1 /* 2 * Arm Musca-B1 test chip board emulation 3 * 4 * Copyright (c) 2019 Linaro Limited 5 * Written by Peter Maydell 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 or 9 * (at your option) any later version. 10 */ 11 12 /* 13 * The Musca boards are a reference implementation of a system using 14 * the SSE-200 subsystem for embedded: 15 * https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-a-test-chip-board 16 * https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-b-test-chip-board 17 * We model the A and B1 variants of this board, as described in the TRMs: 18 * http://infocenter.arm.com/help/topic/com.arm.doc.101107_0000_00_en/index.html 19 * http://infocenter.arm.com/help/topic/com.arm.doc.101312_0000_00_en/index.html 20 */ 21 22 #include "qemu/osdep.h" 23 #include "qemu/error-report.h" 24 #include "qapi/error.h" 25 #include "exec/address-spaces.h" 26 #include "sysemu/sysemu.h" 27 #include "hw/arm/boot.h" 28 #include "hw/arm/armsse.h" 29 #include "hw/boards.h" 30 #include "hw/char/pl011.h" 31 #include "hw/core/split-irq.h" 32 #include "hw/misc/tz-mpc.h" 33 #include "hw/misc/tz-ppc.h" 34 #include "hw/misc/unimp.h" 35 #include "hw/timer/pl031.h" 36 37 #define MUSCA_NUMIRQ_MAX 96 38 #define MUSCA_PPC_MAX 3 39 #define MUSCA_MPC_MAX 5 40 41 typedef struct MPCInfo MPCInfo; 42 43 typedef enum MuscaType { 44 MUSCA_A, 45 MUSCA_B1, 46 } MuscaType; 47 48 typedef struct { 49 MachineClass parent; 50 MuscaType type; 51 uint32_t init_svtor; 52 int sram_addr_width; 53 int num_irqs; 54 const MPCInfo *mpc_info; 55 int num_mpcs; 56 } MuscaMachineClass; 57 58 typedef struct { 59 MachineState parent; 60 61 ARMSSE sse; 62 /* RAM and flash */ 63 MemoryRegion ram[MUSCA_MPC_MAX]; 64 SplitIRQ cpu_irq_splitter[MUSCA_NUMIRQ_MAX]; 65 SplitIRQ sec_resp_splitter; 66 TZPPC ppc[MUSCA_PPC_MAX]; 67 MemoryRegion container; 68 UnimplementedDeviceState eflash[2]; 69 UnimplementedDeviceState qspi; 70 TZMPC mpc[MUSCA_MPC_MAX]; 71 UnimplementedDeviceState mhu[2]; 72 UnimplementedDeviceState pwm[3]; 73 UnimplementedDeviceState i2s; 74 PL011State uart[2]; 75 UnimplementedDeviceState i2c[2]; 76 UnimplementedDeviceState spi; 77 UnimplementedDeviceState scc; 78 UnimplementedDeviceState timer; 79 PL031State rtc; 80 UnimplementedDeviceState pvt; 81 UnimplementedDeviceState sdio; 82 UnimplementedDeviceState gpio; 83 UnimplementedDeviceState cryptoisland; 84 } MuscaMachineState; 85 86 #define TYPE_MUSCA_MACHINE "musca" 87 #define TYPE_MUSCA_A_MACHINE MACHINE_TYPE_NAME("musca-a") 88 #define TYPE_MUSCA_B1_MACHINE MACHINE_TYPE_NAME("musca-b1") 89 90 #define MUSCA_MACHINE(obj) \ 91 OBJECT_CHECK(MuscaMachineState, obj, TYPE_MUSCA_MACHINE) 92 #define MUSCA_MACHINE_GET_CLASS(obj) \ 93 OBJECT_GET_CLASS(MuscaMachineClass, obj, TYPE_MUSCA_MACHINE) 94 #define MUSCA_MACHINE_CLASS(klass) \ 95 OBJECT_CLASS_CHECK(MuscaMachineClass, klass, TYPE_MUSCA_MACHINE) 96 97 /* 98 * Main SYSCLK frequency in Hz 99 * TODO this should really be different for the two cores, but we 100 * don't model that in our SSE-200 model yet. 101 */ 102 #define SYSCLK_FRQ 40000000 103 104 static qemu_irq get_sse_irq_in(MuscaMachineState *mms, int irqno) 105 { 106 /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */ 107 assert(irqno < MUSCA_NUMIRQ_MAX); 108 109 return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0); 110 } 111 112 /* 113 * Most of the devices in the Musca board sit behind Peripheral Protection 114 * Controllers. These data structures define the layout of which devices 115 * sit behind which PPCs. 116 * The devfn for each port is a function which creates, configures 117 * and initializes the device, returning the MemoryRegion which 118 * needs to be plugged into the downstream end of the PPC port. 119 */ 120 typedef MemoryRegion *MakeDevFn(MuscaMachineState *mms, void *opaque, 121 const char *name, hwaddr size); 122 123 typedef struct PPCPortInfo { 124 const char *name; 125 MakeDevFn *devfn; 126 void *opaque; 127 hwaddr addr; 128 hwaddr size; 129 } PPCPortInfo; 130 131 typedef struct PPCInfo { 132 const char *name; 133 PPCPortInfo ports[TZ_NUM_PORTS]; 134 } PPCInfo; 135 136 static MemoryRegion *make_unimp_dev(MuscaMachineState *mms, 137 void *opaque, const char *name, hwaddr size) 138 { 139 /* 140 * Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE, 141 * and return a pointer to its MemoryRegion. 142 */ 143 UnimplementedDeviceState *uds = opaque; 144 145 sysbus_init_child_obj(OBJECT(mms), name, uds, 146 sizeof(UnimplementedDeviceState), 147 TYPE_UNIMPLEMENTED_DEVICE); 148 qdev_prop_set_string(DEVICE(uds), "name", name); 149 qdev_prop_set_uint64(DEVICE(uds), "size", size); 150 object_property_set_bool(OBJECT(uds), true, "realized", &error_fatal); 151 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0); 152 } 153 154 typedef enum MPCInfoType { 155 MPC_RAM, 156 MPC_ROM, 157 MPC_CRYPTOISLAND, 158 } MPCInfoType; 159 160 struct MPCInfo { 161 const char *name; 162 hwaddr addr; 163 hwaddr size; 164 MPCInfoType type; 165 }; 166 167 /* Order of the MPCs here must match the order of the bits in SECMPCINTSTATUS */ 168 static const MPCInfo a_mpc_info[] = { { 169 .name = "qspi", 170 .type = MPC_ROM, 171 .addr = 0x00200000, 172 .size = 0x00800000, 173 }, { 174 .name = "sram", 175 .type = MPC_RAM, 176 .addr = 0x00000000, 177 .size = 0x00200000, 178 } 179 }; 180 181 static const MPCInfo b1_mpc_info[] = { { 182 .name = "qspi", 183 .type = MPC_ROM, 184 .addr = 0x00000000, 185 .size = 0x02000000, 186 }, { 187 .name = "sram", 188 .type = MPC_RAM, 189 .addr = 0x0a400000, 190 .size = 0x00080000, 191 }, { 192 .name = "eflash0", 193 .type = MPC_ROM, 194 .addr = 0x0a000000, 195 .size = 0x00200000, 196 }, { 197 .name = "eflash1", 198 .type = MPC_ROM, 199 .addr = 0x0a200000, 200 .size = 0x00200000, 201 }, { 202 .name = "cryptoisland", 203 .type = MPC_CRYPTOISLAND, 204 .addr = 0x0a000000, 205 .size = 0x00200000, 206 } 207 }; 208 209 static MemoryRegion *make_mpc(MuscaMachineState *mms, void *opaque, 210 const char *name, hwaddr size) 211 { 212 /* 213 * Create an MPC and the RAM or flash behind it. 214 * MPC 0: eFlash 0 215 * MPC 1: eFlash 1 216 * MPC 2: SRAM 217 * MPC 3: QSPI flash 218 * MPC 4: CryptoIsland 219 * For now we implement the flash regions as ROM (ie not programmable) 220 * (with their control interface memory regions being unimplemented 221 * stubs behind the PPCs). 