xref: /openbmc/qemu/hw/arm/musca.c (revision 9f34101db00eabd8f424e98b481c2394e6509198)
1  /*
2   * Arm Musca-B1 test chip board emulation
3   *
4   * Copyright (c) 2019 Linaro Limited
5   * Written by Peter Maydell
6   *
7   *  This program is free software; you can redistribute it and/or modify
8   *  it under the terms of the GNU General Public License version 2 or
9   *  (at your option) any later version.
10   */
11  
12  /*
13   * The Musca boards are a reference implementation of a system using
14   * the SSE-200 subsystem for embedded:
15   * https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-a-test-chip-board
16   * https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-b-test-chip-board
17   * We model the A and B1 variants of this board, as described in the TRMs:
18   * https://developer.arm.com/documentation/101107/latest/
19   * https://developer.arm.com/documentation/101312/latest/
20   */
21  
22  #include "qemu/osdep.h"
23  #include "qemu/error-report.h"
24  #include "qapi/error.h"
25  #include "exec/address-spaces.h"
26  #include "sysemu/sysemu.h"
27  #include "hw/arm/boot.h"
28  #include "hw/arm/armsse.h"
29  #include "hw/boards.h"
30  #include "hw/char/pl011.h"
31  #include "hw/core/split-irq.h"
32  #include "hw/misc/tz-mpc.h"
33  #include "hw/misc/tz-ppc.h"
34  #include "hw/misc/unimp.h"
35  #include "hw/rtc/pl031.h"
36  #include "hw/qdev-clock.h"
37  #include "qom/object.h"
38  
39  #define MUSCA_NUMIRQ_MAX 96
40  #define MUSCA_PPC_MAX 3
41  #define MUSCA_MPC_MAX 5
42  
43  typedef struct MPCInfo MPCInfo;
44  
45  typedef enum MuscaType {
46      MUSCA_A,
47      MUSCA_B1,
48  } MuscaType;
49  
50  struct MuscaMachineClass {
51      MachineClass parent;
52      MuscaType type;
53      uint32_t init_svtor;
54      int sram_addr_width;
55      int num_irqs;
56      const MPCInfo *mpc_info;
57      int num_mpcs;
58  };
59  
60  struct MuscaMachineState {
61      MachineState parent;
62  
63      ARMSSE sse;
64      /* RAM and flash */
65      MemoryRegion ram[MUSCA_MPC_MAX];
66      SplitIRQ cpu_irq_splitter[MUSCA_NUMIRQ_MAX];
67      SplitIRQ sec_resp_splitter;
68      TZPPC ppc[MUSCA_PPC_MAX];
69      MemoryRegion container;
70      UnimplementedDeviceState eflash[2];
71      UnimplementedDeviceState qspi;
72      TZMPC mpc[MUSCA_MPC_MAX];
73      UnimplementedDeviceState mhu[2];
74      UnimplementedDeviceState pwm[3];
75      UnimplementedDeviceState i2s;
76      PL011State uart[2];
77      UnimplementedDeviceState i2c[2];
78      UnimplementedDeviceState spi;
79      UnimplementedDeviceState scc;
80      UnimplementedDeviceState timer;
81      PL031State rtc;
82      UnimplementedDeviceState pvt;
83      UnimplementedDeviceState sdio;
84      UnimplementedDeviceState gpio;
85      UnimplementedDeviceState cryptoisland;
86      Clock *sysclk;
87      Clock *s32kclk;
88  };
89  
90  #define TYPE_MUSCA_MACHINE "musca"
91  #define TYPE_MUSCA_A_MACHINE MACHINE_TYPE_NAME("musca-a")
92  #define TYPE_MUSCA_B1_MACHINE MACHINE_TYPE_NAME("musca-b1")
93  
94  OBJECT_DECLARE_TYPE(MuscaMachineState, MuscaMachineClass, MUSCA_MACHINE)
95  
96  /*
97   * Main SYSCLK frequency in Hz
98   * TODO this should really be different for the two cores, but we
99   * don't model that in our SSE-200 model yet.
