1 /* 2 * ARM V2M MPS2 board emulation, trustzone aware FPGA images 3 * 4 * Copyright (c) 2017 Linaro Limited 5 * Written by Peter Maydell 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 or 9 * (at your option) any later version. 10 */ 11 12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger 13 * FPGA but is otherwise the same as the 2). Since the CPU itself 14 * and most of the devices are in the FPGA, the details of the board 15 * as seen by the guest depend significantly on the FPGA image. 16 * This source file covers the following FPGA images, for TrustZone cores: 17 * "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505 18 * "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521 19 * 20 * Links to the TRM for the board itself and to the various Application 21 * Notes which document the FPGA images can be found here: 22 * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2 23 * 24 * Board TRM: 25 * http://infocenter.arm.com/help/topic/com.arm.doc.100112_0200_06_en/versatile_express_cortex_m_prototyping_systems_v2m_mps2_and_v2m_mps2plus_technical_reference_100112_0200_06_en.pdf 26 * Application Note AN505: 27 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html 28 * Application Note AN521: 29 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0521c/index.html 30 * 31 * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide 32 * (ARM ECM0601256) for the details of some of the device layout: 33 * http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html 34 * Similarly, the AN521 uses the SSE-200, and the SSE-200 TRM defines 35 * most of the device layout: 36 * http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf 37 * 38 */ 39 40 #include "qemu/osdep.h" 41 #include "qemu/units.h" 42 #include "qapi/error.h" 43 #include "qemu/error-report.h" 44 #include "hw/arm/boot.h" 45 #include "hw/arm/armv7m.h" 46 #include "hw/or-irq.h" 47 #include "hw/boards.h" 48 #include "exec/address-spaces.h" 49 #include "sysemu/sysemu.h" 50 #include "hw/misc/unimp.h" 51 #include "hw/char/cmsdk-apb-uart.h" 52 #include "hw/timer/cmsdk-apb-timer.h" 53 #include "hw/misc/mps2-scc.h" 54 #include "hw/misc/mps2-fpgaio.h" 55 #include "hw/misc/tz-mpc.h" 56 #include "hw/misc/tz-msc.h" 57 #include "hw/arm/armsse.h" 58 #include "hw/dma/pl080.h" 59 #include "hw/ssi/pl022.h" 60 #include "hw/net/lan9118.h" 61 #include "net/net.h" 62 #include "hw/core/split-irq.h" 63 64 #define MPS2TZ_NUMIRQ 92 65 66 typedef enum MPS2TZFPGAType { 67 FPGA_AN505, 68 FPGA_AN521, 69 } MPS2TZFPGAType; 70 71 typedef struct { 72 MachineClass parent; 73 MPS2TZFPGAType fpga_type; 74 uint32_t scc_id; 75 const char *armsse_type; 76 } MPS2TZMachineClass; 77 78 typedef struct { 79 MachineState parent; 80 81 ARMSSE iotkit; 82 MemoryRegion psram; 83 MemoryRegion ssram[3]; 84 MemoryRegion ssram1_m; 85 MPS2SCC scc; 86 MPS2FPGAIO fpgaio; 87 TZPPC ppc[5]; 88 TZMPC ssram_mpc[3]; 89 PL022State spi[5]; 90 UnimplementedDeviceState i2c[4]; 91 UnimplementedDeviceState i2s_audio; 92 UnimplementedDeviceState gpio[4]; 93 UnimplementedDeviceState gfx; 94 PL080State dma[4]; 95 TZMSC msc[4]; 96 CMSDKAPBUART uart[5]; 97 SplitIRQ sec_resp_splitter; 98 qemu_or_irq uart_irq_orgate; 99 DeviceState *lan9118; 100 SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ]; 101 } MPS2TZMachineState; 102 103 #define TYPE_MPS2TZ_MACHINE "mps2tz" 104 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505") 105 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521") 106 107 #define MPS2TZ_MACHINE(obj) \ 108 OBJECT_CHECK(MPS2TZMachineState, obj, TYPE_MPS2TZ_MACHINE) 109 #define MPS2TZ_MACHINE_GET_CLASS(obj) \ 110 OBJECT_GET_CLASS(MPS2TZMachineClass, obj, TYPE_MPS2TZ_MACHINE) 111 #define