1 /* 2 * ARM V2M MPS2 board emulation, trustzone aware FPGA images 3 * 4 * Copyright (c) 2017 Linaro Limited 5 * Written by Peter Maydell 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 or 9 * (at your option) any later version. 10 */ 11 12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger 13 * FPGA but is otherwise the same as the 2). Since the CPU itself 14 * and most of the devices are in the FPGA, the details of the board 15 * as seen by the guest depend significantly on the FPGA image. 16 * This source file covers the following FPGA images, for TrustZone cores: 17 * "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505 18 * "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521 19 * 20 * Links to the TRM for the board itself and to the various Application 21 * Notes which document the FPGA images can be found here: 22 * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2 23 * 24 * Board TRM: 25 * http://infocenter.arm.com/help/topic/com.arm.doc.100112_0200_06_en/versatile_express_cortex_m_prototyping_systems_v2m_mps2_and_v2m_mps2plus_technical_reference_100112_0200_06_en.pdf 26 * Application Note AN505: 27 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html 28 * Application Note AN521: 29 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0521c/index.html 30 * 31 * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide 32 * (ARM ECM0601256) for the details of some of the device layout: 33 * http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html 34 * Similarly, the AN521 uses the SSE-200, and the SSE-200 TRM defines 35 * most of the device layout: 36 * http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf 37 * 38 */ 39 40 #include "qemu/osdep.h" 41 #include "qemu/units.h" 42 #include "qemu/cutils.h" 43 #include "qapi/error.h" 44 #include "qemu/error-report.h" 45 #include "hw/arm/boot.h" 46 #include "hw/arm/armv7m.h" 47 #include "hw/or-irq.h" 48 #include "hw/boards.h" 49 #include "exec/address-spaces.h" 50 #include "sysemu/sysemu.h" 51 #include "hw/misc/unimp.h" 52 #include "hw/char/cmsdk-apb-uart.h" 53 #include "hw/timer/cmsdk-apb-timer.h" 54 #include "hw/misc/mps2-scc.h" 55 #include "hw/misc/mps2-fpgaio.h" 56 #include "hw/misc/tz-mpc.h" 57 #include "hw/misc/tz-msc.h" 58 #include "hw/arm/armsse.h" 59 #include "hw/dma/pl080.h" 60 #include "hw/ssi/pl022.h" 61 #include "hw/i2c/arm_sbcon_i2c.h" 62 #include "hw/net/lan9118.h" 63 #include "net/net.h" 64 #include "hw/core/split-irq.h" 65 66 #define MPS2TZ_NUMIRQ 92 67 68 typedef enum MPS2TZFPGAType { 69 FPGA_AN505, 70 FPGA_AN521, 71 } MPS2TZFPGAType; 72 73 typedef struct { 74 MachineClass parent; 75 MPS2TZFPGAType fpga_type; 76 uint32_t scc_id; 77 const char *armsse_type; 78 } MPS2TZMachineClass; 79 80 typedef struct { 81 MachineState parent; 82 83 ARMSSE iotkit; 84 MemoryRegion ssram[3]; 85 MemoryRegion ssram1_m; 86 MPS2SCC scc; 87 MPS2FPGAIO fpgaio; 88 TZPPC ppc[5]; 89 TZMPC ssram_mpc[3]; 90 PL022State spi[5]; 91 ArmSbconI2CState i2c[4]; 92 UnimplementedDeviceState i2s_audio; 93 UnimplementedDeviceState gpio[4]; 94 UnimplementedDeviceState gfx; 95 PL080State dma[4]; 96 TZMSC msc[4]; 97 CMSDKAPBUART uart[5]; 98 SplitIRQ sec_resp_splitter; 99 qemu_or_irq uart_irq_orgate; 100 DeviceState *lan9118; 101 SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ]; 102 } MPS2TZMachineState; 103 104 #define TYPE_MPS2TZ_MACHINE "mps2tz" 105 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505") 106 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521") 107 108 #define MPS2TZ_MACHINE(obj) \ 109 OBJECT_CHECK(MPS2TZMachineState, obj, TYPE_MPS2TZ_MACHINE) 110 #define MPS2TZ_MACHINE_GET_CLASS(obj) \ 111 OBJECT_GET_CLASS(MPS2TZMachineClass, obj, TYPE_MPS2TZ_MACHINE) 