100   */
101  #define SYSCLK_FRQ 40000000
102  /* Slow 32Khz S32KCLK frequency in Hz */
103  #define S32KCLK_FRQ (32 * 1000)
104  
105  static qemu_irq get_sse_irq_in(MuscaMachineState *mms, int irqno)
106  {
107      /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
108      assert(irqno < MUSCA_NUMIRQ_MAX);
109  
110      return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
111  }
112  
113  /*
114   * Most of the devices in the Musca board sit behind Peripheral Protection
115   * Controllers. These data structures define the layout of which devices
116   * sit behind which PPCs.
117   * The devfn for each port is a function which creates, configures
118   * and initializes the device, returning the MemoryRegion which
119   * needs to be plugged into the downstream end of the PPC port.
120   */
121  typedef MemoryRegion *MakeDevFn(MuscaMachineState *mms, void *opaque,
122                                  const char *name, hwaddr size);
123  
124  typedef struct PPCPortInfo {
125      const char *name;
126      MakeDevFn *devfn;
127      void *opaque;
128      hwaddr addr;
129      hwaddr size;
130  } PPCPortInfo;
131  
132  typedef struct PPCInfo {
133      const char *name;
134      PPCPortInfo ports[TZ_NUM_PORTS];
135  } PPCInfo;
136  
137  static MemoryRegion *make_unimp_dev(MuscaMachineState *mms,
138                                      void *opaque, const char *name, hwaddr size)
139  {
140      /*
141       * Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
142       * and return a pointer to its MemoryRegion.
143       */
144      UnimplementedDeviceState *uds = opaque;
145  
146      object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
147      qdev_prop_set_string(DEVICE(uds), "name", name);
148      qdev_prop_set_uint64(DEVICE(uds), "size", size);
149      sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
150      return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
151  }
152  
153  typedef enum MPCInfoType {
154      MPC_RAM,
155      MPC_ROM,
156      MPC_CRYPTOISLAND,
157  } MPCInfoType;
158  
159  struct MPCInfo {
160      const char *name;
161      hwaddr addr;
162      hwaddr size;
163      MPCInfoType type;
164  };
165  
166  /* Order of the MPCs here must match the order of the bits in SECMPCINTSTATUS */
167  static const MPCInfo a_mpc_info[] = { {
168          .name = "qspi",
169          .type = MPC_ROM,
170          .addr = 0x00200000,
171          .size = 0x00800000,
172      }, {
173          .name = "sram",
174          .type = MPC_RAM,
175          .addr = 0x00000000,
176          .size = 0x00200000,
177      }
178  };
179  
180  static const MPCInfo b1_mpc_info[] = { {
181          .name = "qspi",
182          .type = MPC_ROM,
183          .addr = 0x00000000,
184          .size = 0x02000000,
185      }, {
186          .name = "sram",
187          .type = MPC_RAM,
188          .addr = 0x0a400000,
189          .size = 0x00080000,
190      }, {
191          .name = "eflash0",
192          .type = MPC_ROM,
193          .addr = 0x0a000000,
194          .size = 0x00200000,
195      }, {
196          .name = "eflash1",
197          .type = MPC_ROM,
198          .addr = 0x0a200000,
199          .size = 0x00200000,
200      }, {
201          .name = "cryptoisland",
202          .type = MPC_CRYPTOISLAND,
203          .addr = 0x0a000000,
204          .size = 0x00200000,
205      }
206  };
207  
208  static MemoryRegion *make_mpc(MuscaMachineState *mms, void *opaque,
209                                const char *name, hwaddr size)
210  {
211      /*
212       * Create an MPC and the RAM or flash behind it.
213       * MPC 0: eFlash 0
214       * MPC 1: eFlash 1
215       * MPC 2: SRAM
216       * MPC 3: QSPI flash
217       * MPC 4: CryptoIsland
218       * For now we implement the flash regions as ROM (ie not programmable)
219       * (with their control interface memory regions being unimplemented
220       * stubs behind the PPCs).
221       * The whole CryptoIsland region behind its MPC is an unimplemented stub.
