xref: /openbmc/qemu/hw/arm/mps2-tz.c (revision 8fa3b702)
1 /*
2  * ARM V2M MPS2 board emulation, trustzone aware FPGA images
3  *
4  * Copyright (c) 2017 Linaro Limited
5  * Written by Peter Maydell
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 or
9  *  (at your option) any later version.
10  */
11 
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13  * FPGA but is otherwise the same as the 2). Since the CPU itself
14  * and most of the devices are in the FPGA, the details of the board
15  * as seen by the guest depend significantly on the FPGA image.
16  * This source file covers the following FPGA images, for TrustZone cores:
17  *  "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18  *  "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
19  *
20  * Links to the TRM for the board itself and to the various Application
21  * Notes which document the FPGA images can be found here:
22  * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
23  *
24  * Board TRM:
25  * http://infocenter.arm.com/help/topic/com.arm.doc.100112_0200_06_en/versatile_express_cortex_m_prototyping_systems_v2m_mps2_and_v2m_mps2plus_technical_reference_100112_0200_06_en.pdf
26  * Application Note AN505:
27  * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
28  * Application Note AN521:
29  * http://infocenter.arm.com/help/topic/com.arm.doc.dai0521c/index.html
30  *
31  * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
32  * (ARM ECM0601256) for the details of some of the device layout:
33  *   http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
34  * Similarly, the AN521 uses the SSE-200, and the SSE-200 TRM defines
35  * most of the device layout:
36  *  http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf
37  *
38  */
39 
40 #include "qemu/osdep.h"
41 #include "qemu/units.h"
42 #include "qemu/cutils.h"
43 #include "qapi/error.h"
44 #include "qemu/error-report.h"
45 #include "hw/arm/boot.h"
46 #include "hw/arm/armv7m.h"
47 #include "hw/or-irq.h"
48 #include "hw/boards.h"
49 #include "exec/address-spaces.h"
50 #include "sysemu/sysemu.h"
51 #include "hw/misc/unimp.h"
52 #include "hw/char/cmsdk-apb-uart.h"
53 #include "hw/timer/cmsdk-apb-timer.h"
54 #include "hw/misc/mps2-scc.h"
55 #include "hw/misc/mps2-fpgaio.h"
56 #include "hw/misc/tz-mpc.h"
57 #include "hw/misc/tz-msc.h"
58 #include "hw/arm/armsse.h"
59 #include "hw/dma/pl080.h"
60 #include "hw/ssi/pl022.h"
61 #include "hw/i2c/arm_sbcon_i2c.h"
62 #include "hw/net/lan9118.h"
63 #include "net/net.h"
64 #include "hw/core/split-irq.h"
65 #include "qom/object.h"
66 
67 #define MPS2TZ_NUMIRQ 92
68 
69 typedef enum MPS2TZFPGAType {
70     FPGA_AN505,
71     FPGA_AN521,
72 } MPS2TZFPGAType;
73 
74 struct MPS2TZMachineClass {
75     MachineClass parent;
76     MPS2TZFPGAType fpga_type;
77     uint32_t scc_id;
78     const char *armsse_type;
79 };
80 typedef struct MPS2TZMachineClass MPS2TZMachineClass;
81 
82 struct MPS2TZMachineState {
83     MachineState parent;
84 
85     ARMSSE iotkit;
86     MemoryRegion ssram[3];
87     MemoryRegion ssram1_m;
88     MPS2SCC scc;
89     MPS2FPGAIO fpgaio;
90     TZPPC ppc[5];
91     TZMPC ssram_mpc[3];
92     PL022State spi[5];
93     ArmSbconI2CState i2c[4];
94     UnimplementedDeviceState i2s_audio;
95     UnimplementedDeviceState gpio[4];
96     UnimplementedDeviceState gfx;
97     PL080State dma[4];
98     TZMSC msc[4];
99     CMSDKAPBUART uart[5];
100     SplitIRQ sec_resp_splitter;
101     qemu_or_irq uart_irq_orgate;
102     DeviceState *lan9118;
103     SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ];
104 };
105 typedef struct MPS2TZMachineState MPS2TZMachineState;
106 
107 #define TYPE_MPS2TZ_MACHINE "mps2tz"
108 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
109 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
110 
111 DECLARE_OBJ_CHECKERS(MPS2TZMachineState, MPS2TZMachineClass,
112                      MPS2TZ_MACHINE, TYPE_MPS2TZ_MACHINE)
113 
114 /* Main SYSCLK frequency in Hz */
115 #define SYSCLK_FRQ 20000000
116 
117 /* Create an alias of an entire original MemoryRegion @orig
118  * located at @base in the memory map.
