xref: /openbmc/qemu/hw/arm/mps2-tz.c (revision d177892d)
1 /*
2  * ARM V2M MPS2 board emulation, trustzone aware FPGA images
3  *
4  * Copyright (c) 2017 Linaro Limited
5  * Written by Peter Maydell
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 or
9  *  (at your option) any later version.
10  */
11 
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13  * FPGA but is otherwise the same as the 2). Since the CPU itself
14  * and most of the devices are in the FPGA, the details of the board
15  * as seen by the guest depend significantly on the FPGA image.
16  * This source file covers the following FPGA images, for TrustZone cores:
17  *  "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18  *  "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
19  *  "mps2-an524" -- Dual Cortex-M33 as documented in Application Note AN524
20  *  "mps2-an547" -- Single Cortex-M55 as documented in Application Note AN547
21  *
22  * Links to the TRM for the board itself and to the various Application
23  * Notes which document the FPGA images can be found here:
24  * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
25  *
26  * Board TRM:
27  * https://developer.arm.com/documentation/100112/latest/
28  * Application Note AN505:
29  * https://developer.arm.com/documentation/dai0505/latest/
30  * Application Note AN521:
31  * https://developer.arm.com/documentation/dai0521/latest/
32  * Application Note AN524:
33  * https://developer.arm.com/documentation/dai0524/latest/
34  * Application Note AN547:
35  * https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/DAI0547B_SSE300_PLUS_U55_FPGA_for_mps3.pdf
36  *
37  * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
38  * (ARM ECM0601256) for the details of some of the device layout:
39  *  https://developer.arm.com/documentation/ecm0601256/latest
40  * Similarly, the AN521 and AN524 use the SSE-200, and the SSE-200 TRM defines
41  * most of the device layout:
42  *  https://developer.arm.com/documentation/101104/latest/
43  * and the AN547 uses the SSE-300, whose layout is in the SSE-300 TRM:
44  *  https://developer.arm.com/documentation/101773/latest/
45  */
46 
47 #include "qemu/osdep.h"
48 #include "qemu/units.h"
49 #include "qemu/cutils.h"
50 #include "qapi/error.h"
51 #include "qemu/error-report.h"
52 #include "hw/arm/boot.h"
53 #include "hw/arm/armv7m.h"
54 #include "hw/or-irq.h"
55 #include "hw/boards.h"
56 #include "exec/address-spaces.h"
57 #include "sysemu/sysemu.h"
58 #include "hw/misc/unimp.h"
59 #include "hw/char/cmsdk-apb-uart.h"
60 #include "hw/timer/cmsdk-apb-timer.h"
61 #include "hw/misc/mps2-scc.h"
62 #include "hw/misc/mps2-fpgaio.h"
63 #include "hw/misc/tz-mpc.h"
64 #include "hw/misc/tz-msc.h"
65 #include "hw/arm/armsse.h"
66 #include "hw/dma/pl080.h"
67 #include "hw/rtc/pl031.h"
68 #include "hw/ssi/pl022.h"
69 #include "hw/i2c/arm_sbcon_i2c.h"
70 #include "hw/net/lan9118.h"
71 #include "net/net.h"
72 #include "hw/core/split-irq.h"
73 #include "hw/qdev-clock.h"
74 #include "qom/object.h"
75 
76 #define MPS2TZ_NUMIRQ_MAX 96
77 #define MPS2TZ_RAM_MAX 5
78 
79 typedef enum MPS2TZFPGAType {
80     FPGA_AN505,
81     FPGA_AN521,
82     FPGA_AN524,
83     FPGA_AN547,
84 } MPS2TZFPGAType;
85 
86 /*
87  * Define the layout of RAM in a board, including which parts are
88  * behind which MPCs.
89  * mrindex specifies the index into mms->ram[] to use for the backing RAM;
90  * -1 means "use the system RAM".
91  */
92 typedef struct RAMInfo {
93     const char *name;
94     uint32_t base;
95     uint32_t size;
96     int mpc; /* MPC number, -1 for "not behind an MPC" */
97     int mrindex;
98     int flags;
99 } RAMInfo;
100 
101 /*
102  * Flag values:
103  *  IS_ALIAS: this RAM area is an alias to the upstream end of the
104  *    MPC specified by its .mpc value
105  *  IS_ROM: this RAM area is read-only
106  */
107 #define IS_ALIAS 1
108 #define IS_ROM 2
109 
110 struct MPS2TZMachineClass {
111     MachineClass parent;
112     MPS2TZFPGAType fpga_type;
113     uint32_t scc_id;
114     uint32_t sysclk_frq; /* Main SYSCLK frequency in Hz */
115     uint32_t apb_periph_frq; /* APB peripheral frequency in Hz */
116     uint32_t len_oscclk;
117     const uint32_t *oscclk;
118     uint32_t fpgaio_num_leds; /* Number of LEDs in FPGAIO LED0 register */
119     bool fpgaio_has_switches; /* Does FPGAIO have SWITCH register? */
120     bool fpgaio_has_dbgctrl; /* Does FPGAIO have DBGCTRL register? */
121     int numirq; /* Number of external interrupts */
122     int uart_overflow_irq; /* number of the combined UART overflow IRQ */
123     uint32_t init_svtor; /* init-svtor setting for SSE */
124     const RAMInfo *raminfo;
125     const char *armsse_type;
126 };
127 
128 struct MPS2TZMachineState {
129     MachineState parent;
130 
131     ARMSSE iotkit;
132     MemoryRegion ram[MPS2TZ_RAM_MAX];
133     MemoryRegion eth_usb_container;
134 
135     MPS2SCC scc;
136     MPS2FPGAIO fpgaio;
137     TZPPC ppc[5];
138     TZMPC mpc[3];
139     PL022State spi[5];
140     ArmSbconI2CState i2c[5];
141     UnimplementedDeviceState i2s_audio;
142     UnimplementedDeviceState gpio[4];
143     UnimplementedDeviceState gfx;
144     UnimplementedDeviceState cldc;
145     UnimplementedDeviceState usb;
146     PL031State rtc;
147     PL080State dma[4];
148     TZMSC msc[4];
149     CMSDKAPBUART uart[6];
150     SplitIRQ sec_resp_splitter;
151     qemu_or_irq uart_irq_orgate;
152     DeviceState *lan9118;
153     SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ_MAX];
154     Clock *sysclk;
155     Clock *s32kclk;
156 };
157 
158 #define TYPE_MPS2TZ_MACHINE "mps2tz"
159 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
160 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
161 #define TYPE_MPS3TZ_AN524_MACHINE MACHINE_TYPE_NAME("mps3-an524")
162 #define TYPE_MPS3TZ_AN547_MACHINE MACHINE_TYPE_NAME("mps3-an547")
163 
164 OBJECT_DECLARE_TYPE(MPS2TZMachineState, MPS2TZMachineClass, MPS2TZ_MACHINE)
165 
166 /* Slow 32Khz S32KCLK frequency in Hz */
167 #define S32KCLK_FRQ (32 * 1000)
168 
169 /*
170  * The MPS3 DDR is 2GiB, but on a 32-bit host QEMU doesn't permit
171  * emulation of that much guest RAM, so artificially make it smaller.
