1 /* 2 * ARM V2M MPS2 board emulation, trustzone aware FPGA images 3 * 4 * Copyright (c) 2017 Linaro Limited 5 * Written by Peter Maydell 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 or 9 * (at your option) any later version. 10 */ 11 12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger 13 * FPGA but is otherwise the same as the 2). Since the CPU itself 14 * and most of the devices are in the FPGA, the details of the board 15 * as seen by the guest depend significantly on the FPGA image. 16 * This source file covers the following FPGA images, for TrustZone cores: 17 * "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505 18 * "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521 19 * 20 * Links to the TRM for the board itself and to the various Application 21 * Notes which document the FPGA images can be found here: 22 * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2 23 * 24 * Board TRM: 25 * http://infocenter.arm.com/help/topic/com.arm.doc.100112_0200_06_en/versatile_express_cortex_m_prototyping_systems_v2m_mps2_and_v2m_mps2plus_technical_reference_100112_0200_06_en.pdf 26 * Application Note AN505: 27 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html 28 * Application Note AN521: 29 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0521c/index.html 30 * 31 * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide 32 * (ARM ECM0601256) for the details of some of the device layout: 33 * http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html 34 * Similarly, the AN521 uses the SSE-200, and the SSE-200 TRM defines 35 * most of the device layout: 36 * http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf 37 * 38 */ 39 40 #include "qemu/osdep.h" 41 #include "qapi/error.h" 42 #include "qemu/error-report.h" 43 #include "hw/arm/boot.h" 44 #include "hw/arm/armv7m.h" 45 #include "hw/or-irq.h" 46 #include "hw/boards.h" 47 #include "exec/address-spaces.h" 48 #include "sysemu/sysemu.h" 49 #include "hw/misc/unimp.h" 50 #include "hw/char/cmsdk-apb-uart.h" 51 #include "hw/timer/cmsdk-apb-timer.h" 52 #include "hw/misc/mps2-scc.h" 53 #include "hw/misc/mps2-fpgaio.h" 54 #include "hw/misc/tz-mpc.h" 55 #include "hw/misc/tz-msc.h" 56 #include "hw/arm/armsse.h" 57 #include "hw/dma/pl080.h" 58 #include "hw/ssi/pl022.h" 59 #include "hw/net/lan9118.h" 60 #include "net/net.h" 61 #include "hw/core/split-irq.h" 62 63 #define MPS2TZ_NUMIRQ 92 64 65 typedef enum MPS2TZFPGAType { 66 FPGA_AN505, 67 FPGA_AN521, 68 } MPS2TZFPGAType; 69 70 typedef struct { 71 MachineClass parent; 72 MPS2TZFPGAType fpga_type; 73 uint32_t scc_id; 74 const char *armsse_type; 75 } MPS2TZMachineClass; 76 77 typedef struct { 78 MachineState parent; 79 80 ARMSSE iotkit; 81 MemoryRegion psram; 82 MemoryRegion ssram[3]; 83 MemoryRegion ssram1_m; 84 MPS2SCC scc; 85 MPS2FPGAIO fpgaio; 86 TZPPC ppc[5]; 87 TZMPC ssram_mpc[3]; 88 PL022State spi[5]; 89 UnimplementedDeviceState i2c[4]; 90 UnimplementedDeviceState i2s_audio; 91 UnimplementedDeviceState gpio[4]; 92 UnimplementedDeviceState gfx; 93 PL080State dma[4]; 94 TZMSC msc[4]; 95 CMSDKAPBUART uart[5]; 96 SplitIRQ sec_resp_splitter; 97 qemu_or_irq uart_irq_orgate; 98 DeviceState *lan9118; 99 SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ]; 100 } MPS2TZMachineState; 101 102 #define TYPE_MPS2TZ_MACHINE "mps2tz" 103 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505") 104 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521") 105 106 #define MPS2TZ_MACHINE(obj) \ 107 OBJECT_CHECK(MPS2TZMachineState, obj, TYPE_MPS2TZ_MACHINE) 108 #define MPS2TZ_MACHINE_GET_CLASS(obj) \ 109 OBJECT_GET_CLASS(MPS2TZMachineClass, obj, TYPE_MPS2TZ_MACHINE) 110 #define MPS2TZ_MACHINE_CLASS(klass) \ 111 