xref: /openbmc/qemu/hw/arm/mps2-tz.c (revision 6e510855)
1 /*
2  * ARM V2M MPS2 board emulation, trustzone aware FPGA images
3  *
4  * Copyright (c) 2017 Linaro Limited
5  * Written by Peter Maydell
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 or
9  *  (at your option) any later version.
10  */
11 
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13  * FPGA but is otherwise the same as the 2). Since the CPU itself
14  * and most of the devices are in the FPGA, the details of the board
15  * as seen by the guest depend significantly on the FPGA image.
16  * This source file covers the following FPGA images, for TrustZone cores:
17  *  "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18  *  "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
19  *  "mps2-an524" -- Dual Cortex-M33 as documented in Application Note AN524
20  *  "mps2-an547" -- Single Cortex-M55 as documented in Application Note AN547
21  *
22  * Links to the TRM for the board itself and to the various Application
23  * Notes which document the FPGA images can be found here:
24  * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
25  *
26  * Board TRM:
27  * https://developer.arm.com/documentation/100112/latest/
28  * Application Note AN505:
29  * https://developer.arm.com/documentation/dai0505/latest/
30  * Application Note AN521:
31  * https://developer.arm.com/documentation/dai0521/latest/
32  * Application Note AN524:
33  * https://developer.arm.com/documentation/dai0524/latest/
34  * Application Note AN547:
35  * https://developer.arm.com/documentation/dai0547/latest/
36  *
37  * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
38  * (ARM ECM0601256) for the details of some of the device layout:
39  *  https://developer.arm.com/documentation/ecm0601256/latest
40  * Similarly, the AN521 and AN524 use the SSE-200, and the SSE-200 TRM defines
41  * most of the device layout:
42  *  https://developer.arm.com/documentation/101104/latest/
43  * and the AN547 uses the SSE-300, whose layout is in the SSE-300 TRM:
44  *  https://developer.arm.com/documentation/101773/latest/
45  */
46 
47 #include "qemu/osdep.h"
48 #include "qemu/units.h"
49 #include "qemu/cutils.h"
50 #include "qapi/error.h"
51 #include "qemu/error-report.h"
52 #include "hw/arm/boot.h"
53 #include "hw/arm/armv7m.h"
54 #include "hw/or-irq.h"
55 #include "hw/boards.h"
56 #include "exec/address-spaces.h"
57 #include "sysemu/sysemu.h"
58 #include "sysemu/reset.h"
59 #include "hw/misc/unimp.h"
60 #include "hw/char/cmsdk-apb-uart.h"
61 #include "hw/timer/cmsdk-apb-timer.h"
62 #include "hw/misc/mps2-scc.h"
63 #include "hw/misc/mps2-fpgaio.h"
64 #include "hw/misc/tz-mpc.h"
65 #include "hw/misc/tz-msc.h"
66 #include "hw/arm/armsse.h"
67 #include "hw/dma/pl080.h"
68 #include "hw/rtc/pl031.h"
69 #include "hw/ssi/pl022.h"
70 #include "hw/i2c/arm_sbcon_i2c.h"
71 #include "hw/net/lan9118.h"
72 #include "net/net.h"
73 #include "hw/core/split-irq.h"
74 #include "hw/qdev-clock.h"
75 #include "qom/object.h"
76 #include "hw/irq.h"
77 
78 #define MPS2TZ_NUMIRQ_MAX 96
79 #define MPS2TZ_RAM_MAX 5
80 
81 typedef enum MPS2TZFPGAType {
82     FPGA_AN505,
83     FPGA_AN521,
84     FPGA_AN524,
85     FPGA_AN547,
86 } MPS2TZFPGAType;
87 
88 /*
89  * Define the layout of RAM in a board, including which parts are
90  * behind which MPCs.
91  * mrindex specifies the index into mms->ram[] to use for the backing RAM;
92  * -1 means "use the system RAM".
93  */
94 typedef struct RAMInfo {
95     const char *name;
96     uint32_t base;
97     uint32_t size;
98     int mpc; /* MPC number, -1 for "not behind an MPC" */
99     int mrindex;
100     int flags;
101 } RAMInfo;
102 
103 /*
104  * Flag values:
105  *  IS_ALIAS: this RAM area is an alias to the upstream end of the
106  *    MPC specified by its .mpc value
107  *  IS_ROM: this RAM area is read-only
108  */
109 #define IS_ALIAS 1
110 #define IS_ROM 2
111 
112 struct MPS2TZMachineClass {
113     MachineClass parent;
114     MPS2TZFPGAType fpga_type;
115     uint32_t scc_id;
116     uint32_t sysclk_frq; /* Main SYSCLK frequency in Hz */
117     uint32_t apb_periph_frq; /* APB peripheral frequency in Hz */
118     uint32_t len_oscclk;
119     const uint32_t *oscclk;
120     uint32_t fpgaio_num_leds; /* Number of LEDs in FPGAIO LED0 register */
121     bool fpgaio_has_switches; /* Does FPGAIO have SWITCH register? */
122     bool fpgaio_has_dbgctrl; /* Does FPGAIO have DBGCTRL register? */
123     int numirq; /* Number of external interrupts */
124     int uart_overflow_irq; /* number of the combined UART overflow IRQ */
125     uint32_t init_svtor; /* init-svtor setting for SSE */
126     uint32_t sram_addr_width; /* SRAM_ADDR_WIDTH setting for SSE */
127     const RAMInfo *raminfo;
128     const char *armsse_type;
129     uint32_t boot_ram_size; /* size of ram at address 0; 0 == find in raminfo */
130 };
131 
132 struct MPS2TZMachineState {
133     MachineState parent;
134 
135     ARMSSE iotkit;
136     MemoryRegion ram[MPS2TZ_RAM_MAX];
137     MemoryRegion eth_usb_container;
138 
139     MPS2SCC scc;
140     MPS2FPGAIO fpgaio;
141     TZPPC ppc[5];
142     TZMPC mpc[3];
143     PL022State spi[5];
144     ArmSbconI2CState i2c[5];
145     UnimplementedDeviceState i2s_audio;
146     UnimplementedDeviceState gpio[4];
147     UnimplementedDeviceState gfx;
148     UnimplementedDeviceState cldc;
149     UnimplementedDeviceState usb;
150     PL031State rtc;
151     PL080State dma[4];
152     TZMSC msc[4];
153     CMSDKAPBUART uart[6];
154     SplitIRQ sec_resp_splitter;
155     OrIRQState uart_irq_orgate;
156     DeviceState *lan9118;
157     SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ_MAX];
158     Clock *sysclk;
159     Clock *s32kclk;
160 
161     bool remap;
162     qemu_irq remap_irq;
163 };
164 
165 #define TYPE_MPS2TZ_MACHINE "mps2tz"
166 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
167 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
168 #define TYPE_MPS3TZ_AN524_MACHINE MACHINE_TYPE_NAME("mps3-an524")
169 #define TYPE_MPS3TZ_AN547_MACHINE MACHINE_TYPE_NAME("mps3-an547")
170 
171 OBJECT_DECLARE_TYPE(MPS2TZMachineState, MPS2TZMachineClass, MPS2TZ_MACHINE)
172 
173 /* Slow 32Khz S32KCLK frequency in Hz */
174 #define S32KCLK_FRQ (32 * 1000)
175 
176 /*
177  * The MPS3 DDR is 2GiB, but on a 32-bit host QEMU doesn't permit
178  * emulation of that much guest RAM, so artificially make it smaller.
