent = TYPE_MACHINE, 1452 .class_init = n810_class_init, 1453 }; 1454 1455 static void nseries_machine_init(void) 1456 { 1457 type_register_static(&n800_type); 1458 type_register_static(&n810_type); 1459 } 1460 1461 type_init(nseries_machine_init) 1462