xref: /openbmc/qemu/hw/arm/mps2-tz.c (revision 89854803)
1 /*
2  * ARM V2M MPS2 board emulation, trustzone aware FPGA images
3  *
4  * Copyright (c) 2017 Linaro Limited
5  * Written by Peter Maydell
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 or
9  *  (at your option) any later version.
10  */
11 
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13  * FPGA but is otherwise the same as the 2). Since the CPU itself
14  * and most of the devices are in the FPGA, the details of the board
15  * as seen by the guest depend significantly on the FPGA image.
16  * This source file covers the following FPGA images, for TrustZone cores:
17  *  "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18  *
19  * Links to the TRM for the board itself and to the various Application
20  * Notes which document the FPGA images can be found here:
21  * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
22  *
23  * Board TRM:
24  * http://infocenter.arm.com/help/topic/com.arm.doc.100112_0200_06_en/versatile_express_cortex_m_prototyping_systems_v2m_mps2_and_v2m_mps2plus_technical_reference_100112_0200_06_en.pdf
25  * Application Note AN505:
26  * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
27  *
28  * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
29  * (ARM ECM0601256) for the details of some of the device layout:
30  *   http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
31  */
32 
33 #include "qemu/osdep.h"
34 #include "qapi/error.h"
35 #include "qemu/error-report.h"
36 #include "hw/arm/arm.h"
37 #include "hw/arm/armv7m.h"
38 #include "hw/or-irq.h"
39 #include "hw/boards.h"
40 #include "exec/address-spaces.h"
41 #include "sysemu/sysemu.h"
42 #include "hw/misc/unimp.h"
43 #include "hw/char/cmsdk-apb-uart.h"
44 #include "hw/timer/cmsdk-apb-timer.h"
45 #include "hw/misc/mps2-scc.h"
46 #include "hw/misc/mps2-fpgaio.h"
47 #include "hw/arm/iotkit.h"
48 #include "hw/devices.h"
49 #include "net/net.h"
50 #include "hw/core/split-irq.h"
51 
52 typedef enum MPS2TZFPGAType {
53     FPGA_AN505,
54 } MPS2TZFPGAType;
55 
56 typedef struct {
57     MachineClass parent;
58     MPS2TZFPGAType fpga_type;
59     uint32_t scc_id;
60 } MPS2TZMachineClass;
61 
62 typedef struct {
63     MachineState parent;
64 
65     IoTKit iotkit;
66     MemoryRegion psram;
67     MemoryRegion ssram1;
68     MemoryRegion ssram1_m;
69     MemoryRegion ssram23;
70     MPS2SCC scc;
71     MPS2FPGAIO fpgaio;
72     TZPPC ppc[5];
73     UnimplementedDeviceState ssram_mpc[3];
74     UnimplementedDeviceState spi[5];
75     UnimplementedDeviceState i2c[4];
76     UnimplementedDeviceState i2s_audio;
77     UnimplementedDeviceState gpio[5];
78     UnimplementedDeviceState dma[4];
79     UnimplementedDeviceState gfx;
80     CMSDKAPBUART uart[5];
81     SplitIRQ sec_resp_splitter;
82     qemu_or_irq uart_irq_orgate;
83 } MPS2TZMachineState;
84 
85 #define TYPE_MPS2TZ_MACHINE "mps2tz"
86 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
87 
88 #define MPS2TZ_MACHINE(obj) \
89     OBJECT_CHECK(MPS2TZMachineState, obj, TYPE_MPS2TZ_MACHINE)
90 #define MPS2TZ_MACHINE_GET_CLASS(obj) \
91     OBJECT_GET_CLASS(MPS2TZMachineClass, obj, TYPE_MPS2TZ_MACHINE)
92 #define MPS2TZ_MACHINE_CLASS(klass) \
93     OBJECT_CLASS_CHECK(MPS2TZMachineClass, klass, TYPE_MPS2TZ_MACHINE)
94 
95 /* Main SYSCLK frequency in Hz */
96 #define SYSCLK_FRQ 20000000
97 
98 /* Initialize the auxiliary RAM region @mr and map it into
99  * the memory map at @base.