222       */
223      MuscaMachineClass *mmc = MUSCA_MACHINE_GET_CLASS(mms);
224      TZMPC *mpc = opaque;
225      int i = mpc - &mms->mpc[0];
226      MemoryRegion *downstream;
227      MemoryRegion *upstream;
228      UnimplementedDeviceState *uds;
229      char *mpcname;
230      const MPCInfo *mpcinfo = mmc->mpc_info;
231  
232      mpcname = g_strdup_printf("%s-mpc", mpcinfo[i].name);
233  
234      switch (mpcinfo[i].type) {
235      case MPC_ROM:
236          downstream = &mms->ram[i];
237          memory_region_init_rom(downstream, NULL, mpcinfo[i].name,
238                                 mpcinfo[i].size, &error_fatal);
239          break;
240      case MPC_RAM:
241          downstream = &mms->ram[i];
242          memory_region_init_ram(downstream, NULL, mpcinfo[i].name,
243                                 mpcinfo[i].size, &error_fatal);
244          break;
245      case MPC_CRYPTOISLAND:
246          /* We don't implement the CryptoIsland yet */
247          uds = &mms->cryptoisland;
248          object_initialize_child(OBJECT(mms), name, uds,
249                                  TYPE_UNIMPLEMENTED_DEVICE);
250          qdev_prop_set_string(DEVICE(uds), "name", mpcinfo[i].name);
251          qdev_prop_set_uint64(DEVICE(uds), "size", mpcinfo[i].size);
252          sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
253          downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
254          break;
255      default:
256          g_assert_not_reached();
257      }
258  
259      object_initialize_child(OBJECT(mms), mpcname, mpc, TYPE_TZ_MPC);
260      object_property_set_link(OBJECT(mpc), "downstream", OBJECT(downstream),
261                               &error_fatal);
262      sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
263      /* Map the upstream end of the MPC into system memory */
264      upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
265      memory_region_add_subregion(get_system_memory(), mpcinfo[i].addr, upstream);
266      /* and connect its interrupt to the SSE-200 */
267      qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
268                                  qdev_get_gpio_in_named(DEVICE(&mms->sse),
269                                                         "mpcexp_status", i));
270  
271      g_free(mpcname);
272      /* Return the register interface MR for our caller to map behind the PPC */
273      return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
274  }
275  
276  static MemoryRegion *make_rtc(MuscaMachineState *mms, void *opaque,
277                                const char *name, hwaddr size)
278  {
279      PL031State *rtc = opaque;
280  
281      object_initialize_child(OBJECT(mms), name, rtc, TYPE_PL031);
282      sysbus_realize(SYS_BUS_DEVICE(rtc), &error_fatal);
283      sysbus_connect_irq(SYS_BUS_DEVICE(rtc), 0, get_sse_irq_in(mms, 39));
284      return sysbus_mmio_get_region(SYS_BUS_DEVICE(rtc), 0);
285  }
286  
287  static MemoryRegion *make_uart(MuscaMachineState *mms, void *opaque,
288                                 const char *name, hwaddr size)
289  {
290      PL011State *uart = opaque;
291      int i = uart - &mms->uart[0];
292      int irqbase = 7 + i * 6;
293      SysBusDevice *s;
294  
295      object_initialize_child(OBJECT(mms), name, uart, TYPE_PL011);
296      qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
297      sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
298      s = SYS_BUS_DEVICE(uart);
299      sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqbase + 5)); /* combined */
300      sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqbase + 0)); /* RX */
301      sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqbase + 1)); /* TX */
302      sysbus_connect_irq(s, 3, get_sse_irq_in(mms, irqbase + 2)); /* RT */
303      sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqbase + 3)); /* MS */
304      sysbus_connect_irq(s, 5, get_sse_irq_in(mms, irqbase + 4)); /* E */
305      return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
306  }
307  
308  static MemoryRegion *make_musca_a_devs(MuscaMachineState *mms, void *opaque,
309                                         const char *name, hwaddr size)
310  {
311      /*
312       * Create the container MemoryRegion for all the devices that live
313       * behind the Musca-A PPC's single port. These devices don't have a PPC
314       * port each, but we use the PPCPortInfo struct as a convenient way
315       * to describe them. Note that addresses here are relative to the base
316       * address of the PPC port region: 0x40100000, and devices appear both
317       * at the 0x4... NS region and the 0x5... S region.