172  */
173 #if HOST_LONG_BITS == 32
174 #define MPS3_DDR_SIZE (1 * GiB)
175 #else
176 #define MPS3_DDR_SIZE (2 * GiB)
177 #endif
178 
179 static const uint32_t an505_oscclk[] = {
180     40000000,
181     24580000,
182     25000000,
183 };
184 
185 static const uint32_t an524_oscclk[] = {
186     24000000,
187     32000000,
188     50000000,
189     50000000,
190     24576000,
191     23750000,
192 };
193 
194 static const RAMInfo an505_raminfo[] = { {
195         .name = "ssram-0",
196         .base = 0x00000000,
197         .size = 0x00400000,
198         .mpc = 0,
199         .mrindex = 0,
200     }, {
201         .name = "ssram-1",
202         .base = 0x28000000,
203         .size = 0x00200000,
204         .mpc = 1,
205         .mrindex = 1,
206     }, {
207         .name = "ssram-2",
208         .base = 0x28200000,
209         .size = 0x00200000,
210         .mpc = 2,
211         .mrindex = 2,
212     }, {
213         .name = "ssram-0-alias",
214         .base = 0x00400000,
215         .size = 0x00400000,
216         .mpc = 0,
217         .mrindex = 3,
218         .flags = IS_ALIAS,
219     }, {
220         /* Use the largest bit of contiguous RAM as our "system memory" */
221         .name = "mps.ram",
222         .base = 0x80000000,
223         .size = 16 * MiB,
224         .mpc = -1,
225         .mrindex = -1,
226     }, {
227         .name = NULL,
228     },
229 };
230 
231 static const RAMInfo an524_raminfo[] = { {
232         .name = "bram",
233         .base = 0x00000000,
234         .size = 512 * KiB,
235         .mpc = 0,
236         .mrindex = 0,
237     }, {
238         .name = "sram",
239         .base = 0x20000000,
240         .size = 32 * 4 * KiB,
241         .mpc = -1,
242         .mrindex = 1,
243     }, {
244         /* We don't model QSPI flash yet; for now expose it as simple ROM */
245         .name = "QSPI",
246         .base = 0x28000000,
247         .size = 8 * MiB,
248         .mpc = 1,
249         .mrindex = 2,
250         .flags = IS_ROM,
251     }, {
252         .name = "DDR",
253         .base = 0x60000000,
254         .size = MPS3_DDR_SIZE,
255         .mpc = 2,
256         .mrindex = -1,
257     }, {
258         .name = NULL,
259     },
260 };
261 
262 static const RAMInfo an547_raminfo[] = { {
263         .name = "itcm",
264         .base = 0x00000000,
265         .size = 512 * KiB,
266         .mpc = -1,
267         .mrindex = 0,
268     }, {
269         .name = "sram",
270         .base = 0x01000000,
271         .size = 2 * MiB,
272         .mpc = 0,
273         .mrindex = 1,
274     }, {
275         .name = "dtcm",
276         .base = 0x20000000,
277         .size = 4 * 128 * KiB,
278         .mpc = -1,
279         .mrindex = 2,
280     }, {
281         .name = "sram 2",
282         .base = 0x21000000,
283         .size = 4 * MiB,
284         .mpc = -1,
285         .mrindex = 3,
286     }, {
287         /* We don't model QSPI flash yet; for now expose it as simple ROM */
288         .name = "QSPI",
289         .base = 0x28000000,
290         .size = 8 * MiB,
291         .mpc = 1,
292         .mrindex = 4,
293         .flags = IS_ROM,
294     }, {
295         .name = "DDR",
296         .base = 0x60000000,
297         .size = MPS3_DDR_SIZE,
298         .mpc = 2,
299         .mrindex = -1,
300     }, {
301         .name = NULL,
302     },
303 };
304 
305 static const RAMInfo *find_raminfo_for_mpc(MPS2TZMachineState *mms, int mpc)
306 {
307     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
308     const RAMInfo *p;
309     const RAMInfo *found = NULL;
310 
311     for (p = mmc->raminfo; p->name; p++) {
312         if (p->mpc == mpc && !(p->flags & IS_ALIAS)) {
313             /* There should only be one entry in the array for this MPC */
314             g_assert(!found);
315             found = p;
316         }
317     }
318     /* if raminfo array doesn't have an entry for each MPC this is a bug */
319     assert(found);
320     return found;
321 }
322 
323 static MemoryRegion *mr_for_raminfo(MPS2TZMachineState *mms,
324                                     const RAMInfo *raminfo)
325 {
326     /* Return an initialized MemoryRegion for the RAMInfo. */
327     MemoryRegion *ram;
328 
329     if (raminfo->mrindex < 0) {
330         /* Means this RAMInfo is for QEMU's "system memory" */
331         MachineState *machine = MACHINE(mms);
332         assert(!(raminfo->flags & IS_ROM));
333         return machine->ram;
334     }
335 
336     assert(raminfo->mrindex < MPS2TZ_RAM_MAX);
337     ram = &mms->ram[raminfo->mrindex];
338 
339     memory_region_init_ram(ram, NULL, raminfo->name,
340                            raminfo->size, &error_fatal);
341     if (raminfo->flags & IS_ROM) {
342         memory_region_set_readonly(ram, true);
343     }
344     return ram;
345 }
346 
347 /* Create an alias of an entire original MemoryRegion @orig
348  * located at @base in the memory map.
349  */
350 static void make_ram_alias(MemoryRegion *mr, const char *name,
351                            MemoryRegion *orig, hwaddr base)
352 {
353     memory_region_init_alias(mr, NULL, name, orig, 0,
354                              memory_region_size(orig));
355     memory_region_add_subregion(get_system_memory(), base, mr);
356 }
357 
358 static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
359 {
360     /*
361      * Return a qemu_irq which will signal IRQ n to all CPUs in the
362      * SSE.  The irqno should be as the CPU sees it, so the first
363      * external-to-the-SSE interrupt is 32.
