xref: /openbmc/qemu/hw/arm/mps2-tz.c (revision 7200fb21)
1 /*
2  * ARM V2M MPS2 board emulation, trustzone aware FPGA images
3  *
4  * Copyright (c) 2017 Linaro Limited
5  * Written by Peter Maydell
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 or
9  *  (at your option) any later version.
10  */
11 
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13  * FPGA but is otherwise the same as the 2). Since the CPU itself
14  * and most of the devices are in the FPGA, the details of the board
15  * as seen by the guest depend significantly on the FPGA image.
16  * This source file covers the following FPGA images, for TrustZone cores:
17  *  "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18  *  "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
19  *  "mps2-an524" -- Dual Cortex-M33 as documented in Application Note AN524
20  *  "mps2-an547" -- Single Cortex-M55 as documented in Application Note AN547
21  *
22  * Links to the TRM for the board itself and to the various Application
23  * Notes which document the FPGA images can be found here:
24  * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
25  *
26  * Board TRM:
27  * https://developer.arm.com/documentation/100112/latest/
28  * Application Note AN505:
29  * https://developer.arm.com/documentation/dai0505/latest/
30  * Application Note AN521:
31  * https://developer.arm.com/documentation/dai0521/latest/
32  * Application Note AN524:
33  * https://developer.arm.com/documentation/dai0524/latest/
34  * Application Note AN547:
35  * https://developer.arm.com/documentation/dai0547/latest/
36  *
37  * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
38  * (ARM ECM0601256) for the details of some of the device layout:
39  *  https://developer.arm.com/documentation/ecm0601256/latest
40  * Similarly, the AN521 and AN524 use the SSE-200, and the SSE-200 TRM defines
41  * most of the device layout:
42  *  https://developer.arm.com/documentation/101104/latest/
43  * and the AN547 uses the SSE-300, whose layout is in the SSE-300 TRM:
44  *  https://developer.arm.com/documentation/101773/latest/
45  */
46 
47 #include "qemu/osdep.h"
48 #include "qemu/units.h"
49 #include "qemu/cutils.h"
50 #include "qapi/error.h"
51 #include "qapi/qmp/qlist.h"
52 #include "qemu/error-report.h"
53 #include "hw/arm/boot.h"
54 #include "hw/arm/armv7m.h"
55 #include "hw/or-irq.h"
56 #include "hw/boards.h"
57 #include "exec/address-spaces.h"
58 #include "sysemu/sysemu.h"
59 #include "sysemu/reset.h"
60 #include "hw/misc/unimp.h"
61 #include "hw/char/cmsdk-apb-uart.h"
62 #include "hw/timer/cmsdk-apb-timer.h"
63 #include "hw/misc/mps2-scc.h"
64 #include "hw/misc/mps2-fpgaio.h"
65 #include "hw/misc/tz-mpc.h"
66 #include "hw/misc/tz-msc.h"
67 #include "hw/arm/armsse.h"
68 #include "hw/dma/pl080.h"
69 #include "hw/rtc/pl031.h"
70 #include "hw/ssi/pl022.h"
71 #include "hw/i2c/arm_sbcon_i2c.h"
72 #include "hw/net/lan9118.h"
73 #include "net/net.h"
74 #include "hw/core/split-irq.h"
75 #include "hw/qdev-clock.h"
76 #include "qom/object.h"
77 #include "hw/irq.h"
78 
79 #define MPS2TZ_NUMIRQ_MAX 96
80 #define MPS2TZ_RAM_MAX 5
81 
82 typedef enum MPS2TZFPGAType {
83     FPGA_AN505,
84     FPGA_AN521,
85     FPGA_AN524,
86     FPGA_AN547,
87 } MPS2TZFPGAType;
88 
89 /*
90  * Define the layout of RAM in a board, including which parts are
91  * behind which MPCs.
92  * mrindex specifies the index into mms->ram[] to use for the backing RAM;
93  * -1 means "use the system RAM".
94  */
95 typedef struct RAMInfo {
96     const char *name;
97     uint32_t base;
98     uint32_t size;
99     int mpc; /* MPC number, -1 for "not behind an MPC" */
100     int mrindex;
101     int flags;
102 } RAMInfo;
103 
104 /*
105  * Flag values:
106  *  IS_ALIAS: this RAM area is an alias to the upstream end of the
107  *    MPC specified by its .mpc value
108  *  IS_ROM: this RAM area is read-only
109  */
110 #define IS_ALIAS 1
111 #define IS_ROM 2
112 
113 struct MPS2TZMachineClass {
114     MachineClass parent;
115     MPS2TZFPGAType fpga_type;
116     uint32_t scc_id;
117     uint32_t sysclk_frq; /* Main SYSCLK frequency in Hz */
118     uint32_t apb_periph_frq; /* APB peripheral frequency in Hz */
119     uint32_t len_oscclk;
120     const uint32_t *oscclk;
121     uint32_t fpgaio_num_leds; /* Number of LEDs in FPGAIO LED0 register */
122     bool fpgaio_has_switches; /* Does FPGAIO have SWITCH register? */
123     bool fpgaio_has_dbgctrl; /* Does FPGAIO have DBGCTRL register? */
124     int numirq; /* Number of external interrupts */
125     int uart_overflow_irq; /* number of the combined UART overflow IRQ */
126     uint32_t init_svtor; /* init-svtor setting for SSE */
127     uint32_t sram_addr_width; /* SRAM_ADDR_WIDTH setting for SSE */
128     uint32_t cpu0_mpu_ns; /* CPU0_MPU_NS setting for SSE */
129     uint32_t cpu0_mpu_s; /* CPU0_MPU_S setting for SSE */
130     uint32_t cpu1_mpu_ns; /* CPU1_MPU_NS setting for SSE */
131     uint32_t cpu1_mpu_s; /* CPU1_MPU_S setting for SSE */
132     const RAMInfo *raminfo;
133     const char *armsse_type;
134     uint32_t boot_ram_size; /* size of ram at address 0; 0 == find in raminfo */
135 };
136 
137 struct MPS2TZMachineState {
138     MachineState parent;
139 
140     ARMSSE iotkit;
141     MemoryRegion ram[MPS2TZ_RAM_MAX];
142     MemoryRegion eth_usb_container;
143 
144     MPS2SCC scc;
145     MPS2FPGAIO fpgaio;
146     TZPPC ppc[5];
147     TZMPC mpc[3];
148     PL022State spi[5];
149     ArmSbconI2CState i2c[5];
150     UnimplementedDeviceState i2s_audio;
151     UnimplementedDeviceState gpio[4];
152     UnimplementedDeviceState gfx;
153     UnimplementedDeviceState cldc;
154     UnimplementedDeviceState usb;
155     PL031State rtc;
156     PL080State dma[4];
157     TZMSC msc[4];
158     CMSDKAPBUART uart[6];
159     SplitIRQ sec_resp_splitter;
160     OrIRQState uart_irq_orgate;
161     DeviceState *lan9118;
162     SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ_MAX];
163     Clock *sysclk;
164     Clock *s32kclk;
165 
166     bool remap;
167     qemu_irq remap_irq;
168 };
169 
170 #define TYPE_MPS2TZ_MACHINE "mps2tz"
171 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
172 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
173 #define TYPE_MPS3TZ_AN524_MACHINE MACHINE_TYPE_NAME("mps3-an524")
174 #define TYPE_MPS3TZ_AN547_MACHINE MACHINE_TYPE_NAME("mps3-an547")
175 
176 OBJECT_DECLARE_TYPE(MPS2TZMachineState, MPS2TZMachineClass, MPS2TZ_MACHINE)
177 
178 /* Slow 32Khz S32KCLK frequency in Hz */
179 #define S32KCLK_FRQ (32 * 1000)
180 
181 /*
182  * The MPS3 DDR is 2GiB, but on a 32-bit host QEMU doesn't permit
183  * emulation of that much guest RAM, so artificially make it smaller.