112 #define MPS2TZ_MACHINE_CLASS(klass) \ 113 OBJECT_CLASS_CHECK(MPS2TZMachineClass, klass, TYPE_MPS2TZ_MACHINE) 114 115 /* Main SYSCLK frequency in Hz */ 116 #define SYSCLK_FRQ 20000000 117 118 /* Create an alias of an entire original MemoryRegion @orig 119 * located at @base in the memory map. 120 */ 121 static void make_ram_alias(MemoryRegion *mr, const char *name, 122 MemoryRegion *orig, hwaddr base) 123 { 124 memory_region_init_alias(mr, NULL, name, orig, 0, 125 memory_region_size(orig)); 126 memory_region_add_subregion(get_system_memory(), base, mr); 127 } 128 129 static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno) 130 { 131 /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */ 132 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms); 133 134 assert(irqno < MPS2TZ_NUMIRQ); 135 136 switch (mmc->fpga_type) { 137 case FPGA_AN505: 138 return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno); 139 case FPGA_AN521: 140 return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0); 141 default: 142 g_assert_not_reached(); 143 } 144 } 145 146 /* Most of the devices in the AN505 FPGA image sit behind 147 * Peripheral Protection Controllers. These data structures 148 * define the layout of which devices sit behind which PPCs. 149 * The devfn for each port is a function which creates, configures 150 * and initializes the device, returning the MemoryRegion which 151 * needs to be plugged into the downstream end of the PPC port. 152 */ 153 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque, 154 const char *name, hwaddr size); 155 156 typedef struct PPCPortInfo { 157 const char *name; 158 MakeDevFn *devfn; 159 void *opaque; 160 hwaddr addr; 161 hwaddr size; 162 } PPCPortInfo; 163 164 typedef struct PPCInfo { 165 const char *name; 166 PPCPortInfo ports[TZ_NUM_PORTS]; 167 } PPCInfo; 168 169 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms, 170 void *opaque, 171 const char *name, hwaddr size) 172 { 173 /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE, 174 * and return a pointer to its MemoryRegion. 175 */ 176 UnimplementedDeviceState *uds = opaque; 177 178 object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE); 179 qdev_prop_set_string(DEVICE(uds), "name", name); 180 qdev_prop_set_uint64(DEVICE(uds), "size", size); 181 sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal); 182 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0); 183 } 184 185 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque, 186 const char *name, hwaddr size) 187 { 188 CMSDKAPBUART *uart = opaque; 189 int i = uart - &mms->uart[0]; 190 int rxirqno = i * 2; 191 int txirqno = i * 2 + 1; 192 int combirqno = i + 10; 193 SysBusDevice *s; 194 DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate); 195 196 object_initialize_child(OBJECT(mms), name, uart, TYPE_CMSDK_APB_UART); 197 qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i)); 198 qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", SYSCLK_FRQ); 199 sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal); 200 s = SYS_BUS_DEVICE(uart); 201 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, txirqno)); 202 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, rxirqno)); 203 sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2)); 204 sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1)); 205 sysbus_connect_irq(s, 4, get_sse_irq_in(mms, combirqno)); 206 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0); 207 } 208 209 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque, 210 const char *name, hwaddr size) 211 { 212 MPS2SCC *scc = opaque; 213 DeviceState *sccdev; 214 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms); 