1 /* 2 * Arm Musca-B1 test chip board emulation 3 * 4 * Copyright (c) 2019 Linaro Limited 5 * Written by Peter Maydell 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 or 9 * (at your option) any later version. 10 */ 11 12 /* 13 * The Musca boards are a reference implementation of a system using 14 * the SSE-200 subsystem for embedded: 15 * https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-a-test-chip-board 16 * https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-b-test-chip-board 17 * We model the A and B1 variants of this board, as described in the TRMs: 18 * https://developer.arm.com/documentation/101107/latest/ 19 * https://developer.arm.com/documentation/101312/latest/ 20 */ 21 22 #include "qemu/osdep.h" 23 #include "qemu/error-report.h" 24 #include "qapi/error.h" 25 #include "exec/address-spaces.h" 26 #include "sysemu/sysemu.h" 27 #include "hw/arm/boot.h" 28 #include "hw/arm/armsse.h" 29 #include "hw/boards.h" 30 #include "hw/char/pl011.h" 31 #include "hw/core/split-irq.h" 32 #include "hw/misc/tz-mpc.h" 33 #include "hw/misc/tz-ppc.h" 34 #include "hw/misc/unimp.h" 35 #include "hw/rtc/pl031.h" 36 #include "hw/qdev-clock.h" 37 #include "qom/object.h" 38 39 #define MUSCA_NUMIRQ_MAX 96 40 #define MUSCA_PPC_MAX 3 41 #define MUSCA_MPC_MAX 5 42 43 typedef struct MPCInfo MPCInfo; 44 45 typedef enum MuscaType { 46 MUSCA_A, 47 MUSCA_B1, 48 } MuscaType; 49 50 struct MuscaMachineClass { 51 MachineClass parent; 52 MuscaType type; 53 uint32_t init_svtor; 54 int sram_addr_width; 55 int num_irqs; 56 const MPCInfo *mpc_info; 57 int num_mpcs; 58 }; 59 60 struct MuscaMachineState { 61 MachineState parent; 62 63 ARMSSE sse; 64 /* RAM and flash */ 65 MemoryRegion ram[MUSCA_MPC_MAX]; 66 SplitIRQ cpu_irq_splitter[MUSCA_NUMIRQ_MAX]; 67 SplitIRQ sec_resp_splitter; 68 TZPPC ppc[MUSCA_PPC_MAX]; 69 MemoryRegion container; 70 UnimplementedDeviceState eflash[2]; 71 UnimplementedDeviceState qspi; 72 TZMPC mpc[MUSCA_MPC_MAX]; 73 UnimplementedDeviceState mhu[2]; 74 UnimplementedDeviceState pwm[3]; 75 UnimplementedDeviceState i2s; 76 PL011State uart[2]; 77 UnimplementedDeviceState i2c[2]; 78 UnimplementedDeviceState spi; 79 UnimplementedDeviceState scc; 80 UnimplementedDeviceState timer; 81 PL031State rtc; 82 UnimplementedDeviceState pvt; 83 UnimplementedDeviceState sdio; 84 UnimplementedDeviceState gpio; 85 UnimplementedDeviceState cryptoisland; 86 Clock *sysclk; 87 Clock *s32kclk; 88 }; 89 90 #define TYPE_MUSCA_MACHINE "musca" 91 #define TYPE_MUSCA_A_MACHINE MACHINE_TYPE_NAME("musca-a") 92 #define TYPE_MUSCA_B1_MACHINE MACHINE_TYPE_NAME("musca-b1") 93 94 OBJECT_DECLARE_TYPE(MuscaMachineState, MuscaMachineClass, MUSCA_MACHINE) 95 96 /* 97 * Main SYSCLK frequency in Hz 98 * TODO this should really be different for the two cores, but we 99 * don't model that in our SSE-200 model yet. 100 */ 101 #define SYSCLK_FRQ 40000000 102 /* Slow 32Khz S32KCLK frequency in Hz */ 103 #define S32KCLK_FRQ (32 * 1000) 104 105 static qemu_irq get_sse_irq_in(MuscaMachineState *mms, int irqno) 106 { 107 /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */ 108 assert(irqno < MUSCA_NUMIRQ_MAX); 109 110 return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0); 111 } 112 113 /* 114 * Most of the