179  */
180 #if HOST_LONG_BITS == 32
181 #define MPS3_DDR_SIZE (1 * GiB)
182 #else
183 #define MPS3_DDR_SIZE (2 * GiB)
184 #endif
185 
186 static const uint32_t an505_oscclk[] = {
187     40000000,
188     24580000,
189     25000000,
190 };
191 
192 static const uint32_t an524_oscclk[] = {
193     24000000,
194     32000000,
195     50000000,
196     50000000,
197     24576000,
198     23750000,
199 };
200 
201 static const RAMInfo an505_raminfo[] = { {
202         .name = "ssram-0",
203         .base = 0x00000000,
204         .size = 0x00400000,
205         .mpc = 0,
206         .mrindex = 0,
207     }, {
208         .name = "ssram-1",
209         .base = 0x28000000,
210         .size = 0x00200000,
211         .mpc = 1,
212         .mrindex = 1,
213     }, {
214         .name = "ssram-2",
215         .base = 0x28200000,
216         .size = 0x00200000,
217         .mpc = 2,
218         .mrindex = 2,
219     }, {
220         .name = "ssram-0-alias",
221         .base = 0x00400000,
222         .size = 0x00400000,
223         .mpc = 0,
224         .mrindex = 3,
225         .flags = IS_ALIAS,
226     }, {
227         /* Use the largest bit of contiguous RAM as our "system memory" */
228         .name = "mps.ram",
229         .base = 0x80000000,
230         .size = 16 * MiB,
231         .mpc = -1,
232         .mrindex = -1,
233     }, {
234         .name = NULL,
235     },
236 };
237 
238 /*
239  * Note that the addresses and MPC numbering here should match up
240  * with those used in remap_memory(), which can swap the BRAM and QSPI.
241  */
242 static const RAMInfo an524_raminfo[] = { {
243         .name = "bram",
244         .base = 0x00000000,
245         .size = 512 * KiB,
246         .mpc = 0,
247         .mrindex = 0,
248     }, {
249         /* We don't model QSPI flash yet; for now expose it as simple ROM */
250         .name = "QSPI",
251         .base = 0x28000000,
252         .size = 8 * MiB,
253         .mpc = 1,
254         .mrindex = 1,
255         .flags = IS_ROM,
256     }, {
257         .name = "DDR",
258         .base = 0x60000000,
259         .size = MPS3_DDR_SIZE,
260         .mpc = 2,
261         .mrindex = -1,
262     }, {
263         .name = NULL,
264     },
265 };
266 
267 static const RAMInfo an547_raminfo[] = { {
268         .name = "sram",
269         .base = 0x01000000,
270         .size = 2 * MiB,
271         .mpc = 0,
272         .mrindex = 1,
273     }, {
274         .name = "sram 2",
275         .base = 0x21000000,
276         .size = 4 * MiB,
277         .mpc = -1,
278         .mrindex = 3,
279     }, {
280         /* We don't model QSPI flash yet; for now expose it as simple ROM */
281         .name = "QSPI",
282         .base = 0x28000000,
283         .size = 8 * MiB,
284         .mpc = 1,
285         .mrindex = 4,
286         .flags = IS_ROM,
287     }, {
288         .name = "DDR",
289         .base = 0x60000000,
290         .size = MPS3_DDR_SIZE,
291         .mpc = 2,
292         .mrindex = -1,
293     }, {
294         .name = NULL,
295     },
296 };
297 
298 static const RAMInfo *find_raminfo_for_mpc(MPS2TZMachineState *mms, int mpc)
299 {
300     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
301     const RAMInfo *p;
302     const RAMInfo *found = NULL;
303 
304     for (p = mmc->raminfo; p->name; p++) {
305         if (p->mpc == mpc && !(p->flags & IS_ALIAS)) {
306             /* There should only be one entry in the array for this MPC */
307             g_assert(!found);
308             found = p;
309         }
310     }
311     /* if raminfo array doesn't have an entry for each MPC this is a bug */
312     assert(found);
313     return found;
314 }
315 
316 static MemoryRegion *mr_for_raminfo(MPS2TZMachineState *mms,
317                                     const RAMInfo *raminfo)
318 {
319     /* Return an initialized MemoryRegion for the RAMInfo. */
320     MemoryRegion *ram;
321 
322     if (raminfo->mrindex < 0) {
323         /* Means this RAMInfo is for QEMU's "system memory" */
324         MachineState *machine = MACHINE(mms);
325         assert(!(raminfo->flags & IS_ROM));
326         return machine->ram;
327     }
328 
329     assert(raminfo->mrindex < MPS2TZ_RAM_MAX);
330     ram = &mms->ram[raminfo->mrindex];
331 
332     memory_region_init_ram(ram, NULL, raminfo->name,
333                            raminfo->size, &error_fatal);
334     if (raminfo->flags & IS_ROM) {
335         memory_region_set_readonly(ram, true);
336     }
337     return ram;
338 }
339 
340 /* Create an alias of an entire original MemoryRegion @orig
341  * located at @base in the memory map.
342  */
343 static void make_ram_alias(MemoryRegion *mr, const char *name,
344                            MemoryRegion *orig, hwaddr base)
345 {
346     memory_region_init_alias(mr, NULL, name, orig, 0,
347                              memory_region_size(orig));
348     memory_region_add_subregion(get_system_memory(), base, mr);
349 }
350 
351 static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
352 {
353     /*
354      * Return a qemu_irq which will signal IRQ n to all CPUs in the
355      * SSE.  The irqno should be as the CPU sees it, so the first
356      * external-to-the-SSE interrupt is 32.
357      */
358     MachineClass *mc = MACHINE_GET_CLASS(mms);
359     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
360 
361     assert(irqno >= 32 && irqno < (mmc->numirq + 32));
362 
363     /*
364      * Convert from "CPU irq number" (as listed in the FPGA image
365      * documentation) to the SSE external-interrupt number.
366      */
367     irqno -= 32;
368 
369     if (mc->max_cpus > 1) {
370         return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
371     } else {
372         return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
373     }
374 }
375 
376 /* Union describing the device-specific extra data we pass to the devfn. */
377 typedef union PPCExtraData {
378     bool i2c_internal;
379 } PPCExtraData;
380 
381 /* Most of the devices in the AN505 FPGA image sit behind
382  * Peripheral Protection Controllers. These data structures
383  * define the layout of which devices sit behind which PPCs.
384  * The devfn for each port is a function which creates, configures
385  * and initializes the device, returning the MemoryRegion which
386  * needs to be plugged into the downstream end of the PPC port.
387  */
388 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
389                                 const char *name, hwaddr size,
390                                 const int *irqs,
391                                 const PPCExtraData *extradata);
392 
393 typedef struct PPCPortInfo {
394     const char *name;
395     MakeDevFn *devfn;
396     void *opaque;
397     hwaddr addr;
398     hwaddr size;
399     int irqs[3]; /* currently no device needs more IRQ lines than this */
400     PPCExtraData extradata; /* to pass device-specific info to the devfn */
401 } PPCPortInfo;
402 
403 typedef struct PPCInfo {
404     const char *name;
405     PPCPortInfo ports[TZ_NUM_PORTS];
406 } PPCInfo;
407 
408 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
409                                     void *opaque,
410                                     const char *name, hwaddr size,
411                                     const int *irqs,
412                                     const PPCExtraData *extradata)
413 {
414     /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
415      * and return a pointer to its MemoryRegion.