MPS2TZ_MACHINE_CLASS(klass) \ 112 OBJECT_CLASS_CHECK(MPS2TZMachineClass, klass, TYPE_MPS2TZ_MACHINE) 113 114 /* Main SYSCLK frequency in Hz */ 115 #define SYSCLK_FRQ 20000000 116 117 /* Create an alias of an entire original MemoryRegion @orig 118 * located at @base in the memory map. 119 */ 120 static void make_ram_alias(MemoryRegion *mr, const char *name, 121 MemoryRegion *orig, hwaddr base) 122 { 123 memory_region_init_alias(mr, NULL, name, orig, 0, 124 memory_region_size(orig)); 125 memory_region_add_subregion(get_system_memory(), base, mr); 126 } 127 128 static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno) 129 { 130 /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */ 131 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms); 132 133 assert(irqno < MPS2TZ_NUMIRQ); 134 135 switch (mmc->fpga_type) { 136 case FPGA_AN505: 137 return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno); 138 case FPGA_AN521: 139 return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0); 140 default: 141 g_assert_not_reached(); 142 } 143 } 144 145 /* Most of the devices in the AN505 FPGA image sit behind 146 * Peripheral Protection Controllers. These data structures 147 * define the layout of which devices sit behind which PPCs. 148 * The devfn for each port is a function which creates, configures 149 * and initializes the device, returning the MemoryRegion which 150 * needs to be plugged into the downstream end of the PPC port. 151 */ 152 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque, 153 const char *name, hwaddr size); 154 155 typedef struct PPCPortInfo { 156 const char *name; 157 MakeDevFn *devfn; 158 void *opaque; 159 hwaddr addr; 160 hwaddr size; 161 } PPCPortInfo; 162 163 typedef struct PPCInfo { 164 const char *name; 165 PPCPortInfo ports[TZ_NUM_PORTS]; 166 } PPCInfo; 167 168 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms, 169 void *opaque, 170 const char *name, hwaddr size) 171 { 172 /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE, 173 * and return a pointer to its MemoryRegion. 174 */ 175 UnimplementedDeviceState *uds = opaque; 176 177 sysbus_init_child_obj(OBJECT(mms), name, uds, 178 sizeof(UnimplementedDeviceState), 179 TYPE_UNIMPLEMENTED_DEVICE); 180 qdev_prop_set_string(DEVICE(uds), "name", name); 181 qdev_prop_set_uint64(DEVICE(uds), "size", size); 182 object_property_set_bool(OBJECT(uds), true, "realized", &error_fatal); 183 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0); 184 } 185 186 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque, 187 const char *name, hwaddr size) 188 { 189 CMSDKAPBUART *uart = opaque; 190 int i = uart - &mms->uart[0]; 191 int rxirqno = i * 2; 192 int txirqno = i * 2 + 1; 193 int combirqno = i + 10; 194 SysBusDevice *s; 195 DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate); 196 197 sysbus_init_child_obj(OBJECT(mms), name, uart, sizeof(mms->uart[0]), 198 TYPE_CMSDK_APB_UART); 199 qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i)); 200 qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", SYSCLK_FRQ); 201 object_property_set_bool(OBJECT(uart), true, "realized", &error_fatal); 202 s = SYS_BUS_DEVICE(uart); 203 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, txirqno)); 204 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, rxirqno)); 205 sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2)); 206 sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1)); 207 sysbus_connect_irq(s, 4, get_sse_irq_in(mms, combirqno)); 208 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0); 209 } 210 211 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque, 212 const char *name, hwaddr size) 213 { 214 MPS2SCC *scc = opaque; 215 DeviceState *sccdev; 