devices in the Musca board sit behind Peripheral Protection 115 * Controllers. These data structures define the layout of which devices 116 * sit behind which PPCs. 117 * The devfn for each port is a function which creates, configures 118 * and initializes the device, returning the MemoryRegion which 119 * needs to be plugged into the downstream end of the PPC port. 120 */ 121 typedef MemoryRegion *MakeDevFn(MuscaMachineState *mms, void *opaque, 122 const char *name, hwaddr size); 123 124 typedef struct PPCPortInfo { 125 const char *name; 126 MakeDevFn *devfn; 127 void *opaque; 128 hwaddr addr; 129 hwaddr size; 130 } PPCPortInfo; 131 132 typedef struct PPCInfo { 133 const char *name; 134 PPCPortInfo ports[TZ_NUM_PORTS]; 135 } PPCInfo; 136 137 static MemoryRegion *make_unimp_dev(MuscaMachineState *mms, 138 void *opaque, const char *name, hwaddr size) 139 { 140 /* 141 * Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE, 142 * and return a pointer to its MemoryRegion. 143 */ 144 UnimplementedDeviceState *uds = opaque; 145 146 object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE); 147 qdev_prop_set_string(DEVICE(uds), "name", name); 148 qdev_prop_set_uint64(DEVICE(uds), "size", size); 149 sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal); 150 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0); 151 } 152 153 typedef enum MPCInfoType { 154 MPC_RAM, 155 MPC_ROM, 156 MPC_CRYPTOISLAND, 157 } MPCInfoType; 158 159 struct MPCInfo { 160 const char *name; 161 hwaddr addr; 162 hwaddr size; 163 MPCInfoType type; 164 }; 165 166 /* Order of the MPCs here must match the order of the bits in SECMPCINTSTATUS */ 167 static const MPCInfo a_mpc_info[] = { { 168 .name = "qspi", 169 .type = MPC_ROM, 170 .addr = 0x00200000, 171 .size = 0x00800000, 172 }, { 173 .name = "sram", 174 .type = MPC_RAM, 175 .addr = 0x00000000, 176 .size = 0x00200000, 177 } 178 }; 179 180 static const MPCInfo b1_mpc_info[] = { { 181 .name = "qspi", 182 .type = MPC_ROM, 183 .addr = 0x00000000, 184 .size = 0x02000000, 185 }, { 186 .name = "sram", 187 .type = MPC_RAM, 188 .addr = 0x0a400000, 189 .size = 0x00080000, 190 }, { 191 .name = "eflash0", 192 .type = MPC_ROM, 193 .addr = 0x0a000000, 194 .size = 0x00200000, 195 }, { 196 .name = "eflash1", 197 .type = MPC_ROM, 198 .addr = 0x0a200000, 199 .size = 0x00200000, 200 }, { 201 .name = "cryptoisland", 202 .type = MPC_CRYPTOISLAND, 203 .addr = 0x0a000000, 204 .size = 0x00200000, 205 } 206 }; 207 208 static MemoryRegion *make_mpc(MuscaMachineState *mms, void *opaque, 209 const char *name, hwaddr size) 210 { 211 /* 212 * Create an MPC and the RAM or flash behind it. 213 * MPC 0: eFlash 0 214 * MPC 1: eFlash 1 215 * MPC 2: SRAM 216 * MPC 3: QSPI flash 217 * MPC 4: CryptoIsland 218 * For now we implement the flash regions as ROM (ie not programmable) 219 * (with their control interface memory regions being unimplemented 220 * stubs behind the PPCs). 