100  */
101 static void make_ram(MemoryRegion *mr, const char *name,
102                      hwaddr base, hwaddr size)
103 {
104     memory_region_init_ram(mr, NULL, name, size, &error_fatal);
105     memory_region_add_subregion(get_system_memory(), base, mr);
106 }
107 
108 /* Create an alias of an entire original MemoryRegion @orig
109  * located at @base in the memory map.
110  */
111 static void make_ram_alias(MemoryRegion *mr, const char *name,
112                            MemoryRegion *orig, hwaddr base)
113 {
114     memory_region_init_alias(mr, NULL, name, orig, 0,
115                              memory_region_size(orig));
116     memory_region_add_subregion(get_system_memory(), base, mr);
117 }
118 
119 static void init_sysbus_child(Object *parent, const char *childname,
120                               void *child, size_t childsize,
121                               const char *childtype)
122 {
123     object_initialize(child, childsize, childtype);
124     object_property_add_child(parent, childname, OBJECT(child), &error_abort);
125     qdev_set_parent_bus(DEVICE(child), sysbus_get_default());
126 
127 }
128 
129 /* Most of the devices in the AN505 FPGA image sit behind
130  * Peripheral Protection Controllers. These data structures
131  * define the layout of which devices sit behind which PPCs.
132  * The devfn for each port is a function which creates, configures
133  * and initializes the device, returning the MemoryRegion which
134  * needs to be plugged into the downstream end of the PPC port.
135  */
136 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
137                                 const char *name, hwaddr size);
138 
139 typedef struct PPCPortInfo {
140     const char *name;
141     MakeDevFn *devfn;
142     void *opaque;
143     hwaddr addr;
144     hwaddr size;
145 } PPCPortInfo;
146 
147 typedef struct PPCInfo {
148     const char *name;
149     PPCPortInfo ports[TZ_NUM_PORTS];
150 } PPCInfo;
151 
152 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
153                                        void *opaque,
154                                        const char *name, hwaddr size)
155 {
156     /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
157      * and return a pointer to its MemoryRegion.
158      */
159     UnimplementedDeviceState *uds = opaque;
160 
161     init_sysbus_child(OBJECT(mms), name, uds,
162                       sizeof(UnimplementedDeviceState),
163                       TYPE_UNIMPLEMENTED_DEVICE);
164     qdev_prop_set_string(DEVICE(uds), "name", name);
165     qdev_prop_set_uint64(DEVICE(uds), "size", size);
166     object_property_set_bool(OBJECT(uds), true, "realized", &error_fatal);
167     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
168 }
169 
170 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
171                                const char *name, hwaddr size)
172 {
173     CMSDKAPBUART *uart = opaque;
174     int i = uart - &mms->uart[0];
175     int rxirqno = i * 2;
176     int txirqno = i * 2 + 1;
177     int combirqno = i + 10;
178     SysBusDevice *s;
179     DeviceState *iotkitdev = DEVICE(&mms->iotkit);
180     DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
181 
182     init_sysbus_child(OBJECT(mms), name, uart,
183                       sizeof(mms->uart[0]), TYPE_CMSDK_APB_UART);
184     qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
185     qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", SYSCLK_FRQ);
186     object_property_set_bool(OBJECT(uart), true, "realized", &error_fatal);
187     s = SYS_BUS_DEVICE(uart);
188     sysbus_connect_irq(s, 0, qdev_get_gpio_in_named(iotkitdev,
189                                                     "EXP_IRQ", txirqno));
190     sysbus_connect_irq(s, 1, qdev_get_gpio_in_named(iotkitdev,
191                                                     "EXP_IRQ", rxirqno));
192     sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
193     sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
194     sysbus_connect_irq(s, 4, qdev_get_gpio_in_named(iotkitdev,
195                                                     "EXP_IRQ", combirqno));
196     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
197 }
198 
199 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
200                               const char *name, hwaddr size)
201 {
202     MPS2SCC *scc = opaque;
203     DeviceState *sccdev;
204     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