222 * The whole CryptoIsland region behind its MPC is an unimplemented stub. 223 */ 224 MuscaMachineClass *mmc = MUSCA_MACHINE_GET_CLASS(mms); 225 TZMPC *mpc = opaque; 226 int i = mpc - &mms->mpc[0]; 227 MemoryRegion *downstream; 228 MemoryRegion *upstream; 229 UnimplementedDeviceState *uds; 230 char *mpcname; 231 const MPCInfo *mpcinfo = mmc->mpc_info; 232 233 mpcname = g_strdup_printf("%s-mpc", mpcinfo[i].name); 234 235 switch (mpcinfo[i].type) { 236 case MPC_ROM: 237 downstream = &mms->ram[i]; 238 memory_region_init_rom(downstream, NULL, mpcinfo[i].name, 239 mpcinfo[i].size, &error_fatal); 240 break; 241 case MPC_RAM: 242 downstream = &mms->ram[i]; 243 memory_region_init_ram(downstream, NULL, mpcinfo[i].name, 244 mpcinfo[i].size, &error_fatal); 245 break; 246 case MPC_CRYPTOISLAND: 247 /* We don't implement the CryptoIsland yet */ 248 uds = &mms->cryptoisland; 249 sysbus_init_child_obj(OBJECT(mms), name, uds, 250 sizeof(UnimplementedDeviceState), 251 TYPE_UNIMPLEMENTED_DEVICE); 252 qdev_prop_set_string(DEVICE(uds), "name", mpcinfo[i].name); 253 qdev_prop_set_uint64(DEVICE(uds), "size", mpcinfo[i].size); 254 object_property_set_bool(OBJECT(uds), true, "realized", &error_fatal); 255 downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0); 256 break; 257 default: 258 g_assert_not_reached(); 259 } 260 261 sysbus_init_child_obj(OBJECT(mms), mpcname, mpc, sizeof(mms->mpc[0]), 262 TYPE_TZ_MPC); 263 object_property_set_link(OBJECT(mpc), OBJECT(downstream), 264 "downstream", &error_fatal); 265 object_property_set_bool(OBJECT(mpc), true, "realized", &error_fatal); 266 /* Map the upstream end of the MPC into system memory */ 267 upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1); 268 memory_region_add_subregion(get_system_memory(), mpcinfo[i].addr, upstream); 269 /* and connect its interrupt to the SSE-200 */ 270 qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0, 271 qdev_get_gpio_in_named(DEVICE(&mms->sse), 272 "mpcexp_status", i)); 273 274 g_free(mpcname); 275 /* Return the register interface MR for our caller to map behind the PPC */ 276 return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0); 277 } 278 279 static MemoryRegion *make_rtc(MuscaMachineState *mms, void *opaque, 280 const char *name, hwaddr size) 281 { 282 PL031State *rtc = opaque; 283 284 sysbus_init_child_obj(OBJECT(mms), name, rtc, sizeof(mms->rtc), TYPE_PL031); 285 object_property_set_bool(OBJECT(rtc), true, "realized", &error_fatal); 286 sysbus_connect_irq(SYS_BUS_DEVICE(rtc), 0, get_sse_irq_in(mms, 39)); 287 return sysbus_mmio_get_region(SYS_BUS_DEVICE(rtc), 0); 288 } 289 290 static MemoryRegion *make_uart(MuscaMachineState *mms, void *opaque, 291 const char *name, hwaddr size) 292 { 293 PL011State *uart = opaque; 294 int i = uart - &mms->uart[0]; 295 int irqbase = 7 + i * 6; 296 SysBusDevice *s; 297 298 sysbus_init_child_obj(OBJECT(mms), name, uart, sizeof(mms->uart[0]), 299 TYPE_PL011); 300 qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i)); 301 object_property_set_bool(OBJECT(uart), true, "realized", &error_fatal); 302 s = SYS_BUS_DEVICE(uart); 303 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqbase + 5)); /* combined */ 304 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqbase + 0)); /* RX */ 305 sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqbase + 1)); /* TX */ 306 sysbus_connect_irq(s, 