119  */
120 static void make_ram_alias(MemoryRegion *mr, const char *name,
121                            MemoryRegion *orig, hwaddr base)
122 {
123     memory_region_init_alias(mr, NULL, name, orig, 0,
124                              memory_region_size(orig));
125     memory_region_add_subregion(get_system_memory(), base, mr);
126 }
127 
128 static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
129 {
130     /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
131     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
132 
133     assert(irqno < MPS2TZ_NUMIRQ);
134 
135     switch (mmc->fpga_type) {
136     case FPGA_AN505:
137         return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
138     case FPGA_AN521:
139         return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
140     default:
141         g_assert_not_reached();
142     }
143 }
144 
145 /* Most of the devices in the AN505 FPGA image sit behind
146  * Peripheral Protection Controllers. These data structures
147  * define the layout of which devices sit behind which PPCs.
148  * The devfn for each port is a function which creates, configures
149  * and initializes the device, returning the MemoryRegion which
150  * needs to be plugged into the downstream end of the PPC port.
151  */
152 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
153                                 const char *name, hwaddr size);
154 
155 typedef struct PPCPortInfo {
156     const char *name;
157     MakeDevFn *devfn;
158     void *opaque;
159     hwaddr addr;
160     hwaddr size;
161 } PPCPortInfo;
162 
163 typedef struct PPCInfo {
164     const char *name;
165     PPCPortInfo ports[TZ_NUM_PORTS];
166 } PPCInfo;
167 
168 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
169                                        void *opaque,
170                                        const char *name, hwaddr size)
171 {
172     /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
173      * and return a pointer to its MemoryRegion.
174      */
175     UnimplementedDeviceState *uds = opaque;
176 
177     object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
178     qdev_prop_set_string(DEVICE(uds), "name", name);
179     qdev_prop_set_uint64(DEVICE(uds), "size", size);
180     sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
181     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
182 }
183 
184 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
185                                const char *name, hwaddr size)
186 {
187     CMSDKAPBUART *uart = opaque;
188     int i = uart - &mms->uart[0];
189     int rxirqno = i * 2;
190     int txirqno = i * 2 + 1;
191     int combirqno = i + 10;
192     SysBusDevice *s;
193     DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
194 
195     object_initialize_child(OBJECT(mms), name, uart, TYPE_CMSDK_APB_UART);
196     qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
197     qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", SYSCLK_FRQ);
198     sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
199     s = SYS_BUS_DEVICE(uart);
200     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, txirqno));
201     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, rxirqno));
202     sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
203     sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
204     sysbus_connect_irq(s, 4, get_sse_irq_in(mms, combirqno));
205     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
206 }
207 
208 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
209                               const char *name, hwaddr size)
210 {
211     MPS2SCC *scc = opaque;
212     DeviceState *sccdev;
213     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
214 
215     object_initialize_child(OBJECT(mms), "scc", scc, TYPE_MPS2_SCC);
216     sccdev = DEVICE(scc);
217     qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
218     qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
219     qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
220     sysbus_realize(SYS_BUS_DEVICE(scc), &error_fatal);
221     return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
222 }
223 
224 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
225                                  const char *name, hwaddr size)
226 {
227     MPS2FPGAIO *fpgaio = opaque;
228 
229     object_initialize_child(OBJECT(mms), "fpgaio", fpgaio, TYPE_MPS2_FPGAIO);
230     sysbus_realize(SYS_BUS_DEVICE(fpgaio), &error_fatal);
231     return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
232 }
233 
234 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
235                                   const char *name, hwaddr size)
236 {
237     SysBusDevice *s;
238     NICInfo *nd = &nd_table[0];
239 
240     /* In hardware this is a LAN9220; the LAN9118 is software compatible
241      * except that it doesn't support the checksum-offload feature.