364      */
365     MachineClass *mc = MACHINE_GET_CLASS(mms);
366     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
367 
368     assert(irqno >= 32 && irqno < (mmc->numirq + 32));
369 
370     /*
371      * Convert from "CPU irq number" (as listed in the FPGA image
372      * documentation) to the SSE external-interrupt number.
373      */
374     irqno -= 32;
375 
376     if (mc->max_cpus > 1) {
377         return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
378     } else {
379         return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
380     }
381 }
382 
383 /* Most of the devices in the AN505 FPGA image sit behind
384  * Peripheral Protection Controllers. These data structures
385  * define the layout of which devices sit behind which PPCs.
386  * The devfn for each port is a function which creates, configures
387  * and initializes the device, returning the MemoryRegion which
388  * needs to be plugged into the downstream end of the PPC port.
389  */
390 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
391                                 const char *name, hwaddr size,
392                                 const int *irqs);
393 
394 typedef struct PPCPortInfo {
395     const char *name;
396     MakeDevFn *devfn;
397     void *opaque;
398     hwaddr addr;
399     hwaddr size;
400     int irqs[3]; /* currently no device needs more IRQ lines than this */
401 } PPCPortInfo;
402 
403 typedef struct PPCInfo {
404     const char *name;
405     PPCPortInfo ports[TZ_NUM_PORTS];
406 } PPCInfo;
407 
408 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
409                                     void *opaque,
410                                     const char *name, hwaddr size,
411                                     const int *irqs)
412 {
413     /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
414      * and return a pointer to its MemoryRegion.
415      */
416     UnimplementedDeviceState *uds = opaque;
417 
418     object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
419     qdev_prop_set_string(DEVICE(uds), "name", name);
420     qdev_prop_set_uint64(DEVICE(uds), "size", size);
421     sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
422     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
423 }
424 
425 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
426                                const char *name, hwaddr size,
427                                const int *irqs)
428 {
429     /* The irq[] array is tx, rx, combined, in that order */
430     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
431     CMSDKAPBUART *uart = opaque;
432     int i = uart - &mms->uart[0];
433     SysBusDevice *s;
434     DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
435 
436     object_initialize_child(OBJECT(mms), name, uart, TYPE_CMSDK_APB_UART);
437     qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
438     qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", mmc->apb_periph_frq);
439     sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
440     s = SYS_BUS_DEVICE(uart);
441     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
442     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1]));
443     sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
444     sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
445     sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqs[2]));
446     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
447 }
448 
449 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
450                               const char *name, hwaddr size,
451                               const int *irqs)
452 {
453     MPS2SCC *scc = opaque;
454     DeviceState *sccdev;
455     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
456     uint32_t i;
457 
458     object_initialize_child(OBJECT(mms), "scc", scc, TYPE_MPS2_SCC);
459     sccdev = DEVICE(scc);
460     qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
461     qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
462     qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
463     qdev_prop_set_uint32(sccdev, "len-oscclk", mmc->len_oscclk);
464     for (i = 0; i < mmc->len_oscclk; i++) {
465         g_autofree char *propname = g_strdup_printf("oscclk[%u]", i);
466         qdev_prop_set_uint32(sccdev, propname, mmc->oscclk[i]);
467     }
468     sysbus_realize(SYS_BUS_DEVICE(scc), &error_fatal);
469     return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
470 }
471 
472 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
473                                  const char *name, hwaddr size,
474                                  const int *irqs)
475 {
476     MPS2FPGAIO *fpgaio = opaque;
477     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
478 
479     object_initialize_child(OBJECT(mms), "fpgaio", fpgaio, TYPE_MPS2_FPGAIO);
480     qdev_prop_set_uint32(DEVICE(fpgaio), "num-leds", mmc->fpgaio_num_leds);
481     qdev_prop_set_bit(DEVICE(fpgaio), "has-switches", mmc->fpgaio_has_switches);
482     qdev_prop_set_bit(DEVICE(fpgaio), "has-dbgctrl", mmc->fpgaio_has_dbgctrl);
483     sysbus_realize(SYS_BUS_DEVICE(fpgaio), &error_fatal);
484     return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
485 }
486 
487 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
488                                   const char *name, hwaddr size,
489                                   const int *irqs)
490 {
491     SysBusDevice *s;
492     NICInfo *nd = &nd_table[0];
493 
494     /* In hardware this is a LAN9220; the LAN9118 is software compatible
495      * except that it doesn't support the checksum-offload feature.
496      */
497     qemu_check_nic_model(nd, "lan9118");
498     mms->lan9118 = qdev_new(TYPE_LAN9118);
499     qdev_set_nic_properties(mms->lan9118, nd);
500 
501     s = SYS_BUS_DEVICE(mms->lan9118);
502     sysbus_realize_and_unref(s, &error_fatal);
503     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
504     return sysbus_mmio_get_region(s, 0);
505 }
506 
507 static MemoryRegion *make_eth_usb(MPS2TZMachineState *mms, void *opaque,
508                                   const char *name, hwaddr size,
509                                   const int *irqs)
510 {
511     /*
512      * The AN524 makes the ethernet and USB share a PPC port.
513      * irqs[] is the ethernet IRQ.
514      */
515     SysBusDevice *s;
516     NICInfo *nd = &nd_table[0];
517 
518     memory_region_init(&mms->eth_usb_container, OBJECT(mms),
519                        "mps2-tz-eth-usb-container", 0x200000);
520 
521     /*
522      * In hardware this is a LAN9220; the LAN9118 is software compatible
523      * except that it doesn't support the checksum-offload feature.