3, get_sse_irq_in(mms, irqbase + 2)); /* RT */ 307 sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqbase + 3)); /* MS */ 308 sysbus_connect_irq(s, 5, get_sse_irq_in(mms, irqbase + 4)); /* E */ 309 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0); 310 } 311 312 static MemoryRegion *make_musca_a_devs(MuscaMachineState *mms, void *opaque, 313 const char *name, hwaddr size) 314 { 315 /* 316 * Create the container MemoryRegion for all the devices that live 317 * behind the Musca-A PPC's single port. These devices don't have a PPC 318 * port each, but we use the PPCPortInfo struct as a convenient way 319 * to describe them. Note that addresses here are relative to the base 320 * address of the PPC port region: 0x40100000, and devices appear both 321 * at the 0x4... NS region and the 0x5... S region. 322 */ 323 int i; 324 MemoryRegion *container = &mms->container; 325 326 const PPCPortInfo devices[] = { 327 { "uart0", make_uart, &mms->uart[0], 0x1000, 0x1000 }, 328 { "uart1", make_uart, &mms->uart[1], 0x2000, 0x1000 }, 329 { "spi", make_unimp_dev, &mms->spi, 0x3000, 0x1000 }, 330 { "i2c0", make_unimp_dev, &mms->i2c[0], 0x4000, 0x1000 }, 331 { "i2c1", make_unimp_dev, &mms->i2c[1], 0x5000, 0x1000 }, 332 { "i2s", make_unimp_dev, &mms->i2s, 0x6000, 0x1000 }, 333 { "pwm0", make_unimp_dev, &mms->pwm[0], 0x7000, 0x1000 }, 334 { "rtc", make_rtc, &mms->rtc, 0x8000, 0x1000 }, 335 { "qspi", make_unimp_dev, &mms->qspi, 0xa000, 0x1000 }, 336 { "timer", make_unimp_dev, &mms->timer, 0xb000, 0x1000 }, 337 { "scc", make_unimp_dev, &mms->scc, 0xc000, 0x1000 }, 338 { "pwm1", make_unimp_dev, &mms->pwm[1], 0xe000, 0x1000 }, 339 { "pwm2", make_unimp_dev, &mms->pwm[2], 0xf000, 0x1000 }, 340 { "gpio", make_unimp_dev, &mms->gpio, 0x10000, 0x1000 }, 341 { "mpc0", make_mpc, &mms->mpc[0], 0x12000, 0x1000 }, 342 { "mpc1", make_mpc, &mms->mpc[1], 0x13000, 0x1000 }, 343 }; 344 345 memory_region_init(container, OBJECT(mms), "musca-device-container", size); 346 347 for (i = 0; i < ARRAY_SIZE(devices); i++) { 348 const PPCPortInfo *pinfo = &devices[i]; 349 MemoryRegion *mr; 350 351 mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size); 352 memory_region_add_subregion(container, pinfo->addr, mr); 353 } 354 355 return &mms->container; 356 } 357 358 static void musca_init(MachineState *machine) 359 { 360 MuscaMachineState *mms = MUSCA_MACHINE(machine); 361 MuscaMachineClass *mmc = MUSCA_MACHINE_GET_CLASS(mms); 362 MachineClass *mc = MACHINE_GET_CLASS(machine); 363 MemoryRegion *system_memory = get_system_memory(); 364 DeviceState *ssedev; 365 DeviceState *dev_splitter; 366 const PPCInfo *ppcs; 367 int num_ppcs; 368 int i; 369 370 assert(mmc->num_irqs <= MUSCA_NUMIRQ_MAX); 371 assert(mmc->num_mpcs <= MUSCA_MPC_MAX); 372 373 if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) { 374 error_report("This board can only be used with CPU %s", 375 mc->default_cpu_type); 376 exit(1); 377 } 378 379 sysbus_init_child_obj(OBJECT(machine), "sse-200", &mms->sse, 380 sizeof(mms->sse), TYPE_SSE200); 381 ssedev = DEVICE(&mms->sse); 382 object_property_set_link(OBJECT(&mms->sse), OBJECT(system_memory), 383 "memory", &error_fatal); 384 qdev_prop_set_uint32(ssedev, "EXP_NUMIRQ", mmc->num_irqs); 385 qdev_prop_set_uint32(ssedev, "init-svtor", mmc->init_svtor); 386 qdev_prop_set_uint32(ssedev, "SRAM_ADDR_WIDTH", mmc->sram_addr_width); 387 qdev_prop_set_uint32(ssedev, "MAINCLK", SYSCLK_FRQ); 388 object_property_set_bool(OBJECT(&mms->sse), true, "realized", 389 &error_fatal); 390 391 /* 392 * We need to create splitters to feed the IRQ inputs 393 * for each CPU in the SSE-200 from each device in the board. 