216 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms); 217 218 sysbus_init_child_obj(OBJECT(mms), "scc", scc, 219 sizeof(mms->scc), TYPE_MPS2_SCC); 220 sccdev = DEVICE(scc); 221 qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2); 222 qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008); 223 qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id); 224 object_property_set_bool(OBJECT(scc), true, "realized", &error_fatal); 225 return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0); 226 } 227 228 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque, 229 const char *name, hwaddr size) 230 { 231 MPS2FPGAIO *fpgaio = opaque; 232 233 sysbus_init_child_obj(OBJECT(mms), "fpgaio", fpgaio, 234 sizeof(mms->fpgaio), TYPE_MPS2_FPGAIO); 235 object_property_set_bool(OBJECT(fpgaio), true, "realized", &error_fatal); 236 return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0); 237 } 238 239 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque, 240 const char *name, hwaddr size) 241 { 242 SysBusDevice *s; 243 NICInfo *nd = &nd_table[0]; 244 245 /* In hardware this is a LAN9220; the LAN9118 is software compatible 246 * except that it doesn't support the checksum-offload feature. 247 */ 248 qemu_check_nic_model(nd, "lan9118"); 249 mms->lan9118 = qdev_create(NULL, TYPE_LAN9118); 250 qdev_set_nic_properties(mms->lan9118, nd); 251 qdev_init_nofail(mms->lan9118); 252 253 s = SYS_BUS_DEVICE(mms->lan9118); 254 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 16)); 255 return sysbus_mmio_get_region(s, 0); 256 } 257 258 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque, 259 const char *name, hwaddr size) 260 { 261 TZMPC *mpc = opaque; 262 int i = mpc - &mms->ssram_mpc[0]; 263 MemoryRegion *ssram = &mms->ssram[i]; 264 MemoryRegion *upstream; 265 char *mpcname = g_strdup_printf("%s-mpc", name); 266 static uint32_t ramsize[] = { 0x00400000, 0x00200000, 0x00200000 }; 267 static uint32_t rambase[] = { 0x00000000, 0x28000000, 0x28200000 }; 268 269 memory_region_init_ram(ssram, NULL, name, ramsize[i], &error_fatal); 270 271 sysbus_init_child_obj(OBJECT(mms), mpcname, mpc, sizeof(mms->ssram_mpc[0]), 272 TYPE_TZ_MPC); 273 object_property_set_link(OBJECT(mpc), OBJECT(ssram), 274 "downstream", &error_fatal); 275 object_property_set_bool(OBJECT(mpc), true, "realized", &error_fatal); 276 /* Map the upstream end of the MPC into system memory */ 277 upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1); 278 memory_region_add_subregion(get_system_memory(), rambase[i], upstream); 279 /* and connect its interrupt to the IoTKit */ 280 qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0, 281 qdev_get_gpio_in_named(DEVICE(&mms->iotkit), 282 "mpcexp_status", i)); 283 284 /* The first SSRAM is a special case as it has an alias; accesses to 285 * the alias region at 0x00400000 must also go to the MPC upstream. 286 */ 287 if (i == 0) { 288 make_ram_alias(&mms->ssram1_m, "mps.ssram1_m", upstream, 0x00400000); 289 } 290 291 g_free(mpcname); 292 /* Return the register interface MR for our caller to map behind the PPC */ 293 return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0); 294 } 295 296 static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque, 297 const char *name, hwaddr size) 298 { 299 PL080State *dma = opaque; 300 int i = dma - &mms->dma[0]; 301 SysBusDevice *s; 302 char *mscname = g_strdup_printf("%s-msc", name); 303 TZMSC *msc = &mms->msc[i]; 304 DeviceState *iotkitdev = DEVICE(&mms->iotkit); 305 MemoryRegion *msc_upstream; 306 MemoryRegion *msc_downstream; 307 308 /* 309 * Each DMA device is a PL081 whose transaction master interface 310 * is guarded by a Master Security Controller. The downstream end of 