221 * The whole CryptoIsland region behind its MPC is an unimplemented stub. 222 */ 223 MuscaMachineClass *mmc = MUSCA_MACHINE_GET_CLASS(mms); 224 TZMPC *mpc = opaque; 225 int i = mpc - &mms->mpc[0]; 226 MemoryRegion *downstream; 227 MemoryRegion *upstream; 228 UnimplementedDeviceState *uds; 229 char *mpcname; 230 const MPCInfo *mpcinfo = mmc->mpc_info; 231 232 mpcname = g_strdup_printf("%s-mpc", mpcinfo[i].name); 233 234 switch (mpcinfo[i].type) { 235 case MPC_ROM: 236 downstream = &mms->ram[i]; 237 memory_region_init_rom(downstream, NULL, mpcinfo[i].name, 238 mpcinfo[i].size, &error_fatal); 239 break; 240 case MPC_RAM: 241 downstream = &mms->ram[i]; 242 memory_region_init_ram(downstream, NULL, mpcinfo[i].name, 243 mpcinfo[i].size, &error_fatal); 244 break; 245 case MPC_CRYPTOISLAND: 246 /* We don't implement the CryptoIsland yet */ 247 uds = &mms->cryptoisland; 248 object_initialize_child(OBJECT(mms), name, uds, 249 TYPE_UNIMPLEMENTED_DEVICE); 250 qdev_prop_set_string(DEVICE(uds), "name", mpcinfo[i].name); 251 qdev_prop_set_uint64(DEVICE(uds), "size", mpcinfo[i].size); 252 sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal); 253 downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0); 254 break; 255 default: 256 g_assert_not_reached(); 257 } 258 259 object_initialize_child(OBJECT(mms), mpcname, mpc, TYPE_TZ_MPC); 260 object_property_set_link(OBJECT(mpc), "downstream", OBJECT(downstream), 261 &error_fatal); 262 sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal); 263 /* Map the upstream end of the MPC into system memory */ 264 upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1); 265 memory_region_add_subregion(get_system_memory(), mpcinfo[i].addr, upstream); 266 /* and connect its interrupt to the SSE-200 */ 267 qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0, 268 qdev_get_gpio_in_named(DEVICE(&mms->sse), 269 "mpcexp_status", i)); 270 271 g_free(mpcname); 272 /* Return the register interface MR for our caller to map behind the PPC */ 273 return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0); 274 } 275 276 static MemoryRegion *make_rtc(MuscaMachineState *mms, void *opaque, 277 const char *name, hwaddr size) 278 { 279 PL031State *rtc = opaque; 280 281 object_initialize_child(OBJECT(mms), name, rtc, TYPE_PL031); 282 sysbus_realize(SYS_BUS_DEVICE(rtc), &error_fatal); 283 sysbus_connect_irq(SYS_BUS_DEVICE(rtc), 0, get_sse_irq_in(mms, 39)); 284 return sysbus_mmio_get_region(SYS_BUS_DEVICE(rtc), 0); 285 } 286 287 static MemoryRegion *make_uart(MuscaMachineState *mms, void *opaque, 288 const char *name, hwaddr size) 289 { 290 PL011State *uart = opaque; 291 int i = uart - &mms->uart[0]; 292 int irqbase = 7 + i * 6; 293 SysBusDevice *s; 294 295 object_initialize_child(OBJECT(mms), name, uart, TYPE_PL011); 296 qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i)); 297 sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal); 298 s = SYS_BUS_DEVICE(uart); 299 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqbase + 5)); /* combined */ 300 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqbase + 0)); /* RX */ 301 sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqbase + 1)); /* TX */ 302 sysbus_connect_irq(s, 3, get_sse_irq_in(mms, irqbase + 2)); /* RT */ 303 sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqbase + 3)); /* MS */ 304 sysbus_connect_irq(s, 5, get_sse_irq_in(mms, irqbase + 4)); /* E */ 305 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0); 306 } 307 308 static MemoryRegion *make_musca_a_devs(MuscaMachineState *mms, void *opaque, 309 const char *name, hwaddr size) 310 { 311 /* 312 * Create the container MemoryRegion for all the devices that live 313 * behind the Musca-A PPC's single port. These devices don't have a PPC 314 * port each, but we use the PPCPortInfo struct as a convenient way 315 * to describe them. Note that addresses here are relative to the base 316 * address of the PPC port region: 0x40100000, and devices appear both 317 * at the 0x4... NS region and the 0x5... S region. 