OBJECT_CLASS_CHECK(MPS2TZMachineClass, klass, TYPE_MPS2TZ_MACHINE) 112 113 /* Main SYSCLK frequency in Hz */ 114 #define SYSCLK_FRQ 20000000 115 116 /* Create an alias of an entire original MemoryRegion @orig 117 * located at @base in the memory map. 118 */ 119 static void make_ram_alias(MemoryRegion *mr, const char *name, 120 MemoryRegion *orig, hwaddr base) 121 { 122 memory_region_init_alias(mr, NULL, name, orig, 0, 123 memory_region_size(orig)); 124 memory_region_add_subregion(get_system_memory(), base, mr); 125 } 126 127 static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno) 128 { 129 /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */ 130 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms); 131 132 assert(irqno < MPS2TZ_NUMIRQ); 133 134 switch (mmc->fpga_type) { 135 case FPGA_AN505: 136 return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno); 137 case FPGA_AN521: 138 return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0); 139 default: 140 g_assert_not_reached(); 141 } 142 } 143 144 /* Most of the devices in the AN505 FPGA image sit behind 145 * Peripheral Protection Controllers. These data structures 146 * define the layout of which devices sit behind which PPCs. 147 * The devfn for each port is a function which creates, configures 148 * and initializes the device, returning the MemoryRegion which 149 * needs to be plugged into the downstream end of the PPC port. 150 */ 151 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque, 152 const char *name, hwaddr size); 153 154 typedef struct PPCPortInfo { 155 const char *name; 156 MakeDevFn *devfn; 157 void *opaque; 158 hwaddr addr; 159 hwaddr size; 160 } PPCPortInfo; 161 162 typedef struct PPCInfo { 163 const char *name; 164 PPCPortInfo ports[TZ_NUM_PORTS]; 165 } PPCInfo; 166 167 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms, 168 void *opaque, 169 const char *name, hwaddr size) 170 { 171 /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE, 172 * and return a pointer to its MemoryRegion. 173 */ 174 UnimplementedDeviceState *uds = opaque; 175 176 sysbus_init_child_obj(OBJECT(mms), name, uds, 177 sizeof(UnimplementedDeviceState), 178 TYPE_UNIMPLEMENTED_DEVICE); 179 qdev_prop_set_string(DEVICE(uds), "name", name); 180 qdev_prop_set_uint64(DEVICE(uds), "size", size); 181 object_property_set_bool(OBJECT(uds), true, "realized", &error_fatal); 182 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0); 183 } 184 185 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque, 186 const char *name, hwaddr size) 187 { 188 CMSDKAPBUART *uart = opaque; 189 int i = uart - &mms->uart[0]; 190 int rxirqno = i * 2; 191 int txirqno = i * 2 + 1; 192 int combirqno = i + 10; 193 SysBusDevice *s; 194 DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate); 195 196 sysbus_init_child_obj(OBJECT(mms), name, uart, sizeof(mms->uart[0]), 197 TYPE_CMSDK_APB_UART); 198 qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i)); 199 qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", SYSCLK_FRQ); 200 object_property_set_bool(OBJECT(uart), true, "realized", &error_fatal); 201 s = SYS_BUS_DEVICE(uart); 202 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, txirqno)); 203 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, rxirqno)); 204 sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2)); 205 sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1)); 206 sysbus_connect_irq(s, 4, get_sse_irq_in(mms, combirqno)); 207 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0); 208 } 209 210 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque, 211 const char *name, hwaddr size) 212 { 213 MPS2SCC *scc = opaque; 214 DeviceState *sccdev; 215 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms); 