xref: /openbmc/qemu/hw/arm/mps2-tz.c (revision 6e2e2e8a)
1 /*
2  * ARM V2M MPS2 board emulation, trustzone aware FPGA images
3  *
4  * Copyright (c) 2017 Linaro Limited
5  * Written by Peter Maydell
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 or
9  *  (at your option) any later version.
10  */
11 
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13  * FPGA but is otherwise the same as the 2). Since the CPU itself
14  * and most of the devices are in the FPGA, the details of the board
15  * as seen by the guest depend significantly on the FPGA image.
16  * This source file covers the following FPGA images, for TrustZone cores:
17  *  "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18  *  "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
19  *
20  * Links to the TRM for the board itself and to the various Application
21  * Notes which document the FPGA images can be found here:
22  * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
23  *
24  * Board TRM:
25  * http://infocenter.arm.com/help/topic/com.arm.doc.100112_0200_06_en/versatile_express_cortex_m_prototyping_systems_v2m_mps2_and_v2m_mps2plus_technical_reference_100112_0200_06_en.pdf
26  * Application Note AN505:
27  * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
28  * Application Note AN521:
29  * http://infocenter.arm.com/help/topic/com.arm.doc.dai0521c/index.html
30  *
31  * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
32  * (ARM ECM0601256) for the details of some of the device layout:
33  *   http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
34  * Similarly, the AN521 uses the SSE-200, and the SSE-200 TRM defines
35  * most of the device layout:
36  *  http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf
37  *
38  */
39 
40 #include "qemu/osdep.h"
41 #include "qemu/units.h"
42 #include "qemu/cutils.h"
43 #include "qapi/error.h"
44 #include "qemu/error-report.h"
45 #include "hw/arm/boot.h"
46 #include "hw/arm/armv7m.h"
47 #include "hw/or-irq.h"
48 #include "hw/boards.h"
49 #include "exec/address-spaces.h"
50 #include "sysemu/sysemu.h"
51 #include "hw/misc/unimp.h"
52 #include "hw/char/cmsdk-apb-uart.h"
53 #include "hw/timer/cmsdk-apb-timer.h"
54 #include "hw/misc/mps2-scc.h"
55 #include "hw/misc/mps2-fpgaio.h"
56 #include "hw/misc/tz-mpc.h"
57 #include "hw/misc/tz-msc.h"
58 #include "hw/arm/armsse.h"
59 #include "hw/dma/pl080.h"
60 #include "hw/ssi/pl022.h"
61 #include "hw/i2c/arm_sbcon_i2c.h"
62 #include "hw/net/lan9118.h"
63 #include "net/net.h"
64 #include "hw/core/split-irq.h"
65 #include "qom/object.h"
66 
67 #define MPS2TZ_NUMIRQ 92
68 
69 typedef enum MPS2TZFPGAType {
70     FPGA_AN505,
71     FPGA_AN521,
72 } MPS2TZFPGAType;
73 
74 struct MPS2TZMachineClass {
75     MachineClass parent;
76     MPS2TZFPGAType fpga_type;
77     uint32_t scc_id;
78     const char *armsse_type;
79 };
80 
81 struct MPS2TZMachineState {
82     MachineState parent;
83 
84     ARMSSE iotkit;
85     MemoryRegion ssram[3];
86     MemoryRegion ssram1_m;
87     MPS2SCC scc;
88     MPS2FPGAIO fpgaio;
89     TZPPC ppc[5];
90     TZMPC ssram_mpc[3];
91     PL022State spi[5];
92     ArmSbconI2CState i2c[4];
93     UnimplementedDeviceState i2s_audio;
94     UnimplementedDeviceState gpio[4];
95     UnimplementedDeviceState gfx;
96     PL080State dma[4];
97     TZMSC msc[4];
98     CMSDKAPBUART uart[5];
99     SplitIRQ sec_resp_splitter;
100     qemu_or_irq uart_irq_orgate;
101     DeviceState *lan9118;
102     SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ];
103 };
104 
105 #define TYPE_MPS2TZ_MACHINE "mps2tz"
106 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
107 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
108 
109 OBJECT_DECLARE_TYPE(MPS2TZMachineState, MPS2TZMachineClass, MPS2TZ_MACHINE)
110 
111 /* Main SYSCLK frequency in Hz */
112 #define SYSCLK_FRQ 20000000
113 
114 /* Create an alias of an entire original MemoryRegion @orig
115  * located at @base in the memory map.
