xref: /openbmc/qemu/hw/arm/mps2-tz.c (revision f28d0dfd)
1 /*
2  * ARM V2M MPS2 board emulation, trustzone aware FPGA images
3  *
4  * Copyright (c) 2017 Linaro Limited
5  * Written by Peter Maydell
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 or
9  *  (at your option) any later version.
10  */
11 
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13  * FPGA but is otherwise the same as the 2). Since the CPU itself
14  * and most of the devices are in the FPGA, the details of the board
15  * as seen by the guest depend significantly on the FPGA image.
16  * This source file covers the following FPGA images, for TrustZone cores:
17  *  "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18  *
19  * Links to the TRM for the board itself and to the various Application
20  * Notes which document the FPGA images can be found here:
21  * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
22  *
23  * Board TRM:
24  * http://infocenter.arm.com/help/topic/com.arm.doc.100112_0200_06_en/versatile_express_cortex_m_prototyping_systems_v2m_mps2_and_v2m_mps2plus_technical_reference_100112_0200_06_en.pdf
25  * Application Note AN505:
26  * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
27  *
28  * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
29  * (ARM ECM0601256) for the details of some of the device layout:
30  *   http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
31  */
32 
33 #include "qemu/osdep.h"
34 #include "qapi/error.h"
35 #include "qemu/error-report.h"
36 #include "hw/arm/arm.h"
37 #include "hw/arm/armv7m.h"
38 #include "hw/or-irq.h"
39 #include "hw/boards.h"
40 #include "exec/address-spaces.h"
41 #include "sysemu/sysemu.h"
42 #include "hw/misc/unimp.h"
43 #include "hw/char/cmsdk-apb-uart.h"
44 #include "hw/timer/cmsdk-apb-timer.h"
45 #include "hw/misc/mps2-scc.h"
46 #include "hw/misc/mps2-fpgaio.h"
47 #include "hw/misc/tz-mpc.h"
48 #include "hw/arm/iotkit.h"
49 #include "hw/devices.h"
50 #include "net/net.h"
51 #include "hw/core/split-irq.h"
52 
53 typedef enum MPS2TZFPGAType {
54     FPGA_AN505,
55 } MPS2TZFPGAType;
56 
57 typedef struct {
58     MachineClass parent;
59     MPS2TZFPGAType fpga_type;
60     uint32_t scc_id;
61 } MPS2TZMachineClass;
62 
63 typedef struct {
64     MachineState parent;
65 
66     IoTKit iotkit;
67     MemoryRegion psram;
68     MemoryRegion ssram[3];
69     MemoryRegion ssram1_m;
70     MPS2SCC scc;
71     MPS2FPGAIO fpgaio;
72     TZPPC ppc[5];
73     TZMPC ssram_mpc[3];
74     UnimplementedDeviceState spi[5];
75     UnimplementedDeviceState i2c[4];
76     UnimplementedDeviceState i2s_audio;
77     UnimplementedDeviceState gpio[4];
78     UnimplementedDeviceState dma[4];
79     UnimplementedDeviceState gfx;
80     CMSDKAPBUART uart[5];
81     SplitIRQ sec_resp_splitter;
82     qemu_or_irq uart_irq_orgate;
83     DeviceState *lan9118;
84 } MPS2TZMachineState;
85 
86 #define TYPE_MPS2TZ_MACHINE "mps2tz"
87 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
88 
89 #define MPS2TZ_MACHINE(obj) \
90     OBJECT_CHECK(MPS2TZMachineState, obj, TYPE_MPS2TZ_MACHINE)
91 #define MPS2TZ_MACHINE_GET_CLASS(obj) \
92     OBJECT_GET_CLASS(MPS2TZMachineClass, obj, TYPE_MPS2TZ_MACHINE)
93 #define MPS2TZ_MACHINE_CLASS(klass) \
94     OBJECT_CLASS_CHECK(MPS2TZMachineClass, klass, TYPE_MPS2TZ_MACHINE)
95 
96 /* Main SYSCLK frequency in Hz */
97 #define SYSCLK_FRQ 20000000
98 
99 /* Create an alias of an entire original MemoryRegion @orig
100  * located at @base in the memory map.