416      */
417     UnimplementedDeviceState *uds = opaque;
418 
419     object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
420     qdev_prop_set_string(DEVICE(uds), "name", name);
421     qdev_prop_set_uint64(DEVICE(uds), "size", size);
422     sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
423     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
424 }
425 
426 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
427                                const char *name, hwaddr size,
428                                const int *irqs, const PPCExtraData *extradata)
429 {
430     /* The irq[] array is tx, rx, combined, in that order */
431     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
432     CMSDKAPBUART *uart = opaque;
433     int i = uart - &mms->uart[0];
434     SysBusDevice *s;
435     DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
436 
437     object_initialize_child(OBJECT(mms), name, uart, TYPE_CMSDK_APB_UART);
438     qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
439     qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", mmc->apb_periph_frq);
440     sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
441     s = SYS_BUS_DEVICE(uart);
442     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
443     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1]));
444     sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
445     sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
446     sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqs[2]));
447     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
448 }
449 
450 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
451                               const char *name, hwaddr size,
452                               const int *irqs, const PPCExtraData *extradata)
453 {
454     MPS2SCC *scc = opaque;
455     DeviceState *sccdev;
456     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
457     uint32_t i;
458 
459     object_initialize_child(OBJECT(mms), "scc", scc, TYPE_MPS2_SCC);
460     sccdev = DEVICE(scc);
461     qdev_prop_set_uint32(sccdev, "scc-cfg0", mms->remap ? 1 : 0);
462     qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
463     qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
464     qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
465     qdev_prop_set_uint32(sccdev, "len-oscclk", mmc->len_oscclk);
466     for (i = 0; i < mmc->len_oscclk; i++) {
467         g_autofree char *propname = g_strdup_printf("oscclk[%u]", i);
468         qdev_prop_set_uint32(sccdev, propname, mmc->oscclk[i]);
469     }
470     sysbus_realize(SYS_BUS_DEVICE(scc), &error_fatal);
471     return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
472 }
473 
474 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
475                                  const char *name, hwaddr size,
476                                  const int *irqs, const PPCExtraData *extradata)
477 {
478     MPS2FPGAIO *fpgaio = opaque;
479     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
480 
481     object_initialize_child(OBJECT(mms), "fpgaio", fpgaio, TYPE_MPS2_FPGAIO);
482     qdev_prop_set_uint32(DEVICE(fpgaio), "num-leds", mmc->fpgaio_num_leds);
483     qdev_prop_set_bit(DEVICE(fpgaio), "has-switches", mmc->fpgaio_has_switches);
484     qdev_prop_set_bit(DEVICE(fpgaio), "has-dbgctrl", mmc->fpgaio_has_dbgctrl);
485     sysbus_realize(SYS_BUS_DEVICE(fpgaio), &error_fatal);
486     return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
487 }
488 
489 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
490                                   const char *name, hwaddr size,
491                                   const int *irqs,
492                                   const PPCExtraData *extradata)
493 {
494     SysBusDevice *s;
495     NICInfo *nd = &nd_table[0];
496 
497     /* In hardware this is a LAN9220; the LAN9118 is software compatible
498      * except that it doesn't support the checksum-offload feature.
499      */
500     qemu_check_nic_model(nd, "lan9118");
501     mms->lan9118 = qdev_new(TYPE_LAN9118);
502     qdev_set_nic_properties(mms->lan9118, nd);
503 
504     s = SYS_BUS_DEVICE(mms->lan9118);
505     sysbus_realize_and_unref(s, &error_fatal);
506     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
507     return sysbus_mmio_get_region(s, 0);
508 }
509 
510 static MemoryRegion *make_eth_usb(MPS2TZMachineState *mms, void *opaque,
511                                   const char *name, hwaddr size,
512                                   const int *irqs,
513                                   const PPCExtraData *extradata)
514 {
515     /*
516      * The AN524 makes the ethernet and USB share a PPC port.
517      * irqs[] is the ethernet IRQ.
518      */
519     SysBusDevice *s;
520     NICInfo *nd = &nd_table[0];
521 
522     memory_region_init(&mms->eth_usb_container, OBJECT(mms),
523                        "mps2-tz-eth-usb-container", 0x200000);
524 
525     /*
526      * In hardware this is a LAN9220; the LAN9118 is software compatible
527      * except that it doesn't support the checksum-offload feature.
528      */
529     qemu_check_nic_model(nd, "lan9118");
530     mms->lan9118 = qdev_new(TYPE_LAN9118);
531     qdev_set_nic_properties(mms->lan9118, nd);
532 
533     s = SYS_BUS_DEVICE(mms->lan9118);
534     sysbus_realize_and_unref(s, &error_fatal);
535     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
536 
537     memory_region_add_subregion(&mms->eth_usb_container,
538                                 0, sysbus_mmio_get_region(s, 0));
539 
540     /* The USB OTG controller is an ISP1763; we don't have a model of it. */
541     object_initialize_child(OBJECT(mms), "usb-otg",
542                             &mms->usb, TYPE_UNIMPLEMENTED_DEVICE);
543     qdev_prop_set_string(DEVICE(&mms->usb), "name", "usb-otg");
544     qdev_prop_set_uint64(DEVICE(&mms->usb), "size", 0x100000);
545     s = SYS_BUS_DEVICE(&mms->usb);
546     sysbus_realize(s, &error_fatal);
547 
548     memory_region_add_subregion(&mms->eth_usb_container,
549                                 0x100000, sysbus_mmio_get_region(s, 0));
550 
551     return &mms->eth_usb_container;
552 }
553 
554 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
555                               const char *name, hwaddr size,
556                               const int *irqs, const PPCExtraData *extradata)
557 {
558     TZMPC *mpc = opaque;
559     int i = mpc - &mms->mpc[0];
560     MemoryRegion *upstream;
561     const RAMInfo *raminfo = find_raminfo_for_mpc(mms, i);
562     MemoryRegion *ram = mr_for_raminfo(mms, raminfo);
563 
564     object_initialize_child(OBJECT(mms), name, mpc, TYPE_TZ_MPC);
565     object_property_set_link(OBJECT(mpc), "downstream", OBJECT(ram),
566                              &error_fatal);
567     sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
568     /* Map the upstream end of the MPC into system memory */
569     upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
570     memory_region_add_subregion(get_system_memory(), raminfo->base, upstream);
571     /* and connect its interrupt to the IoTKit */
572     qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
573                                 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
574                                                        "mpcexp_status", i));
575 
576     /* Return the register interface MR for our caller to map behind the PPC */
577     return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
578 }
579 
580 static hwaddr boot_mem_base(MPS2TZMachineState *mms)
581 {
582     /*
583      * Return the canonical address of the block which will be mapped
584      * at address 0x0 (i.e. where the vector table is).
585      * This is usually 0, but if the AN524 alternate memory map is
586      * enabled it will be the base address of the QSPI block.