524      */
525     qemu_check_nic_model(nd, "lan9118");
526     mms->lan9118 = qdev_new(TYPE_LAN9118);
527     qdev_set_nic_properties(mms->lan9118, nd);
528 
529     s = SYS_BUS_DEVICE(mms->lan9118);
530     sysbus_realize_and_unref(s, &error_fatal);
531     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
532 
533     memory_region_add_subregion(&mms->eth_usb_container,
534                                 0, sysbus_mmio_get_region(s, 0));
535 
536     /* The USB OTG controller is an ISP1763; we don't have a model of it. */
537     object_initialize_child(OBJECT(mms), "usb-otg",
538                             &mms->usb, TYPE_UNIMPLEMENTED_DEVICE);
539     qdev_prop_set_string(DEVICE(&mms->usb), "name", "usb-otg");
540     qdev_prop_set_uint64(DEVICE(&mms->usb), "size", 0x100000);
541     s = SYS_BUS_DEVICE(&mms->usb);
542     sysbus_realize(s, &error_fatal);
543 
544     memory_region_add_subregion(&mms->eth_usb_container,
545                                 0x100000, sysbus_mmio_get_region(s, 0));
546 
547     return &mms->eth_usb_container;
548 }
549 
550 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
551                               const char *name, hwaddr size,
552                               const int *irqs)
553 {
554     TZMPC *mpc = opaque;
555     int i = mpc - &mms->mpc[0];
556     MemoryRegion *upstream;
557     const RAMInfo *raminfo = find_raminfo_for_mpc(mms, i);
558     MemoryRegion *ram = mr_for_raminfo(mms, raminfo);
559 
560     object_initialize_child(OBJECT(mms), name, mpc, TYPE_TZ_MPC);
561     object_property_set_link(OBJECT(mpc), "downstream", OBJECT(ram),
562                              &error_fatal);
563     sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
564     /* Map the upstream end of the MPC into system memory */
565     upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
566     memory_region_add_subregion(get_system_memory(), raminfo->base, upstream);
567     /* and connect its interrupt to the IoTKit */
568     qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
569                                 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
570                                                        "mpcexp_status", i));
571 
572     /* Return the register interface MR for our caller to map behind the PPC */
573     return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
574 }
575 
576 static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
577                               const char *name, hwaddr size,
578                               const int *irqs)
579 {
580     /* The irq[] array is DMACINTR, DMACINTERR, DMACINTTC, in that order */
581     PL080State *dma = opaque;
582     int i = dma - &mms->dma[0];
583     SysBusDevice *s;
584     char *mscname = g_strdup_printf("%s-msc", name);
585     TZMSC *msc = &mms->msc[i];
586     DeviceState *iotkitdev = DEVICE(&mms->iotkit);
587     MemoryRegion *msc_upstream;
588     MemoryRegion *msc_downstream;
589 
590     /*
591      * Each DMA device is a PL081 whose transaction master interface
592      * is guarded by a Master Security Controller. The downstream end of
593      * the MSC connects to the IoTKit AHB Slave Expansion port, so the
594      * DMA devices can see all devices and memory that the CPU does.
595      */
596     object_initialize_child(OBJECT(mms), mscname, msc, TYPE_TZ_MSC);
597     msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
598     object_property_set_link(OBJECT(msc), "downstream",
599                              OBJECT(msc_downstream), &error_fatal);
600     object_property_set_link(OBJECT(msc), "idau", OBJECT(mms), &error_fatal);
601     sysbus_realize(SYS_BUS_DEVICE(msc), &error_fatal);
602 
603     qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
604                                 qdev_get_gpio_in_named(iotkitdev,
605                                                        "mscexp_status", i));
606     qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
607                                 qdev_get_gpio_in_named(DEVICE(msc),
608                                                        "irq_clear", 0));
609     qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
610                                 qdev_get_gpio_in_named(DEVICE(msc),
611                                                        "cfg_nonsec", 0));
612     qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
613                           ARRAY_SIZE(mms->ppc) + i,
614                           qdev_get_gpio_in_named(DEVICE(msc),
615                                                  "cfg_sec_resp", 0));
616     msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
617 
618     object_initialize_child(OBJECT(mms), name, dma, TYPE_PL081);
619     object_property_set_link(OBJECT(dma), "downstream", OBJECT(msc_upstream),
620                              &error_fatal);
621     sysbus_realize(SYS_BUS_DEVICE(dma), &error_fatal);
622 
623     s = SYS_BUS_DEVICE(dma);
624     /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
625     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
626     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1]));
627     sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqs[2]));
628 
629     g_free(mscname);
630     return sysbus_mmio_get_region(s, 0);
631 }
632 
633 static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
634                               const char *name, hwaddr size,
635                               const int *irqs)
636 {
637     /*
638      * The AN505 has five PL022 SPI controllers.
639      * One of these should have the LCD controller behind it; the others
640      * are connected only to the FPGA's "general purpose SPI connector"
641      * or "shield" expansion connectors.
642      * Note that if we do implement devices behind SPI, the chip select
643      * lines are set via the "MISC" register in the MPS2 FPGAIO device.
644      */
645     PL022State *spi = opaque;
646     SysBusDevice *s;
647 
648     object_initialize_child(OBJECT(mms), name, spi, TYPE_PL022);
649     sysbus_realize(SYS_BUS_DEVICE(spi), &error_fatal);
650     s = SYS_BUS_DEVICE(spi);
651     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
652     return sysbus_mmio_get_region(s, 0);
653 }
654 
655 static MemoryRegion *make_i2c(MPS2TZMachineState *mms, void *opaque,
656                               const char *name, hwaddr size,
657                               const int *irqs)
658 {
659     ArmSbconI2CState *i2c = opaque;
660     SysBusDevice *s;
661 
662     object_initialize_child(OBJECT(mms), name, i2c, TYPE_ARM_SBCON_I2C);
663     s = SYS_BUS_DEVICE(i2c);
664     sysbus_realize(s, &error_fatal);
665     return sysbus_mmio_get_region(s, 0);
666 }
667 
668 static MemoryRegion *make_rtc(MPS2TZMachineState *mms, void *opaque,
669                               const char *name, hwaddr size,
670                               const int *irqs)
671 {
672     PL031State *pl031 = opaque;
673     SysBusDevice *s;
674 
675     object_initialize_child(OBJECT(mms), name, pl031, TYPE_PL031);
676     s = SYS_BUS_DEVICE(pl031);
677     sysbus_realize(s, &error_fatal);
678     /*
679      * The board docs don't give an IRQ number for the PL031, so
680      * presumably it is not connected.
681      */
682     return sysbus_mmio_get_region(s, 0);
683 }
684 
685 static void create_non_mpc_ram(MPS2TZMachineState *mms)
686 {
687     /*
688      * Handle the RAMs which are either not behind MPCs or which are
689      * aliases to another MPC.