101  */
102 static void make_ram_alias(MemoryRegion *mr, const char *name,
103                            MemoryRegion *orig, hwaddr base)
104 {
105     memory_region_init_alias(mr, NULL, name, orig, 0,
106                              memory_region_size(orig));
107     memory_region_add_subregion(get_system_memory(), base, mr);
108 }
109 
110 static void init_sysbus_child(Object *parent, const char *childname,
111                               void *child, size_t childsize,
112                               const char *childtype)
113 {
114     object_initialize(child, childsize, childtype);
115     object_property_add_child(parent, childname, OBJECT(child), &error_abort);
116     qdev_set_parent_bus(DEVICE(child), sysbus_get_default());
117 
118 }
119 
120 /* Most of the devices in the AN505 FPGA image sit behind
121  * Peripheral Protection Controllers. These data structures
122  * define the layout of which devices sit behind which PPCs.
123  * The devfn for each port is a function which creates, configures
124  * and initializes the device, returning the MemoryRegion which
125  * needs to be plugged into the downstream end of the PPC port.
126  */
127 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
128                                 const char *name, hwaddr size);
129 
130 typedef struct PPCPortInfo {
131     const char *name;
132     MakeDevFn *devfn;
133     void *opaque;
134     hwaddr addr;
135     hwaddr size;
136 } PPCPortInfo;
137 
138 typedef struct PPCInfo {
139     const char *name;
140     PPCPortInfo ports[TZ_NUM_PORTS];
141 } PPCInfo;
142 
143 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
144                                        void *opaque,
145                                        const char *name, hwaddr size)
146 {
147     /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
148      * and return a pointer to its MemoryRegion.
149      */
150     UnimplementedDeviceState *uds = opaque;
151 
152     init_sysbus_child(OBJECT(mms), name, uds,
153                       sizeof(UnimplementedDeviceState),
154                       TYPE_UNIMPLEMENTED_DEVICE);
155     qdev_prop_set_string(DEVICE(uds), "name", name);
156     qdev_prop_set_uint64(DEVICE(uds), "size", size);
157     object_property_set_bool(OBJECT(uds), true, "realized", &error_fatal);
158     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
159 }
160 
161 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
162                                const char *name, hwaddr size)
163 {
164     CMSDKAPBUART *uart = opaque;
165     int i = uart - &mms->uart[0];
166     int rxirqno = i * 2;
167     int txirqno = i * 2 + 1;
168     int combirqno = i + 10;
169     SysBusDevice *s;
170     DeviceState *iotkitdev = DEVICE(&mms->iotkit);
171     DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
172 
173     init_sysbus_child(OBJECT(mms), name, uart,
174                       sizeof(mms->uart[0]), TYPE_CMSDK_APB_UART);
175     qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
176     qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", SYSCLK_FRQ);
177     object_property_set_bool(OBJECT(uart), true, "realized", &error_fatal);
178     s = SYS_BUS_DEVICE(uart);
179     sysbus_connect_irq(s, 0, qdev_get_gpio_in_named(iotkitdev,
180                                                     "EXP_IRQ", txirqno));
181     sysbus_connect_irq(s, 1, qdev_get_gpio_in_named(iotkitdev,
182                                                     "EXP_IRQ", rxirqno));
183     sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
184     sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
185     sysbus_connect_irq(s, 4, qdev_get_gpio_in_named(iotkitdev,
186                                                     "EXP_IRQ", combirqno));
187     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
188 }
189 
190 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
191                               const char *name, hwaddr size)
192 {
193     MPS2SCC *scc = opaque;
194     DeviceState *sccdev;
195     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
196 
197     object_initialize(scc, sizeof(mms->scc), TYPE_MPS2_SCC);
198     sccdev = DEVICE(scc);
199     qdev_set_parent_bus(sccdev, sysbus_get_default());
200     qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
201     qdev_prop_set_uint32(sccdev, "scc-aid", 0x02000008);
202     qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
203     object_property_set_bool(OBJECT(scc), true, "realized", &error_fatal);
204     return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
205 }
206 
207 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
208                                  const char *name, hwaddr size)
209 {
210     MPS2FPGAIO *fpgaio = opaque;
211 
212     object_initialize(fpgaio, sizeof(mms->fpgaio), TYPE_MPS2_FPGAIO);
213     qdev_set_parent_bus(DEVICE(fpgaio), sysbus_get_default());
214     object_property_set_bool(OBJECT(fpgaio), true, "realized", &error_fatal);
215     return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
216 }
217 
218 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
219                                   const char *name, hwaddr size)
220 {
221     SysBusDevice *s;
222     DeviceState *iotkitdev = DEVICE(&mms->iotkit);
223     NICInfo *nd = &nd_table[0];
224 
225     /* In hardware this is a LAN9220; the LAN9118 is software compatible
226      * except that it doesn't support the checksum-offload feature.