318 */ 319 int i; 320 MemoryRegion *container = &mms->container; 321 322 const PPCPortInfo devices[] = { 323 { "uart0", make_uart, &mms->uart[0], 0x1000, 0x1000 }, 324 { "uart1", make_uart, &mms->uart[1], 0x2000, 0x1000 }, 325 { "spi", make_unimp_dev, &mms->spi, 0x3000, 0x1000 }, 326 { "i2c0", make_unimp_dev, &mms->i2c[0], 0x4000, 0x1000 }, 327 { "i2c1", make_unimp_dev, &mms->i2c[1], 0x5000, 0x1000 }, 328 { "i2s", make_unimp_dev, &mms->i2s, 0x6000, 0x1000 }, 329 { "pwm0", make_unimp_dev, &mms->pwm[0], 0x7000, 0x1000 }, 330 { "rtc", make_rtc, &mms->rtc, 0x8000, 0x1000 }, 331 { "qspi", make_unimp_dev, &mms->qspi, 0xa000, 0x1000 }, 332 { "timer", make_unimp_dev, &mms->timer, 0xb000, 0x1000 }, 333 { "scc", make_unimp_dev, &mms->scc, 0xc000, 0x1000 }, 334 { "pwm1", make_unimp_dev, &mms->pwm[1], 0xe000, 0x1000 }, 335 { "pwm2", make_unimp_dev, &mms->pwm[2], 0xf000, 0x1000 }, 336 { "gpio", make_unimp_dev, &mms->gpio, 0x10000, 0x1000 }, 337 { "mpc0", make_mpc, &mms->mpc[0], 0x12000, 0x1000 }, 338 { "mpc1", make_mpc, &mms->mpc[1], 0x13000, 0x1000 }, 339 }; 340 341 memory_region_init(container, OBJECT(mms), "musca-device-container", size); 342 343 for (i = 0; i < ARRAY_SIZE(devices); i++) { 344 const PPCPortInfo *pinfo = &devices[i]; 345 MemoryRegion *mr; 346 347 mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size); 348 memory_region_add_subregion(container, pinfo->addr, mr); 349 } 350 351 return &mms->container; 352 } 353 354 static void musca_init(MachineState *machine) 355 { 356 MuscaMachineState *mms = MUSCA_MACHINE(machine); 357 MuscaMachineClass *mmc = MUSCA_MACHINE_GET_CLASS(mms); 358 MemoryRegion *system_memory = get_system_memory(); 359 DeviceState *ssedev; 360 DeviceState *dev_splitter; 361 const PPCInfo *ppcs; 362 int num_ppcs; 363 int i; 364 365 assert(mmc->num_irqs <= MUSCA_NUMIRQ_MAX); 366 assert(mmc->num_mpcs <= MUSCA_MPC_MAX); 367 368 mms->sysclk = clock_new(OBJECT(machine), "SYSCLK"); 369 clock_set_hz(mms->sysclk, SYSCLK_FRQ); 370 mms->s32kclk = clock_new(OBJECT(machine), "S32KCLK"); 371 clock_set_hz(mms->s32kclk, S32KCLK_FRQ); 372 373 object_initialize_child(OBJECT(machine), "sse-200", &mms->sse, 374 TYPE_SSE200); 375 ssedev = DEVICE(&mms->sse); 376 object_property_set_link(OBJECT(&mms->sse), "memory", 377 OBJECT(system_memory), &error_fatal); 378 qdev_prop_set_uint32(ssedev, "EXP_NUMIRQ", mmc->num_irqs); 379 qdev_prop_set_uint32(ssedev, "init-svtor", mmc->init_svtor); 380 qdev_prop_set_uint32(ssedev, "SRAM_ADDR_WIDTH", mmc->sram_addr_width); 381 qdev_connect_clock_in(ssedev, "MAINCLK", mms->sysclk); 382 qdev_connect_clock_in(ssedev, "S32KCLK", mms->s32kclk); 383 /* 384 * Musca-A takes the default SSE-200 FPU/DSP settings (ie no for 385 * CPU0 and yes for CPU1); Musca-B1 explicitly enables them for CPU0. 