587      */
588     return mms->remap ? 0x28000000 : 0;
589 }
590 
591 static void remap_memory(MPS2TZMachineState *mms, int map)
592 {
593     /*
594      * Remap the memory for the AN524. 'map' is the value of
595      * SCC CFG_REG0 bit 0, i.e. 0 for the default map and 1
596      * for the "option 1" mapping where QSPI is at address 0.
597      *
598      * Effectively we need to swap around the "upstream" ends of
599      * MPC 0 and MPC 1.
600      */
601     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
602     int i;
603 
604     if (mmc->fpga_type != FPGA_AN524) {
605         return;
606     }
607 
608     memory_region_transaction_begin();
609     for (i = 0; i < 2; i++) {
610         TZMPC *mpc = &mms->mpc[i];
611         MemoryRegion *upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
612         hwaddr addr = (i ^ map) ? 0x28000000 : 0;
613 
614         memory_region_set_address(upstream, addr);
615     }
616     memory_region_transaction_commit();
617 }
618 
619 static void remap_irq_fn(void *opaque, int n, int level)
620 {
621     MPS2TZMachineState *mms = opaque;
622 
623     remap_memory(mms, level);
624 }
625 
626 static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
627                               const char *name, hwaddr size,
628                               const int *irqs, const PPCExtraData *extradata)
629 {
630     /* The irq[] array is DMACINTR, DMACINTERR, DMACINTTC, in that order */
631     PL080State *dma = opaque;
632     int i = dma - &mms->dma[0];
633     SysBusDevice *s;
634     char *mscname = g_strdup_printf("%s-msc", name);
635     TZMSC *msc = &mms->msc[i];
636     DeviceState *iotkitdev = DEVICE(&mms->iotkit);
637     MemoryRegion *msc_upstream;
638     MemoryRegion *msc_downstream;
639 
640     /*
641      * Each DMA device is a PL081 whose transaction master interface
642      * is guarded by a Master Security Controller. The downstream end of
643      * the MSC connects to the IoTKit AHB Slave Expansion port, so the
644      * DMA devices can see all devices and memory that the CPU does.
645      */
646     object_initialize_child(OBJECT(mms), mscname, msc, TYPE_TZ_MSC);
647     msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
648     object_property_set_link(OBJECT(msc), "downstream",
649                              OBJECT(msc_downstream), &error_fatal);
650     object_property_set_link(OBJECT(msc), "idau", OBJECT(mms), &error_fatal);
651     sysbus_realize(SYS_BUS_DEVICE(msc), &error_fatal);
652 
653     qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
654                                 qdev_get_gpio_in_named(iotkitdev,
655                                                        "mscexp_status", i));
656     qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
657                                 qdev_get_gpio_in_named(DEVICE(msc),
658                                                        "irq_clear", 0));
659     qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
660                                 qdev_get_gpio_in_named(DEVICE(msc),
661                                                        "cfg_nonsec", 0));
662     qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
663                           ARRAY_SIZE(mms->ppc) + i,
664                           qdev_get_gpio_in_named(DEVICE(msc),
665                                                  "cfg_sec_resp", 0));
666     msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
667 
668     object_initialize_child(OBJECT(mms), name, dma, TYPE_PL081);
669     object_property_set_link(OBJECT(dma), "downstream", OBJECT(msc_upstream),
670                              &error_fatal);
671     sysbus_realize(SYS_BUS_DEVICE(dma), &error_fatal);
672 
673     s = SYS_BUS_DEVICE(dma);
674     /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
675     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
676     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1]));
677     sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqs[2]));
678 
679     g_free(mscname);
680     return sysbus_mmio_get_region(s, 0);
681 }
682 
683 static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
684                               const char *name, hwaddr size,
685                               const int *irqs, const PPCExtraData *extradata)
686 {
687     /*
688      * The AN505 has five PL022 SPI controllers.
689      * One of these should have the LCD controller behind it; the others
690      * are connected only to the FPGA's "general purpose SPI connector"
691      * or "shield" expansion connectors.
692      * Note that if we do implement devices behind SPI, the chip select
693      * lines are set via the "MISC" register in the MPS2 FPGAIO device.
694      */
695     PL022State *spi = opaque;
696     SysBusDevice *s;
697 
698     object_initialize_child(OBJECT(mms), name, spi, TYPE_PL022);
699     sysbus_realize(SYS_BUS_DEVICE(spi), &error_fatal);
700     s = SYS_BUS_DEVICE(spi);
701     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
702     return sysbus_mmio_get_region(s, 0);
703 }
704 
705 static MemoryRegion *make_i2c(MPS2TZMachineState *mms, void *opaque,
706                               const char *name, hwaddr size,
707                               const int *irqs, const PPCExtraData *extradata)
708 {
709     ArmSbconI2CState *i2c = opaque;
710     SysBusDevice *s;
711 
712     object_initialize_child(OBJECT(mms), name, i2c, TYPE_ARM_SBCON_I2C);
713     s = SYS_BUS_DEVICE(i2c);
714     sysbus_realize(s, &error_fatal);
715 
716     /*
717      * If this is an internal-use-only i2c bus, mark it full
718      * so that user-created i2c devices are not plugged into it.
719      * If we implement models of any on-board i2c devices that
720      * plug in to one of the internal-use-only buses, then we will
721      * need to create and plugging those in here before we mark the
722      * bus as full.
723      */
724     if (extradata->i2c_internal) {
725         BusState *qbus = qdev_get_child_bus(DEVICE(i2c), "i2c");
726         qbus_mark_full(qbus);
727     }
728 
729     return sysbus_mmio_get_region(s, 0);
730 }
731 
732 static MemoryRegion *make_rtc(MPS2TZMachineState *mms, void *opaque,
733                               const char *name, hwaddr size,
734                               const int *irqs, const PPCExtraData *extradata)
735 {
736     PL031State *pl031 = opaque;
737     SysBusDevice *s;
738 
739     object_initialize_child(OBJECT(mms), name, pl031, TYPE_PL031);
740     s = SYS_BUS_DEVICE(pl031);
741     sysbus_realize(s, &error_fatal);
742     /*
743      * The board docs don't give an IRQ number for the PL031, so
744      * presumably it is not connected.
745      */
746     return sysbus_mmio_get_region(s, 0);
747 }
748 
749 static void create_non_mpc_ram(MPS2TZMachineState *mms)
750 {
751     /*
752      * Handle the RAMs which are either not behind MPCs or which are
753      * aliases to another MPC.