227      */
228     qemu_check_nic_model(nd, "lan9118");
229     mms->lan9118 = qdev_create(NULL, "lan9118");
230     qdev_set_nic_properties(mms->lan9118, nd);
231     qdev_init_nofail(mms->lan9118);
232 
233     s = SYS_BUS_DEVICE(mms->lan9118);
234     sysbus_connect_irq(s, 0, qdev_get_gpio_in_named(iotkitdev, "EXP_IRQ", 16));
235     return sysbus_mmio_get_region(s, 0);
236 }
237 
238 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
239                               const char *name, hwaddr size)
240 {
241     TZMPC *mpc = opaque;
242     int i = mpc - &mms->ssram_mpc[0];
243     MemoryRegion *ssram = &mms->ssram[i];
244     MemoryRegion *upstream;
245     char *mpcname = g_strdup_printf("%s-mpc", name);
246     static uint32_t ramsize[] = { 0x00400000, 0x00200000, 0x00200000 };
247     static uint32_t rambase[] = { 0x00000000, 0x28000000, 0x28200000 };
248 
249     memory_region_init_ram(ssram, NULL, name, ramsize[i], &error_fatal);
250 
251     init_sysbus_child(OBJECT(mms), mpcname, mpc,
252                       sizeof(mms->ssram_mpc[0]), TYPE_TZ_MPC);
253     object_property_set_link(OBJECT(mpc), OBJECT(ssram),
254                              "downstream", &error_fatal);
255     object_property_set_bool(OBJECT(mpc), true, "realized", &error_fatal);
256     /* Map the upstream end of the MPC into system memory */
257     upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
258     memory_region_add_subregion(get_system_memory(), rambase[i], upstream);
259     /* and connect its interrupt to the IoTKit */
260     qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
261                                 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
262                                                        "mpcexp_status", i));
263 
264     /* The first SSRAM is a special case as it has an alias; accesses to
265      * the alias region at 0x00400000 must also go to the MPC upstream.
266      */
267     if (i == 0) {
268         make_ram_alias(&mms->ssram1_m, "mps.ssram1_m", upstream, 0x00400000);
269     }
270 
271     g_free(mpcname);
272     /* Return the register interface MR for our caller to map behind the PPC */
273     return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
274 }
275 
276 static void mps2tz_common_init(MachineState *machine)
277 {
278     MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
279     MachineClass *mc = MACHINE_GET_CLASS(machine);
280     MemoryRegion *system_memory = get_system_memory();
281     DeviceState *iotkitdev;
282     DeviceState *dev_splitter;
283     int i;
284 
285     if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
286         error_report("This board can only be used with CPU %s",
287                      mc->default_cpu_type);
288         exit(1);
289     }
290 
291     init_sysbus_child(OBJECT(machine), "iotkit", &mms->iotkit,
292                       sizeof(mms->iotkit), TYPE_IOTKIT);
293     iotkitdev = DEVICE(&mms->iotkit);
294     object_property_set_link(OBJECT(&mms->iotkit), OBJECT(system_memory),
295                              "memory", &error_abort);
296     qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", 92);
297     qdev_prop_set_uint32(iotkitdev, "MAINCLK", SYSCLK_FRQ);
298     object_property_set_bool(OBJECT(&mms->iotkit), true, "realized",
299                              &error_fatal);
300 
301     /* The sec_resp_cfg output from the IoTKit must be split into multiple
302      * lines, one for each of the PPCs we create here.