311 * the MSC connects to the IoTKit AHB Slave Expansion port, so the 312 * DMA devices can see all devices and memory that the CPU does. 313 */ 314 sysbus_init_child_obj(OBJECT(mms), mscname, msc, sizeof(*msc), TYPE_TZ_MSC); 315 msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0); 316 object_property_set_link(OBJECT(msc), OBJECT(msc_downstream), 317 "downstream", &error_fatal); 318 object_property_set_link(OBJECT(msc), OBJECT(mms), 319 "idau", &error_fatal); 320 object_property_set_bool(OBJECT(msc), true, "realized", &error_fatal); 321 322 qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0, 323 qdev_get_gpio_in_named(iotkitdev, 324 "mscexp_status", i)); 325 qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i, 326 qdev_get_gpio_in_named(DEVICE(msc), 327 "irq_clear", 0)); 328 qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i, 329 qdev_get_gpio_in_named(DEVICE(msc), 330 "cfg_nonsec", 0)); 331 qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter), 332 ARRAY_SIZE(mms->ppc) + i, 333 qdev_get_gpio_in_named(DEVICE(msc), 334 "cfg_sec_resp", 0)); 335 msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0); 336 337 sysbus_init_child_obj(OBJECT(mms), name, dma, sizeof(*dma), TYPE_PL081); 338 object_property_set_link(OBJECT(dma), OBJECT(msc_upstream), 339 "downstream", &error_fatal); 340 object_property_set_bool(OBJECT(dma), true, "realized", &error_fatal); 341 342 s = SYS_BUS_DEVICE(dma); 343 /* Wire up DMACINTR, DMACINTERR, DMACINTTC */ 344 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 58 + i * 3)); 345 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, 56 + i * 3)); 346 sysbus_connect_irq(s, 2, get_sse_irq_in(mms, 57 + i * 3)); 347 348 g_free(mscname); 349 return sysbus_mmio_get_region(s, 0); 350 } 351 352 static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque, 353 const char *name, hwaddr size) 354 { 355 /* 356 * The AN505 has five PL022 SPI controllers. 357 * One of these should have the LCD controller behind it; the others 358 * are connected only to the FPGA's "general purpose SPI connector" 359 * or "shield" expansion connectors. 360 * Note that if we do implement devices behind SPI, the chip select 361 * lines are set via the "MISC" register in the MPS2 FPGAIO device. 362 */ 363 PL022State *spi = opaque; 364 int i = spi - &mms->spi[0]; 365 SysBusDevice *s; 366 367 sysbus_init_child_obj(OBJECT(mms), name, spi, sizeof(mms->spi[0]), 368 TYPE_PL022); 369 object_property_set_bool(OBJECT(spi), true, "realized", &error_fatal); 370 s = SYS_BUS_DEVICE(spi); 371 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 51 + i)); 372 return sysbus_mmio_get_region(s, 0); 373 } 374 375 static void mps2tz_common_init(MachineState *machine) 376 { 377 MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine); 378 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms); 379 MachineClass *mc = MACHINE_GET_CLASS(machine); 380 MemoryRegion *system_memory = get_system_memory(); 381 DeviceState *iotkitdev; 382 DeviceState *dev_splitter; 383 int i; 384 385 if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) { 386 error_report("This board can only be used with CPU %s", 387 mc->default_cpu_type); 388 exit(1); 389 } 390 391 sysbus_init_child_obj(OBJECT(machine), "iotkit", &mms->iotkit, 392 sizeof(mms->iotkit), mmc->armsse_type); 393 iotkitdev = DEVICE(&mms->iotkit); 394 object_property_set_link(OBJECT(&mms->iotkit), OBJECT(system_memory), 395 "memory", &error_abort); 396 qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", MPS2TZ_NUMIRQ); 397 qdev_prop_set_uint32(iotkitdev, "MAINCLK", SYSCLK_FRQ); 398 object_property_set_bool(OBJECT(&mms->iotkit), true, "realized", 399 &error_fatal); 400 401 /* 402 * The AN521 needs us to create splitters to feed the IRQ inputs 403 * for each CPU in the SSE-200 from each device in the board. 