205 
206     object_initialize(scc, sizeof(mms->scc), TYPE_MPS2_SCC);
207     sccdev = DEVICE(scc);
208     qdev_set_parent_bus(sccdev, sysbus_get_default());
209     qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
210     qdev_prop_set_uint32(sccdev, "scc-aid", 0x02000008);
211     qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
212     object_property_set_bool(OBJECT(scc), true, "realized", &error_fatal);
213     return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
214 }
215 
216 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
217                                  const char *name, hwaddr size)
218 {
219     MPS2FPGAIO *fpgaio = opaque;
220 
221     object_initialize(fpgaio, sizeof(mms->fpgaio), TYPE_MPS2_FPGAIO);
222     qdev_set_parent_bus(DEVICE(fpgaio), sysbus_get_default());
223     object_property_set_bool(OBJECT(fpgaio), true, "realized", &error_fatal);
224     return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
225 }
226 
227 static void mps2tz_common_init(MachineState *machine)
228 {
229     MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
230     MachineClass *mc = MACHINE_GET_CLASS(machine);
231     MemoryRegion *system_memory = get_system_memory();
232     DeviceState *iotkitdev;
233     DeviceState *dev_splitter;
234     int i;
235 
236     if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
237         error_report("This board can only be used with CPU %s",
238                      mc->default_cpu_type);
239         exit(1);
240     }
241 
242     init_sysbus_child(OBJECT(machine), "iotkit", &mms->iotkit,
243                       sizeof(mms->iotkit), TYPE_IOTKIT);
244     iotkitdev = DEVICE(&mms->iotkit);
245     object_property_set_link(OBJECT(&mms->iotkit), OBJECT(system_memory),
246                              "memory", &error_abort);
247     qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", 92);
248     qdev_prop_set_uint32(iotkitdev, "MAINCLK", SYSCLK_FRQ);
249     object_property_set_bool(OBJECT(&mms->iotkit), true, "realized",
250                              &error_fatal);
251 
252     /* The sec_resp_cfg output from the IoTKit must be split into multiple
253      * lines, one for each of the PPCs we create here.
254      */
255     object_initialize(&mms->sec_resp_splitter, sizeof(mms->sec_resp_splitter),
256                       TYPE_SPLIT_IRQ);
257     object_property_add_child(OBJECT(machine), "sec-resp-splitter",
258                               OBJECT(&mms->sec_resp_splitter), &error_abort);
259     object_property_set_int(OBJECT(&mms->sec_resp_splitter), 5,
260                             "num-lines", &error_fatal);
261     object_property_set_bool(OBJECT(&mms->sec_resp_splitter), true,
262                              "realized", &error_fatal);
263     dev_splitter = DEVICE(&mms->sec_resp_splitter);
264     qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
265                                 qdev_get_gpio_in(dev_splitter, 0));
266 
267     /* The IoTKit sets up much of the memory layout, including
268      * the aliases between secure and non-secure regions in the
269      * address space. The FPGA itself contains:
270      *
271      * 0x00000000..0x003fffff  SSRAM1
272      * 0x00400000..0x007fffff  alias of SSRAM1
273      * 0x28000000..0x283fffff  4MB SSRAM2 + SSRAM3
274      * 0x40100000..0x4fffffff  AHB Master Expansion 1 interface devices
275      * 0x80000000..0x80ffffff  16MB PSRAM
276      */
277 
278     /* The FPGA images have an odd combination of different RAMs,
279      * because in hardware they are different implementations and
280      * connected to different buses, giving varying performance/size
281      * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
282      * call the 16MB our "system memory", as it's the largest lump.
283      */
284     memory_region_allocate_system_memory(&mms->psram,
285                                          NULL, "mps.ram", 0x01000000);
286     memory_region_add_subregion(system_memory, 0x80000000, &mms->psram);
287 
288     /* The SSRAM memories should all be behind Memory Protection Controllers,
289      * but we don't implement that yet.
290      */
291     make_ram(&mms->ssram1, "mps.ssram1", 0x00000000, 0x00400000);
292     make_ram_alias(&mms->ssram1_m, "mps.ssram1_m", &mms->ssram1, 0x00400000);
293 
294     make_ram(&mms->ssram23, "mps.ssram23", 0x28000000, 0x00400000);
295 
296     /* The overflow IRQs for all UARTs are ORed together.