394 */ 395 for (i = 0; i < mmc->num_irqs; i++) { 396 char *name = g_strdup_printf("musca-irq-splitter%d", i); 397 SplitIRQ *splitter = &mms->cpu_irq_splitter[i]; 398 399 object_initialize_child(OBJECT(machine), name, 400 splitter, sizeof(*splitter), 401 TYPE_SPLIT_IRQ, &error_fatal, NULL); 402 g_free(name); 403 404 object_property_set_int(OBJECT(splitter), 2, "num-lines", 405 &error_fatal); 406 object_property_set_bool(OBJECT(splitter), true, "realized", 407 &error_fatal); 408 qdev_connect_gpio_out(DEVICE(splitter), 0, 409 qdev_get_gpio_in_named(ssedev, "EXP_IRQ", i)); 410 qdev_connect_gpio_out(DEVICE(splitter), 1, 411 qdev_get_gpio_in_named(ssedev, 412 "EXP_CPU1_IRQ", i)); 413 } 414 415 /* 416 * The sec_resp_cfg output from the SSE-200 must be split into multiple 417 * lines, one for each of the PPCs we create here. 418 */ 419 object_initialize(&mms->sec_resp_splitter, sizeof(mms->sec_resp_splitter), 420 TYPE_SPLIT_IRQ); 421 object_property_add_child(OBJECT(machine), "sec-resp-splitter", 422 OBJECT(&mms->sec_resp_splitter), &error_fatal); 423 object_property_set_int(OBJECT(&mms->sec_resp_splitter), 424 ARRAY_SIZE(mms->ppc), "num-lines", &error_fatal); 425 object_property_set_bool(OBJECT(&mms->sec_resp_splitter), true, 426 "realized", &error_fatal); 427 dev_splitter = DEVICE(&mms->sec_resp_splitter); 428 qdev_connect_gpio_out_named(ssedev, "sec_resp_cfg", 0, 429 qdev_get_gpio_in(dev_splitter, 0)); 430 431 /* 432 * Most of the devices in the board are behind Peripheral Protection 433 * Controllers. The required order for initializing things is: 434 * + initialize the PPC 435 * + initialize, configure and realize downstream devices 436 * + connect downstream device MemoryRegions to the PPC 437 * + realize the PPC 438 * + map the PPC's MemoryRegions to the places in the address map 439 * where the downstream devices should appear 440 * + wire up the PPC's control lines to the SSE object 441 * 442 * The PPC mapping differs for the -A and -B1 variants; the -A version 443 * is much simpler, using only a single port of a single PPC and putting 444 * all the devices behind that. 445 */ 446 const PPCInfo a_ppcs[] = { { 447 .name = "ahb_ppcexp0", 448 .ports = { 449 { "musca-devices", make_musca_a_devs, 0, 0x40100000, 0x100000 }, 450 }, 451 }, 452 }; 453 454 /* 455 * Devices listed with an 0x4.. address appear in both the NS 0x4.. region 456 * and the 0x5.. S region. Devices listed with an 0x5.. address appear 457 * only in the S region. 