690      */
691     const RAMInfo *p;
692     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
693 
694     for (p = mmc->raminfo; p->name; p++) {
695         if (p->flags & IS_ALIAS) {
696             SysBusDevice *mpc_sbd = SYS_BUS_DEVICE(&mms->mpc[p->mpc]);
697             MemoryRegion *upstream = sysbus_mmio_get_region(mpc_sbd, 1);
698             make_ram_alias(&mms->ram[p->mrindex], p->name, upstream, p->base);
699         } else if (p->mpc == -1) {
700             /* RAM not behind an MPC */
701             MemoryRegion *mr = mr_for_raminfo(mms, p);
702             memory_region_add_subregion(get_system_memory(), p->base, mr);
703         }
704     }
705 }
706 
707 static uint32_t boot_ram_size(MPS2TZMachineState *mms)
708 {
709     /* Return the size of the RAM block at guest address zero */
710     const RAMInfo *p;
711     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
712 
713     for (p = mmc->raminfo; p->name; p++) {
714         if (p->base == 0) {
715             return p->size;
716         }
717     }
718     g_assert_not_reached();
719 }
720 
721 static void mps2tz_common_init(MachineState *machine)
722 {
723     MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
724     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
725     MachineClass *mc = MACHINE_GET_CLASS(machine);
726     MemoryRegion *system_memory = get_system_memory();
727     DeviceState *iotkitdev;
728     DeviceState *dev_splitter;
729     const PPCInfo *ppcs;
730     int num_ppcs;
731     int i;
732 
733     if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
734         error_report("This board can only be used with CPU %s",
735                      mc->default_cpu_type);
736         exit(1);
737     }
738 
739     if (machine->ram_size != mc->default_ram_size) {
740         char *sz = size_to_str(mc->default_ram_size);
741         error_report("Invalid RAM size, should be %s", sz);
742         g_free(sz);
743         exit(EXIT_FAILURE);
744     }
745 
746     /* These clocks don't need migration because they are fixed-frequency */
747     mms->sysclk = clock_new(OBJECT(machine), "SYSCLK");
748     clock_set_hz(mms->sysclk, mmc->sysclk_frq);
749     mms->s32kclk = clock_new(OBJECT(machine), "S32KCLK");
750     clock_set_hz(mms->s32kclk, S32KCLK_FRQ);
751 
752     object_initialize_child(OBJECT(machine), TYPE_IOTKIT, &mms->iotkit,
753                             mmc->armsse_type);
754     iotkitdev = DEVICE(&mms->iotkit);
755     object_property_set_link(OBJECT(&mms->iotkit), "memory",
756                              OBJECT(system_memory), &error_abort);
757     qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", mmc->numirq);
758     qdev_prop_set_uint32(iotkitdev, "init-svtor", mmc->init_svtor);
759     qdev_connect_clock_in(iotkitdev, "MAINCLK", mms->sysclk);
760     qdev_connect_clock_in(iotkitdev, "S32KCLK", mms->s32kclk);
761     sysbus_realize(SYS_BUS_DEVICE(&mms->iotkit), &error_fatal);
762 
763     /*
764      * If this board has more than one CPU, then we need to create splitters
765      * to feed the IRQ inputs for each CPU in the SSE from each device in the
766      * board. If there is only one CPU, we can just wire the device IRQ
767      * directly to the SSE's IRQ input.
768      */
769     assert(mmc->numirq <= MPS2TZ_NUMIRQ_MAX);
770     if (mc->max_cpus > 1) {
771         for (i = 0; i < mmc->numirq; i++) {
772             char *name = g_strdup_printf("mps2-irq-splitter%d", i);
773             SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
774 
775             object_initialize_child_with_props(OBJECT(machine), name,
776                                                splitter, sizeof(*splitter),
777                                                TYPE_SPLIT_IRQ, &error_fatal,
778                                                NULL);
779             g_free(name);
780 
781             object_property_set_int(OBJECT(splitter), "num-lines", 2,
782                                     &error_fatal);
783             qdev_realize(DEVICE(splitter), NULL, &error_fatal);
784             qdev_connect_gpio_out(DEVICE(splitter), 0,
785                                   qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
786                                                          "EXP_IRQ", i));
787             qdev_connect_gpio_out(DEVICE(splitter), 1,
788                                   qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
789                                                          "EXP_CPU1_IRQ", i));
790         }
791     }
792 
793     /* The sec_resp_cfg output from the IoTKit must be split into multiple
794      * lines, one for each of the PPCs we create here, plus one per MSC.
795      */
796     object_initialize_child(OBJECT(machine), "sec-resp-splitter",
797                             &mms->sec_resp_splitter, TYPE_SPLIT_IRQ);
798     object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
799                             ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
800                             &error_fatal);
801     qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
802     dev_splitter = DEVICE(&mms->sec_resp_splitter);
803     qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
804                                 qdev_get_gpio_in(dev_splitter, 0));
805 
806     /*
807      * The IoTKit sets up much of the memory layout, including
808      * the aliases between secure and non-secure regions in the
809      * address space, and also most of the devices in the system.
810      * The FPGA itself contains various RAMs and some additional devices.
811      * The FPGA images have an odd combination of different RAMs,
812      * because in hardware they are different implementations and
813      * connected to different buses, giving varying performance/size
814      * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
815      * call the largest lump our "system memory".
816      */
817 
818     /*
819      * The overflow IRQs for all UARTs are ORed together.
820      * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
821      * Create the OR gate for this: it has one input for the TX overflow
822      * and one for the RX overflow for each UART we might have.
823      * (If the board has fewer than the maximum possible number of UARTs
824      * those inputs are never wired up and are treated as always-zero.)