303      */
304     object_initialize(&mms->sec_resp_splitter, sizeof(mms->sec_resp_splitter),
305                       TYPE_SPLIT_IRQ);
306     object_property_add_child(OBJECT(machine), "sec-resp-splitter",
307                               OBJECT(&mms->sec_resp_splitter), &error_abort);
308     object_property_set_int(OBJECT(&mms->sec_resp_splitter), 5,
309                             "num-lines", &error_fatal);
310     object_property_set_bool(OBJECT(&mms->sec_resp_splitter), true,
311                              "realized", &error_fatal);
312     dev_splitter = DEVICE(&mms->sec_resp_splitter);
313     qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
314                                 qdev_get_gpio_in(dev_splitter, 0));
315 
316     /* The IoTKit sets up much of the memory layout, including
317      * the aliases between secure and non-secure regions in the
318      * address space. The FPGA itself contains:
319      *
320      * 0x00000000..0x003fffff  SSRAM1
321      * 0x00400000..0x007fffff  alias of SSRAM1
322      * 0x28000000..0x283fffff  4MB SSRAM2 + SSRAM3
323      * 0x40100000..0x4fffffff  AHB Master Expansion 1 interface devices
324      * 0x80000000..0x80ffffff  16MB PSRAM
325      */
326 
327     /* The FPGA images have an odd combination of different RAMs,
328      * because in hardware they are different implementations and
329      * connected to different buses, giving varying performance/size
330      * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
331      * call the 16MB our "system memory", as it's the largest lump.
332      */
333     memory_region_allocate_system_memory(&mms->psram,
334                                          NULL, "mps.ram", 0x01000000);
335     memory_region_add_subregion(system_memory, 0x80000000, &mms->psram);
336 
337     /* The overflow IRQs for all UARTs are ORed together.
338      * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
339      * Create the OR gate for this.
340      */
341     object_initialize(&mms->uart_irq_orgate, sizeof(mms->uart_irq_orgate),
342                       TYPE_OR_IRQ);
343     object_property_add_child(OBJECT(mms), "uart-irq-orgate",
344                               OBJECT(&mms->uart_irq_orgate), &error_abort);
345     object_property_set_int(OBJECT(&mms->uart_irq_orgate), 10, "num-lines",
346                             &error_fatal);
347     object_property_set_bool(OBJECT(&mms->uart_irq_orgate), true,
348                              "realized", &error_fatal);
349     qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
350                           qdev_get_gpio_in_named(iotkitdev, "EXP_IRQ", 15));
351 
352     /* Most of the devices in the FPGA are behind Peripheral Protection
353      * Controllers. The required order for initializing things is:
354      *  + initialize the PPC
355      *  + initialize, configure and realize downstream devices
356      *  + connect downstream device MemoryRegions to the PPC
357      *  + realize the PPC
358      *  + map the PPC's MemoryRegions to the places in the address map
359      *    where the downstream devices should appear
360      *  + wire up the PPC's control lines to the IoTKit object
361      */
362 
363     const PPCInfo ppcs[] = { {
364             .name = "apb_ppcexp0",
365             .ports = {
366                 { "ssram-0", make_mpc, &mms->ssram_mpc[0], 0x58007000, 0x1000 },
367                 { "ssram-1", make_mpc, &mms->ssram_mpc[1], 0x58008000, 0x1000 },
368                 { "ssram-2", make_mpc, &mms->ssram_mpc[2], 0x58009000, 0x1000 },
369             },
370         }, {
371             .name = "apb_ppcexp1",
372             .ports = {
373                 { "spi0", make_unimp_dev, &mms->spi[0], 0x40205000, 0x1000 },
374                 { "spi1", make_unimp_dev, &mms->spi[1], 0x40206000, 0x1000 },
375                 { "spi2", make_unimp_dev, &mms->spi[2], 0x40209000, 0x1000 },
376                 { "spi3", make_unimp_dev, &mms->spi[3], 0x4020a000, 0x1000 },
377                 { "spi4", make_unimp_dev, &mms->spi[4], 0x4020b000, 0x1000 },
378                 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000 },
379                 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000 },
380                 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000 },
381                 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000 },
382                 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000 },
383                 { "i2c0", make_unimp_dev, &mms->i2c[0], 0x40207000, 0x1000 },
384                 { "i2c1", make_unimp_dev, &mms->i2c[1], 0x40208000, 0x1000 },
385                 { "i2c2", make_unimp_dev, &mms->i2c[2], 0x4020c000, 0x1000 },
386                 { "i2c3", make_unimp_dev, &mms->i2c[3], 0x4020d000, 0x1000 },
387             },
388         }, {
389             .name = "apb_ppcexp2",
390             .ports = {
391                 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
392                 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
393                   0x40301000, 0x1000 },
394                 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
395             },
396         }, {
397             .name = "ahb_ppcexp0",
398             .ports = {
399                 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
400                 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