116  */
117 static void make_ram_alias(MemoryRegion *mr, const char *name,
118                            MemoryRegion *orig, hwaddr base)
119 {
120     memory_region_init_alias(mr, NULL, name, orig, 0,
121                              memory_region_size(orig));
122     memory_region_add_subregion(get_system_memory(), base, mr);
123 }
124 
125 static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
126 {
127     /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
128     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
129 
130     assert(irqno < MPS2TZ_NUMIRQ);
131 
132     switch (mmc->fpga_type) {
133     case FPGA_AN505:
134         return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
135     case FPGA_AN521:
136         return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
137     default:
138         g_assert_not_reached();
139     }
140 }
141 
142 /* Most of the devices in the AN505 FPGA image sit behind
143  * Peripheral Protection Controllers. These data structures
144  * define the layout of which devices sit behind which PPCs.
145  * The devfn for each port is a function which creates, configures
146  * and initializes the device, returning the MemoryRegion which
147  * needs to be plugged into the downstream end of the PPC port.
148  */
149 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
150                                 const char *name, hwaddr size);
151 
152 typedef struct PPCPortInfo {
153     const char *name;
154     MakeDevFn *devfn;
155     void *opaque;
156     hwaddr addr;
157     hwaddr size;
158 } PPCPortInfo;
159 
160 typedef struct PPCInfo {
161     const char *name;
162     PPCPortInfo ports[TZ_NUM_PORTS];
163 } PPCInfo;
164 
165 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
166                                        void *opaque,
167                                        const char *name, hwaddr size)
168 {
169     /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
170      * and return a pointer to its MemoryRegion.
171      */
172     UnimplementedDeviceState *uds = opaque;
173 
174     object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
175     qdev_prop_set_string(DEVICE(uds), "name", name);
176     qdev_prop_set_uint64(DEVICE(uds), "size", size);
177     sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
178     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
179 }
180 
181 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
182                                const char *name, hwaddr size)
183 {
184     CMSDKAPBUART *uart = opaque;
185     int i = uart - &mms->uart[0];
186     int rxirqno = i * 2;
187     int txirqno = i * 2 + 1;
188     int combirqno = i + 10;
189     SysBusDevice *s;
190     DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
191 
192     object_initialize_child(OBJECT(mms), name, uart, TYPE_CMSDK_APB_UART);
193     qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
194     qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", SYSCLK_FRQ);
195     sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
196     s = SYS_BUS_DEVICE(uart);
197     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, txirqno));
198     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, rxirqno));
199     sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
200     sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
201     sysbus_connect_irq(s, 4, get_sse_irq_in(mms, combirqno));
202     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
203 }
204 
205 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
206                               const char *name, hwaddr size)
207 {
208     MPS2SCC *scc = opaque;
209     DeviceState *sccdev;
210     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
211 
212     object_initialize_child(OBJECT(mms), "scc", scc, TYPE_MPS2_SCC);
213     sccdev = DEVICE(scc);
214     qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
215     qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
216     qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
217     sysbus_realize(SYS_BUS_DEVICE(scc), &error_fatal);
218     return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
219 }
220 
221 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
222                                  const char *name, hwaddr size)
223 {
224     MPS2FPGAIO *fpgaio = opaque;
225 
226     object_initialize_child(OBJECT(mms), "fpgaio", fpgaio, TYPE_MPS2_FPGAIO);
227     sysbus_realize(SYS_BUS_DEVICE(fpgaio), &error_fatal);
228     return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
229 }
230 
231 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
232                                   const char *name, hwaddr size)
233 {
234     SysBusDevice *s;
235     NICInfo *nd = &nd_table[0];
236 
237     /* In hardware this is a LAN9220; the LAN9118 is software compatible
238      * except that it doesn't support the checksum-offload feature.