318       */
319      int i;
320      MemoryRegion *container = &mms->container;
321  
322      const PPCPortInfo devices[] = {
323          { "uart0", make_uart, &mms->uart[0], 0x1000, 0x1000 },
324          { "uart1", make_uart, &mms->uart[1], 0x2000, 0x1000 },
325          { "spi", make_unimp_dev, &mms->spi, 0x3000, 0x1000 },
326          { "i2c0", make_unimp_dev, &mms->i2c[0], 0x4000, 0x1000 },
327          { "i2c1", make_unimp_dev, &mms->i2c[1], 0x5000, 0x1000 },
328          { "i2s", make_unimp_dev, &mms->i2s, 0x6000, 0x1000 },
329          { "pwm0", make_unimp_dev, &mms->pwm[0], 0x7000, 0x1000 },
330          { "rtc", make_rtc, &mms->rtc, 0x8000, 0x1000 },
331          { "qspi", make_unimp_dev, &mms->qspi, 0xa000, 0x1000 },
332          { "timer", make_unimp_dev, &mms->timer, 0xb000, 0x1000 },
333          { "scc", make_unimp_dev, &mms->scc, 0xc000, 0x1000 },
334          { "pwm1", make_unimp_dev, &mms->pwm[1], 0xe000, 0x1000 },
335          { "pwm2", make_unimp_dev, &mms->pwm[2], 0xf000, 0x1000 },
336          { "gpio", make_unimp_dev, &mms->gpio, 0x10000, 0x1000 },
337          { "mpc0", make_mpc, &mms->mpc[0], 0x12000, 0x1000 },
338          { "mpc1", make_mpc, &mms->mpc[1], 0x13000, 0x1000 },
339      };
340  
341      memory_region_init(container, OBJECT(mms), "musca-device-container", size);
342  
343      for (i = 0; i < ARRAY_SIZE(devices); i++) {
344          const PPCPortInfo *pinfo = &devices[i];
345          MemoryRegion *mr;
346  
347          mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
348          memory_region_add_subregion(container, pinfo->addr, mr);
349      }
350  
351      return &mms->container;
352  }
353  
354  static void musca_init(MachineState *machine)
355  {
356      MuscaMachineState *mms = MUSCA_MACHINE(machine);
357      MuscaMachineClass *mmc = MUSCA_MACHINE_GET_CLASS(mms);
358      MachineClass *mc = MACHINE_GET_CLASS(machine);
359      MemoryRegion *system_memory = get_system_memory();
360      DeviceState *ssedev;
361      DeviceState *dev_splitter;
362      const PPCInfo *ppcs;
363      int num_ppcs;
364      int i;
365  
366      assert(mmc->num_irqs <= MUSCA_NUMIRQ_MAX);
367      assert(mmc->num_mpcs <= MUSCA_MPC_MAX);
368  
369      if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
370          error_report("This board can only be used with CPU %s",
371                       mc->default_cpu_type);
372          exit(1);
373      }
374  
375      mms->sysclk = clock_new(OBJECT(machine), "SYSCLK");
376      clock_set_hz(mms->sysclk, SYSCLK_FRQ);
377      mms->s32kclk = clock_new(OBJECT(machine), "S32KCLK");
378      clock_set_hz(mms->s32kclk, S32KCLK_FRQ);
379  
380      object_initialize_child(OBJECT(machine), "sse-200", &mms->sse,
381                              TYPE_SSE200);
382      ssedev = DEVICE(&mms->sse);
383      object_property_set_link(OBJECT(&mms->sse), "memory",
384                               OBJECT(system_memory), &error_fatal);
385      qdev_prop_set_uint32(ssedev, "EXP_NUMIRQ", mmc->num_irqs);
386      qdev_prop_set_uint32(ssedev, "init-svtor", mmc->init_svtor);
387      qdev_prop_set_uint32(ssedev, "SRAM_ADDR_WIDTH", mmc->sram_addr_width);
388      qdev_connect_clock_in(ssedev, "MAINCLK", mms->sysclk);
389      qdev_connect_clock_in(ssedev, "S32KCLK", mms->s32kclk);
390      /*
391       * Musca-A takes the default SSE-200 FPU/DSP settings (ie no for
392       * CPU0 and yes for CPU1); Musca-B1 explicitly enables them for CPU0.