401                 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
402                 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
403                 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
404                 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000 },
405             },
406         }, {
407             .name = "ahb_ppcexp1",
408             .ports = {
409                 { "dma0", make_unimp_dev, &mms->dma[0], 0x40110000, 0x1000 },
410                 { "dma1", make_unimp_dev, &mms->dma[1], 0x40111000, 0x1000 },
411                 { "dma2", make_unimp_dev, &mms->dma[2], 0x40112000, 0x1000 },
412                 { "dma3", make_unimp_dev, &mms->dma[3], 0x40113000, 0x1000 },
413             },
414         },
415     };
416 
417     for (i = 0; i < ARRAY_SIZE(ppcs); i++) {
418         const PPCInfo *ppcinfo = &ppcs[i];
419         TZPPC *ppc = &mms->ppc[i];
420         DeviceState *ppcdev;
421         int port;
422         char *gpioname;
423 
424         init_sysbus_child(OBJECT(machine), ppcinfo->name, ppc,
425                           sizeof(TZPPC), TYPE_TZ_PPC);
426         ppcdev = DEVICE(ppc);
427 
428         for (port = 0; port < TZ_NUM_PORTS; port++) {
429             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
430             MemoryRegion *mr;
431             char *portname;
432 
433             if (!pinfo->devfn) {
434                 continue;
435             }
436 
437             mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
438             portname = g_strdup_printf("port[%d]", port);
439             object_property_set_link(OBJECT(ppc), OBJECT(mr),
440                                      portname, &error_fatal);
441             g_free(portname);
442         }
443 
444         object_property_set_bool(OBJECT(ppc), true, "realized", &error_fatal);
445 
446         for (port = 0; port < TZ_NUM_PORTS; port++) {
447             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
448 
449             if (!pinfo->devfn) {
450                 continue;
451             }
452             sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
453 
454             gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
455             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
456                                         qdev_get_gpio_in_named(ppcdev,
457                                                                "cfg_nonsec",
458                                                                port));
459             g_free(gpioname);
460             gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
461             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
462                                         qdev_get_gpio_in_named(ppcdev,
463                                                                "cfg_ap", port));
464             g_free(gpioname);
465         }
466 
467         gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
468         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
469                                     qdev_get_gpio_in_named(ppcdev,
470                                                            "irq_enable", 0));
471         g_free(gpioname);
472         gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
473         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
474                                     qdev_get_gpio_in_named(ppcdev,
475                                                            "irq_clear", 0));
476         g_free(gpioname);
477         gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
478         qdev_connect_gpio_out_named(ppcdev, "irq", 0,
479                                     qdev_get_gpio_in_named(iotkitdev,
480                                                            gpioname, 0));
481         g_free(gpioname);
482 
483         qdev_connect_gpio_out(dev_splitter, i,
484                               qdev_get_gpio_in_named(ppcdev,
485                                                      "cfg_sec_resp", 0));
486     }
487 
488     create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
489 
490     armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x400000);
491 }
492 
493 static void mps2tz_class_init(ObjectClass *oc, void *data)
494 {
495     MachineClass *mc = MACHINE_CLASS(oc);
496 
497     mc->init = mps2tz_common_init;
498     mc->max_cpus = 1;
499 }
500 
501 static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
502 {
503     MachineClass *mc = MACHINE_CLASS(oc);
504     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
505 
506     mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
507     mmc->fpga_type = FPGA_AN505;
508     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
509     mmc->scc_id = 0x41040000 | (505 << 4);
510 }
511 
512 static const TypeInfo mps2tz_info = {
513     .name = TYPE_MPS2TZ_MACHINE,
514     .parent = TYPE_MACHINE,
515     .abstract = true,
516     .instance_size = sizeof(MPS2TZMachineState),
517     .class_size = sizeof(MPS2TZMachineClass),
518     .class_init = mps2tz_class_init,
519 };
520 
521 static const TypeInfo mps2tz_an505_info = {
522     .name = TYPE_MPS2TZ_AN505_MACHINE,
523     .parent = TYPE_MPS2TZ_MACHINE,
524     .class_init = mps2tz_an505_class_init,
525 };
526 
527 static void mps2tz_machine_init(void)
528 {
529     type_register_static(&mps2tz_info);
530     type_register_static(&mps2tz_an505_info);
531 }
532 
533 type_init(mps2tz_machine_init);
534