458 */ 459 const PPCInfo b1_ppcs[] = { { 460 .name = "apb_ppcexp0", 461 .ports = { 462 { "eflash0", make_unimp_dev, &mms->eflash[0], 463 0x52400000, 0x1000 }, 464 { "eflash1", make_unimp_dev, &mms->eflash[1], 465 0x52500000, 0x1000 }, 466 { "qspi", make_unimp_dev, &mms->qspi, 0x42800000, 0x100000 }, 467 { "mpc0", make_mpc, &mms->mpc[0], 0x52000000, 0x1000 }, 468 { "mpc1", make_mpc, &mms->mpc[1], 0x52100000, 0x1000 }, 469 { "mpc2", make_mpc, &mms->mpc[2], 0x52200000, 0x1000 }, 470 { "mpc3", make_mpc, &mms->mpc[3], 0x52300000, 0x1000 }, 471 { "mhu0", make_unimp_dev, &mms->mhu[0], 0x42600000, 0x100000 }, 472 { "mhu1", make_unimp_dev, &mms->mhu[1], 0x42700000, 0x100000 }, 473 { }, /* port 9: unused */ 474 { }, /* port 10: unused */ 475 { }, /* port 11: unused */ 476 { }, /* port 12: unused */ 477 { }, /* port 13: unused */ 478 { "mpc4", make_mpc, &mms->mpc[4], 0x52e00000, 0x1000 }, 479 }, 480 }, { 481 .name = "apb_ppcexp1", 482 .ports = { 483 { "pwm0", make_unimp_dev, &mms->pwm[0], 0x40101000, 0x1000 }, 484 { "pwm1", make_unimp_dev, &mms->pwm[1], 0x40102000, 0x1000 }, 485 { "pwm2", make_unimp_dev, &mms->pwm[2], 0x40103000, 0x1000 }, 486 { "i2s", make_unimp_dev, &mms->i2s, 0x40104000, 0x1000 }, 487 { "uart0", make_uart, &mms->uart[0], 0x40105000, 0x1000 }, 488 { "uart1", make_uart, &mms->uart[1], 0x40106000, 0x1000 }, 489 { "i2c0", make_unimp_dev, &mms->i2c[0], 0x40108000, 0x1000 }, 490 { "i2c1", make_unimp_dev, &mms->i2c[1], 0x40109000, 0x1000 }, 491 { "spi", make_unimp_dev, &mms->spi, 0x4010a000, 0x1000 }, 492 { "scc", make_unimp_dev, &mms->scc, 0x5010b000, 0x1000 }, 493 { "timer", make_unimp_dev, &mms->timer, 0x4010c000, 0x1000 }, 494 { "rtc", make_rtc, &mms->rtc, 0x4010d000, 0x1000 }, 495 { "pvt", make_unimp_dev, &mms->pvt, 0x4010e000, 0x1000 }, 496 { "sdio", make_unimp_dev, &mms->sdio, 0x4010f000, 0x1000 }, 497 }, 498 }, { 499 .name = "ahb_ppcexp0", 500 .ports = { 501 { }, /* port 0: unused */ 502 { "gpio", make_unimp_dev, &mms->gpio, 0x41000000, 0x1000 }, 503 }, 504 }, 505 }; 506 507 switch (mmc->type) { 508 case MUSCA_A: 509 ppcs = a_ppcs; 510 num_ppcs = ARRAY_SIZE(a_ppcs); 511 break; 512 case MUSCA_B1: 513 ppcs = b1_ppcs; 514 num_ppcs = ARRAY_SIZE(b1_ppcs); 515 break; 516 default: 517 g_assert_not_reached(); 518 } 519 assert(num_ppcs <= MUSCA_PPC_MAX); 520 521 for (i = 0; i < num_ppcs; i++) { 522 const PPCInfo *ppcinfo = &ppcs[i]; 523 TZPPC *ppc = &mms->ppc[i]; 524 DeviceState *ppcdev; 525 int port; 526 char *gpioname; 527 528 sysbus_init_child_obj(OBJECT(machine), ppcinfo->name, ppc, 529 sizeof(TZPPC), TYPE_TZ_PPC); 530 ppcdev = DEVICE(ppc); 531 532 for (port = 0; port < TZ_NUM_PORTS; port++) { 533 const PPCPortInfo *pinfo = &ppcinfo->ports[port]; 534 MemoryRegion *mr; 535 char *portname; 536 537 if (!pinfo->devfn) { 538 continue; 539 } 540 541 mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size); 542 portname = g_strdup_printf("port[%d]", port); 543 object_property_set_link(OBJECT(ppc), OBJECT(mr), 544 portname, &error_fatal); 545 g_free(portname); 546 } 547 548 object_property_set_bool(OBJECT(ppc), true, "realized", &error_fatal); 549 550 for (port = 0; port < TZ_NUM_PORTS; port++) { 551 const PPCPortInfo *pinfo = &ppcinfo->ports[port]; 552 553 if (!pinfo->devfn) { 554 continue; 555 } 556 sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr); 557 558 gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name); 559 qdev_connect_gpio_out_named(ssedev, gpioname, port, 560 qdev_get_gpio_in_named(ppcdev, 561 "cfg_nonsec", 562 port)); 563 g_free(gpioname); 564 gpioname = g_strdup_printf("%s_ap", ppcinfo->name); 565 