184  */
185 #if HOST_LONG_BITS == 32
186 #define MPS3_DDR_SIZE (1 * GiB)
187 #else
188 #define MPS3_DDR_SIZE (2 * GiB)
189 #endif
190 
191 /* For cpu{0,1}_mpu_{ns,s}, means "leave at SSE's default value" */
192 #define MPU_REGION_DEFAULT UINT32_MAX
193 
194 static const uint32_t an505_oscclk[] = {
195     40000000,
196     24580000,
197     25000000,
198 };
199 
200 static const uint32_t an524_oscclk[] = {
201     24000000,
202     32000000,
203     50000000,
204     50000000,
205     24576000,
206     23750000,
207 };
208 
209 static const RAMInfo an505_raminfo[] = { {
210         .name = "ssram-0",
211         .base = 0x00000000,
212         .size = 0x00400000,
213         .mpc = 0,
214         .mrindex = 0,
215     }, {
216         .name = "ssram-1",
217         .base = 0x28000000,
218         .size = 0x00200000,
219         .mpc = 1,
220         .mrindex = 1,
221     }, {
222         .name = "ssram-2",
223         .base = 0x28200000,
224         .size = 0x00200000,
225         .mpc = 2,
226         .mrindex = 2,
227     }, {
228         .name = "ssram-0-alias",
229         .base = 0x00400000,
230         .size = 0x00400000,
231         .mpc = 0,
232         .mrindex = 3,
233         .flags = IS_ALIAS,
234     }, {
235         /* Use the largest bit of contiguous RAM as our "system memory" */
236         .name = "mps.ram",
237         .base = 0x80000000,
238         .size = 16 * MiB,
239         .mpc = -1,
240         .mrindex = -1,
241     }, {
242         .name = NULL,
243     },
244 };
245 
246 /*
247  * Note that the addresses and MPC numbering here should match up
248  * with those used in remap_memory(), which can swap the BRAM and QSPI.
249  */
250 static const RAMInfo an524_raminfo[] = { {
251         .name = "bram",
252         .base = 0x00000000,
253         .size = 512 * KiB,
254         .mpc = 0,
255         .mrindex = 0,
256     }, {
257         /* We don't model QSPI flash yet; for now expose it as simple ROM */
258         .name = "QSPI",
259         .base = 0x28000000,
260         .size = 8 * MiB,
261         .mpc = 1,
262         .mrindex = 1,
263         .flags = IS_ROM,
264     }, {
265         .name = "DDR",
266         .base = 0x60000000,
267         .size = MPS3_DDR_SIZE,
268         .mpc = 2,
269         .mrindex = -1,
270     }, {
271         .name = NULL,
272     },
273 };
274 
275 static const RAMInfo an547_raminfo[] = { {
276         .name = "sram",
277         .base = 0x01000000,
278         .size = 2 * MiB,
279         .mpc = 0,
280         .mrindex = 1,
281     }, {
282         .name = "sram 2",
283         .base = 0x21000000,
284         .size = 4 * MiB,
285         .mpc = -1,
286         .mrindex = 3,
287     }, {
288         /* We don't model QSPI flash yet; for now expose it as simple ROM */
289         .name = "QSPI",
290         .base = 0x28000000,
291         .size = 8 * MiB,
292         .mpc = 1,
293         .mrindex = 4,
294         .flags = IS_ROM,
295     }, {
296         .name = "DDR",
297         .base = 0x60000000,
298         .size = MPS3_DDR_SIZE,
299         .mpc = 2,
300         .mrindex = -1,
301     }, {
302         .name = NULL,
303     },
304 };
305 
306 static const RAMInfo *find_raminfo_for_mpc(MPS2TZMachineState *mms, int mpc)
307 {
308     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
309     const RAMInfo *p;
310     const RAMInfo *found = NULL;
311 
312     for (p = mmc->raminfo; p->name; p++) {
313         if (p->mpc == mpc && !(p->flags & IS_ALIAS)) {
314             /* There should only be one entry in the array for this MPC */
315             g_assert(!found);
316             found = p;
317         }
318     }
319     /* if raminfo array doesn't have an entry for each MPC this is a bug */
320     assert(found);
321     return found;
322 }
323 
324 static MemoryRegion *mr_for_raminfo(MPS2TZMachineState *mms,
325                                     const RAMInfo *raminfo)
326 {
327     /* Return an initialized MemoryRegion for the RAMInfo. */
328     MemoryRegion *ram;
329 
330     if (raminfo->mrindex < 0) {
331         /* Means this RAMInfo is for QEMU's "system memory" */
332         MachineState *machine = MACHINE(mms);
333         assert(!(raminfo->flags & IS_ROM));
334         return machine->ram;
335     }
336 
337     assert(raminfo->mrindex < MPS2TZ_RAM_MAX);
338     ram = &mms->ram[raminfo->mrindex];
339 
340     memory_region_init_ram(ram, NULL, raminfo->name,
341                            raminfo->size, &error_fatal);
342     if (raminfo->flags & IS_ROM) {
343         memory_region_set_readonly(ram, true);
344     }
345     return ram;
346 }
347 
348 /* Create an alias of an entire original MemoryRegion @orig
349  * located at @base in the memory map.
350  */
351 static void make_ram_alias(MemoryRegion *mr, const char *name,
352                            MemoryRegion *orig, hwaddr base)
353 {
354     memory_region_init_alias(mr, NULL, name, orig, 0,
355                              memory_region_size(orig));
356     memory_region_add_subregion(get_system_memory(), base, mr);
357 }
358 
359 static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
360 {
361     /*
362      * Return a qemu_irq which will signal IRQ n to all CPUs in the
363      * SSE.  The irqno should be as the CPU sees it, so the first
364      * external-to-the-SSE interrupt is 32.
365      */
366     MachineClass *mc = MACHINE_GET_CLASS(mms);
367     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
368 
369     assert(irqno >= 32 && irqno < (mmc->numirq + 32));
370 
371     /*
372      * Convert from "CPU irq number" (as listed in the FPGA image
373      * documentation) to the SSE external-interrupt number.
374      */
375     irqno -= 32;
376 
377     if (mc->max_cpus > 1) {
378         return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
379     } else {
380         return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
381     }
382 }
383 
384 /* Union describing the device-specific extra data we pass to the devfn. */
385 typedef union PPCExtraData {
386     bool i2c_internal;
387 } PPCExtraData;
388 
389 /* Most of the devices in the AN505 FPGA image sit behind
390  * Peripheral Protection Controllers. These data structures
391  * define the layout of which devices sit behind which PPCs.
392  * The devfn for each port is a function which creates, configures
393  * and initializes the device, returning the MemoryRegion which
394  * needs to be plugged into the downstream end of the PPC port.
395  */
396 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
397                                 const char *name, hwaddr size,
398                                 const int *irqs,
399                                 const PPCExtraData *extradata);
400 
401 typedef struct PPCPortInfo {
402     const char *name;
403     MakeDevFn *devfn;
404     void *opaque;
405     hwaddr addr;
406     hwaddr size;
407     int irqs[3]; /* currently no device needs more IRQ lines than this */
408     PPCExtraData extradata; /* to pass device-specific info to the devfn */
409 } PPCPortInfo;
410 
411 typedef struct PPCInfo {
412     const char *name;
413     PPCPortInfo ports[TZ_NUM_PORTS];
414 } PPCInfo;
415 
416 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
417                                     void *opaque,
418                                     const char *name, hwaddr size,
419                                     const int *irqs,
420                                     const PPCExtraData *extradata)
421 {
422     /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
423      * and return a pointer to its MemoryRegion.