297      * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
298      * Create the OR gate for this.
299      */
300     object_initialize(&mms->uart_irq_orgate, sizeof(mms->uart_irq_orgate),
301                       TYPE_OR_IRQ);
302     object_property_add_child(OBJECT(mms), "uart-irq-orgate",
303                               OBJECT(&mms->uart_irq_orgate), &error_abort);
304     object_property_set_int(OBJECT(&mms->uart_irq_orgate), 10, "num-lines",
305                             &error_fatal);
306     object_property_set_bool(OBJECT(&mms->uart_irq_orgate), true,
307                              "realized", &error_fatal);
308     qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
309                           qdev_get_gpio_in_named(iotkitdev, "EXP_IRQ", 15));
310 
311     /* Most of the devices in the FPGA are behind Peripheral Protection
312      * Controllers. The required order for initializing things is:
313      *  + initialize the PPC
314      *  + initialize, configure and realize downstream devices
315      *  + connect downstream device MemoryRegions to the PPC
316      *  + realize the PPC
317      *  + map the PPC's MemoryRegions to the places in the address map
318      *    where the downstream devices should appear
319      *  + wire up the PPC's control lines to the IoTKit object
320      */
321 
322     const PPCInfo ppcs[] = { {
323             .name = "apb_ppcexp0",
324             .ports = {
325                 { "ssram-mpc0", make_unimp_dev, &mms->ssram_mpc[0],
326                   0x58007000, 0x1000 },
327                 { "ssram-mpc1", make_unimp_dev, &mms->ssram_mpc[1],
328                   0x58008000, 0x1000 },
329                 { "ssram-mpc2", make_unimp_dev, &mms->ssram_mpc[2],
330                   0x58009000, 0x1000 },
331             },
332         }, {
333             .name = "apb_ppcexp1",
334             .ports = {
335                 { "spi0", make_unimp_dev, &mms->spi[0], 0x40205000, 0x1000 },
336                 { "spi1", make_unimp_dev, &mms->spi[1], 0x40206000, 0x1000 },
337                 { "spi2", make_unimp_dev, &mms->spi[2], 0x40209000, 0x1000 },
338                 { "spi3", make_unimp_dev, &mms->spi[3], 0x4020a000, 0x1000 },
339                 { "spi4", make_unimp_dev, &mms->spi[4], 0x4020b000, 0x1000 },
340                 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000 },
341                 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000 },
342                 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000 },
343                 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000 },
344                 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000 },
345                 { "i2c0", make_unimp_dev, &mms->i2c[0], 0x40207000, 0x1000 },
346                 { "i2c1", make_unimp_dev, &mms->i2c[1], 0x40208000, 0x1000 },
347                 { "i2c2", make_unimp_dev, &mms->i2c[2], 0x4020c000, 0x1000 },
348                 { "i2c3", make_unimp_dev, &mms->i2c[3], 0x4020d000, 0x1000 },
349             },
350         }, {
351             .name = "apb_ppcexp2",
352             .ports = {
353                 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
354                 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
355                   0x40301000, 0x1000 },
356                 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
357             },
358         }, {
359             .name = "ahb_ppcexp0",
360             .ports = {
361                 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
362                 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
363                 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
364                 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
365                 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
366                 { "gpio4", make_unimp_dev, &mms->gpio[4], 0x40104000, 0x1000 },
367             },
368         }, {
369             .name = "ahb_ppcexp1",
370             .ports = {
371                 { "dma0", make_unimp_dev, &mms->dma[0], 0x40110000, 0x1000 },
372                 { "dma1", make_unimp_dev, &mms->dma[1], 0x40111000, 0x1000 },
373                 { "dma2", make_unimp_dev, &mms->dma[2], 0x40112000, 0x1000 },
374                 { "dma3", make_unimp_dev, &mms->dma[3], 0x40113000, 0x1000 },
375             },
376         },
377     };
378 
379     for (i = 0; i < ARRAY_SIZE(ppcs); i++) {
380         const PPCInfo *ppcinfo = &ppcs[i];
381         TZPPC *ppc = &mms->ppc[i];
382         DeviceState *ppcdev;
383         int port;
384         char *gpioname;
385 
386         init_sysbus_child(OBJECT(machine), ppcinfo->name, ppc,