qdev_connect_gpio_out_named(ssedev, gpioname, port, 566 qdev_get_gpio_in_named(ppcdev, 567 "cfg_ap", port)); 568 g_free(gpioname); 569 } 570 571 gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name); 572 qdev_connect_gpio_out_named(ssedev, gpioname, 0, 573 qdev_get_gpio_in_named(ppcdev, 574 "irq_enable", 0)); 575 g_free(gpioname); 576 gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name); 577 qdev_connect_gpio_out_named(ssedev, gpioname, 0, 578 qdev_get_gpio_in_named(ppcdev, 579 "irq_clear", 0)); 580 g_free(gpioname); 581 gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name); 582 qdev_connect_gpio_out_named(ppcdev, "irq", 0, 583 qdev_get_gpio_in_named(ssedev, 584 gpioname, 0)); 585 g_free(gpioname); 586 587 qdev_connect_gpio_out(dev_splitter, i, 588 qdev_get_gpio_in_named(ppcdev, 589 "cfg_sec_resp", 0)); 590 } 591 592 armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x2000000); 593 } 594 595 static void musca_class_init(ObjectClass *oc, void *data) 596 { 597 MachineClass *mc = MACHINE_CLASS(oc); 598 599 mc->default_cpus = 2; 600 mc->min_cpus = mc->default_cpus; 601 mc->max_cpus = mc->default_cpus; 602 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"); 603 mc->init = musca_init; 604 } 605 606 static void musca_a_class_init(ObjectClass *oc, void *data) 607 { 608 MachineClass *mc = MACHINE_CLASS(oc); 609 MuscaMachineClass *mmc = MUSCA_MACHINE_CLASS(oc); 610 611 mc->desc = "ARM Musca-A board (dual Cortex-M33)"; 612 mmc->type = MUSCA_A; 613 mmc->init_svtor = 0x10200000; 614 mmc->sram_addr_width = 15; 615 mmc->num_irqs = 64; 616 mmc->mpc_info = a_mpc_info; 617 mmc->num_mpcs = ARRAY_SIZE(a_mpc_info); 618 } 619 620 static void musca_b1_class_init(ObjectClass *oc, void *data) 621 { 622 MachineClass *mc = MACHINE_CLASS(oc); 623 MuscaMachineClass *mmc = MUSCA_MACHINE_CLASS(oc); 624 625 mc->desc = "ARM Musca-B1 board (dual Cortex-M33)"; 626 mmc->type = MUSCA_B1; 627 /* 628 * This matches the DAPlink firmware which boots from QSPI. There 629 * is also a firmware blob which boots from the eFlash, which 630 * uses init_svtor = 0x1A000000. QEMU doesn't currently support that, 631 * though we could in theory expose a machine property on the command 632 * line to allow the user to request eFlash boot. 633 */ 634 mmc->init_svtor = 0x10000000; 635 mmc->sram_addr_width = 17; 636 mmc->num_irqs = 96; 637 mmc->mpc_info = b1_mpc_info; 638 mmc->num_mpcs = ARRAY_SIZE(b1_mpc_info); 639 } 640 641 static const TypeInfo musca_info = { 642 .name = TYPE_MUSCA_MACHINE, 643 .parent = TYPE_MACHINE, 644 .abstract = true, 645 .instance_size = sizeof(MuscaMachineState), 646 .class_size = sizeof(MuscaMachineClass), 647 .class_init = musca_class_init, 648 }; 649 650 static const TypeInfo musca_a_info = { 651 .name = TYPE_MUSCA_A_MACHINE, 652 .parent = TYPE_MUSCA_MACHINE, 653 .class_init = musca_a_class_init, 654 }; 655 656 static const TypeInfo musca_b1_info = { 657 .name = TYPE_MUSCA_B1_MACHINE, 658 .parent = TYPE_MUSCA_MACHINE, 659 .class_init = musca_b1_class_init, 660 }; 661 662 static void musca_machine_init(void) 663 { 664 type_register_static(&musca_info); 665 type_register_static(&musca_a_info); 666 type_register_static(&musca_b1_info); 667 } 668 669 type_init(musca_machine_init); 670