216 217 sysbus_init_child_obj(OBJECT(mms), "scc", scc, 218 sizeof(mms->scc), TYPE_MPS2_SCC); 219 sccdev = DEVICE(scc); 220 qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2); 221 qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008); 222 qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id); 223 object_property_set_bool(OBJECT(scc), true, "realized", &error_fatal); 224 return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0); 225 } 226 227 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque, 228 const char *name, hwaddr size) 229 { 230 MPS2FPGAIO *fpgaio = opaque; 231 232 sysbus_init_child_obj(OBJECT(mms), "fpgaio", fpgaio, 233 sizeof(mms->fpgaio), TYPE_MPS2_FPGAIO); 234 object_property_set_bool(OBJECT(fpgaio), true, "realized", &error_fatal); 235 return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0); 236 } 237 238 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque, 239 const char *name, hwaddr size) 240 { 241 SysBusDevice *s; 242 NICInfo *nd = &nd_table[0]; 243 244 /* In hardware this is a LAN9220; the LAN9118 is software compatible 245 * except that it doesn't support the checksum-offload feature. 246 */ 247 qemu_check_nic_model(nd, "lan9118"); 248 mms->lan9118 = qdev_create(NULL, TYPE_LAN9118); 249 qdev_set_nic_properties(mms->lan9118, nd); 250 qdev_init_nofail(mms->lan9118); 251 252 s = SYS_BUS_DEVICE(mms->lan9118); 253 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 16)); 254 return sysbus_mmio_get_region(s, 0); 255 } 256 257 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque, 258 const char *name, hwaddr size) 259 { 260 TZMPC *mpc = opaque; 261 int i = mpc - &mms->ssram_mpc[0]; 262 MemoryRegion *ssram = &mms->ssram[i]; 263 MemoryRegion *upstream; 264 char *mpcname = g_strdup_printf("%s-mpc", name); 265 static uint32_t ramsize[] = { 0x00400000, 0x00200000, 0x00200000 }; 266 static uint32_t rambase[] = { 0x00000000, 0x28000000, 0x28200000 }; 267 268 memory_region_init_ram(ssram, NULL, name, ramsize[i], &error_fatal); 269 270 sysbus_init_child_obj(OBJECT(mms), mpcname, mpc, sizeof(mms->ssram_mpc[0]), 271 TYPE_TZ_MPC); 272 object_property_set_link(OBJECT(mpc), OBJECT(ssram), 273 "downstream", &error_fatal); 274 object_property_set_bool(OBJECT(mpc), true, "realized", &error_fatal); 275 /* Map the upstream end of the MPC into system memory */ 276 upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1); 277 memory_region_add_subregion(get_system_memory(), rambase[i], upstream); 278 /* and connect its interrupt to the IoTKit */ 279 qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0, 280 qdev_get_gpio_in_named(DEVICE(&mms->iotkit), 281 "mpcexp_status", i)); 282 283 /* The first SSRAM is a special case as it has an alias; accesses to 284 * the alias region at 0x00400000 must also go to the MPC upstream. 285 */ 286 if (i == 0) { 287 make_ram_alias(&mms->ssram1_m, "mps.ssram1_m", upstream, 0x00400000); 288 } 289 290 g_free(mpcname); 291 /* Return the register interface MR for our caller to map behind the PPC */ 292 return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0); 293 } 294 295 static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque, 296 const char *name, hwaddr size) 297 { 298 PL080State *dma = opaque; 299 int i = dma - &mms->dma[0]; 300 SysBusDevice *s; 301 char *mscname = g_strdup_printf("%s-msc", name); 302 TZMSC *msc = &mms->msc[i]; 303 DeviceState *iotkitdev = DEVICE(&mms->iotkit); 304 MemoryRegion *msc_upstream; 305 MemoryRegion *msc_downstream; 306 307 /* 308 * Each DMA device is a PL081 whose transaction master interface 309 * is guarded by a Master Security Controller. The downstream end of 310 * the MSC connects to the IoTKit AHB Slave Expansion