215 216 object_initialize_child(OBJECT(mms), "scc", scc, TYPE_MPS2_SCC); 217 sccdev = DEVICE(scc); 218 qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2); 219 qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008); 220 qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id); 221 sysbus_realize(SYS_BUS_DEVICE(scc), &error_fatal); 222 return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0); 223 } 224 225 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque, 226 const char *name, hwaddr size) 227 { 228 MPS2FPGAIO *fpgaio = opaque; 229 230 object_initialize_child(OBJECT(mms), "fpgaio", fpgaio, TYPE_MPS2_FPGAIO); 231 sysbus_realize(SYS_BUS_DEVICE(fpgaio), &error_fatal); 232 return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0); 233 } 234 235 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque, 236 const char *name, hwaddr size) 237 { 238 SysBusDevice *s; 239 NICInfo *nd = &nd_table[0]; 240 241 /* In hardware this is a LAN9220; the LAN9118 is software compatible 242 * except that it doesn't support the checksum-offload feature. 243 */ 244 qemu_check_nic_model(nd, "lan9118"); 245 mms->lan9118 = qdev_new(TYPE_LAN9118); 246 qdev_set_nic_properties(mms->lan9118, nd); 247 248 s = SYS_BUS_DEVICE(mms->lan9118); 249 sysbus_realize_and_unref(s, &error_fatal); 250 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 16)); 251 return sysbus_mmio_get_region(s, 0); 252 } 253 254 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque, 255 const char *name, hwaddr size) 256 { 257 TZMPC *mpc = opaque; 258 int i = mpc - &mms->ssram_mpc[0]; 259 MemoryRegion *ssram = &mms->ssram[i]; 260 MemoryRegion *upstream; 261 char *mpcname = g_strdup_printf("%s-mpc", name); 262 static uint32_t ramsize[] = { 0x00400000, 0x00200000, 0x00200000 }; 263 static uint32_t rambase[] = { 0x00000000, 0x28000000, 0x28200000 }; 264 265 memory_region_init_ram(ssram, NULL, name, ramsize[i], &error_fatal); 266 267 object_initialize_child(OBJECT(mms), mpcname, mpc, TYPE_TZ_MPC); 268 object_property_set_link(OBJECT(mpc), "downstream", OBJECT(ssram), 269 &error_fatal); 270 sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal); 271 /* Map the upstream end of the MPC into system memory */ 272 upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1); 273 memory_region_add_subregion(get_system_memory(), rambase[i], upstream); 274 /* and connect its interrupt to the IoTKit */ 275 qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0, 276 qdev_get_gpio_in_named(DEVICE(&mms->iotkit), 277 "mpcexp_status", i)); 278 279 /* The first SSRAM is a special case as it has an alias; accesses to 280 * the alias region at 0x00400000 must also go to the MPC upstream. 281 */ 282 if (i == 0) { 283 make_ram_alias(&mms->ssram1_m, "mps.ssram1_m", upstream, 0x00400000); 284 } 285 286 g_free(mpcname); 287 /* Return the register interface MR for our caller to map behind the PPC */ 288 return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0); 289 } 290 291 static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque, 292 const char *name, hwaddr size) 293 { 294 PL080State *dma = opaque; 295 int i = dma - &mms->dma[0]; 296 SysBusDevice *s; 297 char *mscname = g_strdup_printf("%s-msc", name); 298 TZMSC *msc = &mms->msc[i]; 299 DeviceState *iotkitdev = DEVICE(&mms->iotkit); 300 MemoryRegion *msc_upstream; 301 MemoryRegion *msc_downstream; 302 303 /* 304 * Each DMA device is a PL081 whose transaction master interface 305 * is guarded by a Master Security Controller. The downstream end of 306 * the MSC connects to the IoTKit AHB Slave Expansion port, so the 307 * DMA devices can see all devices and memory that the CPU does. 308 */ 309 