424      */
425     UnimplementedDeviceState *uds = opaque;
426 
427     object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
428     qdev_prop_set_string(DEVICE(uds), "name", name);
429     qdev_prop_set_uint64(DEVICE(uds), "size", size);
430     sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
431     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
432 }
433 
434 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
435                                const char *name, hwaddr size,
436                                const int *irqs, const PPCExtraData *extradata)
437 {
438     /* The irq[] array is tx, rx, combined, in that order */
439     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
440     CMSDKAPBUART *uart = opaque;
441     int i = uart - &mms->uart[0];
442     SysBusDevice *s;
443     DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
444 
445     object_initialize_child(OBJECT(mms), name, uart, TYPE_CMSDK_APB_UART);
446     qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
447     qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", mmc->apb_periph_frq);
448     sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
449     s = SYS_BUS_DEVICE(uart);
450     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
451     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1]));
452     sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
453     sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
454     sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqs[2]));
455     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
456 }
457 
458 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
459                               const char *name, hwaddr size,
460                               const int *irqs, const PPCExtraData *extradata)
461 {
462     MPS2SCC *scc = opaque;
463     DeviceState *sccdev;
464     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
465     QList *oscclk;
466     uint32_t i;
467 
468     object_initialize_child(OBJECT(mms), "scc", scc, TYPE_MPS2_SCC);
469     sccdev = DEVICE(scc);
470     qdev_prop_set_uint32(sccdev, "scc-cfg0", mms->remap ? 1 : 0);
471     qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
472     qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
473     qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
474 
475     oscclk = qlist_new();
476     for (i = 0; i < mmc->len_oscclk; i++) {
477         qlist_append_int(oscclk, mmc->oscclk[i]);
478     }
479     qdev_prop_set_array(sccdev, "oscclk", oscclk);
480 
481     sysbus_realize(SYS_BUS_DEVICE(scc), &error_fatal);
482     return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
483 }
484 
485 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
486                                  const char *name, hwaddr size,
487                                  const int *irqs, const PPCExtraData *extradata)
488 {
489     MPS2FPGAIO *fpgaio = opaque;
490     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
491 
492     object_initialize_child(OBJECT(mms), "fpgaio", fpgaio, TYPE_MPS2_FPGAIO);
493     qdev_prop_set_uint32(DEVICE(fpgaio), "num-leds", mmc->fpgaio_num_leds);
494     qdev_prop_set_bit(DEVICE(fpgaio), "has-switches", mmc->fpgaio_has_switches);
495     qdev_prop_set_bit(DEVICE(fpgaio), "has-dbgctrl", mmc->fpgaio_has_dbgctrl);
496     sysbus_realize(SYS_BUS_DEVICE(fpgaio), &error_fatal);
497     return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
498 }
499 
500 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
501                                   const char *name, hwaddr size,
502                                   const int *irqs,
503                                   const PPCExtraData *extradata)
504 {
505     SysBusDevice *s;
506     NICInfo *nd = &nd_table[0];
507 
508     /* In hardware this is a LAN9220; the LAN9118 is software compatible
509      * except that it doesn't support the checksum-offload feature.
510      */
511     qemu_check_nic_model(nd, "lan9118");
512     mms->lan9118 = qdev_new(TYPE_LAN9118);
513     qdev_set_nic_properties(mms->lan9118, nd);
514 
515     s = SYS_BUS_DEVICE(mms->lan9118);
516     sysbus_realize_and_unref(s, &error_fatal);
517     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
518     return sysbus_mmio_get_region(s, 0);
519 }
520 
521 static MemoryRegion *make_eth_usb(MPS2TZMachineState *mms, void *opaque,
522                                   const char *name, hwaddr size,
523                                   const int *irqs,
524                                   const PPCExtraData *extradata)
525 {
526     /*
527      * The AN524 makes the ethernet and USB share a PPC port.
528      * irqs[] is the ethernet IRQ.
529      */
530     SysBusDevice *s;
531     NICInfo *nd = &nd_table[0];
532 
533     memory_region_init(&mms->eth_usb_container, OBJECT(mms),
534                        "mps2-tz-eth-usb-container", 0x200000);
535 
536     /*
537      * In hardware this is a LAN9220; the LAN9118 is software compatible
538      * except that it doesn't support the checksum-offload feature.
539      */
540     qemu_check_nic_model(nd, "lan9118");
541     mms->lan9118 = qdev_new(TYPE_LAN9118);
542     qdev_set_nic_properties(mms->lan9118, nd);
543 
544     s = SYS_BUS_DEVICE(mms->lan9118);
545     sysbus_realize_and_unref(s, &error_fatal);
546     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
547 
548     memory_region_add_subregion(&mms->eth_usb_container,
549                                 0, sysbus_mmio_get_region(s, 0));
550 
551     /* The USB OTG controller is an ISP1763; we don't have a model of it. */
552     object_initialize_child(OBJECT(mms), "usb-otg",
553                             &mms->usb, TYPE_UNIMPLEMENTED_DEVICE);
554     qdev_prop_set_string(DEVICE(&mms->usb), "name", "usb-otg");
555     qdev_prop_set_uint64(DEVICE(&mms->usb), "size", 0x100000);
556     s = SYS_BUS_DEVICE(&mms->usb);
557     sysbus_realize(s, &error_fatal);
558 
559     memory_region_add_subregion(&mms->eth_usb_container,
560                                 0x100000, sysbus_mmio_get_region(s, 0));
561 
562     return &mms->eth_usb_container;
563 }
564 
565 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
566                               const char *name, hwaddr size,
567                               const int *irqs, const PPCExtraData *extradata)
568 {
569     TZMPC *mpc = opaque;
570     int i = mpc - &mms->mpc[0];
571     MemoryRegion *upstream;
572     const RAMInfo *raminfo = find_raminfo_for_mpc(mms, i);
573     MemoryRegion *ram = mr_for_raminfo(mms, raminfo);
574 
575     object_initialize_child(OBJECT(mms), name, mpc, TYPE_TZ_MPC);
576     object_property_set_link(OBJECT(mpc), "downstream", OBJECT(ram),
577                              &error_fatal);
578     sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
579     /* Map the upstream end of the MPC into system memory */
580     upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
581     memory_region_add_subregion(get_system_memory(), raminfo->base, upstream);
582     /* and connect its interrupt to the IoTKit */
583     qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
584                                 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
585                                                        "mpcexp_status", i));
586 
587     /* Return the register interface MR for our caller to map behind the PPC */
588     return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
589 }
590 
591 static hwaddr boot_mem_base(MPS2TZMachineState *mms)
592 {
593     /*
594      * Return the canonical address of the block which will be mapped
595      * at address 0x0 (i.e. where the vector table is).
596      * This is usually 0, but if the AN524 alternate memory map is
597      * enabled it will be the base address of the QSPI block.
598      */
599     return mms->remap ? 0x28000000 : 0;
600 }
601 
602 static void remap_memory(MPS2TZMachineState *mms, int map)
603 {
604     /*
605      * Remap the memory for the AN524. 'map' is the value of
606      * SCC CFG_REG0 bit 0, i.e. 0 for the default map and 1
607      * for the "option 1" mapping where QSPI is at address 0.