239      */
240     qemu_check_nic_model(nd, "lan9118");
241     mms->lan9118 = qdev_new(TYPE_LAN9118);
242     qdev_set_nic_properties(mms->lan9118, nd);
243 
244     s = SYS_BUS_DEVICE(mms->lan9118);
245     sysbus_realize_and_unref(s, &error_fatal);
246     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 16));
247     return sysbus_mmio_get_region(s, 0);
248 }
249 
250 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
251                               const char *name, hwaddr size)
252 {
253     TZMPC *mpc = opaque;
254     int i = mpc - &mms->ssram_mpc[0];
255     MemoryRegion *ssram = &mms->ssram[i];
256     MemoryRegion *upstream;
257     char *mpcname = g_strdup_printf("%s-mpc", name);
258     static uint32_t ramsize[] = { 0x00400000, 0x00200000, 0x00200000 };
259     static uint32_t rambase[] = { 0x00000000, 0x28000000, 0x28200000 };
260 
261     memory_region_init_ram(ssram, NULL, name, ramsize[i], &error_fatal);
262 
263     object_initialize_child(OBJECT(mms), mpcname, mpc, TYPE_TZ_MPC);
264     object_property_set_link(OBJECT(mpc), "downstream", OBJECT(ssram),
265                              &error_fatal);
266     sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
267     /* Map the upstream end of the MPC into system memory */
268     upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
269     memory_region_add_subregion(get_system_memory(), rambase[i], upstream);
270     /* and connect its interrupt to the IoTKit */
271     qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
272                                 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
273                                                        "mpcexp_status", i));
274 
275     /* The first SSRAM is a special case as it has an alias; accesses to
276      * the alias region at 0x00400000 must also go to the MPC upstream.
277      */
278     if (i == 0) {
279         make_ram_alias(&mms->ssram1_m, "mps.ssram1_m", upstream, 0x00400000);
280     }
281 
282     g_free(mpcname);
283     /* Return the register interface MR for our caller to map behind the PPC */
284     return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
285 }
286 
287 static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
288                               const char *name, hwaddr size)
289 {
290     PL080State *dma = opaque;
291     int i = dma - &mms->dma[0];
292     SysBusDevice *s;
293     char *mscname = g_strdup_printf("%s-msc", name);
294     TZMSC *msc = &mms->msc[i];
295     DeviceState *iotkitdev = DEVICE(&mms->iotkit);
296     MemoryRegion *msc_upstream;
297     MemoryRegion *msc_downstream;
298 
299     /*
300      * Each DMA device is a PL081 whose transaction master interface
301      * is guarded by a Master Security Controller. The downstream end of
302      * the MSC connects to the IoTKit AHB Slave Expansion port, so the
303      * DMA devices can see all devices and memory that the CPU does.
304      */
305     object_initialize_child(OBJECT(mms), mscname, msc, TYPE_TZ_MSC);
306     msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
307     object_property_set_link(OBJECT(msc), "downstream",
308                              OBJECT(msc_downstream), &error_fatal);
309     object_property_set_link(OBJECT(msc), "idau", OBJECT(mms), &error_fatal);
310     sysbus_realize(SYS_BUS_DEVICE(msc), &error_fatal);
311 
312     qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
313                                 qdev_get_gpio_in_named(iotkitdev,
314                                                        "mscexp_status", i));
315     qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
316                                 qdev_get_gpio_in_named(DEVICE(msc),
317                                                        "irq_clear", 0));
318     qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
319                                 qdev_get_gpio_in_named(DEVICE(msc),
320                                                        "cfg_nonsec", 0));
321     qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
322                           ARRAY_SIZE(mms->ppc) + i,
323                           qdev_get_gpio_in_named(DEVICE(msc),
324                                                  "cfg_sec_resp", 0));
325     msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
326 
327     object_initialize_child(OBJECT(mms), name, dma, TYPE_PL081);
328     object_property_set_link(OBJECT(dma), "downstream", OBJECT(msc_upstream),
329                              &error_fatal);
330     sysbus_realize(SYS_BUS_DEVICE(dma), &error_fatal);
331 
332     s = SYS_BUS_DEVICE(dma);
333     /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
334     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 58 + i * 3));
335     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, 56 + i * 3));
336     sysbus_connect_irq(s, 2, get_sse_irq_in(mms, 57 + i * 3));
337 
338     g_free(mscname);
339     return sysbus_mmio_get_region(s, 0);
340 }
341 
342 static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
343                               const char *name, hwaddr size)
344 {
345     /*
346      * The AN505 has five PL022 SPI controllers.
347      * One of these should have the LCD controller behind it; the others
348      * are connected only to the FPGA's "general purpose SPI connector"
349      * or "shield" expansion connectors.