242      */
243     qemu_check_nic_model(nd, "lan9118");
244     mms->lan9118 = qdev_new(TYPE_LAN9118);
245     qdev_set_nic_properties(mms->lan9118, nd);
246 
247     s = SYS_BUS_DEVICE(mms->lan9118);
248     sysbus_realize_and_unref(s, &error_fatal);
249     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 16));
250     return sysbus_mmio_get_region(s, 0);
251 }
252 
253 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
254                               const char *name, hwaddr size)
255 {
256     TZMPC *mpc = opaque;
257     int i = mpc - &mms->ssram_mpc[0];
258     MemoryRegion *ssram = &mms->ssram[i];
259     MemoryRegion *upstream;
260     char *mpcname = g_strdup_printf("%s-mpc", name);
261     static uint32_t ramsize[] = { 0x00400000, 0x00200000, 0x00200000 };
262     static uint32_t rambase[] = { 0x00000000, 0x28000000, 0x28200000 };
263 
264     memory_region_init_ram(ssram, NULL, name, ramsize[i], &error_fatal);
265 
266     object_initialize_child(OBJECT(mms), mpcname, mpc, TYPE_TZ_MPC);
267     object_property_set_link(OBJECT(mpc), "downstream", OBJECT(ssram),
268                              &error_fatal);
269     sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
270     /* Map the upstream end of the MPC into system memory */
271     upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
272     memory_region_add_subregion(get_system_memory(), rambase[i], upstream);
273     /* and connect its interrupt to the IoTKit */
274     qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
275                                 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
276                                                        "mpcexp_status", i));
277 
278     /* The first SSRAM is a special case as it has an alias; accesses to
279      * the alias region at 0x00400000 must also go to the MPC upstream.
280      */
281     if (i == 0) {
282         make_ram_alias(&mms->ssram1_m, "mps.ssram1_m", upstream, 0x00400000);
283     }
284 
285     g_free(mpcname);
286     /* Return the register interface MR for our caller to map behind the PPC */
287     return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
288 }
289 
290 static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
291                               const char *name, hwaddr size)
292 {
293     PL080State *dma = opaque;
294     int i = dma - &mms->dma[0];
295     SysBusDevice *s;
296     char *mscname = g_strdup_printf("%s-msc", name);
297     TZMSC *msc = &mms->msc[i];
298     DeviceState *iotkitdev = DEVICE(&mms->iotkit);
299     MemoryRegion *msc_upstream;
300     MemoryRegion *msc_downstream;
301 
302     /*
303      * Each DMA device is a PL081 whose transaction master interface
304      * is guarded by a Master Security Controller. The downstream end of
305      * the MSC connects to the IoTKit AHB Slave Expansion port, so the
306      * DMA devices can see all devices and memory that the CPU does.
307      */
308     object_initialize_child(OBJECT(mms), mscname, msc, TYPE_TZ_MSC);
309     msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
310     object_property_set_link(OBJECT(msc), "downstream",
311                              OBJECT(msc_downstream), &error_fatal);
312     object_property_set_link(OBJECT(msc), "idau", OBJECT(mms), &error_fatal);
313     sysbus_realize(SYS_BUS_DEVICE(msc), &error_fatal);
314 
315     qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
316                                 qdev_get_gpio_in_named(iotkitdev,
317                                                        "mscexp_status", i));
318     qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
319                                 qdev_get_gpio_in_named(DEVICE(msc),
320                                                        "irq_clear", 0));
321     qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
322                                 qdev_get_gpio_in_named(DEVICE(msc),
323                                                        "cfg_nonsec", 0));
324     qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
325                           ARRAY_SIZE(mms->ppc) + i,
326                           qdev_get_gpio_in_named(DEVICE(msc),
327                                                  "cfg_sec_resp", 0));
328     msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
329 
330     object_initialize_child(OBJECT(mms), name, dma, TYPE_PL081);
331     object_property_set_link(OBJECT(dma), "downstream", OBJECT(msc_upstream),
332                              &error_fatal);
333     sysbus_realize(SYS_BUS_DEVICE(dma), &error_fatal);
334 
335     s = SYS_BUS_DEVICE(dma);
336     /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
337     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 58 + i * 3));
338     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, 56 + i * 3));
339     sysbus_connect_irq(s, 2, get_sse_irq_in(mms, 57 + i * 3));
340 
341     g_free(mscname);
342     return sysbus_mmio_get_region(s, 0);
343 }
344 
345 static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
346                               const char *name, hwaddr size)
347 {
348     /*
349      * The AN505 has five PL022 SPI controllers.
350      * One of these should have the LCD controller behind it; the others
351      * are connected only to the FPGA's "general purpose SPI connector"
352      * or "shield" expansion connectors.