608      *
609      * Effectively we need to swap around the "upstream" ends of
610      * MPC 0 and MPC 1.
611      */
612     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
613     int i;
614 
615     if (mmc->fpga_type != FPGA_AN524) {
616         return;
617     }
618 
619     memory_region_transaction_begin();
620     for (i = 0; i < 2; i++) {
621         TZMPC *mpc = &mms->mpc[i];
622         MemoryRegion *upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
623         hwaddr addr = (i ^ map) ? 0x28000000 : 0;
624 
625         memory_region_set_address(upstream, addr);
626     }
627     memory_region_transaction_commit();
628 }
629 
630 static void remap_irq_fn(void *opaque, int n, int level)
631 {
632     MPS2TZMachineState *mms = opaque;
633 
634     remap_memory(mms, level);
635 }
636 
637 static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
638                               const char *name, hwaddr size,
639                               const int *irqs, const PPCExtraData *extradata)
640 {
641     /* The irq[] array is DMACINTR, DMACINTERR, DMACINTTC, in that order */
642     PL080State *dma = opaque;
643     int i = dma - &mms->dma[0];
644     SysBusDevice *s;
645     char *mscname = g_strdup_printf("%s-msc", name);
646     TZMSC *msc = &mms->msc[i];
647     DeviceState *iotkitdev = DEVICE(&mms->iotkit);
648     MemoryRegion *msc_upstream;
649     MemoryRegion *msc_downstream;
650 
651     /*
652      * Each DMA device is a PL081 whose transaction master interface
653      * is guarded by a Master Security Controller. The downstream end of
654      * the MSC connects to the IoTKit AHB Slave Expansion port, so the
655      * DMA devices can see all devices and memory that the CPU does.
656      */
657     object_initialize_child(OBJECT(mms), mscname, msc, TYPE_TZ_MSC);
658     msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
659     object_property_set_link(OBJECT(msc), "downstream",
660                              OBJECT(msc_downstream), &error_fatal);
661     object_property_set_link(OBJECT(msc), "idau", OBJECT(mms), &error_fatal);
662     sysbus_realize(SYS_BUS_DEVICE(msc), &error_fatal);
663 
664     qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
665                                 qdev_get_gpio_in_named(iotkitdev,
666                                                        "mscexp_status", i));
667     qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
668                                 qdev_get_gpio_in_named(DEVICE(msc),
669                                                        "irq_clear", 0));
670     qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
671                                 qdev_get_gpio_in_named(DEVICE(msc),
672                                                        "cfg_nonsec", 0));
673     qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
674                           ARRAY_SIZE(mms->ppc) + i,
675                           qdev_get_gpio_in_named(DEVICE(msc),
676                                                  "cfg_sec_resp", 0));
677     msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
678 
679     object_initialize_child(OBJECT(mms), name, dma, TYPE_PL081);
680     object_property_set_link(OBJECT(dma), "downstream", OBJECT(msc_upstream),
681                              &error_fatal);
682     sysbus_realize(SYS_BUS_DEVICE(dma), &error_fatal);
683 
684     s = SYS_BUS_DEVICE(dma);
685     /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
686     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
687     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1]));
688     sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqs[2]));
689 
690     g_free(mscname);
691     return sysbus_mmio_get_region(s, 0);
692 }
693 
694 static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
695                               const char *name, hwaddr size,
696                               const int *irqs, const PPCExtraData *extradata)
697 {
698     /*
699      * The AN505 has five PL022 SPI controllers.
700      * One of these should have the LCD controller behind it; the others
701      * are connected only to the FPGA's "general purpose SPI connector"
702      * or "shield" expansion connectors.
703      * Note that if we do implement devices behind SPI, the chip select
704      * lines are set via the "MISC" register in the MPS2 FPGAIO device.
705      */
706     PL022State *spi = opaque;
707     SysBusDevice *s;
708 
709     object_initialize_child(OBJECT(mms), name, spi, TYPE_PL022);
710     sysbus_realize(SYS_BUS_DEVICE(spi), &error_fatal);
711     s = SYS_BUS_DEVICE(spi);
712     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
713     return sysbus_mmio_get_region(s, 0);
714 }
715 
716 static MemoryRegion *make_i2c(MPS2TZMachineState *mms, void *opaque,
717                               const char *name, hwaddr size,
718                               const int *irqs, const PPCExtraData *extradata)
719 {
720     ArmSbconI2CState *i2c = opaque;
721     SysBusDevice *s;
722 
723     object_initialize_child(OBJECT(mms), name, i2c, TYPE_ARM_SBCON_I2C);
724     s = SYS_BUS_DEVICE(i2c);
725     sysbus_realize(s, &error_fatal);
726 
727     /*
728      * If this is an internal-use-only i2c bus, mark it full
729      * so that user-created i2c devices are not plugged into it.
730      * If we implement models of any on-board i2c devices that
731      * plug in to one of the internal-use-only buses, then we will
732      * need to create and plugging those in here before we mark the
733      * bus as full.
734      */
735     if (extradata->i2c_internal) {
736         BusState *qbus = qdev_get_child_bus(DEVICE(i2c), "i2c");
737         qbus_mark_full(qbus);
738     }
739 
740     return sysbus_mmio_get_region(s, 0);
741 }
742 
743 static MemoryRegion *make_rtc(MPS2TZMachineState *mms, void *opaque,
744                               const char *name, hwaddr size,
745                               const int *irqs, const PPCExtraData *extradata)
746 {
747     PL031State *pl031 = opaque;
748     SysBusDevice *s;
749 
750     object_initialize_child(OBJECT(mms), name, pl031, TYPE_PL031);
751     s = SYS_BUS_DEVICE(pl031);
752     sysbus_realize(s, &error_fatal);
753     /*
754      * The board docs don't give an IRQ number for the PL031, so
755      * presumably it is not connected.
756      */
757     return sysbus_mmio_get_region(s, 0);
758 }
759 
760 static void create_non_mpc_ram(MPS2TZMachineState *mms)
761 {
762     /*
763      * Handle the RAMs which are either not behind MPCs or which are
764      * aliases to another MPC.