port, so the 311 * DMA devices can see all devices and memory that the CPU does. 312 */ 313 sysbus_init_child_obj(OBJECT(mms), mscname, msc, sizeof(*msc), TYPE_TZ_MSC); 314 msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0); 315 object_property_set_link(OBJECT(msc), OBJECT(msc_downstream), 316 "downstream", &error_fatal); 317 object_property_set_link(OBJECT(msc), OBJECT(mms), 318 "idau", &error_fatal); 319 object_property_set_bool(OBJECT(msc), true, "realized", &error_fatal); 320 321 qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0, 322 qdev_get_gpio_in_named(iotkitdev, 323 "mscexp_status", i)); 324 qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i, 325 qdev_get_gpio_in_named(DEVICE(msc), 326 "irq_clear", 0)); 327 qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i, 328 qdev_get_gpio_in_named(DEVICE(msc), 329 "cfg_nonsec", 0)); 330 qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter), 331 ARRAY_SIZE(mms->ppc) + i, 332 qdev_get_gpio_in_named(DEVICE(msc), 333 "cfg_sec_resp", 0)); 334 msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0); 335 336 sysbus_init_child_obj(OBJECT(mms), name, dma, sizeof(*dma), TYPE_PL081); 337 object_property_set_link(OBJECT(dma), OBJECT(msc_upstream), 338 "downstream", &error_fatal); 339 object_property_set_bool(OBJECT(dma), true, "realized", &error_fatal); 340 341 s = SYS_BUS_DEVICE(dma); 342 /* Wire up DMACINTR, DMACINTERR, DMACINTTC */ 343 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 58 + i * 3)); 344 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, 56 + i * 3)); 345 sysbus_connect_irq(s, 2, get_sse_irq_in(mms, 57 + i * 3)); 346 347 g_free(mscname); 348 return sysbus_mmio_get_region(s, 0); 349 } 350 351 static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque, 352 const char *name, hwaddr size) 353 { 354 /* 355 * The AN505 has five PL022 SPI controllers. 356 * One of these should have the LCD controller behind it; the others 357 * are connected only to the FPGA's "general purpose SPI connector" 358 * or "shield" expansion connectors. 359 * Note that if we do implement devices behind SPI, the chip select 360 * lines are set via the "MISC" register in the MPS2 FPGAIO device. 361 */ 362 PL022State *spi = opaque; 363 int i = spi - &mms->spi[0]; 364 SysBusDevice *s; 365 366 sysbus_init_child_obj(OBJECT(mms), name, spi, sizeof(mms->spi[0]), 367 TYPE_PL022); 368 object_property_set_bool(OBJECT(spi), true, "realized", &error_fatal); 369 s = SYS_BUS_DEVICE(spi); 370 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 51 + i)); 371 return sysbus_mmio_get_region(s, 0); 372 } 373 374 static void mps2tz_common_init(MachineState *machine) 375 { 376 MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine); 377 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms); 378 MachineClass *mc = MACHINE_GET_CLASS(machine); 379 MemoryRegion *system_memory = get_system_memory(); 380 DeviceState *iotkitdev; 381 DeviceState *dev_splitter; 382 int i; 383 384 if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) { 385 error_report("This board can only be used with CPU %s", 386 mc->default_cpu_type); 387 exit(1); 388 } 389 390 sysbus_init_child_obj(OBJECT(machine), "iotkit", &mms->iotkit, 391 sizeof(mms->iotkit), mmc->armsse_type); 392 iotkitdev = DEVICE(&mms->iotkit); 393 object_property_set_link(OBJECT(&mms->iotkit), OBJECT(system_memory), 394 "memory", &error_abort); 395 qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", MPS2TZ_NUMIRQ); 396 qdev_prop_set_uint32(iotkitdev, "MAINCLK", SYSCLK_FRQ); 397 object_property_set_bool(OBJECT(&mms->iotkit), true, "realized", 398 &error_fatal); 399 400 /* 401 * The AN521 needs us to create splitters to feed the IRQ inputs 402 * for each CPU in the SSE-200 from each device in the board. 