object_initialize_child(OBJECT(mms), mscname, msc, TYPE_TZ_MSC); 310 msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0); 311 object_property_set_link(OBJECT(msc), "downstream", 312 OBJECT(msc_downstream), &error_fatal); 313 object_property_set_link(OBJECT(msc), "idau", OBJECT(mms), &error_fatal); 314 sysbus_realize(SYS_BUS_DEVICE(msc), &error_fatal); 315 316 qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0, 317 qdev_get_gpio_in_named(iotkitdev, 318 "mscexp_status", i)); 319 qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i, 320 qdev_get_gpio_in_named(DEVICE(msc), 321 "irq_clear", 0)); 322 qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i, 323 qdev_get_gpio_in_named(DEVICE(msc), 324 "cfg_nonsec", 0)); 325 qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter), 326 ARRAY_SIZE(mms->ppc) + i, 327 qdev_get_gpio_in_named(DEVICE(msc), 328 "cfg_sec_resp", 0)); 329 msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0); 330 331 object_initialize_child(OBJECT(mms), name, dma, TYPE_PL081); 332 object_property_set_link(OBJECT(dma), "downstream", OBJECT(msc_upstream), 333 &error_fatal); 334 sysbus_realize(SYS_BUS_DEVICE(dma), &error_fatal); 335 336 s = SYS_BUS_DEVICE(dma); 337 /* Wire up DMACINTR, DMACINTERR, DMACINTTC */ 338 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 58 + i * 3)); 339 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, 56 + i * 3)); 340 sysbus_connect_irq(s, 2, get_sse_irq_in(mms, 57 + i * 3)); 341 342 g_free(mscname); 343 return sysbus_mmio_get_region(s, 0); 344 } 345 346 static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque, 347 const char *name, hwaddr size) 348 { 349 /* 350 * The AN505 has five PL022 SPI controllers. 351 * One of these should have the LCD controller behind it; the others 352 * are connected only to the FPGA's "general purpose SPI connector" 353 * or "shield" expansion connectors. 354 * Note that if we do implement devices behind SPI, the chip select 355 * lines are set via the "MISC" register in the MPS2 FPGAIO device. 356 */ 357 PL022State *spi = opaque; 358 int i = spi - &mms->spi[0]; 359 SysBusDevice *s; 360 361 object_initialize_child(OBJECT(mms), name, spi, TYPE_PL022); 362 sysbus_realize(SYS_BUS_DEVICE(spi), &error_fatal); 363 s = SYS_BUS_DEVICE(spi); 364 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 51 + i)); 365 return sysbus_mmio_get_region(s, 0); 366 } 367 368 static MemoryRegion *make_i2c(MPS2TZMachineState *mms, void *opaque, 369 const char *name, hwaddr size) 370 { 371 ArmSbconI2CState *i2c = opaque; 372 SysBusDevice *s; 373 374 object_initialize_child(OBJECT(mms), name, i2c, TYPE_ARM_SBCON_I2C); 375 s = SYS_BUS_DEVICE(i2c); 376 sysbus_realize(s, &error_fatal); 377 return sysbus_mmio_get_region(s, 0); 378 } 379 380 static void mps2tz_common_init(MachineState *machine) 381 { 382 MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine); 383 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms); 384 MachineClass *mc = MACHINE_GET_CLASS(machine); 385 MemoryRegion *system_memory = get_system_memory(); 386 DeviceState *iotkitdev; 387 DeviceState *dev_splitter; 388 int i; 389 390 if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) { 391 error_report("This board can only be used with CPU %s", 392 mc->default_cpu_type); 393 exit(1); 394 } 395 396 if (machine->ram_size != mc->default_ram_size) { 397 char *sz = size_to_str(mc->default_ram_size); 398 error_report("Invalid RAM size, should be %s", sz); 399 g_free(sz); 400 exit(EXIT_FAILURE); 401 } 402 403 object_initialize_child(OBJECT(machine), TYPE_IOTKIT, &mms->iotkit, 404 mmc->armsse_type); 405 iotkitdev = DEVICE(&mms->iotkit); 406 object_property_set_link(OBJECT(&mms->iotkit), "memory", 407 OBJECT(system_memory), &error_abort); 408 qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", MPS2TZ_NUMIRQ); 409 qdev_prop_set_uint32(iotkitdev, "MAINCLK", SYSCLK_FRQ); 410 sysbus_realize(SYS_BUS_DEVICE(&mms->iotkit), &error_fatal); 411 412 /* 413 * The AN521 needs us to create splitters to feed the IRQ inputs 414 * for each CPU in the SSE-200 from each device in the board. 