754      */
755     const RAMInfo *p;
756     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
757 
758     for (p = mmc->raminfo; p->name; p++) {
759         if (p->flags & IS_ALIAS) {
760             SysBusDevice *mpc_sbd = SYS_BUS_DEVICE(&mms->mpc[p->mpc]);
761             MemoryRegion *upstream = sysbus_mmio_get_region(mpc_sbd, 1);
762             make_ram_alias(&mms->ram[p->mrindex], p->name, upstream, p->base);
763         } else if (p->mpc == -1) {
764             /* RAM not behind an MPC */
765             MemoryRegion *mr = mr_for_raminfo(mms, p);
766             memory_region_add_subregion(get_system_memory(), p->base, mr);
767         }
768     }
769 }
770 
771 static uint32_t boot_ram_size(MPS2TZMachineState *mms)
772 {
773     /* Return the size of the RAM block at guest address zero */
774     const RAMInfo *p;
775     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
776 
777     /*
778      * Use a per-board specification (for when the boot RAM is in
779      * the SSE and so doesn't have a RAMInfo list entry)
780      */
781     if (mmc->boot_ram_size) {
782         return mmc->boot_ram_size;
783     }
784 
785     for (p = mmc->raminfo; p->name; p++) {
786         if (p->base == boot_mem_base(mms)) {
787             return p->size;
788         }
789     }
790     g_assert_not_reached();
791 }
792 
793 static void mps2tz_common_init(MachineState *machine)
794 {
795     MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
796     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
797     MachineClass *mc = MACHINE_GET_CLASS(machine);
798     MemoryRegion *system_memory = get_system_memory();
799     DeviceState *iotkitdev;
800     DeviceState *dev_splitter;
801     const PPCInfo *ppcs;
802     int num_ppcs;
803     int i;
804 
805     if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
806         error_report("This board can only be used with CPU %s",
807                      mc->default_cpu_type);
808         exit(1);
809     }
810 
811     if (machine->ram_size != mc->default_ram_size) {
812         char *sz = size_to_str(mc->default_ram_size);
813         error_report("Invalid RAM size, should be %s", sz);
814         g_free(sz);
815         exit(EXIT_FAILURE);
816     }
817 
818     /* These clocks don't need migration because they are fixed-frequency */
819     mms->sysclk = clock_new(OBJECT(machine), "SYSCLK");
820     clock_set_hz(mms->sysclk, mmc->sysclk_frq);
821     mms->s32kclk = clock_new(OBJECT(machine), "S32KCLK");
822     clock_set_hz(mms->s32kclk, S32KCLK_FRQ);
823 
824     object_initialize_child(OBJECT(machine), TYPE_IOTKIT, &mms->iotkit,
825                             mmc->armsse_type);
826     iotkitdev = DEVICE(&mms->iotkit);
827     object_property_set_link(OBJECT(&mms->iotkit), "memory",
828                              OBJECT(system_memory), &error_abort);
829     qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", mmc->numirq);
830     qdev_prop_set_uint32(iotkitdev, "init-svtor", mmc->init_svtor);
831     qdev_prop_set_uint32(iotkitdev, "SRAM_ADDR_WIDTH", mmc->sram_addr_width);
832     qdev_connect_clock_in(iotkitdev, "MAINCLK", mms->sysclk);
833     qdev_connect_clock_in(iotkitdev, "S32KCLK", mms->s32kclk);
834     sysbus_realize(SYS_BUS_DEVICE(&mms->iotkit), &error_fatal);
835 
836     /*
837      * If this board has more than one CPU, then we need to create splitters
838      * to feed the IRQ inputs for each CPU in the SSE from each device in the
839      * board. If there is only one CPU, we can just wire the device IRQ
840      * directly to the SSE's IRQ input.
841      */
842     assert(mmc->numirq <= MPS2TZ_NUMIRQ_MAX);
843     if (mc->max_cpus > 1) {
844         for (i = 0; i < mmc->numirq; i++) {
845             char *name = g_strdup_printf("mps2-irq-splitter%d", i);
846             SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
847 
848             object_initialize_child_with_props(OBJECT(machine), name,
849                                                splitter, sizeof(*splitter),
850                                                TYPE_SPLIT_IRQ, &error_fatal,
851                                                NULL);
852             g_free(name);
853 
854             object_property_set_int(OBJECT(splitter), "num-lines", 2,
855                                     &error_fatal);
856             qdev_realize(DEVICE(splitter), NULL, &error_fatal);
857             qdev_connect_gpio_out(DEVICE(splitter), 0,
858                                   qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
859                                                          "EXP_IRQ", i));
860             qdev_connect_gpio_out(DEVICE(splitter), 1,
861                                   qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
862                                                          "EXP_CPU1_IRQ", i));
863         }
864     }
865 
866     /* The sec_resp_cfg output from the IoTKit must be split into multiple
867      * lines, one for each of the PPCs we create here, plus one per MSC.
868      */
869     object_initialize_child(OBJECT(machine), "sec-resp-splitter",
870                             &mms->sec_resp_splitter, TYPE_SPLIT_IRQ);
871     object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
872                             ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
873                             &error_fatal);
874     qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
875     dev_splitter = DEVICE(&mms->sec_resp_splitter);
876     qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
877                                 qdev_get_gpio_in(dev_splitter, 0));
878 
879     /*
880      * The IoTKit sets up much of the memory layout, including
881      * the aliases between secure and non-secure regions in the
882      * address space, and also most of the devices in the system.
883      * The FPGA itself contains various RAMs and some additional devices.
884      * The FPGA images have an odd combination of different RAMs,
885      * because in hardware they are different implementations and
886      * connected to different buses, giving varying performance/size
887      * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
888      * call the largest lump our "system memory".
889      */
890 
891     /*
892      * The overflow IRQs for all UARTs are ORed together.
893      * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
894      * Create the OR gate for this: it has one input for the TX overflow
895      * and one for the RX overflow for each UART we might have.
896      * (If the board has fewer than the maximum possible number of UARTs
897      * those inputs are never wired up and are treated as always-zero.)
898      */
899     object_initialize_child(OBJECT(mms), "uart-irq-orgate",
900                             &mms->uart_irq_orgate, TYPE_OR_IRQ);
901     object_property_set_int(OBJECT(&mms->uart_irq_orgate), "num-lines",
902                             2 * ARRAY_SIZE(mms->uart),
903                             &error_fatal);
904     qdev_realize(DEVICE(&mms->uart_irq_orgate), NULL, &error_fatal);
905     qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
906                           get_sse_irq_in(mms, mmc->uart_overflow_irq));
907 
908     /* Most of the devices in the FPGA are behind Peripheral Protection
909      * Controllers. The required order for initializing things is:
910      *  + initialize the PPC
911      *  + initialize, configure and realize downstream devices
912      *  + connect downstream device MemoryRegions to the PPC
913      *  + realize the PPC
914      *  + map the PPC's MemoryRegions to the places in the address map
915      *    where the downstream devices should appear
916      *  + wire up the PPC's control lines to the IoTKit object
917      */
918 
919     const PPCInfo an505_ppcs[] = { {
920             .name = "apb_ppcexp0",
921             .ports = {
922                 { "ssram-0-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 },
923                 { "ssram-1-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 },
924                 { "ssram-2-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 },
925             },
926         }, {
927             .name = "apb_ppcexp1",
928             .ports = {
929                 { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000, { 51 } },