825      */
826     object_initialize_child(OBJECT(mms), "uart-irq-orgate",
827                             &mms->uart_irq_orgate, TYPE_OR_IRQ);
828     object_property_set_int(OBJECT(&mms->uart_irq_orgate), "num-lines",
829                             2 * ARRAY_SIZE(mms->uart),
830                             &error_fatal);
831     qdev_realize(DEVICE(&mms->uart_irq_orgate), NULL, &error_fatal);
832     qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
833                           get_sse_irq_in(mms, mmc->uart_overflow_irq));
834 
835     /* Most of the devices in the FPGA are behind Peripheral Protection
836      * Controllers. The required order for initializing things is:
837      *  + initialize the PPC
838      *  + initialize, configure and realize downstream devices
839      *  + connect downstream device MemoryRegions to the PPC
840      *  + realize the PPC
841      *  + map the PPC's MemoryRegions to the places in the address map
842      *    where the downstream devices should appear
843      *  + wire up the PPC's control lines to the IoTKit object
844      */
845 
846     const PPCInfo an505_ppcs[] = { {
847             .name = "apb_ppcexp0",
848             .ports = {
849                 { "ssram-0-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 },
850                 { "ssram-1-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 },
851                 { "ssram-2-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 },
852             },
853         }, {
854             .name = "apb_ppcexp1",
855             .ports = {
856                 { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000, { 51 } },
857                 { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000, { 52 } },
858                 { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000, { 53 } },
859                 { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000, { 54 } },
860                 { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000, { 55 } },
861                 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000, { 32, 33, 42 } },
862                 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000, { 34, 35, 43 } },
863                 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000, { 36, 37, 44 } },
864                 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000, { 38, 39, 45 } },
865                 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000, { 40, 41, 46 } },
866                 { "i2c0", make_i2c, &mms->i2c[0], 0x40207000, 0x1000 },
867                 { "i2c1", make_i2c, &mms->i2c[1], 0x40208000, 0x1000 },
868                 { "i2c2", make_i2c, &mms->i2c[2], 0x4020c000, 0x1000 },
869                 { "i2c3", make_i2c, &mms->i2c[3], 0x4020d000, 0x1000 },
870             },
871         }, {
872             .name = "apb_ppcexp2",
873             .ports = {
874                 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
875                 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
876                   0x40301000, 0x1000 },
877                 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
878             },
879         }, {
880             .name = "ahb_ppcexp0",
881             .ports = {
882                 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
883                 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
884                 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
885                 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
886                 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
887                 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000, { 48 } },
888             },
889         }, {
890             .name = "ahb_ppcexp1",
891             .ports = {
892                 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000, { 58, 56, 57 } },
893                 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000, { 61, 59, 60 } },
894                 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000, { 64, 62, 63 } },
895                 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000, { 67, 65, 66 } },
896             },
897         },
898     };
899 
900     const PPCInfo an524_ppcs[] = { {
901             .name = "apb_ppcexp0",
902             .ports = {
903                 { "bram-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 },
904                 { "qspi-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 },
905                 { "ddr-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 },
906             },
907         }, {
908             .name = "apb_ppcexp1",
909             .ports = {
910                 { "i2c0", make_i2c, &mms->i2c[0], 0x41200000, 0x1000 },
911                 { "i2c1", make_i2c, &mms->i2c[1], 0x41201000, 0x1000 },
912                 { "spi0", make_spi, &mms->spi[0], 0x41202000, 0x1000, { 52 } },
913                 { "spi1", make_spi, &mms->spi[1], 0x41203000, 0x1000, { 53 } },
914                 { "spi2", make_spi, &mms->spi[2], 0x41204000, 0x1000, { 54 } },
915                 { "i2c2", make_i2c, &mms->i2c[2], 0x41205000, 0x1000 },
916                 { "i2c3", make_i2c, &mms->i2c[3], 0x41206000, 0x1000 },
917                 { /* port 7 reserved */ },
918                 { "i2c4", make_i2c, &mms->i2c[4], 0x41208000, 0x1000 },
919             },
920         }, {
921             .name = "apb_ppcexp2",
922             .ports = {
923                 { "scc", make_scc, &mms->scc, 0x41300000, 0x1000 },
924                 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
925                   0x41301000, 0x1000 },
926                 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x41302000, 0x1000 },
927                 { "uart0", make_uart, &mms->uart[0], 0x41303000, 0x1000, { 32, 33, 42 } },
928                 { "uart1", make_uart, &mms->uart[1], 0x41304000, 0x1000, { 34, 35, 43 } },
929                 { "uart2", make_uart, &mms->uart[2], 0x41305000, 0x1000, { 36, 37, 44 } },
930                 { "uart3", make_uart, &mms->uart[3], 0x41306000, 0x1000, { 38, 39, 45 } },
931                 { "uart4", make_uart, &mms->uart[4], 0x41307000, 0x1000, { 40, 41, 46 } },
932                 { "uart5", make_uart, &mms->uart[5], 0x41308000, 0x1000, { 124, 125, 126 } },
933 
934                 { /* port 9 reserved */ },
935                 { "clcd", make_unimp_dev, &mms->cldc, 0x4130a000, 0x1000 },
936                 { "rtc", make_rtc, &mms->rtc, 0x4130b000, 0x1000 },
937             },
938         }, {
939             .name = "ahb_ppcexp0",
940             .ports = {
941                 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 },
942                 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 },
943                 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 },
944                 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 },
945                 { "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 48 } },
946             },
947         },
948     };
949 
950     const PPCInfo an547_ppcs[] = { {
951             .name = "apb_ppcexp0",
952             .ports = {
953                 { "ssram-mpc", make_mpc, &mms->mpc[0], 0x57000000, 0x1000 },
954                 { "qspi-mpc", make_mpc, &mms->mpc[1], 0x57001000, 0x1000 },
955                 { "ddr-mpc", make_mpc, &mms->mpc[2], 0x57002000, 0x1000 },
956             },
957         }, {
958             .name = "apb_ppcexp1",
959             .ports = {
960                 { "i2c0", make_i2c, &mms->i2c[0], 0x49200000, 0x1000 },
961                 { "i2c1", make_i2c, &mms->i2c[1], 0x49201000, 0x1000 },