765      */
766     const RAMInfo *p;
767     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
768 
769     for (p = mmc->raminfo; p->name; p++) {
770         if (p->flags & IS_ALIAS) {
771             SysBusDevice *mpc_sbd = SYS_BUS_DEVICE(&mms->mpc[p->mpc]);
772             MemoryRegion *upstream = sysbus_mmio_get_region(mpc_sbd, 1);
773             make_ram_alias(&mms->ram[p->mrindex], p->name, upstream, p->base);
774         } else if (p->mpc == -1) {
775             /* RAM not behind an MPC */
776             MemoryRegion *mr = mr_for_raminfo(mms, p);
777             memory_region_add_subregion(get_system_memory(), p->base, mr);
778         }
779     }
780 }
781 
782 static uint32_t boot_ram_size(MPS2TZMachineState *mms)
783 {
784     /* Return the size of the RAM block at guest address zero */
785     const RAMInfo *p;
786     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
787 
788     /*
789      * Use a per-board specification (for when the boot RAM is in
790      * the SSE and so doesn't have a RAMInfo list entry)
791      */
792     if (mmc->boot_ram_size) {
793         return mmc->boot_ram_size;
794     }
795 
796     for (p = mmc->raminfo; p->name; p++) {
797         if (p->base == boot_mem_base(mms)) {
798             return p->size;
799         }
800     }
801     g_assert_not_reached();
802 }
803 
804 static void mps2tz_common_init(MachineState *machine)
805 {
806     MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
807     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
808     MachineClass *mc = MACHINE_GET_CLASS(machine);
809     MemoryRegion *system_memory = get_system_memory();
810     DeviceState *iotkitdev;
811     DeviceState *dev_splitter;
812     const PPCInfo *ppcs;
813     int num_ppcs;
814     int i;
815 
816     if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
817         error_report("This board can only be used with CPU %s",
818                      mc->default_cpu_type);
819         exit(1);
820     }
821 
822     if (machine->ram_size != mc->default_ram_size) {
823         char *sz = size_to_str(mc->default_ram_size);
824         error_report("Invalid RAM size, should be %s", sz);
825         g_free(sz);
826         exit(EXIT_FAILURE);
827     }
828 
829     /* These clocks don't need migration because they are fixed-frequency */
830     mms->sysclk = clock_new(OBJECT(machine), "SYSCLK");
831     clock_set_hz(mms->sysclk, mmc->sysclk_frq);
832     mms->s32kclk = clock_new(OBJECT(machine), "S32KCLK");
833     clock_set_hz(mms->s32kclk, S32KCLK_FRQ);
834 
835     object_initialize_child(OBJECT(machine), TYPE_IOTKIT, &mms->iotkit,
836                             mmc->armsse_type);
837     iotkitdev = DEVICE(&mms->iotkit);
838     object_property_set_link(OBJECT(&mms->iotkit), "memory",
839                              OBJECT(system_memory), &error_abort);
840     qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", mmc->numirq);
841     qdev_prop_set_uint32(iotkitdev, "init-svtor", mmc->init_svtor);
842     if (mmc->cpu0_mpu_ns != MPU_REGION_DEFAULT) {
843         qdev_prop_set_uint32(iotkitdev, "CPU0_MPU_NS", mmc->cpu0_mpu_ns);
844     }
845     if (mmc->cpu0_mpu_s != MPU_REGION_DEFAULT) {
846         qdev_prop_set_uint32(iotkitdev, "CPU0_MPU_S", mmc->cpu0_mpu_s);
847     }
848     if (object_property_find(OBJECT(iotkitdev), "CPU1_MPU_NS")) {
849         if (mmc->cpu1_mpu_ns != MPU_REGION_DEFAULT) {
850             qdev_prop_set_uint32(iotkitdev, "CPU1_MPU_NS", mmc->cpu1_mpu_ns);
851         }
852         if (mmc->cpu1_mpu_s != MPU_REGION_DEFAULT) {
853             qdev_prop_set_uint32(iotkitdev, "CPU1_MPU_S", mmc->cpu1_mpu_s);
854         }
855     }
856     qdev_prop_set_uint32(iotkitdev, "SRAM_ADDR_WIDTH", mmc->sram_addr_width);
857     qdev_connect_clock_in(iotkitdev, "MAINCLK", mms->sysclk);
858     qdev_connect_clock_in(iotkitdev, "S32KCLK", mms->s32kclk);
859     sysbus_realize(SYS_BUS_DEVICE(&mms->iotkit), &error_fatal);
860 
861     /*
862      * If this board has more than one CPU, then we need to create splitters
863      * to feed the IRQ inputs for each CPU in the SSE from each device in the
864      * board. If there is only one CPU, we can just wire the device IRQ
865      * directly to the SSE's IRQ input.
866      */
867     assert(mmc->numirq <= MPS2TZ_NUMIRQ_MAX);
868     if (mc->max_cpus > 1) {
869         for (i = 0; i < mmc->numirq; i++) {
870             char *name = g_strdup_printf("mps2-irq-splitter%d", i);
871             SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
872 
873             object_initialize_child_with_props(OBJECT(machine), name,
874                                                splitter, sizeof(*splitter),
875                                                TYPE_SPLIT_IRQ, &error_fatal,
876                                                NULL);
877             g_free(name);
878 
879             object_property_set_int(OBJECT(splitter), "num-lines", 2,
880                                     &error_fatal);
881             qdev_realize(DEVICE(splitter), NULL, &error_fatal);
882             qdev_connect_gpio_out(DEVICE(splitter), 0,
883                                   qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
884                                                          "EXP_IRQ", i));
885             qdev_connect_gpio_out(DEVICE(splitter), 1,
886                                   qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
887                                                          "EXP_CPU1_IRQ", i));
888         }
889     }
890 
891     /* The sec_resp_cfg output from the IoTKit must be split into multiple
892      * lines, one for each of the PPCs we create here, plus one per MSC.
893      */
894     object_initialize_child(OBJECT(machine), "sec-resp-splitter",
895                             &mms->sec_resp_splitter, TYPE_SPLIT_IRQ);
896     object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
897                             ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
898                             &error_fatal);
899     qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
900     dev_splitter = DEVICE(&mms->sec_resp_splitter);
901     qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
902                                 qdev_get_gpio_in(dev_splitter, 0));
903 
904     /*
905      * The IoTKit sets up much of the memory layout, including
906      * the aliases between secure and non-secure regions in the
907      * address space, and also most of the devices in the system.
908      * The FPGA itself contains various RAMs and some additional devices.
909      * The FPGA images have an odd combination of different RAMs,
910      * because in hardware they are different implementations and
911      * connected to different buses, giving varying performance/size
912      * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
913      * call the largest lump our "system memory".
914      */
915 
916     /*
917      * The overflow IRQs for all UARTs are ORed together.
918      * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
919      * Create the OR gate for this: it has one input for the TX overflow
920      * and one for the RX overflow for each UART we might have.
921      * (If the board has fewer than the maximum possible number of UARTs
922      * those inputs are never wired up and are treated as always-zero.)