415 */ 416 if (mmc->fpga_type == FPGA_AN521) { 417 for (i = 0; i < MPS2TZ_NUMIRQ; i++) { 418 char *name = g_strdup_printf("mps2-irq-splitter%d", i); 419 SplitIRQ *splitter = &mms->cpu_irq_splitter[i]; 420 421 object_initialize_child_with_props(OBJECT(machine), name, 422 splitter, sizeof(*splitter), 423 TYPE_SPLIT_IRQ, &error_fatal, 424 NULL); 425 g_free(name); 426 427 object_property_set_int(OBJECT(splitter), "num-lines", 2, 428 &error_fatal); 429 qdev_realize(DEVICE(splitter), NULL, &error_fatal); 430 qdev_connect_gpio_out(DEVICE(splitter), 0, 431 qdev_get_gpio_in_named(DEVICE(&mms->iotkit), 432 "EXP_IRQ", i)); 433 qdev_connect_gpio_out(DEVICE(splitter), 1, 434 qdev_get_gpio_in_named(DEVICE(&mms->iotkit), 435 "EXP_CPU1_IRQ", i)); 436 } 437 } 438 439 /* The sec_resp_cfg output from the IoTKit must be split into multiple 440 * lines, one for each of the PPCs we create here, plus one per MSC. 441 */ 442 object_initialize_child(OBJECT(machine), "sec-resp-splitter", 443 &mms->sec_resp_splitter, TYPE_SPLIT_IRQ); 444 object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines", 445 ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc), 446 &error_fatal); 447 qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal); 448 dev_splitter = DEVICE(&mms->sec_resp_splitter); 449 qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0, 450 qdev_get_gpio_in(dev_splitter, 0)); 451 452 /* The IoTKit sets up much of the memory layout, including 453 * the aliases between secure and non-secure regions in the 454 * address space. The FPGA itself contains: 455 * 456 * 0x00000000..0x003fffff SSRAM1 457 * 0x00400000..0x007fffff alias of SSRAM1 458 * 0x28000000..0x283fffff 4MB SSRAM2 + SSRAM3 459 * 0x40100000..0x4fffffff AHB Master Expansion 1 interface devices 460 * 0x80000000..0x80ffffff 16MB PSRAM 461 */ 462 463 /* The FPGA images have an odd combination of different RAMs, 464 * because in hardware they are different implementations and 465 * connected to different buses, giving varying performance/size 466 * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily 467 * call the 16MB our "system memory", as it's the largest lump. 468 */ 469 memory_region_add_subregion(system_memory, 0x80000000, machine->ram); 470 471 /* The overflow IRQs for all UARTs are ORed together. 472 * Tx, Rx and "combined" IRQs are sent to the NVIC separately. 473 * Create the OR gate for this. 474 */ 475 object_initialize_child(OBJECT(mms), "uart-irq-orgate", 476 &mms->uart_irq_orgate, TYPE_OR_IRQ); 477 object_property_set_int(OBJECT(&mms->uart_irq_orgate), "num-lines", 10, 478 &error_fatal); 479 qdev_realize(DEVICE(&mms->uart_irq_orgate), NULL, &error_fatal); 480 qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0, 481 get_sse_irq_in(mms, 15)); 482 483 /* Most of the devices in the FPGA are behind Peripheral Protection 484 * Controllers. The required order for initializing things is: 485 * + initialize the PPC 486 * + initialize, configure and realize downstream devices 487 * + connect downstream device MemoryRegions to the PPC 488 * + realize the PPC 489 * + map the PPC's MemoryRegions to the places in the address map 490 * where the downstream devices should appear 491 * + wire up the PPC's control lines to the IoTKit object 492 */ 493 494 const PPCInfo ppcs[] = { { 495 .name = "apb_ppcexp0", 496 .ports = { 