353      * Note that if we do implement devices behind SPI, the chip select
354      * lines are set via the "MISC" register in the MPS2 FPGAIO device.
355      */
356     PL022State *spi = opaque;
357     int i = spi - &mms->spi[0];
358     SysBusDevice *s;
359 
360     object_initialize_child(OBJECT(mms), name, spi, TYPE_PL022);
361     sysbus_realize(SYS_BUS_DEVICE(spi), &error_fatal);
362     s = SYS_BUS_DEVICE(spi);
363     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 51 + i));
364     return sysbus_mmio_get_region(s, 0);
365 }
366 
367 static MemoryRegion *make_i2c(MPS2TZMachineState *mms, void *opaque,
368                               const char *name, hwaddr size)
369 {
370     ArmSbconI2CState *i2c = opaque;
371     SysBusDevice *s;
372 
373     object_initialize_child(OBJECT(mms), name, i2c, TYPE_ARM_SBCON_I2C);
374     s = SYS_BUS_DEVICE(i2c);
375     sysbus_realize(s, &error_fatal);
376     return sysbus_mmio_get_region(s, 0);
377 }
378 
379 static void mps2tz_common_init(MachineState *machine)
380 {
381     MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
382     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
383     MachineClass *mc = MACHINE_GET_CLASS(machine);
384     MemoryRegion *system_memory = get_system_memory();
385     DeviceState *iotkitdev;
386     DeviceState *dev_splitter;
387     int i;
388 
389     if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
390         error_report("This board can only be used with CPU %s",
391                      mc->default_cpu_type);
392         exit(1);
393     }
394 
395     if (machine->ram_size != mc->default_ram_size) {
396         char *sz = size_to_str(mc->default_ram_size);
397         error_report("Invalid RAM size, should be %s", sz);
398         g_free(sz);
399         exit(EXIT_FAILURE);
400     }
401 
402     object_initialize_child(OBJECT(machine), TYPE_IOTKIT, &mms->iotkit,
403                             mmc->armsse_type);
404     iotkitdev = DEVICE(&mms->iotkit);
405     object_property_set_link(OBJECT(&mms->iotkit), "memory",
406                              OBJECT(system_memory), &error_abort);
407     qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", MPS2TZ_NUMIRQ);
408     qdev_prop_set_uint32(iotkitdev, "MAINCLK", SYSCLK_FRQ);
409     sysbus_realize(SYS_BUS_DEVICE(&mms->iotkit), &error_fatal);
410 
411     /*
412      * The AN521 needs us to create splitters to feed the IRQ inputs
413      * for each CPU in the SSE-200 from each device in the board.
414      */
415     if (mmc->fpga_type == FPGA_AN521) {
416         for (i = 0; i < MPS2TZ_NUMIRQ; i++) {
417             char *name = g_strdup_printf("mps2-irq-splitter%d", i);
418             SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
419 
420             object_initialize_child_with_props(OBJECT(machine), name,
421                                                splitter, sizeof(*splitter),
422                                                TYPE_SPLIT_IRQ, &error_fatal,
423                                                NULL);
424             g_free(name);
425 
426             object_property_set_int(OBJECT(splitter), "num-lines", 2,
427                                     &error_fatal);
428             qdev_realize(DEVICE(splitter), NULL, &error_fatal);
429             qdev_connect_gpio_out(DEVICE(splitter), 0,
430                                   qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
431                                                          "EXP_IRQ", i));
432             qdev_connect_gpio_out(DEVICE(splitter), 1,
433                                   qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
434                                                          "EXP_CPU1_IRQ", i));
435         }
436     }
437 
438     /* The sec_resp_cfg output from the IoTKit must be split into multiple
439      * lines, one for each of the PPCs we create here, plus one per MSC.