393       */
394      if (mmc->type == MUSCA_B1) {
395          qdev_prop_set_bit(ssedev, "CPU0_FPU", true);
396          qdev_prop_set_bit(ssedev, "CPU0_DSP", true);
397      }
398      sysbus_realize(SYS_BUS_DEVICE(&mms->sse), &error_fatal);
399  
400      /*
401       * We need to create splitters to feed the IRQ inputs
402       * for each CPU in the SSE-200 from each device in the board.
403       */
404      for (i = 0; i < mmc->num_irqs; i++) {
405          char *name = g_strdup_printf("musca-irq-splitter%d", i);
406          SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
407  
408          object_initialize_child_with_props(OBJECT(machine), name, splitter,
409                                             sizeof(*splitter), TYPE_SPLIT_IRQ,
410                                             &error_fatal, NULL);
411          g_free(name);
412  
413          object_property_set_int(OBJECT(splitter), "num-lines", 2,
414                                  &error_fatal);
415          qdev_realize(DEVICE(splitter), NULL, &error_fatal);
416          qdev_connect_gpio_out(DEVICE(splitter), 0,
417                                qdev_get_gpio_in_named(ssedev, "EXP_IRQ", i));
418          qdev_connect_gpio_out(DEVICE(splitter), 1,
419                                qdev_get_gpio_in_named(ssedev,
420                                                       "EXP_CPU1_IRQ", i));
421      }
422  
423      /*
424       * The sec_resp_cfg output from the SSE-200 must be split into multiple
425       * lines, one for each of the PPCs we create here.
426       */
427      object_initialize_child_with_props(OBJECT(machine), "sec-resp-splitter",
428                                         &mms->sec_resp_splitter,
429                                         sizeof(mms->sec_resp_splitter),
430                                         TYPE_SPLIT_IRQ, &error_fatal, NULL);
431  
432      object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
433                              ARRAY_SIZE(mms->ppc), &error_fatal);
434      qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
435      dev_splitter = DEVICE(&mms->sec_resp_splitter);
436      qdev_connect_gpio_out_named(ssedev, "sec_resp_cfg", 0,
437                                  qdev_get_gpio_in(dev_splitter, 0));
438  
439      /*
440       * Most of the devices in the board are behind Peripheral Protection
441       * Controllers. The required order for initializing things is:
442       *  + initialize the PPC
443       *  + initialize, configure and realize downstream devices
444       *  + connect downstream device MemoryRegions to the PPC
445       *  + realize the PPC
446       *  + map the PPC's MemoryRegions to the places in the address map
447       *    where the downstream devices should appear
448       *  + wire up the PPC's control lines to the SSE object
449       *
450       * The PPC mapping differs for the -A and -B1 variants; the -A version
451       * is much simpler, using only a single port of a single PPC and putting
452       * all the devices behind that.
453       */
454      const PPCInfo a_ppcs[] = { {
455              .name = "ahb_ppcexp0",
456              .ports = {
457                  { "musca-devices", make_musca_a_devs, 0, 0x40100000, 0x100000 },
458              },
459          },
460      };
461  
462      /*
463       * Devices listed with an 0x4.. address appear in both the NS 0x4.. region
464       * and the 0x5.. S region. Devices listed with an 0x5.. address appear
465       * only in the S region.