923      */
924     object_initialize_child(OBJECT(mms), "uart-irq-orgate",
925                             &mms->uart_irq_orgate, TYPE_OR_IRQ);
926     object_property_set_int(OBJECT(&mms->uart_irq_orgate), "num-lines",
927                             2 * ARRAY_SIZE(mms->uart),
928                             &error_fatal);
929     qdev_realize(DEVICE(&mms->uart_irq_orgate), NULL, &error_fatal);
930     qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
931                           get_sse_irq_in(mms, mmc->uart_overflow_irq));
932 
933     /* Most of the devices in the FPGA are behind Peripheral Protection
934      * Controllers. The required order for initializing things is:
935      *  + initialize the PPC
936      *  + initialize, configure and realize downstream devices
937      *  + connect downstream device MemoryRegions to the PPC
938      *  + realize the PPC
939      *  + map the PPC's MemoryRegions to the places in the address map
940      *    where the downstream devices should appear
941      *  + wire up the PPC's control lines to the IoTKit object
942      */
943 
944     const PPCInfo an505_ppcs[] = { {
945             .name = "apb_ppcexp0",
946             .ports = {
947                 { "ssram-0-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 },
948                 { "ssram-1-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 },
949                 { "ssram-2-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 },
950             },
951         }, {
952             .name = "apb_ppcexp1",
953             .ports = {
954                 { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000, { 51 } },
955                 { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000, { 52 } },
956                 { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000, { 53 } },
957                 { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000, { 54 } },
958                 { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000, { 55 } },
959                 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000, { 32, 33, 42 } },
960                 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000, { 34, 35, 43 } },
961                 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000, { 36, 37, 44 } },
962                 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000, { 38, 39, 45 } },
963                 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000, { 40, 41, 46 } },
964                 { "i2c0", make_i2c, &mms->i2c[0], 0x40207000, 0x1000, {},
965                   { .i2c_internal = true /* touchscreen */ } },
966                 { "i2c1", make_i2c, &mms->i2c[1], 0x40208000, 0x1000, {},
967                   { .i2c_internal = true /* audio conf */ } },
968                 { "i2c2", make_i2c, &mms->i2c[2], 0x4020c000, 0x1000, {},
969                   { .i2c_internal = false /* shield 0 */ } },
970                 { "i2c3", make_i2c, &mms->i2c[3], 0x4020d000, 0x1000, {},
971                   { .i2c_internal = false /* shield 1 */ } },
972             },
973         }, {
974             .name = "apb_ppcexp2",
975             .ports = {
976                 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
977                 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
978                   0x40301000, 0x1000 },
979                 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
980             },
981         }, {
982             .name = "ahb_ppcexp0",
983             .ports = {
984                 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
985                 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
986                 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
987                 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
988                 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
989                 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000, { 48 } },
990             },
991         }, {
992             .name = "ahb_ppcexp1",
993             .ports = {
994                 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000, { 58, 56, 57 } },
995                 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000, { 61, 59, 60 } },
996                 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000, { 64, 62, 63 } },
997                 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000, { 67, 65, 66 } },
998             },
999         },
1000     };
1001 
1002     const PPCInfo an524_ppcs[] = { {
1003             .name = "apb_ppcexp0",
1004             .ports = {
1005                 { "bram-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 },
1006                 { "qspi-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 },
1007                 { "ddr-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 },
1008             },
1009         }, {
1010             .name = "apb_ppcexp1",
1011             .ports = {
1012                 { "i2c0", make_i2c, &mms->i2c[0], 0x41200000, 0x1000, {},
1013                   { .i2c_internal = true /* touchscreen */ } },
1014                 { "i2c1", make_i2c, &mms->i2c[1], 0x41201000, 0x1000, {},
1015                   { .i2c_internal = true /* audio conf */ } },
1016                 { "spi0", make_spi, &mms->spi[0], 0x41202000, 0x1000, { 52 } },
1017                 { "spi1", make_spi, &mms->spi[1], 0x41203000, 0x1000, { 53 } },
1018                 { "spi2", make_spi, &mms->spi[2], 0x41204000, 0x1000, { 54 } },
1019                 { "i2c2", make_i2c, &mms->i2c[2], 0x41205000, 0x1000, {},
1020                   { .i2c_internal = false /* shield 0 */ } },
1021                 { "i2c3", make_i2c, &mms->i2c[3], 0x41206000, 0x1000, {},
1022                   { .i2c_internal = false /* shield 1 */ } },
1023                 { /* port 7 reserved */ },
1024                 { "i2c4", make_i2c, &mms->i2c[4], 0x41208000, 0x1000, {},
1025                   { .i2c_internal = true /* DDR4 EEPROM */ } },
1026             },
1027         }, {
1028             .name = "apb_ppcexp2",
1029             .ports = {
1030                 { "scc", make_scc, &mms->scc, 0x41300000, 0x1000 },
1031                 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
1032                   0x41301000, 0x1000 },
1033                 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x41302000, 0x1000 },
1034                 { "uart0", make_uart, &mms->uart[0], 0x41303000, 0x1000, { 32, 33, 42 } },
1035                 { "uart1", make_uart, &mms->uart[1], 0x41304000, 0x1000, { 34, 35, 43 } },
1036                 { "uart2", make_uart, &mms->uart[2], 0x41305000, 0x1000, { 36, 37, 44 } },
1037                 { "uart3", make_uart, &mms->uart[3], 0x41306000, 0x1000, { 38, 39, 45 } },
1038                 { "uart4", make_uart, &mms->uart[4], 0x41307000, 0x1000, { 40, 41, 46 } },
1039                 { "uart5", make_uart, &mms->uart[5], 0x41308000, 0x1000, { 124, 125, 126 } },
1040 
1041                 { /* port 9 reserved */ },
1042                 { "clcd", make_unimp_dev, &mms->cldc, 0x4130a000, 0x1000 },
1043                 { "rtc", make_rtc, &mms->rtc, 0x4130b000, 0x1000 },
1044             },
1045         }, {
1046             .name = "ahb_ppcexp0",
1047             .ports = {
1048                 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 },
1049                 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 },
1050                 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 },
1051                 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 },
1052                 { "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 48 } },
1053             },
1054         },
1055     };
1056 
1057     const PPCInfo an547_ppcs[] = { {
1058             .name = "apb_ppcexp0",
1059             .ports = {
1060                 { "ssram-mpc", make_mpc, &mms->mpc[0], 0x57000000, 0x1000 },
1061                 { "qspi-mpc", make_mpc, &mms->mpc[1], 0x57001000, 0x1000 },
1062                 { "ddr-mpc", make_mpc, &mms->mpc[2], 0x57002000, 0x1000 },
1063             },
1064         }, {
1065             .name = "apb_ppcexp1",
1066             .ports = {
1067                 { "i2c0", make_i2c, &mms->i2c[0], 0x49200000, 0x1000, {},
1068                   { .i2c_internal = true /* touchscreen */ } },
1069                 { "i2c1", make_i2c, &mms->i2c[1], 0x49201000, 0x1000, {},
1070                   { .i2c_internal = true /* audio conf */ } },
1071                 { "spi0", make_spi, &mms->spi[0], 0x49202000, 0x1000, { 53 } },
1072                 { "spi1", make_spi, &mms->spi[1], 0x49203000, 0x1000, { 54 } },
1073                 { "spi2", make_spi, &mms->spi[2], 0x49204000, 0x1000, { 55 } },
1074                 { "i2c2", make_i2c, &mms->i2c[2], 0x49205000, 0x1000, {},
1075                   { .i2c_internal = false /* shield 0 */ } },
1076                 { "i2c3", make_i2c, &mms->i2c[3], 0x49206000, 0x1000, {},
1077                   { .i2c_internal = false /* shield 1 */ } },
1078                 { /* port 7 reserved */ },
1079                 { "i2c4", make_i2c, &mms->i2c[4], 0x49208000, 0x1000, {},
1080                   { .i2c_internal = true /* DDR4 EEPROM */ } },
1081             },
1082         }, {
1083             .name = "apb_ppcexp2",
1084             .ports = {