497 { "ssram-0", make_mpc, &mms->ssram_mpc[0], 0x58007000, 0x1000 }, 498 { "ssram-1", make_mpc, &mms->ssram_mpc[1], 0x58008000, 0x1000 }, 499 { "ssram-2", make_mpc, &mms->ssram_mpc[2], 0x58009000, 0x1000 }, 500 }, 501 }, { 502 .name = "apb_ppcexp1", 503 .ports = { 504 { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000 }, 505 { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000 }, 506 { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000 }, 507 { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000 }, 508 { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000 }, 509 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000 }, 510 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000 }, 511 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000 }, 512 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000 }, 513 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000 }, 514 { "i2c0", make_i2c, &mms->i2c[0], 0x40207000, 0x1000 }, 515 { "i2c1", make_i2c, &mms->i2c[1], 0x40208000, 0x1000 }, 516 { "i2c2", make_i2c, &mms->i2c[2], 0x4020c000, 0x1000 }, 517 { "i2c3", make_i2c, &mms->i2c[3], 0x4020d000, 0x1000 }, 518 }, 519 }, { 520 .name = "apb_ppcexp2", 521 .ports = { 522 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 }, 523 { "i2s-audio", make_unimp_dev, &mms->i2s_audio, 524 0x40301000, 0x1000 }, 525 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 }, 526 }, 527 }, { 528 .name = "ahb_ppcexp0", 529 .ports = { 530 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 }, 531 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 }, 532 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 }, 533 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 }, 534 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 }, 535 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000 }, 536 }, 537 }, { 538 .name = "ahb_ppcexp1", 539 .ports = { 540 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000 }, 541 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000 }, 542 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000 }, 543 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000 }, 544 }, 545 }, 546 }; 547 548 for (i = 0; i < ARRAY_SIZE(ppcs); i++) { 549 const PPCInfo *ppcinfo = &ppcs[i]; 550 TZPPC *ppc = &mms->ppc[i]; 551 DeviceState *ppcdev; 552 int port; 553 char *gpioname; 554 555 object_initialize_child(OBJECT(machine), ppcinfo->name, ppc, 556 TYPE_TZ_PPC); 557 ppcdev = DEVICE(ppc); 558 559 for (port = 0; port < TZ_NUM_PORTS; port++) { 560 const PPCPortInfo *pinfo = &ppcinfo->ports[port]; 561 MemoryRegion *mr; 562 char *portname; 563 564 if (!pinfo->devfn) { 565 continue; 566 } 567 568 mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size); 569 portname = g_strdup_printf("port[%d]", port); 570 object_property_set_link(OBJECT(ppc), portname, OBJECT(mr), 571 &error_fatal); 572 g_free(portname); 573 } 574 575 sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal); 576 577 for (port = 0; port < TZ_NUM_PORTS; port++) { 578 const PPCPortInfo *pinfo = &ppcinfo->ports[port]; 579 580 if (!pinfo->devfn) { 581 continue; 582 } 583 sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr); 584 585 gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name); 586 qdev_connect_gpio_out_named(iotkitdev, gpioname, port, 587 qdev_get_gpio_in_named(ppcdev, 588 "cfg_nonsec", 589 port)); 590 g_free(gpioname); 591 gpioname = g_strdup_printf("%s_ap", ppcinfo->name); 592 qdev_connect_gpio_out_named(iotkitdev, gpioname, port, 593 qdev_get_gpio_in_named(ppcdev, 594 "cfg_ap", port)); 595 g_free(gpioname); 596 } 597 598 gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name); 599 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0, 