962                 { "spi0", make_spi, &mms->spi[0], 0x49202000, 0x1000, { 53 } },
963                 { "spi1", make_spi, &mms->spi[1], 0x49203000, 0x1000, { 54 } },
964                 { "spi2", make_spi, &mms->spi[2], 0x49204000, 0x1000, { 55 } },
965                 { "i2c2", make_i2c, &mms->i2c[2], 0x49205000, 0x1000 },
966                 { "i2c3", make_i2c, &mms->i2c[3], 0x49206000, 0x1000 },
967                 { /* port 7 reserved */ },
968                 { "i2c4", make_i2c, &mms->i2c[4], 0x49208000, 0x1000 },
969             },
970         }, {
971             .name = "apb_ppcexp2",
972             .ports = {
973                 { "scc", make_scc, &mms->scc, 0x49300000, 0x1000 },
974                 { "i2s-audio", make_unimp_dev, &mms->i2s_audio, 0x49301000, 0x1000 },
975                 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x49302000, 0x1000 },
976                 { "uart0", make_uart, &mms->uart[0], 0x49303000, 0x1000, { 33, 34, 43 } },
977                 { "uart1", make_uart, &mms->uart[1], 0x49304000, 0x1000, { 35, 36, 44 } },
978                 { "uart2", make_uart, &mms->uart[2], 0x49305000, 0x1000, { 37, 38, 45 } },
979                 { "uart3", make_uart, &mms->uart[3], 0x49306000, 0x1000, { 39, 40, 46 } },
980                 { "uart4", make_uart, &mms->uart[4], 0x49307000, 0x1000, { 41, 42, 47 } },
981                 { "uart5", make_uart, &mms->uart[5], 0x49308000, 0x1000, { 125, 126, 127 } },
982 
983                 { /* port 9 reserved */ },
984                 { "clcd", make_unimp_dev, &mms->cldc, 0x4930a000, 0x1000 },
985                 { "rtc", make_rtc, &mms->rtc, 0x4930b000, 0x1000 },
986             },
987         }, {
988             .name = "ahb_ppcexp0",
989             .ports = {
990                 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 },
991                 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 },
992                 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 },
993                 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 },
994                 { "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 49 } },
995             },
996         },
997     };
998 
999     switch (mmc->fpga_type) {
1000     case FPGA_AN505:
1001     case FPGA_AN521:
1002         ppcs = an505_ppcs;
1003         num_ppcs = ARRAY_SIZE(an505_ppcs);
1004         break;
1005     case FPGA_AN524:
1006         ppcs = an524_ppcs;
1007         num_ppcs = ARRAY_SIZE(an524_ppcs);
1008         break;
1009     case FPGA_AN547:
1010         ppcs = an547_ppcs;
1011         num_ppcs = ARRAY_SIZE(an547_ppcs);
1012         break;
1013     default:
1014         g_assert_not_reached();
1015     }
1016 
1017     for (i = 0; i < num_ppcs; i++) {
1018         const PPCInfo *ppcinfo = &ppcs[i];
1019         TZPPC *ppc = &mms->ppc[i];
1020         DeviceState *ppcdev;
1021         int port;
1022         char *gpioname;
1023 
1024         object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
1025                                 TYPE_TZ_PPC);
1026         ppcdev = DEVICE(ppc);
1027 
1028         for (port = 0; port < TZ_NUM_PORTS; port++) {
1029             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
1030             MemoryRegion *mr;
1031             char *portname;
1032 
1033             if (!pinfo->devfn) {
1034                 continue;
1035             }
1036 
1037             mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size,
1038                               pinfo->irqs);
1039             portname = g_strdup_printf("port[%d]", port);
1040             object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
1041                                      &error_fatal);
1042             g_free(portname);
1043         }
1044 
1045         sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
1046 
1047         for (port = 0; port < TZ_NUM_PORTS; port++) {
1048             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
1049 
1050             if (!pinfo->devfn) {
1051                 continue;
1052             }
1053             sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
1054 
1055             gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
1056             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
1057                                         qdev_get_gpio_in_named(ppcdev,
1058                                                                "cfg_nonsec",
1059                                                                port));
1060             g_free(gpioname);
1061             gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
1062             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
1063                                         qdev_get_gpio_in_named(ppcdev,
1064                                                                "cfg_ap", port));
1065             g_free(gpioname);
1066         }
1067 
1068         gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
1069         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
1070                                     qdev_get_gpio_in_named(ppcdev,
1071                                                            "irq_enable", 0));
1072         g_free(gpioname);
1073         gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
1074         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
1075                                     qdev_get_gpio_in_named(ppcdev,
1076                                                            "irq_clear", 0));
1077         g_free(gpioname);
1078         gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
1079         qdev_connect_gpio_out_named(ppcdev, "irq", 0,
1080                                     qdev_get_gpio_in_named(iotkitdev,
1081                                                            gpioname, 0));
1082         g_free(gpioname);
1083 
1084         qdev_connect_gpio_out(dev_splitter, i,
1085                               qdev_get_gpio_in_named(ppcdev,
1086                                                      "cfg_sec_resp", 0));
1087     }
1088 
1089     create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
1090 
1091     if (mmc->fpga_type == FPGA_AN547) {
1092         create_unimplemented_device("U55 timing adapter 0", 0x48102000, 0x1000);
1093         create_unimplemented_device("U55 timing adapter 1", 0x48103000, 0x1000);
1094     }
1095 
1096     create_non_mpc_ram(mms);
1097 
1098     armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename,
1099                        boot_ram_size(mms));
1100 }
1101 
1102 static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
1103                                int *iregion, bool *exempt, bool *ns, bool *nsc)
1104 {
1105     /*
1106      * The MPS2 TZ FPGA images have IDAUs in them which are connected to
1107      * the Master Security Controllers. Thes have the same logic as
1108      * is used by the IoTKit for the IDAU connected to the CPU, except
1109      * that MSCs don't care about the NSC attribute.
1110      */
1111     int region = extract32(address, 28, 4);
1112 
1113     *ns = !(region & 1);
1114     *nsc = false;
1115     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1116     *exempt = (address & 0xeff00000) == 0xe0000000;
1117     *iregion = region;
1118 }
1119 
1120 static void mps2tz_class_init(ObjectClass *oc, void *data)
1121 {
1122     MachineClass *mc = MACHINE_CLASS(oc);
1123     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
1124 
1125     mc->init = mps2tz_common_init;
1126     iic->check = mps2_tz_idau_check;
1127 }
1128 
1129 static void mps2tz_set_default_ram_info(MPS2TZMachineClass *mmc)
1130 {
1131     /*
1132      * Set mc->default_ram_size and default_ram_id from the
1133      * information in mmc->raminfo.