1085                 { "scc", make_scc, &mms->scc, 0x49300000, 0x1000 },
1086                 { "i2s-audio", make_unimp_dev, &mms->i2s_audio, 0x49301000, 0x1000 },
1087                 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x49302000, 0x1000 },
1088                 { "uart0", make_uart, &mms->uart[0], 0x49303000, 0x1000, { 33, 34, 43 } },
1089                 { "uart1", make_uart, &mms->uart[1], 0x49304000, 0x1000, { 35, 36, 44 } },
1090                 { "uart2", make_uart, &mms->uart[2], 0x49305000, 0x1000, { 37, 38, 45 } },
1091                 { "uart3", make_uart, &mms->uart[3], 0x49306000, 0x1000, { 39, 40, 46 } },
1092                 { "uart4", make_uart, &mms->uart[4], 0x49307000, 0x1000, { 41, 42, 47 } },
1093                 { "uart5", make_uart, &mms->uart[5], 0x49308000, 0x1000, { 125, 126, 127 } },
1094 
1095                 { /* port 9 reserved */ },
1096                 { "clcd", make_unimp_dev, &mms->cldc, 0x4930a000, 0x1000 },
1097                 { "rtc", make_rtc, &mms->rtc, 0x4930b000, 0x1000 },
1098             },
1099         }, {
1100             .name = "ahb_ppcexp0",
1101             .ports = {
1102                 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 },
1103                 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 },
1104                 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 },
1105                 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 },
1106                 { /* port 4 USER AHB interface 0 */ },
1107                 { /* port 5 USER AHB interface 1 */ },
1108                 { /* port 6 USER AHB interface 2 */ },
1109                 { /* port 7 USER AHB interface 3 */ },
1110                 { "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 49 } },
1111             },
1112         },
1113     };
1114 
1115     switch (mmc->fpga_type) {
1116     case FPGA_AN505:
1117     case FPGA_AN521:
1118         ppcs = an505_ppcs;
1119         num_ppcs = ARRAY_SIZE(an505_ppcs);
1120         break;
1121     case FPGA_AN524:
1122         ppcs = an524_ppcs;
1123         num_ppcs = ARRAY_SIZE(an524_ppcs);
1124         break;
1125     case FPGA_AN547:
1126         ppcs = an547_ppcs;
1127         num_ppcs = ARRAY_SIZE(an547_ppcs);
1128         break;
1129     default:
1130         g_assert_not_reached();
1131     }
1132 
1133     for (i = 0; i < num_ppcs; i++) {
1134         const PPCInfo *ppcinfo = &ppcs[i];
1135         TZPPC *ppc = &mms->ppc[i];
1136         DeviceState *ppcdev;
1137         int port;
1138         char *gpioname;
1139 
1140         object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
1141                                 TYPE_TZ_PPC);
1142         ppcdev = DEVICE(ppc);
1143 
1144         for (port = 0; port < TZ_NUM_PORTS; port++) {
1145             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
1146             MemoryRegion *mr;
1147             char *portname;
1148 
1149             if (!pinfo->devfn) {
1150                 continue;
1151             }
1152 
1153             mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size,
1154                               pinfo->irqs, &pinfo->extradata);
1155             portname = g_strdup_printf("port[%d]", port);
1156             object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
1157                                      &error_fatal);
1158             g_free(portname);
1159         }
1160 
1161         sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
1162 
1163         for (port = 0; port < TZ_NUM_PORTS; port++) {
1164             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
1165 
1166             if (!pinfo->devfn) {
1167                 continue;
1168             }
1169             sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
1170 
1171             gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
1172             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
1173                                         qdev_get_gpio_in_named(ppcdev,
1174                                                                "cfg_nonsec",
1175                                                                port));
1176             g_free(gpioname);
1177             gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
1178             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
1179                                         qdev_get_gpio_in_named(ppcdev,
1180                                                                "cfg_ap", port));
1181             g_free(gpioname);
1182         }
1183 
1184         gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
1185         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
1186                                     qdev_get_gpio_in_named(ppcdev,
1187                                                            "irq_enable", 0));
1188         g_free(gpioname);
1189         gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
1190         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
1191                                     qdev_get_gpio_in_named(ppcdev,
1192                                                            "irq_clear", 0));
1193         g_free(gpioname);
1194         gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
1195         qdev_connect_gpio_out_named(ppcdev, "irq", 0,
1196                                     qdev_get_gpio_in_named(iotkitdev,
1197                                                            gpioname, 0));
1198         g_free(gpioname);
1199 
1200         qdev_connect_gpio_out(dev_splitter, i,
1201                               qdev_get_gpio_in_named(ppcdev,
1202                                                      "cfg_sec_resp", 0));
1203     }
1204 
1205     create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
1206 
1207     if (mmc->fpga_type == FPGA_AN547) {
1208         create_unimplemented_device("U55 timing adapter 0", 0x48102000, 0x1000);
1209         create_unimplemented_device("U55 timing adapter 1", 0x48103000, 0x1000);
1210     }
1211 
1212     create_non_mpc_ram(mms);
1213 
1214     if (mmc->fpga_type == FPGA_AN524) {
1215         /*
1216          * Connect the line from the SCC so that we can remap when the
1217          * guest updates that register.
1218          */
1219         mms->remap_irq = qemu_allocate_irq(remap_irq_fn, mms, 0);
1220         qdev_connect_gpio_out_named(DEVICE(&mms->scc), "remap", 0,
1221                                     mms->remap_irq);
1222     }
1223 
1224     armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename,
1225                        0, boot_ram_size(mms));
1226 }
1227 
1228 static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
1229                                int *iregion, bool *exempt, bool *ns, bool *nsc)
1230 {
1231     /*
1232      * The MPS2 TZ FPGA images have IDAUs in them which are connected to
1233      * the Master Security Controllers. These have the same logic as
1234      * is used by the IoTKit for the IDAU connected to the CPU, except
1235      * that MSCs don't care about the NSC attribute.
1236      */
1237     int region = extract32(address, 28, 4);
1238 
1239     *ns = !(region & 1);
1240     *nsc = false;
1241     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1242     *exempt = (address & 0xeff00000) == 0xe0000000;
1243     *iregion = region;
1244 }
1245 
1246 static char *mps2_get_remap(Object *obj, Error **errp)
1247 {
1248     MPS2TZMachineState *mms = MPS2TZ_MACHINE(obj);
1249     const char *val = mms->remap ? "QSPI" : "BRAM";
1250     return g_strdup(val);
1251 }
1252 
1253 static void mps2_set_remap(Object *obj, const char *value, Error **errp)
1254 {
1255     MPS2TZMachineState *mms = MPS2TZ_MACHINE(obj);
1256 
1257     if (!strcmp(value, "BRAM")) {
1258         mms->remap = false;
1259     } else if (!strcmp(value, "QSPI")) {
1260         mms->remap = true;
1261     } else {
1262         error_setg(errp, "Invalid remap value");
1263         error_append_hint(errp, "Valid values are BRAM and QSPI.\n");
1264     }
1265 }
1266 
1267 static void mps2_machine_reset(MachineState *machine, ShutdownCause reason)
1268 {
1269     MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
1270 
1271     /*
1272      * Set the initial memory mapping before triggering the reset of
1273      * the rest of the system, so that the guest image loader and CPU
1274      * reset see the correct mapping.
1275      */
1276     remap_memory(mms, mms->remap);
1277     qemu_devices_reset(reason);
1278 }
1279 
1280 static void mps2tz_class_init(ObjectClass *oc, void *data)
1281 {
1282     MachineClass *mc = MACHINE_CLASS(oc);
1283     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
1284     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1285 
1286     mc->init = mps2tz_common_init;
1287     mc->reset = mps2_machine_reset;
1288     iic->check = mps2_tz_idau_check;
1289 
1290     /* Most machines leave these at the SSE defaults */
1291     mmc->cpu0_mpu_ns = MPU_REGION_DEFAULT;
1292     mmc->cpu0_mpu_s = MPU_REGION_DEFAULT;
1293     mmc->cpu1_mpu_ns = MPU_REGION_DEFAULT;
1294     mmc->cpu1_mpu_s = MPU_REGION_DEFAULT;
1295 }
1296 
1297 static void mps2tz_set_default_ram_info(MPS2TZMachineClass *mmc)
1298 {
1299     /*
1300      * Set mc->default_ram_size and default_ram_id from the
1301      * information in mmc->raminfo.