930                 { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000, { 52 } },
931                 { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000, { 53 } },
932                 { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000, { 54 } },
933                 { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000, { 55 } },
934                 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000, { 32, 33, 42 } },
935                 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000, { 34, 35, 43 } },
936                 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000, { 36, 37, 44 } },
937                 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000, { 38, 39, 45 } },
938                 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000, { 40, 41, 46 } },
939                 { "i2c0", make_i2c, &mms->i2c[0], 0x40207000, 0x1000, {},
940                   { .i2c_internal = true /* touchscreen */ } },
941                 { "i2c1", make_i2c, &mms->i2c[1], 0x40208000, 0x1000, {},
942                   { .i2c_internal = true /* audio conf */ } },
943                 { "i2c2", make_i2c, &mms->i2c[2], 0x4020c000, 0x1000, {},
944                   { .i2c_internal = false /* shield 0 */ } },
945                 { "i2c3", make_i2c, &mms->i2c[3], 0x4020d000, 0x1000, {},
946                   { .i2c_internal = false /* shield 1 */ } },
947             },
948         }, {
949             .name = "apb_ppcexp2",
950             .ports = {
951                 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
952                 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
953                   0x40301000, 0x1000 },
954                 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
955             },
956         }, {
957             .name = "ahb_ppcexp0",
958             .ports = {
959                 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
960                 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
961                 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
962                 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
963                 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
964                 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000, { 48 } },
965             },
966         }, {
967             .name = "ahb_ppcexp1",
968             .ports = {
969                 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000, { 58, 56, 57 } },
970                 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000, { 61, 59, 60 } },
971                 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000, { 64, 62, 63 } },
972                 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000, { 67, 65, 66 } },
973             },
974         },
975     };
976 
977     const PPCInfo an524_ppcs[] = { {
978             .name = "apb_ppcexp0",
979             .ports = {
980                 { "bram-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 },
981                 { "qspi-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 },
982                 { "ddr-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 },
983             },
984         }, {
985             .name = "apb_ppcexp1",
986             .ports = {
987                 { "i2c0", make_i2c, &mms->i2c[0], 0x41200000, 0x1000, {},
988                   { .i2c_internal = true /* touchscreen */ } },
989                 { "i2c1", make_i2c, &mms->i2c[1], 0x41201000, 0x1000, {},
990                   { .i2c_internal = true /* audio conf */ } },
991                 { "spi0", make_spi, &mms->spi[0], 0x41202000, 0x1000, { 52 } },
992                 { "spi1", make_spi, &mms->spi[1], 0x41203000, 0x1000, { 53 } },
993                 { "spi2", make_spi, &mms->spi[2], 0x41204000, 0x1000, { 54 } },
994                 { "i2c2", make_i2c, &mms->i2c[2], 0x41205000, 0x1000, {},
995                   { .i2c_internal = false /* shield 0 */ } },
996                 { "i2c3", make_i2c, &mms->i2c[3], 0x41206000, 0x1000, {},
997                   { .i2c_internal = false /* shield 1 */ } },
998                 { /* port 7 reserved */ },
999                 { "i2c4", make_i2c, &mms->i2c[4], 0x41208000, 0x1000, {},
1000                   { .i2c_internal = true /* DDR4 EEPROM */ } },
1001             },
1002         }, {
1003             .name = "apb_ppcexp2",
1004             .ports = {
1005                 { "scc", make_scc, &mms->scc, 0x41300000, 0x1000 },
1006                 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
1007                   0x41301000, 0x1000 },
1008                 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x41302000, 0x1000 },
1009                 { "uart0", make_uart, &mms->uart[0], 0x41303000, 0x1000, { 32, 33, 42 } },
1010                 { "uart1", make_uart, &mms->uart[1], 0x41304000, 0x1000, { 34, 35, 43 } },
1011                 { "uart2", make_uart, &mms->uart[2], 0x41305000, 0x1000, { 36, 37, 44 } },
1012                 { "uart3", make_uart, &mms->uart[3], 0x41306000, 0x1000, { 38, 39, 45 } },
1013                 { "uart4", make_uart, &mms->uart[4], 0x41307000, 0x1000, { 40, 41, 46 } },
1014                 { "uart5", make_uart, &mms->uart[5], 0x41308000, 0x1000, { 124, 125, 126 } },
1015 
1016                 { /* port 9 reserved */ },
1017                 { "clcd", make_unimp_dev, &mms->cldc, 0x4130a000, 0x1000 },
1018                 { "rtc", make_rtc, &mms->rtc, 0x4130b000, 0x1000 },
1019             },
1020         }, {
1021             .name = "ahb_ppcexp0",
1022             .ports = {
1023                 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 },
1024                 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 },
1025                 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 },
1026                 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 },
1027                 { "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 48 } },
1028             },
1029         },
1030     };
1031 
1032     const PPCInfo an547_ppcs[] = { {
1033             .name = "apb_ppcexp0",
1034             .ports = {
1035                 { "ssram-mpc", make_mpc, &mms->mpc[0], 0x57000000, 0x1000 },
1036                 { "qspi-mpc", make_mpc, &mms->mpc[1], 0x57001000, 0x1000 },
1037                 { "ddr-mpc", make_mpc, &mms->mpc[2], 0x57002000, 0x1000 },
1038             },
1039         }, {
1040             .name = "apb_ppcexp1",
1041             .ports = {
1042                 { "i2c0", make_i2c, &mms->i2c[0], 0x49200000, 0x1000, {},
1043                   { .i2c_internal = true /* touchscreen */ } },
1044                 { "i2c1", make_i2c, &mms->i2c[1], 0x49201000, 0x1000, {},
1045                   { .i2c_internal = true /* audio conf */ } },
1046                 { "spi0", make_spi, &mms->spi[0], 0x49202000, 0x1000, { 53 } },
1047                 { "spi1", make_spi, &mms->spi[1], 0x49203000, 0x1000, { 54 } },
1048                 { "spi2", make_spi, &mms->spi[2], 0x49204000, 0x1000, { 55 } },
1049                 { "i2c2", make_i2c, &mms->i2c[2], 0x49205000, 0x1000, {},
1050                   { .i2c_internal = false /* shield 0 */ } },
1051                 { "i2c3", make_i2c, &mms->i2c[3], 0x49206000, 0x1000, {},
1052                   { .i2c_internal = false /* shield 1 */ } },
1053                 { /* port 7 reserved */ },
1054                 { "i2c4", make_i2c, &mms->i2c[4], 0x49208000, 0x1000, {},
1055                   { .i2c_internal = true /* DDR4 EEPROM */ } },
1056             },
1057         }, {
1058             .name = "apb_ppcexp2",
1059             .ports = {
1060                 { "scc", make_scc, &mms->scc, 0x49300000, 0x1000 },
1061                 { "i2s-audio", make_unimp_dev, &mms->i2s_audio, 0x49301000, 0x1000 },
1062                 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x49302000, 0x1000 },
1063                 { "uart0", make_uart, &mms->uart[0], 0x49303000, 0x1000, { 33, 34, 43 } },
1064                 { "uart1", make_uart, &mms->uart[1], 0x49304000, 0x1000, { 35, 36, 44 } },
1065                 { "uart2", make_uart, &mms->uart[2], 0x49305000, 0x1000, { 37, 38, 45 } },
1066                 { "uart3", make_uart, &mms->uart[3], 0x49306000, 0x1000, { 39, 40, 46 } },