387                           sizeof(TZPPC), TYPE_TZ_PPC);
388         ppcdev = DEVICE(ppc);
389 
390         for (port = 0; port < TZ_NUM_PORTS; port++) {
391             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
392             MemoryRegion *mr;
393             char *portname;
394 
395             if (!pinfo->devfn) {
396                 continue;
397             }
398 
399             mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
400             portname = g_strdup_printf("port[%d]", port);
401             object_property_set_link(OBJECT(ppc), OBJECT(mr),
402                                      portname, &error_fatal);
403             g_free(portname);
404         }
405 
406         object_property_set_bool(OBJECT(ppc), true, "realized", &error_fatal);
407 
408         for (port = 0; port < TZ_NUM_PORTS; port++) {
409             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
410 
411             if (!pinfo->devfn) {
412                 continue;
413             }
414             sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
415 
416             gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
417             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
418                                         qdev_get_gpio_in_named(ppcdev,
419                                                                "cfg_nonsec",
420                                                                port));
421             g_free(gpioname);
422             gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
423             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
424                                         qdev_get_gpio_in_named(ppcdev,
425                                                                "cfg_ap", port));
426             g_free(gpioname);
427         }
428 
429         gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
430         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
431                                     qdev_get_gpio_in_named(ppcdev,
432                                                            "irq_enable", 0));
433         g_free(gpioname);
434         gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
435         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
436                                     qdev_get_gpio_in_named(ppcdev,
437                                                            "irq_clear", 0));
438         g_free(gpioname);
439         gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
440         qdev_connect_gpio_out_named(ppcdev, "irq", 0,
441                                     qdev_get_gpio_in_named(iotkitdev,
442                                                            gpioname, 0));
443         g_free(gpioname);
444 
445         qdev_connect_gpio_out(dev_splitter, i,
446                               qdev_get_gpio_in_named(ppcdev,
447                                                      "cfg_sec_resp", 0));
448     }
449 
450     /* In hardware this is a LAN9220; the LAN9118 is software compatible
451      * except that it doesn't support the checksum-offload feature.
452      * The ethernet controller is not behind a PPC.
453      */
454     lan9118_init(&nd_table[0], 0x42000000,
455                  qdev_get_gpio_in_named(iotkitdev, "EXP_IRQ", 16));
456 
457     create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
458 
459     armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x400000);
460 }
461 
462 static void mps2tz_class_init(ObjectClass *oc, void *data)
463 {
464     MachineClass *mc = MACHINE_CLASS(oc);
465 
466     mc->init = mps2tz_common_init;
467     mc->max_cpus = 1;
468 }
469 
470 static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
471 {
472     MachineClass *mc = MACHINE_CLASS(oc);
473     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
474 
475     mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
476     mmc->fpga_type = FPGA_AN505;
477     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
478     mmc->scc_id = 0x41040000 | (505 << 4);
479 }
480 
481 static const TypeInfo mps2tz_info = {
482     .name = TYPE_MPS2TZ_MACHINE,
483     .parent = TYPE_MACHINE,
484     .abstract = true,
485     .instance_size = sizeof(MPS2TZMachineState),
486     .class_size = sizeof(MPS2TZMachineClass),
487     .class_init = mps2tz_class_init,
488 };
489 
490 static const TypeInfo mps2tz_an505_info = {
491     .name = TYPE_MPS2TZ_AN505_MACHINE,
492     .parent = TYPE_MPS2TZ_MACHINE,
493     .class_init = mps2tz_an505_class_init,
494 };
495 
496 static void mps2tz_machine_init(void)
497 {
498     type_register_static(&mps2tz_info);
499     type_register_static(&mps2tz_an505_info);
500 }
501 
502 type_init(mps2tz_machine_init);
503