440      */
441     object_initialize_child(OBJECT(machine), "sec-resp-splitter",
442                             &mms->sec_resp_splitter, TYPE_SPLIT_IRQ);
443     object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
444                             ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
445                             &error_fatal);
446     qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
447     dev_splitter = DEVICE(&mms->sec_resp_splitter);
448     qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
449                                 qdev_get_gpio_in(dev_splitter, 0));
450 
451     /* The IoTKit sets up much of the memory layout, including
452      * the aliases between secure and non-secure regions in the
453      * address space. The FPGA itself contains:
454      *
455      * 0x00000000..0x003fffff  SSRAM1
456      * 0x00400000..0x007fffff  alias of SSRAM1
457      * 0x28000000..0x283fffff  4MB SSRAM2 + SSRAM3
458      * 0x40100000..0x4fffffff  AHB Master Expansion 1 interface devices
459      * 0x80000000..0x80ffffff  16MB PSRAM
460      */
461 
462     /* The FPGA images have an odd combination of different RAMs,
463      * because in hardware they are different implementations and
464      * connected to different buses, giving varying performance/size
465      * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
466      * call the 16MB our "system memory", as it's the largest lump.
467      */
468     memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
469 
470     /* The overflow IRQs for all UARTs are ORed together.
471      * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
472      * Create the OR gate for this.
473      */
474     object_initialize_child(OBJECT(mms), "uart-irq-orgate",
475                             &mms->uart_irq_orgate, TYPE_OR_IRQ);
476     object_property_set_int(OBJECT(&mms->uart_irq_orgate), "num-lines", 10,
477                             &error_fatal);
478     qdev_realize(DEVICE(&mms->uart_irq_orgate), NULL, &error_fatal);
479     qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
480                           get_sse_irq_in(mms, 15));
481 
482     /* Most of the devices in the FPGA are behind Peripheral Protection
483      * Controllers. The required order for initializing things is:
484      *  + initialize the PPC
485      *  + initialize, configure and realize downstream devices
486      *  + connect downstream device MemoryRegions to the PPC
487      *  + realize the PPC
488      *  + map the PPC's MemoryRegions to the places in the address map
489      *    where the downstream devices should appear
490      *  + wire up the PPC's control lines to the IoTKit object
491      */
492 
493     const PPCInfo ppcs[] = { {
494             .name = "apb_ppcexp0",
495             .ports = {
496                 { "ssram-0", make_mpc, &mms->ssram_mpc[0], 0x58007000, 0x1000 },
497                 { "ssram-1", make_mpc, &mms->ssram_mpc[1], 0x58008000, 0x1000 },
498                 { "ssram-2", make_mpc, &mms->ssram_mpc[2], 0x58009000, 0x1000 },
499             },
500         }, {
501             .name = "apb_ppcexp1",
502             .ports = {
503                 { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000 },
504                 { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000 },
505                 { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000 },
506                 { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000 },
507                 { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000 },
508                 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000 },
509                 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000 },
510                 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000 },
511                 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000 },
512                 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000 },
513                 { "i2c0", make_i2c, &mms->i2c[0], 0x40207000, 0x1000 },
514                 { "i2c1", make_i2c, &mms->i2c[1], 0x40208000, 0x1000 },
515                 { "i2c2", make_i2c, &mms->i2c[2], 0x4020c000, 0x1000 },
516                 { "i2c3", make_i2c, &mms->i2c[3], 0x4020d000, 0x1000 },
517             },
518         }, {
519             .name = "apb_ppcexp2",
520             .ports = {
521                 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
522                 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
523                   0x40301000, 0x1000 },
524                 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
525             },
526         }, {
527             .name = "ahb_ppcexp0",
528             .ports = {
529                 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
530                 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
531                 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
532                 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
533                 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
534                 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000 },
535             },
536         }, {
537             .name = "ahb_ppcexp1",
538             .ports = {
539                 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000 },
540                 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000 },
541                 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000 },
542                 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000 },
543             },
544         },
545     };
546 
547     for (i = 0; i < ARRAY_SIZE(ppcs); i++) {
548         const PPCInfo *ppcinfo = &ppcs[i];
549         TZPPC *ppc = &mms->ppc[i];
550         DeviceState *ppcdev;
551         int port;
552         char *gpioname;
553 
554         object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
555                                 TYPE_TZ_PPC);
556         ppcdev = DEVICE(ppc);
557 
558         for (port = 0; port < TZ_NUM_PORTS; port++) {