600 qdev_get_gpio_in_named(ppcdev, 601 "irq_enable", 0)); 602 g_free(gpioname); 603 gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name); 604 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0, 605 qdev_get_gpio_in_named(ppcdev, 606 "irq_clear", 0)); 607 g_free(gpioname); 608 gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name); 609 qdev_connect_gpio_out_named(ppcdev, "irq", 0, 610 qdev_get_gpio_in_named(iotkitdev, 611 gpioname, 0)); 612 g_free(gpioname); 613 614 qdev_connect_gpio_out(dev_splitter, i, 615 qdev_get_gpio_in_named(ppcdev, 616 "cfg_sec_resp", 0)); 617 } 618 619 create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000); 620 621 armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x400000); 622 } 623 624 static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address, 625 int *iregion, bool *exempt, bool *ns, bool *nsc) 626 { 627 /* 628 * The MPS2 TZ FPGA images have IDAUs in them which are connected to 629 * the Master Security Controllers. Thes have the same logic as 630 * is used by the IoTKit for the IDAU connected to the CPU, except 631 * that MSCs don't care about the NSC attribute. 632 */ 633 int region = extract32(address, 28, 4); 634 635 *ns = !(region & 1); 636 *nsc = false; 637 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */ 638 *exempt = (address & 0xeff00000) == 0xe0000000; 639 *iregion = region; 640 } 641 642 static void mps2tz_class_init(ObjectClass *oc, void *data) 643 { 644 MachineClass *mc = MACHINE_CLASS(oc); 645 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc); 646 647 mc->init = mps2tz_common_init; 648 iic->check = mps2_tz_idau_check; 649 mc->default_ram_size = 16 * MiB; 650 mc->default_ram_id = "mps.ram"; 651 } 652 653 static void mps2tz_an505_class_init(ObjectClass *oc, void *data) 654 { 655 MachineClass *mc = MACHINE_CLASS(oc); 656 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc); 657 658 mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33"; 659 mc->default_cpus = 1; 660 mc->min_cpus = mc->default_cpus; 661 mc->max_cpus = mc->default_cpus; 662 mmc->fpga_type = FPGA_AN505; 663 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"); 664 mmc->scc_id = 0x41045050; 665 mmc->armsse_type = TYPE_IOTKIT; 666 } 667 668 static void mps2tz_an521_class_init(ObjectClass *oc, void *data) 669 { 670 MachineClass *mc = MACHINE_CLASS(oc); 671 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc); 672 673 mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33"; 674 mc->default_cpus = 2; 675 mc->min_cpus = mc->default_cpus; 676 mc->max_cpus = mc->default_cpus; 677 mmc->fpga_type = FPGA_AN521; 678 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"); 679 mmc->scc_id = 0x41045210; 680 mmc->armsse_type = TYPE_SSE200; 681 } 682 683 static const TypeInfo mps2tz_info = { 684 .name = TYPE_MPS2TZ_MACHINE, 685 .parent = TYPE_MACHINE, 686 .abstract = true, 687 .instance_size = sizeof(MPS2TZMachineState), 688 .class_size = sizeof(MPS2TZMachineClass), 689 .class_init = mps2tz_class_init, 690 .interfaces = (InterfaceInfo[]) { 691 { TYPE_IDAU_INTERFACE }, 692 { } 693 }, 694 }; 695 696 static const TypeInfo mps2tz_an505_info = { 697 .name = TYPE_MPS2TZ_AN505_MACHINE, 698 .parent = TYPE_MPS2TZ_MACHINE, 699 .class_init = mps2tz_an505_class_init, 700 }; 701 702 static const TypeInfo mps2tz_an521_info = { 703 .name = TYPE_MPS2TZ_AN521_MACHINE, 704 .parent = TYPE_MPS2TZ_MACHINE, 705 .class_init = mps2tz_an521_class_init, 706 }; 707 708 static void mps2tz_machine_init(void) 709 { 710 type_register_static(&mps2tz_info); 711 type_register_static(&mps2tz_an505_info); 712 type_register_static(&mps2tz_an521_info); 713 } 714 715 type_init(mps2tz_machine_init); 716