466       */
467      const PPCInfo b1_ppcs[] = { {
468              .name = "apb_ppcexp0",
469              .ports = {
470                  { "eflash0", make_unimp_dev, &mms->eflash[0],
471                    0x52400000, 0x1000 },
472                  { "eflash1", make_unimp_dev, &mms->eflash[1],
473                    0x52500000, 0x1000 },
474                  { "qspi", make_unimp_dev, &mms->qspi, 0x42800000, 0x100000 },
475                  { "mpc0", make_mpc, &mms->mpc[0], 0x52000000, 0x1000 },
476                  { "mpc1", make_mpc, &mms->mpc[1], 0x52100000, 0x1000 },
477                  { "mpc2", make_mpc, &mms->mpc[2], 0x52200000, 0x1000 },
478                  { "mpc3", make_mpc, &mms->mpc[3], 0x52300000, 0x1000 },
479                  { "mhu0", make_unimp_dev, &mms->mhu[0], 0x42600000, 0x100000 },
480                  { "mhu1", make_unimp_dev, &mms->mhu[1], 0x42700000, 0x100000 },
481                  { }, /* port 9: unused */
482                  { }, /* port 10: unused */
483                  { }, /* port 11: unused */
484                  { }, /* port 12: unused */
485                  { }, /* port 13: unused */
486                  { "mpc4", make_mpc, &mms->mpc[4], 0x52e00000, 0x1000 },
487              },
488          }, {
489              .name = "apb_ppcexp1",
490              .ports = {
491                  { "pwm0", make_unimp_dev, &mms->pwm[0], 0x40101000, 0x1000 },
492                  { "pwm1", make_unimp_dev, &mms->pwm[1], 0x40102000, 0x1000 },
493                  { "pwm2", make_unimp_dev, &mms->pwm[2], 0x40103000, 0x1000 },
494                  { "i2s", make_unimp_dev, &mms->i2s, 0x40104000, 0x1000 },
495                  { "uart0", make_uart, &mms->uart[0], 0x40105000, 0x1000 },
496                  { "uart1", make_uart, &mms->uart[1], 0x40106000, 0x1000 },
497                  { "i2c0", make_unimp_dev, &mms->i2c[0], 0x40108000, 0x1000 },
498                  { "i2c1", make_unimp_dev, &mms->i2c[1], 0x40109000, 0x1000 },
499                  { "spi", make_unimp_dev, &mms->spi, 0x4010a000, 0x1000 },
500                  { "scc", make_unimp_dev, &mms->scc, 0x5010b000, 0x1000 },
501                  { "timer", make_unimp_dev, &mms->timer, 0x4010c000, 0x1000 },
502                  { "rtc", make_rtc, &mms->rtc, 0x4010d000, 0x1000 },
503                  { "pvt", make_unimp_dev, &mms->pvt, 0x4010e000, 0x1000 },
504                  { "sdio", make_unimp_dev, &mms->sdio, 0x4010f000, 0x1000 },
505              },
506          }, {
507              .name = "ahb_ppcexp0",
508              .ports = {
509                  { }, /* port 0: unused */
510                  { "gpio", make_unimp_dev, &mms->gpio, 0x41000000, 0x1000 },
511              },
512          },
513      };
514  
515      switch (mmc->type) {
516      case MUSCA_A:
517          ppcs = a_ppcs;
518          num_ppcs = ARRAY_SIZE(a_ppcs);
519          break;
520      case MUSCA_B1:
521          ppcs = b1_ppcs;
522          num_ppcs = ARRAY_SIZE(b1_ppcs);
523          break;
524      default:
525          g_assert_not_reached();
526      }
527      assert(num_ppcs <= MUSCA_PPC_MAX);
528  
529      for (i = 0; i < num_ppcs; i++) {
530          const PPCInfo *ppcinfo = &ppcs[i];
531          TZPPC *ppc = &mms->ppc[i];
532          DeviceState *ppcdev;
533          int port;
534          char *gpioname;
535  
536          object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
537                                  TYPE_TZ_PPC);
538          ppcdev = DEVICE(ppc);
539  
540          for (port = 0; port < TZ_NUM_PORTS; port++) {
541              const PPCPortInfo *pinfo = &ppcinfo->ports[port];
542              MemoryRegion *mr;
543              char *portname;
544  
545              if (!pinfo->devfn) {
546                  continue;
547              }
548  
549              mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
550              portname = g_strdup_printf("port[%d]", port);
551              object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
552                                       &error_fatal);
553              g_free(portname);
554          }
555  
556          sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
557  
558          for (port = 0; port < TZ_NUM_PORTS; port++) {
559              const PPCPortInfo *pinfo = &ppcinfo->ports[port];
560  
561              if (!pinfo->devfn) {
562                  continue;
563              }
564              sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
565  
566              gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