404 */ 405 if (mmc->fpga_type == FPGA_AN521) { 406 for (i = 0; i < MPS2TZ_NUMIRQ; i++) { 407 char *name = g_strdup_printf("mps2-irq-splitter%d", i); 408 SplitIRQ *splitter = &mms->cpu_irq_splitter[i]; 409 410 object_initialize_child(OBJECT(machine), name, 411 splitter, sizeof(*splitter), 412 TYPE_SPLIT_IRQ, &error_fatal, NULL); 413 g_free(name); 414 415 object_property_set_int(OBJECT(splitter), 2, "num-lines", 416 &error_fatal); 417 object_property_set_bool(OBJECT(splitter), true, "realized", 418 &error_fatal); 419 qdev_connect_gpio_out(DEVICE(splitter), 0, 420 qdev_get_gpio_in_named(DEVICE(&mms->iotkit), 421 "EXP_IRQ", i)); 422 qdev_connect_gpio_out(DEVICE(splitter), 1, 423 qdev_get_gpio_in_named(DEVICE(&mms->iotkit), 424 "EXP_CPU1_IRQ", i)); 425 } 426 } 427 428 /* The sec_resp_cfg output from the IoTKit must be split into multiple 429 * lines, one for each of the PPCs we create here, plus one per MSC. 430 */ 431 object_initialize_child(OBJECT(machine), "sec-resp-splitter", 432 &mms->sec_resp_splitter, 433 sizeof(mms->sec_resp_splitter), 434 TYPE_SPLIT_IRQ, &error_abort, NULL); 435 object_property_set_int(OBJECT(&mms->sec_resp_splitter), 436 ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc), 437 "num-lines", &error_fatal); 438 object_property_set_bool(OBJECT(&mms->sec_resp_splitter), true, 439 "realized", &error_fatal); 440 dev_splitter = DEVICE(&mms->sec_resp_splitter); 441 qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0, 442 qdev_get_gpio_in(dev_splitter, 0)); 443 444 /* The IoTKit sets up much of the memory layout, including 445 * the aliases between secure and non-secure regions in the 446 * address space. The FPGA itself contains: 447 * 448 * 0x00000000..0x003fffff SSRAM1 449 * 0x00400000..0x007fffff alias of SSRAM1 450 * 0x28000000..0x283fffff 4MB SSRAM2 + SSRAM3 451 * 0x40100000..0x4fffffff AHB Master Expansion 1 interface devices 452 * 0x80000000..0x80ffffff 16MB PSRAM 453 */ 454 455 /* The FPGA images have an odd combination of different RAMs, 456 * because in hardware they are different implementations and 457 * connected to different buses, giving varying performance/size 458 * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily 459 * call the 16MB our "system memory", as it's the largest lump. 460 */ 461 memory_region_allocate_system_memory(&mms->psram, 462 NULL, "mps.ram", 16 * MiB); 463 memory_region_add_subregion(system_memory, 0x80000000, &mms->psram); 464 465 /* The overflow IRQs for all UARTs are ORed together. 466 * Tx, Rx and "combined" IRQs are sent to the NVIC separately. 467 * Create the OR gate for this. 468 */ 469 object_initialize_child(OBJECT(mms), "uart-irq-orgate", 470 &mms->uart_irq_orgate, sizeof(mms->uart_irq_orgate), 471 TYPE_OR_IRQ, &error_abort, NULL); 472 object_property_set_int(OBJECT(&mms->uart_irq_orgate), 10, "num-lines", 473 &error_fatal); 474 object_property_set_bool(OBJECT(&mms->uart_irq_orgate), true, 475 "realized", &error_fatal); 476 qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0, 477 get_sse_irq_in(mms, 15)); 478 479 /* Most of the devices in the FPGA are behind Peripheral Protection 480 * Controllers. The required order for initializing things is: 481 * + initialize the PPC 482 * + initialize, configure and realize downstream devices 483 * + connect downstream device MemoryRegions to the PPC 484 * + realize the PPC 485 * + map the PPC's MemoryRegions to the places in the address map 486 * where the downstream devices should appear 487 * + wire up the PPC's control lines to the IoTKit object 488 */ 489 490 const PPCInfo ppcs[] = { { 491 .name = "apb_ppcexp0", 492 .ports = { 493 { "ssram-0", make_mpc, &mms->ssram_mpc[0], 0x58007000, 0x1000 }, 494 { "ssram-1", make_mpc, &mms->ssram_mpc[1], 0x58008000, 0x1000 }, 495 { "ssram-2", make_mpc, &mms->ssram_mpc[2], 0x58009000, 0x1000 }, 496 }, 497 }, { 498 .name = "apb_ppcexp1", 499 .ports = { 500 { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000 }, 501 { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000 }, 502 { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000 }, 503 { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000 }, 504 { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000 }, 505 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000 }, 506 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000 }, 507 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000 }, 508 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000 }, 509 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000 }, 510 { "i2c0", make_unimp_dev, &mms->i2c[0], 0x40207000, 0x1000 }, 511 { "i2c1", make_unimp_dev, &mms->i2c[1], 0x40208000, 0x1000 }, 512 { "i2c2", make_unimp_dev, &mms->i2c[2], 0x4020c000, 0x1000 }, 513 { "i2c3", make_unimp_dev, &mms->i2c[3], 0x4020d000, 0x1000 }, 514 }, 515 }, { 516 .name = "apb_ppcexp2", 517 .ports = { 518 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 }, 519 { "i2s-audio", make_unimp_dev, &mms->i2s_audio, 520 0x40301000, 0x1000 }, 521 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 }, 522 }, 523 }, { 524 .name = "ahb_ppcexp0", 525 .ports = { 526 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 }, 527 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 }, 528 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 }, 529 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 }, 530 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 }, 531 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000 }, 532 }, 533 }, { 534 .name = "ahb_ppcexp1", 535 .ports = { 536 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000 }, 537 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000 }, 538 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000 }, 539 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000 }, 540 }, 541 }, 542 }; 543 544 for (i = 0; i < ARRAY_SIZE(ppcs); i++) { 545 const PPCInfo *ppcinfo = &ppcs[i]; 546 TZPPC *ppc = &mms->ppc[i]; 547 DeviceState *ppcdev; 548 int port; 549 char *gpioname; 550 551 sysbus_init_child_obj(OBJECT(machine), ppcinfo->name, ppc, 552 sizeof(TZPPC), TYPE_TZ_PPC); 553 ppcdev = DEVICE(ppc); 554 555 for (port = 0; port < TZ_NUM_PORTS; port++) { 556 const PPCPortInfo *pinfo = &ppcinfo->ports[port]; 557 MemoryRegion *mr; 558 char *portname; 559 560 if (!pinfo->devfn) { 561 continue; 562 } 563 564 mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size); 565 portname = g_strdup_printf("port[%d]", port); 566 object_property_set_link(OBJECT(ppc), OBJECT(mr), 567 portname, &error_fatal); 568 g_free(portname); 569 } 570 571 object_property_set_bool(OBJECT(ppc), true, "realized", &error_fatal); 572 573 for (port = 0; port < TZ_NUM_PORTS; port++) { 574 const PPCPortInfo *pinfo = &ppcinfo->ports[port]; 575 576 if (!pinfo->devfn) { 577 continue; 578 } 579 sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr); 580 581 gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name); 582 qdev_connect_gpio_out_named(iotkitdev, gpioname, port, 583 qdev_get_gpio_in_named(ppcdev, 584 "cfg_nonsec", 585 port)); 586 g_free(gpioname); 587 gpioname = g_strdup_printf("%s_ap", ppcinfo->name); 588 qdev_connect_gpio_out_named(iotkitdev, gpioname, port, 589 qdev_get_gpio_in_named(ppcdev, 590 "cfg_ap", port)); 591 g_free(gpioname); 592 } 593 594 gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name); 595 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0, 596 qdev_get_gpio_in_named(ppcdev, 597 "irq_enable", 0)); 598 g_free(gpioname); 599 gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name); 600 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0, 601 qdev_get_gpio_in_named(ppcdev, 602 "irq_clear", 0)); 603 g_free(gpioname); 604 gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name); 605 qdev_connect_gpio_out_named(ppcdev, "irq", 0, 606 qdev_get_gpio_in_named(iotkitdev, 607 gpioname, 0)); 608 g_free(gpioname); 609 610 qdev_connect_gpio_out(dev_splitter, i, 611 qdev_get_gpio_in_named(ppcdev, 612 "cfg_sec_resp", 0)); 613 } 614 615 create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000); 616 617 armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x400000); 618 } 619 620 static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address, 621 int *iregion, bool *exempt, bool *ns, bool *nsc) 622 { 623 /* 624 * The MPS2 TZ FPGA images have IDAUs in them which are connected to 625 * the Master Security Controllers. Thes have the same logic as 626 * is used by the IoTKit for the IDAU connected to the CPU, except 627 * that MSCs don't care about the NSC attribute. 628 */ 629 int region = extract32(address, 28, 4); 630 631 *ns = !(region & 1); 632 *nsc = false; 633 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */ 634 *exempt = (address & 0xeff00000) == 0xe0000000; 635 *iregion = region; 636 } 637 638 static void mps2tz_class_init(ObjectClass *oc, void *data) 639 { 640 MachineClass *mc = MACHINE_CLASS(oc); 641 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc); 642 643 mc->init = mps2tz_common_init; 644 iic->check = mps2_tz_idau_check; 645 } 646 647 static void mps2tz_an505_class_init(ObjectClass *oc, void *data) 648 { 649 MachineClass *mc = MACHINE_CLASS(oc); 650 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc); 651 652 mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33"; 653 mc->default_cpus = 1; 654 mc->min_cpus = mc->default_cpus; 655 mc->max_cpus = mc->default_cpus; 656 mmc->fpga_type = FPGA_AN505; 657 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"); 658 mmc->scc_id = 0x41045050; 659 mmc->armsse_type = TYPE_IOTKIT; 660 } 661 662 static void mps2tz_an521_class_init(ObjectClass *oc, void *data) 663 { 664 MachineClass *mc = MACHINE_CLASS(oc); 665 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc); 666 667 mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33"; 668 mc->default_cpus = 2; 669 mc->min_cpus = mc->default_cpus; 670 mc->max_cpus = mc->default_cpus; 671 mmc->fpga_type = FPGA_AN521; 672 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"); 673 mmc->scc_id = 0x41045210; 674 mmc->armsse_type = TYPE_SSE200; 675 } 676 677 static const TypeInfo mps2tz_info = { 678 .name = TYPE_MPS2TZ_MACHINE, 679 .parent = TYPE_MACHINE, 680 .abstract = true, 681 .instance_size = sizeof(MPS2TZMachineState), 682 .class_size = sizeof(MPS2TZMachineClass), 683 .class_init = mps2tz_class_init, 684 .interfaces = (InterfaceInfo[]) { 685 { TYPE_IDAU_INTERFACE }, 686 { } 687 }, 688 }; 689 690 static const TypeInfo mps2tz_an505_info = { 691 .name = TYPE_MPS2TZ_AN505_MACHINE, 692 .parent = TYPE_MPS2TZ_MACHINE, 693 .class_init = mps2tz_an505_class_init, 694 }; 695 696 static const TypeInfo mps2tz_an521_info = { 697 .name = TYPE_MPS2TZ_AN521_MACHINE, 698 .parent = TYPE_MPS2TZ_MACHINE, 699 .class_init = mps2tz_an521_class_init, 700 }; 701 702 static void mps2tz_machine_init(void) 703 { 704 type_register_static(&mps2tz_info); 705 type_register_static(&mps2tz_an505_info); 706 type_register_static(&mps2tz_an521_info); 707 } 708 709 type_init(mps2tz_machine_init); 710