386 */ 387 if (mmc->type == MUSCA_B1) { 388 qdev_prop_set_bit(ssedev, "CPU0_FPU", true); 389 qdev_prop_set_bit(ssedev, "CPU0_DSP", true); 390 } 391 sysbus_realize(SYS_BUS_DEVICE(&mms->sse), &error_fatal); 392 393 /* 394 * We need to create splitters to feed the IRQ inputs 395 * for each CPU in the SSE-200 from each device in the board. 396 */ 397 for (i = 0; i < mmc->num_irqs; i++) { 398 char *name = g_strdup_printf("musca-irq-splitter%d", i); 399 SplitIRQ *splitter = &mms->cpu_irq_splitter[i]; 400 401 object_initialize_child_with_props(OBJECT(machine), name, splitter, 402 sizeof(*splitter), TYPE_SPLIT_IRQ, 403 &error_fatal, NULL); 404 g_free(name); 405 406 object_property_set_int(OBJECT(splitter), "num-lines", 2, 407 &error_fatal); 408 qdev_realize(DEVICE(splitter), NULL, &error_fatal); 409 qdev_connect_gpio_out(DEVICE(splitter), 0, 410 qdev_get_gpio_in_named(ssedev, "EXP_IRQ", i)); 411 qdev_connect_gpio_out(DEVICE(splitter), 1, 412 qdev_get_gpio_in_named(ssedev, 413 "EXP_CPU1_IRQ", i)); 414 } 415 416 /* 417 * The sec_resp_cfg output from the SSE-200 must be split into multiple 418 * lines, one for each of the PPCs we create here. 419 */ 420 object_initialize_child_with_props(OBJECT(machine), "sec-resp-splitter", 421 &mms->sec_resp_splitter, 422 sizeof(mms->sec_resp_splitter), 423 TYPE_SPLIT_IRQ, &error_fatal, NULL); 424 425 object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines", 426 ARRAY_SIZE(mms->ppc), &error_fatal); 427 qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal); 428 dev_splitter = DEVICE(&mms->sec_resp_splitter); 429 qdev_connect_gpio_out_named(ssedev, "sec_resp_cfg", 0, 430 qdev_get_gpio_in(dev_splitter, 0)); 431 432 /* 433 * Most of the devices in the board are behind Peripheral Protection 434 * Controllers. The required order for initializing things is: 435 * + initialize the PPC 436 * + initialize, configure and realize downstream devices 437 * + connect downstream device MemoryRegions to the PPC 438 * + realize the PPC 439 * + map the PPC's MemoryRegions to the places in the address map 440 * where the downstream devices should appear 441 * + wire up the PPC's control lines to the SSE object 442 * 443 * The PPC mapping differs for the -A and -B1 variants; the -A version 444 * is much simpler, using only a single port of a single PPC and putting 445 * all the devices behind that. 446 */ 447 const PPCInfo a_ppcs[] = { { 448 .name = "ahb_ppcexp0", 449 .ports = { 450 { "musca-devices", make_musca_a_devs, 0, 0x40100000, 0x100000 }, 451 }, 452 }, 453 }; 454 455 /* 456 * Devices listed with an 0x4.. address appear in both the NS 0x4.. region 457 * and the 0x5.. S region. Devices listed with an 0x5.. address appear 458 * only in the S region. 459 */ 460 const PPCInfo b1_ppcs[] = { { 461 .name = "apb_ppcexp0", 462 .ports = { 463 { "eflash0", make_unimp_dev, &mms->eflash[0], 464 0x52400000, 0x1000 }, 465 { "eflash1", make_unimp_dev, &mms->eflash[1], 466 0x52500000, 0x1000 }, 467 { "qspi", make_unimp_dev, &mms->qspi, 0x42800000, 0x100000 }, 468 { "mpc0", make_mpc, &mms->mpc[0], 0x52000000, 0x1000 }, 469 { "mpc1", make_mpc, &mms->mpc[1], 0x52100000, 0x1000 }, 470 { "mpc2", make_mpc, &mms->mpc[2], 0x52200000, 0x1000 }, 471 { "mpc3", make_mpc, &mms->mpc[3], 0x52300000, 0x1000 }, 472 { "mhu0", make_unimp_dev, &mms->mhu[0], 0x42600000, 0x100000 }, 473 { "mhu1", make_unimp_dev, &mms->mhu[1], 0x42700000, 0x100000 }, 474 { }, /* port 9: unused */ 475 { }, /* port 10: unused */ 476 { }, /* port 11: unused */ 477 { }, /* port 12: unused */ 478 { }, /* port 13: unused */ 479 { "mpc4", make_mpc, &mms->mpc[4], 0x52e00000, 0x1000 }, 480 }, 481 }, { 482 .name = "apb_ppcexp1", 483 .ports = { 484 { "pwm0", make_unimp_dev, &mms->pwm[0], 0x40101000, 0x1000 }, 485 { "pwm1", make_unimp_dev, &mms->pwm[1], 0x40102000, 0x1000 }, 486 { "pwm2", make_unimp_dev, &mms->pwm[2], 0x40103000, 0x1000 }, 487 { "i2s", make_unimp_dev, &mms->i2s, 0x40104000, 0x1000 }, 488 { "uart0", make_uart, &mms->uart[0], 0x40105000, 0x1000 }, 489 { "uart1", make_uart, &mms->uart[1], 0x40106000, 0x1000 }, 490 { "i2c0", make_unimp_dev, &mms->i2c[0], 0x40108000, 0x1000 }, 491 { "i2c1", make_unimp_dev, &mms->i2c[1], 0x40109000, 0x1000 }, 492 { "spi", make_unimp_dev, &mms->spi, 0x4010a000, 0x1000 }, 493 { "scc", make_unimp_dev, &mms->scc, 0x5010b000, 0x1000 }, 494 { "timer", make_unimp_dev, &mms->timer, 0x4010c000, 0x1000 }, 495 { "rtc", make_rtc, &mms->rtc, 0x4010d000, 0x1000 }, 496 { "pvt", make_unimp_dev, &mms->pvt, 0x4010e000, 0x1000 }, 497 { "sdio", make_unimp_dev, &mms->sdio, 0x4010f000, 0x1000 }, 498 }, 499 }, { 500 .name = "ahb_ppcexp0", 501 .ports = { 502 { }, /* port 0: unused */ 503 { "gpio", make_unimp_dev, &mms->gpio, 0x41000000, 0x1000 }, 504 }, 505 }, 506 }; 507 508 switch (mmc->type) { 509 case MUSCA_A: 510 ppcs = a_ppcs; 511 num_ppcs = ARRAY_SIZE(a_ppcs); 512 break; 513 case MUSCA_B1: 514 ppcs = b1_ppcs; 515 num_ppcs = ARRAY_SIZE(b1_ppcs); 516 break; 517 default: 518 g_assert_not_reached(); 519 } 520 assert(num_ppcs <= MUSCA_PPC_MAX); 521 522 for (i = 0; i < num_ppcs; i++) { 523 const PPCInfo *ppcinfo = &ppcs[i]; 524 TZPPC *ppc = &mms->ppc[i]; 525 DeviceState *ppcdev; 526 int port; 527 char *gpioname; 528 529 object_initialize_child(OBJECT(machine), ppcinfo->name, ppc, 530 TYPE_TZ_PPC); 531 ppcdev = DEVICE(ppc); 532 533 for (port = 0; port < TZ_NUM_PORTS; port++) { 534 const PPCPortInfo *pinfo = &ppcinfo->ports[port]; 535 MemoryRegion *mr; 536 char *portname; 537 538 if (!pinfo->devfn) { 539 continue; 540 } 541 542 mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size); 543 portname = g_strdup_printf("port[%d]", port); 544 object_property_set_link(OBJECT(ppc), portname, OBJECT(mr), 545 &error_fatal); 546 g_free(portname); 547 } 548 549 sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal); 550 551 for (port = 0; port < TZ_NUM_PORTS; port++) { 552 const PPCPortInfo *pinfo = &ppcinfo->ports[port]; 553 554 if (!pinfo->devfn) { 555 continue; 556 } 557 sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr); 558 559 gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name); 560 qdev_connect_gpio_out_named(ssedev, gpioname, port, 561 qdev_get_gpio_in_named(ppcdev, 562 "cfg_nonsec", 563 port)); 564 g_free(gpioname); 565 gpioname = g_strdup_printf("%s_ap", ppcinfo->name); 566 qdev_connect_gpio_out_named(ssedev, gpioname, port, 567 qdev_get_gpio_in_named(ppcdev, 568 "cfg_ap", port)); 569 g_free(gpioname); 570 } 571 572 gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name); 573 qdev_connect_gpio_out_named(ssedev, gpioname, 0, 574 qdev_get_gpio_in_named(ppcdev, 575 "irq_enable", 0)); 576 g_free(gpioname); 577 gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name); 578 qdev_connect_gpio_out_named(ssedev, gpioname, 0, 579 qdev_get_gpio_in_named(ppcdev, 580 "irq_clear", 0)); 581 g_free(gpioname); 582 gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name); 583 qdev_connect_gpio_out_named(ppcdev, "irq", 0, 584 qdev_get_gpio_in_named(ssedev, 585 gpioname, 0)); 586 g_free(gpioname); 587 588 qdev_connect_gpio_out(dev_splitter, i, 589 qdev_get_gpio_in_named(ppcdev, 590 "cfg_sec_resp", 0)); 591 } 592 593 armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 594 0, 0x2000000); 595 } 596 597 static void musca_class_init(ObjectClass *oc, void *data) 598 { 599 MachineClass *mc = MACHINE_CLASS(oc); 600 static const char * const valid_cpu_types[] = { 601 ARM_CPU_TYPE_NAME("cortex-m33"), 602 NULL 603 }; 604 605 mc->default_cpus = 2; 606 mc->min_cpus = mc->default_cpus; 607 mc->max_cpus = mc->default_cpus; 608 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"); 609 mc->valid_cpu_types = valid_cpu_types; 610 mc->init = musca_init; 611 } 612 613 static void musca_a_class_init(ObjectClass *oc, void *data) 614 { 615 MachineClass *mc = MACHINE_CLASS(oc); 616 MuscaMachineClass *mmc = MUSCA_MACHINE_CLASS(oc); 617 618 mc->desc = "ARM Musca-A board (dual Cortex-M33)"; 619 mmc->type = MUSCA_A; 620 mmc->init_svtor = 0x10200000; 621 mmc->sram_addr_width = 15; 622 mmc->num_irqs = 64; 623 mmc->mpc_info = a_mpc_info; 624 mmc->num_mpcs = ARRAY_SIZE(a_mpc_info); 625 } 626 627 static void musca_b1_class_init(ObjectClass *oc, void *data) 628 { 629 MachineClass *mc = MACHINE_CLASS(oc); 630 MuscaMachineClass *mmc = MUSCA_MACHINE_CLASS(oc); 631 632 mc->desc = "ARM Musca-B1 board (dual Cortex-M33)"; 633 mmc->type = MUSCA_B1; 634 /* 635 * This matches the DAPlink firmware which boots from QSPI. There 636 * is also a firmware blob which boots from the eFlash, which 637 * uses init_svtor = 0x1A000000. QEMU doesn't currently support that, 638 * though we could in theory expose a machine property on the command 639 * line to allow the user to request eFlash boot. 640 */ 641 mmc->init_svtor = 0x10000000; 642 mmc->sram_addr_width = 17; 643 mmc->num_irqs = 96; 644 mmc->mpc_info = b1_mpc_info; 645 mmc->num_mpcs = ARRAY_SIZE(b1_mpc_info); 646 } 647 648 static const TypeInfo musca_info = { 649 .name = TYPE_MUSCA_MACHINE, 650 .parent = TYPE_MACHINE, 651 .abstract = true, 652 .instance_size = sizeof(MuscaMachineState), 653 .class_size = sizeof(MuscaMachineClass), 654 .class_init = musca_class_init, 655 }; 656 657 static const TypeInfo musca_a_info = { 658 .name = TYPE_MUSCA_A_MACHINE, 659 .parent = TYPE_MUSCA_MACHINE, 660 .class_init = musca_a_class_init, 661 }; 662 663 static const TypeInfo musca_b1_info = { 664 .name = TYPE_MUSCA_B1_MACHINE, 665 .parent = TYPE_MUSCA_MACHINE, 666 .class_init = musca_b1_class_init, 667 }; 668 669 static void musca_machine_init(void) 670 { 671 type_register_static(&musca_info); 672 type_register_static(&musca_a_info); 673 type_register_static(&musca_b1_info); 674 } 675 676 type_init(musca_machine_init); 677