403 */ 404 if (mmc->fpga_type == FPGA_AN521) { 405 for (i = 0; i < MPS2TZ_NUMIRQ; i++) { 406 char *name = g_strdup_printf("mps2-irq-splitter%d", i); 407 SplitIRQ *splitter = &mms->cpu_irq_splitter[i]; 408 409 object_initialize_child(OBJECT(machine), name, 410 splitter, sizeof(*splitter), 411 TYPE_SPLIT_IRQ, &error_fatal, NULL); 412 g_free(name); 413 414 object_property_set_int(OBJECT(splitter), 2, "num-lines", 415 &error_fatal); 416 object_property_set_bool(OBJECT(splitter), true, "realized", 417 &error_fatal); 418 qdev_connect_gpio_out(DEVICE(splitter), 0, 419 qdev_get_gpio_in_named(DEVICE(&mms->iotkit), 420 "EXP_IRQ", i)); 421 qdev_connect_gpio_out(DEVICE(splitter), 1, 422 qdev_get_gpio_in_named(DEVICE(&mms->iotkit), 423 "EXP_CPU1_IRQ", i)); 424 } 425 } 426 427 /* The sec_resp_cfg output from the IoTKit must be split into multiple 428 * lines, one for each of the PPCs we create here, plus one per MSC. 429 */ 430 object_initialize(&mms->sec_resp_splitter, sizeof(mms->sec_resp_splitter), 431 TYPE_SPLIT_IRQ); 432 object_property_add_child(OBJECT(machine), "sec-resp-splitter", 433 OBJECT(&mms->sec_resp_splitter), &error_abort); 434 object_property_set_int(OBJECT(&mms->sec_resp_splitter), 435 ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc), 436 "num-lines", &error_fatal); 437 object_property_set_bool(OBJECT(&mms->sec_resp_splitter), true, 438 "realized", &error_fatal); 439 dev_splitter = DEVICE(&mms->sec_resp_splitter); 440 qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0, 441 qdev_get_gpio_in(dev_splitter, 0)); 442 443 /* The IoTKit sets up much of the memory layout, including 444 * the aliases between secure and non-secure regions in the 445 * address space. The FPGA itself contains: 446 * 447 * 0x00000000..0x003fffff SSRAM1 448 * 0x00400000..0x007fffff alias of SSRAM1 449 * 0x28000000..0x283fffff 4MB SSRAM2 + SSRAM3 450 * 0x40100000..0x4fffffff AHB Master Expansion 1 interface devices 451 * 0x80000000..0x80ffffff 16MB PSRAM 452 */ 453 454 /* The FPGA images have an odd combination of different RAMs, 455 * because in hardware they are different implementations and 456 * connected to different buses, giving varying performance/size 457 * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily 458 * call the 16MB our "system memory", as it's the largest lump. 459 */ 460 memory_region_allocate_system_memory(&mms->psram, 461 NULL, "mps.ram", 0x01000000); 462 memory_region_add_subregion(system_memory, 0x80000000, &mms->psram); 463 464 /* The overflow IRQs for all UARTs are ORed together. 465 * Tx, Rx and "combined" IRQs are sent to the NVIC separately. 466 * Create the OR gate for this. 467 */ 468 object_initialize(&mms->uart_irq_orgate, sizeof(mms->uart_irq_orgate), 469 TYPE_OR_IRQ); 470 object_property_add_child(OBJECT(mms), "uart-irq-orgate", 471 OBJECT(&mms->uart_irq_orgate), &error_abort); 472 object_property_set_int(OBJECT(&mms->uart_irq_orgate), 10, "num-lines", 473 &error_fatal); 474 object_property_set_bool(OBJECT(&mms->uart_irq_orgate), true, 475 "realized", &error_fatal); 476 qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0, 477 get_sse_irq_in(mms, 15)); 478 479 /* Most of the devices in the FPGA are behind Peripheral Protection 480 * Controllers. The required order for initializing things is: 481 * + initialize the PPC 482 * + initialize, configure and realize downstream devices 483 * + connect downstream device MemoryRegions to the PPC 484 * + realize the PPC 485 * + map the PPC's MemoryRegions to the places in the address map 486 * where the downstream devices should appear 487 * + wire up the PPC's control lines to the IoTKit object 488 */ 489 490 const PPCInfo