559             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
560             MemoryRegion *mr;
561             char *portname;
562 
563             if (!pinfo->devfn) {
564                 continue;
565             }
566 
567             mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
568             portname = g_strdup_printf("port[%d]", port);
569             object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
570                                      &error_fatal);
571             g_free(portname);
572         }
573 
574         sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
575 
576         for (port = 0; port < TZ_NUM_PORTS; port++) {
577             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
578 
579             if (!pinfo->devfn) {
580                 continue;
581             }
582             sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
583 
584             gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
585             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
586                                         qdev_get_gpio_in_named(ppcdev,
587                                                                "cfg_nonsec",
588                                                                port));
589             g_free(gpioname);
590             gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
591             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
592                                         qdev_get_gpio_in_named(ppcdev,
593                                                                "cfg_ap", port));
594             g_free(gpioname);
595         }
596 
597         gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
598         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
599                                     qdev_get_gpio_in_named(ppcdev,
600                                                            "irq_enable", 0));
601         g_free(gpioname);
602         gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
603         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
604                                     qdev_get_gpio_in_named(ppcdev,
605                                                            "irq_clear", 0));
606         g_free(gpioname);
607         gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
608         qdev_connect_gpio_out_named(ppcdev, "irq", 0,
609                                     qdev_get_gpio_in_named(iotkitdev,
610                                                            gpioname, 0));
611         g_free(gpioname);
612 
613         qdev_connect_gpio_out(dev_splitter, i,
614                               qdev_get_gpio_in_named(ppcdev,
615                                                      "cfg_sec_resp", 0));
616     }
617 
618     create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
619 
620     armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x400000);
621 }
622 
623 static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
624                                int *iregion, bool *exempt, bool *ns, bool *nsc)
625 {
626     /*
627      * The MPS2 TZ FPGA images have IDAUs in them which are connected to
628      * the Master Security Controllers. Thes have the same logic as
629      * is used by the IoTKit for the IDAU connected to the CPU, except
630      * that MSCs don't care about the NSC attribute.
631      */
632     int region = extract32(address, 28, 4);
633 
634     *ns = !(region & 1);
635     *nsc = false;
636     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
637     *exempt = (address & 0xeff00000) == 0xe0000000;
638     *iregion = region;
639 }
640 
641 static void mps2tz_class_init(ObjectClass *oc, void *data)
642 {
643     MachineClass *mc = MACHINE_CLASS(oc);
644     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
645 
646     mc->init = mps2tz_common_init;
647     iic->check = mps2_tz_idau_check;
648     mc->default_ram_size = 16 * MiB;
649     mc->default_ram_id = "mps.ram";
650 }
651 
652 static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
653 {
654     MachineClass *mc = MACHINE_CLASS(oc);
655     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
656 
657     mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
658     mc->default_cpus = 1;
659     mc->min_cpus = mc->default_cpus;
660     mc->max_cpus = mc->default_cpus;
661     mmc->fpga_type = FPGA_AN505;
662     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
663     mmc->scc_id = 0x41045050;
664     mmc->armsse_type = TYPE_IOTKIT;
665 }
666 
667 static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
668 {
669     MachineClass *mc = MACHINE_CLASS(oc);
670     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
671 
672     mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
673     mc->default_cpus = 2;
674     mc->min_cpus = mc->default_cpus;
675     mc->max_cpus = mc->default_cpus;
676     mmc->fpga_type = FPGA_AN521;
677     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
678     mmc->scc_id = 0x41045210;
679     mmc->armsse_type = TYPE_SSE200;
680 }
681 
682 static const TypeInfo mps2tz_info = {
683     .name = TYPE_MPS2TZ_MACHINE,
684     .parent = TYPE_MACHINE,
685     .abstract = true,
686     .instance_size = sizeof(MPS2TZMachineState),
687     .class_size = sizeof(MPS2TZMachineClass),
688     .class_init = mps2tz_class_init,
689     .interfaces = (InterfaceInfo[]) {
690         { TYPE_IDAU_INTERFACE },
691         { }
692     },
693 };
694 
695 static const TypeInfo mps2tz_an505_info = {
696     .name = TYPE_MPS2TZ_AN505_MACHINE,
697     .parent = TYPE_MPS2TZ_MACHINE,
698     .class_init = mps2tz_an505_class_init,
699 };
700 
701 static const TypeInfo mps2tz_an521_info = {
702     .name = TYPE_MPS2TZ_AN521_MACHINE,
703     .parent = TYPE_MPS2TZ_MACHINE,
704     .class_init = mps2tz_an521_class_init,
705 };
706 
707 static void mps2tz_machine_init(void)
708 {
709     type_register_static(&mps2tz_info);
710     type_register_static(&mps2tz_an505_info);
711     type_register_static(&mps2tz_an521_info);
712 }
713 
714 type_init(mps2tz_machine_init);
715