1302      */
1303     MachineClass *mc = MACHINE_CLASS(mmc);
1304     const RAMInfo *p;
1305 
1306     for (p = mmc->raminfo; p->name; p++) {
1307         if (p->mrindex < 0) {
1308             /* Found the entry for "system memory" */
1309             mc->default_ram_size = p->size;
1310             mc->default_ram_id = p->name;
1311             return;
1312         }
1313     }
1314     g_assert_not_reached();
1315 }
1316 
1317 static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
1318 {
1319     MachineClass *mc = MACHINE_CLASS(oc);
1320     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1321 
1322     mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
1323     mc->default_cpus = 1;
1324     mc->min_cpus = mc->default_cpus;
1325     mc->max_cpus = mc->default_cpus;
1326     mmc->fpga_type = FPGA_AN505;
1327     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1328     mmc->scc_id = 0x41045050;
1329     mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
1330     mmc->apb_periph_frq = mmc->sysclk_frq;
1331     mmc->oscclk = an505_oscclk;
1332     mmc->len_oscclk = ARRAY_SIZE(an505_oscclk);
1333     mmc->fpgaio_num_leds = 2;
1334     mmc->fpgaio_has_switches = false;
1335     mmc->fpgaio_has_dbgctrl = false;
1336     mmc->numirq = 92;
1337     mmc->uart_overflow_irq = 47;
1338     mmc->init_svtor = 0x10000000;
1339     mmc->sram_addr_width = 15;
1340     mmc->raminfo = an505_raminfo;
1341     mmc->armsse_type = TYPE_IOTKIT;
1342     mmc->boot_ram_size = 0;
1343     mps2tz_set_default_ram_info(mmc);
1344 }
1345 
1346 static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
1347 {
1348     MachineClass *mc = MACHINE_CLASS(oc);
1349     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1350 
1351     mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
1352     mc->default_cpus = 2;
1353     mc->min_cpus = mc->default_cpus;
1354     mc->max_cpus = mc->default_cpus;
1355     mmc->fpga_type = FPGA_AN521;
1356     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1357     mmc->scc_id = 0x41045210;
1358     mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
1359     mmc->apb_periph_frq = mmc->sysclk_frq;
1360     mmc->oscclk = an505_oscclk; /* AN521 is the same as AN505 here */
1361     mmc->len_oscclk = ARRAY_SIZE(an505_oscclk);
1362     mmc->fpgaio_num_leds = 2;
1363     mmc->fpgaio_has_switches = false;
1364     mmc->fpgaio_has_dbgctrl = false;
1365     mmc->numirq = 92;
1366     mmc->uart_overflow_irq = 47;
1367     mmc->init_svtor = 0x10000000;
1368     mmc->sram_addr_width = 15;
1369     mmc->raminfo = an505_raminfo; /* AN521 is the same as AN505 here */
1370     mmc->armsse_type = TYPE_SSE200;
1371     mmc->boot_ram_size = 0;
1372     mps2tz_set_default_ram_info(mmc);
1373 }
1374 
1375 static void mps3tz_an524_class_init(ObjectClass *oc, void *data)
1376 {
1377     MachineClass *mc = MACHINE_CLASS(oc);
1378     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1379 
1380     mc->desc = "ARM MPS3 with AN524 FPGA image for dual Cortex-M33";
1381     mc->default_cpus = 2;
1382     mc->min_cpus = mc->default_cpus;
1383     mc->max_cpus = mc->default_cpus;
1384     mmc->fpga_type = FPGA_AN524;
1385     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1386     mmc->scc_id = 0x41045240;
1387     mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */
1388     mmc->apb_periph_frq = mmc->sysclk_frq;
1389     mmc->oscclk = an524_oscclk;
1390     mmc->len_oscclk = ARRAY_SIZE(an524_oscclk);
1391     mmc->fpgaio_num_leds = 10;
1392     mmc->fpgaio_has_switches = true;
1393     mmc->fpgaio_has_dbgctrl = false;
1394     mmc->numirq = 95;
1395     mmc->uart_overflow_irq = 47;
1396     mmc->init_svtor = 0x10000000;
1397     mmc->sram_addr_width = 15;
1398     mmc->raminfo = an524_raminfo;
1399     mmc->armsse_type = TYPE_SSE200;
1400     mmc->boot_ram_size = 0;
1401     mps2tz_set_default_ram_info(mmc);
1402 
1403     object_class_property_add_str(oc, "remap", mps2_get_remap, mps2_set_remap);
1404     object_class_property_set_description(oc, "remap",
1405                                           "Set memory mapping. Valid values "
1406                                           "are BRAM (default) and QSPI.");
1407 }
1408 
1409 static void mps3tz_an547_class_init(ObjectClass *oc, void *data)
1410 {
1411     MachineClass *mc = MACHINE_CLASS(oc);
1412     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1413 
1414     mc->desc = "ARM MPS3 with AN547 FPGA image for Cortex-M55";
1415     mc->default_cpus = 1;
1416     mc->min_cpus = mc->default_cpus;
1417     mc->max_cpus = mc->default_cpus;
1418     mmc->fpga_type = FPGA_AN547;
1419     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m55");
1420     mmc->scc_id = 0x41055470;
1421     mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */
1422     mmc->apb_periph_frq = 25 * 1000 * 1000; /* 25MHz */
1423     mmc->oscclk = an524_oscclk; /* same as AN524 */
1424     mmc->len_oscclk = ARRAY_SIZE(an524_oscclk);
1425     mmc->fpgaio_num_leds = 10;
1426     mmc->fpgaio_has_switches = true;
1427     mmc->fpgaio_has_dbgctrl = true;
1428     mmc->numirq = 96;
1429     mmc->uart_overflow_irq = 48;
1430     mmc->init_svtor = 0x00000000;
1431     mmc->cpu0_mpu_s = mmc->cpu0_mpu_ns = 16;
1432     mmc->sram_addr_width = 21;
1433     mmc->raminfo = an547_raminfo;
1434     mmc->armsse_type = TYPE_SSE300;
1435     mmc->boot_ram_size = 512 * KiB;
1436     mps2tz_set_default_ram_info(mmc);
1437 }
1438 
1439 static const TypeInfo mps2tz_info = {
1440     .name = TYPE_MPS2TZ_MACHINE,
1441     .parent = TYPE_MACHINE,
1442     .abstract = true,
1443     .instance_size = sizeof(MPS2TZMachineState),
1444     .class_size = sizeof(MPS2TZMachineClass),
1445     .class_init = mps2tz_class_init,
1446     .interfaces = (InterfaceInfo[]) {
1447         { TYPE_IDAU_INTERFACE },
1448         { }
1449     },
1450 };
1451 
1452 static const TypeInfo mps2tz_an505_info = {
1453     .name = TYPE_MPS2TZ_AN505_MACHINE,
1454     .parent = TYPE_MPS2TZ_MACHINE,
1455     .class_init = mps2tz_an505_class_init,
1456 };
1457 
1458 static const TypeInfo mps2tz_an521_info = {
1459     .name = TYPE_MPS2TZ_AN521_MACHINE,
1460     .parent = TYPE_MPS2TZ_MACHINE,
1461     .class_init = mps2tz_an521_class_init,
1462 };
1463 
1464 static const TypeInfo mps3tz_an524_info = {
1465     .name = TYPE_MPS3TZ_AN524_MACHINE,
1466     .parent = TYPE_MPS2TZ_MACHINE,
1467     .class_init = mps3tz_an524_class_init,
1468 };
1469 
1470 static const TypeInfo mps3tz_an547_info = {
1471     .name = TYPE_MPS3TZ_AN547_MACHINE,
1472     .parent = TYPE_MPS2TZ_MACHINE,
1473     .class_init = mps3tz_an547_class_init,
1474 };
1475 
1476 static void mps2tz_machine_init(void)
1477 {
1478     type_register_static(&mps2tz_info);
1479     type_register_static(&mps2tz_an505_info);
1480     type_register_static(&mps2tz_an521_info);
1481     type_register_static(&mps3tz_an524_info);
1482     type_register_static(&mps3tz_an547_info);
1483 }
1484 
1485 type_init(mps2tz_machine_init);
1486