567              qdev_connect_gpio_out_named(ssedev, gpioname, port,
568                                          qdev_get_gpio_in_named(ppcdev,
569                                                                 "cfg_nonsec",
570                                                                 port));
571              g_free(gpioname);
572              gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
573              qdev_connect_gpio_out_named(ssedev, gpioname, port,
574                                          qdev_get_gpio_in_named(ppcdev,
575                                                                 "cfg_ap", port));
576              g_free(gpioname);
577          }
578  
579          gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
580          qdev_connect_gpio_out_named(ssedev, gpioname, 0,
581                                      qdev_get_gpio_in_named(ppcdev,
582                                                             "irq_enable", 0));
583          g_free(gpioname);
584          gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
585          qdev_connect_gpio_out_named(ssedev, gpioname, 0,
586                                      qdev_get_gpio_in_named(ppcdev,
587                                                             "irq_clear", 0));
588          g_free(gpioname);
589          gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
590          qdev_connect_gpio_out_named(ppcdev, "irq", 0,
591                                      qdev_get_gpio_in_named(ssedev,
592                                                             gpioname, 0));
593          g_free(gpioname);
594  
595          qdev_connect_gpio_out(dev_splitter, i,
596                                qdev_get_gpio_in_named(ppcdev,
597                                                       "cfg_sec_resp", 0));
598      }
599  
600      armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x2000000);
601  }
602  
603  static void musca_class_init(ObjectClass *oc, void *data)
604  {
605      MachineClass *mc = MACHINE_CLASS(oc);
606  
607      mc->default_cpus = 2;
608      mc->min_cpus = mc->default_cpus;
609      mc->max_cpus = mc->default_cpus;
610      mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
611      mc->init = musca_init;
612  }
613  
614  static void musca_a_class_init(ObjectClass *oc, void *data)
615  {
616      MachineClass *mc = MACHINE_CLASS(oc);
617      MuscaMachineClass *mmc = MUSCA_MACHINE_CLASS(oc);
618  
619      mc->desc = "ARM Musca-A board (dual Cortex-M33)";
620      mmc->type = MUSCA_A;
621      mmc->init_svtor = 0x10200000;
622      mmc->sram_addr_width = 15;
623      mmc->num_irqs = 64;
624      mmc->mpc_info = a_mpc_info;
625      mmc->num_mpcs = ARRAY_SIZE(a_mpc_info);
626  }
627  
628  static void musca_b1_class_init(ObjectClass *oc, void *data)
629  {
630      MachineClass *mc = MACHINE_CLASS(oc);
631      MuscaMachineClass *mmc = MUSCA_MACHINE_CLASS(oc);
632  
633      mc->desc = "ARM Musca-B1 board (dual Cortex-M33)";
634      mmc->type = MUSCA_B1;
635      /*
636       * This matches the DAPlink firmware which boots from QSPI. There
637       * is also a firmware blob which boots from the eFlash, which
638       * uses init_svtor = 0x1A000000. QEMU doesn't currently support that,
639       * though we could in theory expose a machine property on the command
640       * line to allow the user to request eFlash boot.
641       */
642      mmc->init_svtor = 0x10000000;
643      mmc->sram_addr_width = 17;
644      mmc->num_irqs = 96;
645      mmc->mpc_info = b1_mpc_info;
646      mmc->num_mpcs = ARRAY_SIZE(b1_mpc_info);
647  }
648  
649  static const TypeInfo musca_info = {
650      .name = TYPE_MUSCA_MACHINE,
651      .parent = TYPE_MACHINE,
652      .abstract = true,
653      .instance_size = sizeof(MuscaMachineState),
654      .class_size = sizeof(MuscaMachineClass),
655      .class_init = musca_class_init,
656  };
657  
658  static const TypeInfo musca_a_info = {
659      .name = TYPE_MUSCA_A_MACHINE,
660      .parent = TYPE_MUSCA_MACHINE,
661      .class_init = musca_a_class_init,
662  };
663  
664  static const TypeInfo musca_b1_info = {
665      .name = TYPE_MUSCA_B1_MACHINE,
666      .parent = TYPE_MUSCA_MACHINE,
667      .class_init = musca_b1_class_init,
668  };
669  
670  static void musca_machine_init(void)
671  {
672      type_register_static(&musca_info);
673      type_register_static(&musca_a_info);
674      type_register_static(&musca_b1_info);
675  }
676  
677  type_init(musca_machine_init);
678