1067                 { "uart4", make_uart, &mms->uart[4], 0x49307000, 0x1000, { 41, 42, 47 } },
1068                 { "uart5", make_uart, &mms->uart[5], 0x49308000, 0x1000, { 125, 126, 127 } },
1069 
1070                 { /* port 9 reserved */ },
1071                 { "clcd", make_unimp_dev, &mms->cldc, 0x4930a000, 0x1000 },
1072                 { "rtc", make_rtc, &mms->rtc, 0x4930b000, 0x1000 },
1073             },
1074         }, {
1075             .name = "ahb_ppcexp0",
1076             .ports = {
1077                 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 },
1078                 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 },
1079                 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 },
1080                 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 },
1081                 { /* port 4 USER AHB interface 0 */ },
1082                 { /* port 5 USER AHB interface 1 */ },
1083                 { /* port 6 USER AHB interface 2 */ },
1084                 { /* port 7 USER AHB interface 3 */ },
1085                 { "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 49 } },
1086             },
1087         },
1088     };
1089 
1090     switch (mmc->fpga_type) {
1091     case FPGA_AN505:
1092     case FPGA_AN521:
1093         ppcs = an505_ppcs;
1094         num_ppcs = ARRAY_SIZE(an505_ppcs);
1095         break;
1096     case FPGA_AN524:
1097         ppcs = an524_ppcs;
1098         num_ppcs = ARRAY_SIZE(an524_ppcs);
1099         break;
1100     case FPGA_AN547:
1101         ppcs = an547_ppcs;
1102         num_ppcs = ARRAY_SIZE(an547_ppcs);
1103         break;
1104     default:
1105         g_assert_not_reached();
1106     }
1107 
1108     for (i = 0; i < num_ppcs; i++) {
1109         const PPCInfo *ppcinfo = &ppcs[i];
1110         TZPPC *ppc = &mms->ppc[i];
1111         DeviceState *ppcdev;
1112         int port;
1113         char *gpioname;
1114 
1115         object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
1116                                 TYPE_TZ_PPC);
1117         ppcdev = DEVICE(ppc);
1118 
1119         for (port = 0; port < TZ_NUM_PORTS; port++) {
1120             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
1121             MemoryRegion *mr;
1122             char *portname;
1123 
1124             if (!pinfo->devfn) {
1125                 continue;
1126             }
1127 
1128             mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size,
1129                               pinfo->irqs, &pinfo->extradata);
1130             portname = g_strdup_printf("port[%d]", port);
1131             object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
1132                                      &error_fatal);
1133             g_free(portname);
1134         }
1135 
1136         sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
1137 
1138         for (port = 0; port < TZ_NUM_PORTS; port++) {
1139             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
1140 
1141             if (!pinfo->devfn) {
1142                 continue;
1143             }
1144             sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
1145 
1146             gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
1147             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
1148                                         qdev_get_gpio_in_named(ppcdev,
1149                                                                "cfg_nonsec",
1150                                                                port));
1151             g_free(gpioname);
1152             gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
1153             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
1154                                         qdev_get_gpio_in_named(ppcdev,
1155                                                                "cfg_ap", port));
1156             g_free(gpioname);
1157         }
1158 
1159         gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
1160         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
1161                                     qdev_get_gpio_in_named(ppcdev,
1162                                                            "irq_enable", 0));
1163         g_free(gpioname);
1164         gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
1165         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
1166                                     qdev_get_gpio_in_named(ppcdev,
1167                                                            "irq_clear", 0));
1168         g_free(gpioname);
1169         gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
1170         qdev_connect_gpio_out_named(ppcdev, "irq", 0,
1171                                     qdev_get_gpio_in_named(iotkitdev,
1172                                                            gpioname, 0));
1173         g_free(gpioname);
1174 
1175         qdev_connect_gpio_out(dev_splitter, i,
1176                               qdev_get_gpio_in_named(ppcdev,
1177                                                      "cfg_sec_resp", 0));
1178     }
1179 
1180     create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
1181 
1182     if (mmc->fpga_type == FPGA_AN547) {
1183         create_unimplemented_device("U55 timing adapter 0", 0x48102000, 0x1000);
1184         create_unimplemented_device("U55 timing adapter 1", 0x48103000, 0x1000);
1185     }
1186 
1187     create_non_mpc_ram(mms);
1188 
1189     if (mmc->fpga_type == FPGA_AN524) {
1190         /*
1191          * Connect the line from the SCC so that we can remap when the
1192          * guest updates that register.
1193          */
1194         mms->remap_irq = qemu_allocate_irq(remap_irq_fn, mms, 0);
1195         qdev_connect_gpio_out_named(DEVICE(&mms->scc), "remap", 0,
1196                                     mms->remap_irq);
1197     }
1198 
1199     armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename,
1200                        0, boot_ram_size(mms));
1201 }
1202 
1203 static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
1204                                int *iregion, bool *exempt, bool *ns, bool *nsc)
1205 {
1206     /*
1207      * The MPS2 TZ FPGA images have IDAUs in them which are connected to
1208      * the Master Security Controllers. These have the same logic as
1209      * is used by the IoTKit for the IDAU connected to the CPU, except
1210      * that MSCs don't care about the NSC attribute.
1211      */
1212     int region = extract32(address, 28, 4);
1213 
1214     *ns = !(region & 1);
1215     *nsc = false;
1216     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1217     *exempt = (address & 0xeff00000) == 0xe0000000;
1218     *iregion = region;
1219 }
1220 
1221 static char *mps2_get_remap(Object *obj, Error **errp)
1222 {
1223     MPS2TZMachineState *mms = MPS2TZ_MACHINE(obj);
1224     const char *val = mms->remap ? "QSPI" : "BRAM";
1225     return g_strdup(val);
1226 }
1227 
1228 static void mps2_set_remap(Object *obj, const char *value, Error **errp)
1229 {
1230     MPS2TZMachineState *mms = MPS2TZ_MACHINE(obj);
1231 
1232     if (!strcmp(value, "BRAM")) {
1233         mms->remap = false;
1234     } else if (!strcmp(value, "QSPI")) {
1235         mms->remap = true;
1236     } else {
1237         error_setg(errp, "Invalid remap value");
1238         error_append_hint(errp, "Valid values are BRAM and QSPI.\n");
1239     }
1240 }
1241 
1242 static void mps2_machine_reset(MachineState *machine, ShutdownCause reason)
1243 {
1244     MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
1245 
1246     /*
1247      * Set the initial memory mapping before triggering the reset of
1248      * the rest of the system, so that the guest image loader and CPU
1249      * reset see the correct mapping.
1250      */
1251     remap_memory(mms, mms->remap);
1252     qemu_devices_reset(reason);
1253 }
1254 
1255 static void mps2tz_class_init(ObjectClass *oc, void *data)
1256 {
1257     MachineClass *mc = MACHINE_CLASS(oc);
1258     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
1259 
1260     mc->init = mps2tz_common_init;
1261     mc->reset = mps2_machine_reset;
1262     iic->check = mps2_tz_idau_check;
1263 }
1264 
1265 static void mps2tz_set_default_ram_info(MPS2TZMachineClass *mmc)
1266 {
1267     /*
1268      * Set mc->default_ram_size and default_ram_id from the
1269      * information in mmc->raminfo.