1134      */
1135     MachineClass *mc = MACHINE_CLASS(mmc);
1136     const RAMInfo *p;
1137 
1138     for (p = mmc->raminfo; p->name; p++) {
1139         if (p->mrindex < 0) {
1140             /* Found the entry for "system memory" */
1141             mc->default_ram_size = p->size;
1142             mc->default_ram_id = p->name;
1143             return;
1144         }
1145     }
1146     g_assert_not_reached();
1147 }
1148 
1149 static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
1150 {
1151     MachineClass *mc = MACHINE_CLASS(oc);
1152     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1153 
1154     mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
1155     mc->default_cpus = 1;
1156     mc->min_cpus = mc->default_cpus;
1157     mc->max_cpus = mc->default_cpus;
1158     mmc->fpga_type = FPGA_AN505;
1159     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1160     mmc->scc_id = 0x41045050;
1161     mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
1162     mmc->apb_periph_frq = mmc->sysclk_frq;
1163     mmc->oscclk = an505_oscclk;
1164     mmc->len_oscclk = ARRAY_SIZE(an505_oscclk);
1165     mmc->fpgaio_num_leds = 2;
1166     mmc->fpgaio_has_switches = false;
1167     mmc->fpgaio_has_dbgctrl = false;
1168     mmc->numirq = 92;
1169     mmc->uart_overflow_irq = 47;
1170     mmc->init_svtor = 0x10000000;
1171     mmc->raminfo = an505_raminfo;
1172     mmc->armsse_type = TYPE_IOTKIT;
1173     mps2tz_set_default_ram_info(mmc);
1174 }
1175 
1176 static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
1177 {
1178     MachineClass *mc = MACHINE_CLASS(oc);
1179     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1180 
1181     mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
1182     mc->default_cpus = 2;
1183     mc->min_cpus = mc->default_cpus;
1184     mc->max_cpus = mc->default_cpus;
1185     mmc->fpga_type = FPGA_AN521;
1186     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1187     mmc->scc_id = 0x41045210;
1188     mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
1189     mmc->apb_periph_frq = mmc->sysclk_frq;
1190     mmc->oscclk = an505_oscclk; /* AN521 is the same as AN505 here */
1191     mmc->len_oscclk = ARRAY_SIZE(an505_oscclk);
1192     mmc->fpgaio_num_leds = 2;
1193     mmc->fpgaio_has_switches = false;
1194     mmc->fpgaio_has_dbgctrl = false;
1195     mmc->numirq = 92;
1196     mmc->uart_overflow_irq = 47;
1197     mmc->init_svtor = 0x10000000;
1198     mmc->raminfo = an505_raminfo; /* AN521 is the same as AN505 here */
1199     mmc->armsse_type = TYPE_SSE200;
1200     mps2tz_set_default_ram_info(mmc);
1201 }
1202 
1203 static void mps3tz_an524_class_init(ObjectClass *oc, void *data)
1204 {
1205     MachineClass *mc = MACHINE_CLASS(oc);
1206     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1207 
1208     mc->desc = "ARM MPS3 with AN524 FPGA image for dual Cortex-M33";
1209     mc->default_cpus = 2;
1210     mc->min_cpus = mc->default_cpus;
1211     mc->max_cpus = mc->default_cpus;
1212     mmc->fpga_type = FPGA_AN524;
1213     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1214     mmc->scc_id = 0x41045240;
1215     mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */
1216     mmc->apb_periph_frq = mmc->sysclk_frq;
1217     mmc->oscclk = an524_oscclk;
1218     mmc->len_oscclk = ARRAY_SIZE(an524_oscclk);
1219     mmc->fpgaio_num_leds = 10;
1220     mmc->fpgaio_has_switches = true;
1221     mmc->fpgaio_has_dbgctrl = false;
1222     mmc->numirq = 95;
1223     mmc->uart_overflow_irq = 47;
1224     mmc->init_svtor = 0x10000000;
1225     mmc->raminfo = an524_raminfo;
1226     mmc->armsse_type = TYPE_SSE200;
1227     mps2tz_set_default_ram_info(mmc);
1228 }
1229 
1230 static void mps3tz_an547_class_init(ObjectClass *oc, void *data)
1231 {
1232     MachineClass *mc = MACHINE_CLASS(oc);
1233     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1234 
1235     mc->desc = "ARM MPS3 with AN547 FPGA image for Cortex-M55";
1236     mc->default_cpus = 1;
1237     mc->min_cpus = mc->default_cpus;
1238     mc->max_cpus = mc->default_cpus;
1239     mmc->fpga_type = FPGA_AN547;
1240     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m55");
1241     mmc->scc_id = 0x41055470;
1242     mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */
1243     mmc->apb_periph_frq = 25 * 1000 * 1000; /* 25MHz */
1244     mmc->oscclk = an524_oscclk; /* same as AN524 */
1245     mmc->len_oscclk = ARRAY_SIZE(an524_oscclk);
1246     mmc->fpgaio_num_leds = 10;
1247     mmc->fpgaio_has_switches = true;
1248     mmc->fpgaio_has_dbgctrl = true;
1249     mmc->numirq = 96;
1250     mmc->uart_overflow_irq = 48;
1251     mmc->init_svtor = 0x00000000;
1252     mmc->raminfo = an547_raminfo;
1253     mmc->armsse_type = TYPE_SSE300;
1254     mps2tz_set_default_ram_info(mmc);
1255 }
1256 
1257 static const TypeInfo mps2tz_info = {
1258     .name = TYPE_MPS2TZ_MACHINE,
1259     .parent = TYPE_MACHINE,
1260     .abstract = true,
1261     .instance_size = sizeof(MPS2TZMachineState),
1262     .class_size = sizeof(MPS2TZMachineClass),
1263     .class_init = mps2tz_class_init,
1264     .interfaces = (InterfaceInfo[]) {
1265         { TYPE_IDAU_INTERFACE },
1266         { }
1267     },
1268 };
1269 
1270 static const TypeInfo mps2tz_an505_info = {
1271     .name = TYPE_MPS2TZ_AN505_MACHINE,
1272     .parent = TYPE_MPS2TZ_MACHINE,
1273     .class_init = mps2tz_an505_class_init,
1274 };
1275 
1276 static const TypeInfo mps2tz_an521_info = {
1277     .name = TYPE_MPS2TZ_AN521_MACHINE,
1278     .parent = TYPE_MPS2TZ_MACHINE,
1279     .class_init = mps2tz_an521_class_init,
1280 };
1281 
1282 static const TypeInfo mps3tz_an524_info = {
1283     .name = TYPE_MPS3TZ_AN524_MACHINE,
1284     .parent = TYPE_MPS2TZ_MACHINE,
1285     .class_init = mps3tz_an524_class_init,
1286 };
1287 
1288 static const TypeInfo mps3tz_an547_info = {
1289     .name = TYPE_MPS3TZ_AN547_MACHINE,
1290     .parent = TYPE_MPS2TZ_MACHINE,
1291     .class_init = mps3tz_an547_class_init,
1292 };
1293 
1294 static void mps2tz_machine_init(void)
1295 {
1296     type_register_static(&mps2tz_info);
1297     type_register_static(&mps2tz_an505_info);
1298     type_register_static(&mps2tz_an521_info);
1299     type_register_static(&mps3tz_an524_info);
1300     type_register_static(&mps3tz_an547_info);
1301 }
1302 
1303 type_init(mps2tz_machine_init);
1304