ppcs[] = { { 491 .name = "apb_ppcexp0", 492 .ports = { 493 { "ssram-0", make_mpc, &mms->ssram_mpc[0], 0x58007000, 0x1000 }, 494 { "ssram-1", make_mpc, &mms->ssram_mpc[1], 0x58008000, 0x1000 }, 495 { "ssram-2", make_mpc, &mms->ssram_mpc[2], 0x58009000, 0x1000 }, 496 }, 497 }, { 498 .name = "apb_ppcexp1", 499 .ports = { 500 { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000 }, 501 { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000 }, 502 { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000 }, 503 { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000 }, 504 { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000 }, 505 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000 }, 506 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000 }, 507 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000 }, 508 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000 }, 509 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000 }, 510 { "i2c0", make_unimp_dev, &mms->i2c[0], 0x40207000, 0x1000 }, 511 { "i2c1", make_unimp_dev, &mms->i2c[1], 0x40208000, 0x1000 }, 512 { "i2c2", make_unimp_dev, &mms->i2c[2], 0x4020c000, 0x1000 }, 513 { "i2c3", make_unimp_dev, &mms->i2c[3], 0x4020d000, 0x1000 }, 514 }, 515 }, { 516 .name = "apb_ppcexp2", 517 .ports = { 518 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 }, 519 { "i2s-audio", make_unimp_dev, &mms->i2s_audio, 520 0x40301000, 0x1000 }, 521 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 }, 522 }, 523 }, { 524 .name = "ahb_ppcexp0", 525 .ports = { 526 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 }, 527 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 }, 528 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 }, 529 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 }, 530 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 }, 531 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000 }, 532 }, 533 }, { 534 .name = "ahb_ppcexp1", 535 .ports = { 536 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000 }, 537 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000 }, 538 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000 }, 539 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000 }, 540 }, 541 }, 542 }; 543 544 for (i = 0; i < ARRAY_SIZE(ppcs); i++) { 545 const PPCInfo *ppcinfo = &ppcs[i]; 546 TZPPC *ppc = &mms->ppc[i]; 547 DeviceState *ppcdev; 548 int port; 549 char *gpioname; 550 551 sysbus_init_child_obj(OBJECT(machine), ppcinfo->name, ppc, 552 sizeof(TZPPC), TYPE_TZ_PPC); 553 ppcdev = DEVICE(ppc); 554 555 for (port = 0; port < TZ_NUM_PORTS; port++) { 556 const PPCPortInfo *pinfo = &ppcinfo->ports[port]; 557 MemoryRegion *mr; 558 char *portname; 559 560 if (!pinfo->devfn) { 561 continue; 562 } 563 564 mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size); 565 portname = g_strdup_printf("port[%d]", port); 566 object_property_set_link(OBJECT(ppc), OBJECT(mr), 567 portname, &error_fatal); 568 g_free(portname); 569 } 570 571 object_property_set_bool(OBJECT(ppc), true, "realized", &error_fatal); 572 573 for (port = 0; port < TZ_NUM_PORTS; port++) { 574 const PPCPortInfo *pinfo = &ppcinfo->ports[port]; 575 576 if (!pinfo->devfn) { 577 continue; 578 } 579 sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr); 580 581 gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name); 582 qdev_connect_gpio_out_named(iotkitdev, gpioname, port, 583 qdev_get_gpio_in_named(ppcdev, 584 "cfg_nonsec", 585 port)); 586 g_free(gpioname); 587 gpioname = g_strdup_printf("%s_ap", ppcinfo->name); 588 qdev_connect_gpio_out_named(iotkitdev, gpioname, port, 589 qdev_get_gpio_in_named(ppcdev, 590 "cfg_ap", port)); 591 g_free(gpioname); 592 } 593 594 gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name); 595 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0, 596 qdev_get_gpio_in_named(ppcdev, 597 "irq_enable", 0)); 598 g_free(gpioname); 599 gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name); 600 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0, 601 qdev_get_gpio_in_named(ppcdev, 602 "irq_clear", 0)); 603 g_free(gpioname); 604 gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name); 605 qdev_connect_gpio_out_named(ppcdev, "irq", 0, 606 qdev_get_gpio_in_named(iotkitdev, 607 gpioname, 0)); 608 g_free(gpioname); 609 610 qdev_connect_gpio_out(dev_splitter, i, 611 qdev_get_gpio_in_named(ppcdev, 612 "cfg_sec_resp", 0)); 613 } 614 615 create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000); 616 617 armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x400000); 618 } 619 620 static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address, 621 int *iregion, bool *exempt, bool *ns, bool *nsc) 622 { 623 /* 624 * The MPS2 TZ FPGA images have IDAUs in them which are connected to 625 * the Master Security Controllers. Thes have the same logic as 626 * is used by the IoTKit for the IDAU connected to the CPU, except 627 * that MSCs don't care about the NSC attribute. 628 */ 629 int region = extract32(address, 28, 4); 630 631 *ns = !(region & 1); 632 *nsc = false; 633 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */ 634 *exempt = (address & 0xeff00000) == 0xe0000000; 635 *iregion = region; 636 } 637 638 static void mps2tz_class_init(ObjectClass *oc, void *data) 639 { 640 MachineClass *mc = MACHINE_CLASS(oc); 641 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc); 642 643 mc->init = mps2tz_common_init; 644 iic->check = mps2_tz_idau_check; 645 } 646 647 static void mps2tz_an505_class_init(ObjectClass *oc, void *data) 648 { 649 MachineClass *mc = MACHINE_CLASS(oc); 650 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc); 651 652 mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33"; 653 mc->default_cpus = 1; 654 mc->min_cpus = mc->default_cpus; 655 mc->max_cpus = mc->default_cpus; 656 mmc->fpga_type = FPGA_AN505; 657 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"); 658 mmc->scc_id = 0x41045050; 659 mmc->armsse_type = TYPE_IOTKIT; 660 } 661 662 static void mps2tz_an521_class_init(ObjectClass *oc, void *data) 663 { 664 MachineClass *mc = MACHINE_CLASS(oc); 665 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc); 666 667 mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33"; 668 mc->default_cpus = 2; 669 mc->min_cpus = mc->default_cpus; 670 mc->max_cpus = mc->default_cpus; 671 mmc->fpga_type = FPGA_AN521; 672 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"); 673 mmc->scc_id = 0x41045210; 674 mmc->armsse_type = TYPE_SSE200; 675 } 676 677 static const TypeInfo mps2tz_info = { 678 .name = TYPE_MPS2TZ_MACHINE, 679 .parent = TYPE_MACHINE, 680 .abstract = true, 681 .instance_size = sizeof(MPS2TZMachineState), 682 .class_size = sizeof(MPS2TZMachineClass), 683 .class_init = mps2tz_class_init, 684 .interfaces = (InterfaceInfo[]) { 685 { TYPE_IDAU_INTERFACE }, 686 { } 687 }, 688 }; 689 690 static const TypeInfo mps2tz_an505_info = { 691 .name = TYPE_MPS2TZ_AN505_MACHINE, 692 .parent = TYPE_MPS2TZ_MACHINE, 693 .class_init = mps2tz_an505_class_init, 694 }; 695 696 static const TypeInfo mps2tz_an521_info = { 697 .name = TYPE_MPS2TZ_AN521_MACHINE, 698 .parent = TYPE_MPS2TZ_MACHINE, 699 .class_init = mps2tz_an521_class_init, 700 }; 701 702 static void mps2tz_machine_init(void) 703 { 704 type_register_static(&mps2tz_info); 705 type_register_static(&mps2tz_an505_info); 706 type_register_static(&mps2tz_an521_info); 707 } 708 709 type_init(mps2tz_machine_init); 710