1270      */
1271     MachineClass *mc = MACHINE_CLASS(mmc);
1272     const RAMInfo *p;
1273 
1274     for (p = mmc->raminfo; p->name; p++) {
1275         if (p->mrindex < 0) {
1276             /* Found the entry for "system memory" */
1277             mc->default_ram_size = p->size;
1278             mc->default_ram_id = p->name;
1279             return;
1280         }
1281     }
1282     g_assert_not_reached();
1283 }
1284 
1285 static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
1286 {
1287     MachineClass *mc = MACHINE_CLASS(oc);
1288     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1289 
1290     mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
1291     mc->default_cpus = 1;
1292     mc->min_cpus = mc->default_cpus;
1293     mc->max_cpus = mc->default_cpus;
1294     mmc->fpga_type = FPGA_AN505;
1295     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1296     mmc->scc_id = 0x41045050;
1297     mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
1298     mmc->apb_periph_frq = mmc->sysclk_frq;
1299     mmc->oscclk = an505_oscclk;
1300     mmc->len_oscclk = ARRAY_SIZE(an505_oscclk);
1301     mmc->fpgaio_num_leds = 2;
1302     mmc->fpgaio_has_switches = false;
1303     mmc->fpgaio_has_dbgctrl = false;
1304     mmc->numirq = 92;
1305     mmc->uart_overflow_irq = 47;
1306     mmc->init_svtor = 0x10000000;
1307     mmc->sram_addr_width = 15;
1308     mmc->raminfo = an505_raminfo;
1309     mmc->armsse_type = TYPE_IOTKIT;
1310     mmc->boot_ram_size = 0;
1311     mps2tz_set_default_ram_info(mmc);
1312 }
1313 
1314 static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
1315 {
1316     MachineClass *mc = MACHINE_CLASS(oc);
1317     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1318 
1319     mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
1320     mc->default_cpus = 2;
1321     mc->min_cpus = mc->default_cpus;
1322     mc->max_cpus = mc->default_cpus;
1323     mmc->fpga_type = FPGA_AN521;
1324     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1325     mmc->scc_id = 0x41045210;
1326     mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
1327     mmc->apb_periph_frq = mmc->sysclk_frq;
1328     mmc->oscclk = an505_oscclk; /* AN521 is the same as AN505 here */
1329     mmc->len_oscclk = ARRAY_SIZE(an505_oscclk);
1330     mmc->fpgaio_num_leds = 2;
1331     mmc->fpgaio_has_switches = false;
1332     mmc->fpgaio_has_dbgctrl = false;
1333     mmc->numirq = 92;
1334     mmc->uart_overflow_irq = 47;
1335     mmc->init_svtor = 0x10000000;
1336     mmc->sram_addr_width = 15;
1337     mmc->raminfo = an505_raminfo; /* AN521 is the same as AN505 here */
1338     mmc->armsse_type = TYPE_SSE200;
1339     mmc->boot_ram_size = 0;
1340     mps2tz_set_default_ram_info(mmc);
1341 }
1342 
1343 static void mps3tz_an524_class_init(ObjectClass *oc, void *data)
1344 {
1345     MachineClass *mc = MACHINE_CLASS(oc);
1346     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1347 
1348     mc->desc = "ARM MPS3 with AN524 FPGA image for dual Cortex-M33";
1349     mc->default_cpus = 2;
1350     mc->min_cpus = mc->default_cpus;
1351     mc->max_cpus = mc->default_cpus;
1352     mmc->fpga_type = FPGA_AN524;
1353     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1354     mmc->scc_id = 0x41045240;
1355     mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */
1356     mmc->apb_periph_frq = mmc->sysclk_frq;
1357     mmc->oscclk = an524_oscclk;
1358     mmc->len_oscclk = ARRAY_SIZE(an524_oscclk);
1359     mmc->fpgaio_num_leds = 10;
1360     mmc->fpgaio_has_switches = true;
1361     mmc->fpgaio_has_dbgctrl = false;
1362     mmc->numirq = 95;
1363     mmc->uart_overflow_irq = 47;
1364     mmc->init_svtor = 0x10000000;
1365     mmc->sram_addr_width = 15;
1366     mmc->raminfo = an524_raminfo;
1367     mmc->armsse_type = TYPE_SSE200;
1368     mmc->boot_ram_size = 0;
1369     mps2tz_set_default_ram_info(mmc);
1370 
1371     object_class_property_add_str(oc, "remap", mps2_get_remap, mps2_set_remap);
1372     object_class_property_set_description(oc, "remap",
1373                                           "Set memory mapping. Valid values "
1374                                           "are BRAM (default) and QSPI.");
1375 }
1376 
1377 static void mps3tz_an547_class_init(ObjectClass *oc, void *data)
1378 {
1379     MachineClass *mc = MACHINE_CLASS(oc);
1380     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1381 
1382     mc->desc = "ARM MPS3 with AN547 FPGA image for Cortex-M55";
1383     mc->default_cpus = 1;
1384     mc->min_cpus = mc->default_cpus;
1385     mc->max_cpus = mc->default_cpus;
1386     mmc->fpga_type = FPGA_AN547;
1387     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m55");
1388     mmc->scc_id = 0x41055470;
1389     mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */
1390     mmc->apb_periph_frq = 25 * 1000 * 1000; /* 25MHz */
1391     mmc->oscclk = an524_oscclk; /* same as AN524 */
1392     mmc->len_oscclk = ARRAY_SIZE(an524_oscclk);
1393     mmc->fpgaio_num_leds = 10;
1394     mmc->fpgaio_has_switches = true;
1395     mmc->fpgaio_has_dbgctrl = true;
1396     mmc->numirq = 96;
1397     mmc->uart_overflow_irq = 48;
1398     mmc->init_svtor = 0x00000000;
1399     mmc->sram_addr_width = 21;
1400     mmc->raminfo = an547_raminfo;
1401     mmc->armsse_type = TYPE_SSE300;
1402     mmc->boot_ram_size = 512 * KiB;
1403     mps2tz_set_default_ram_info(mmc);
1404 }
1405 
1406 static const TypeInfo mps2tz_info = {
1407     .name = TYPE_MPS2TZ_MACHINE,
1408     .parent = TYPE_MACHINE,
1409     .abstract = true,
1410     .instance_size = sizeof(MPS2TZMachineState),
1411     .class_size = sizeof(MPS2TZMachineClass),
1412     .class_init = mps2tz_class_init,
1413     .interfaces = (InterfaceInfo[]) {
1414         { TYPE_IDAU_INTERFACE },
1415         { }
1416     },
1417 };
1418 
1419 static const TypeInfo mps2tz_an505_info = {
1420     .name = TYPE_MPS2TZ_AN505_MACHINE,
1421     .parent = TYPE_MPS2TZ_MACHINE,
1422     .class_init = mps2tz_an505_class_init,
1423 };
1424 
1425 static const TypeInfo mps2tz_an521_info = {
1426     .name = TYPE_MPS2TZ_AN521_MACHINE,
1427     .parent = TYPE_MPS2TZ_MACHINE,
1428     .class_init = mps2tz_an521_class_init,
1429 };
1430 
1431 static const TypeInfo mps3tz_an524_info = {
1432     .name = TYPE_MPS3TZ_AN524_MACHINE,
1433     .parent = TYPE_MPS2TZ_MACHINE,
1434     .class_init = mps3tz_an524_class_init,
1435 };
1436 
1437 static const TypeInfo mps3tz_an547_info = {
1438     .name = TYPE_MPS3TZ_AN547_MACHINE,
1439     .parent = TYPE_MPS2TZ_MACHINE,
1440     .class_init = mps3tz_an547_class_init,
1441 };
1442 
1443 static void mps2tz_machine_init(void)
1444 {
1445     type_register_static(&mps2tz_info);
1446     type_register_static(&mps2tz_an505_info);
1447     type_register_static(&mps2tz_an521_info);
1448     type_register_static(&mps3tz_an524_info);
1449     type_register_static(&mps3tz_an547_info);
1450 }
1451 
1452 type_init(mps2tz_machine_init);
1453