350      * Note that if we do implement devices behind SPI, the chip select
351      * lines are set via the "MISC" register in the MPS2 FPGAIO device.
352      */
353     PL022State *spi = opaque;
354     int i = spi - &mms->spi[0];
355     SysBusDevice *s;
356 
357     object_initialize_child(OBJECT(mms), name, spi, TYPE_PL022);
358     sysbus_realize(SYS_BUS_DEVICE(spi), &error_fatal);
359     s = SYS_BUS_DEVICE(spi);
360     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 51 + i));
361     return sysbus_mmio_get_region(s, 0);
362 }
363 
364 static MemoryRegion *make_i2c(MPS2TZMachineState *mms, void *opaque,
365                               const char *name, hwaddr size)
366 {
367     ArmSbconI2CState *i2c = opaque;
368     SysBusDevice *s;
369 
370     object_initialize_child(OBJECT(mms), name, i2c, TYPE_ARM_SBCON_I2C);
371     s = SYS_BUS_DEVICE(i2c);
372     sysbus_realize(s, &error_fatal);
373     return sysbus_mmio_get_region(s, 0);
374 }
375 
376 static void mps2tz_common_init(MachineState *machine)
377 {
378     MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
379     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
380     MachineClass *mc = MACHINE_GET_CLASS(machine);
381     MemoryRegion *system_memory = get_system_memory();
382     DeviceState *iotkitdev;
383     DeviceState *dev_splitter;
384     int i;
385 
386     if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
387         error_report("This board can only be used with CPU %s",
388                      mc->default_cpu_type);
389         exit(1);
390     }
391 
392     if (machine->ram_size != mc->default_ram_size) {
393         char *sz = size_to_str(mc->default_ram_size);
394         error_report("Invalid RAM size, should be %s", sz);
395         g_free(sz);
396         exit(EXIT_FAILURE);
397     }
398 
399     object_initialize_child(OBJECT(machine), TYPE_IOTKIT, &mms->iotkit,
400                             mmc->armsse_type);
401     iotkitdev = DEVICE(&mms->iotkit);
402     object_property_set_link(OBJECT(&mms->iotkit), "memory",
403                              OBJECT(system_memory), &error_abort);
404     qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", MPS2TZ_NUMIRQ);
405     qdev_prop_set_uint32(iotkitdev, "MAINCLK", SYSCLK_FRQ);
406     sysbus_realize(SYS_BUS_DEVICE(&mms->iotkit), &error_fatal);
407 
408     /*
409      * The AN521 needs us to create splitters to feed the IRQ inputs
410      * for each CPU in the SSE-200 from each device in the board.
411      */
412     if (mmc->fpga_type == FPGA_AN521) {
413         for (i = 0; i < MPS2TZ_NUMIRQ; i++) {
414             char *name = g_strdup_printf("mps2-irq-splitter%d", i);
415             SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
416 
417             object_initialize_child_with_props(OBJECT(machine), name,
418                                                splitter, sizeof(*splitter),
419                                                TYPE_SPLIT_IRQ, &error_fatal,
420                                                NULL);
421             g_free(name);
422 
423             object_property_set_int(OBJECT(splitter), "num-lines", 2,
424                                     &error_fatal);
425             qdev_realize(DEVICE(splitter), NULL, &error_fatal);
426             qdev_connect_gpio_out(DEVICE(splitter), 0,
427                                   qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
428                                                          "EXP_IRQ", i));
429             qdev_connect_gpio_out(DEVICE(splitter), 1,
430                                   qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
431                                                          "EXP_CPU1_IRQ", i));
432         }
433     }
434 
435     /* The sec_resp_cfg output from the IoTKit must be split into multiple
436      * lines, one for each of the PPCs we create here, plus one per MSC.
437      */
438     object_initialize_child(OBJECT(machine), "sec-resp-splitter",
439                             &mms->sec_resp_splitter, TYPE_SPLIT_IRQ);
440     object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
441                             ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
442                             &error_fatal);
443     qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
444     dev_splitter = DEVICE(&mms->sec_resp_splitter);
445     qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
446                                 qdev_get_gpio_in(dev_splitter, 0));
447 
448     /* The IoTKit sets up much of the memory layout, including
449      * the aliases between secure and non-secure regions in the
450      * address space. The FPGA itself contains:
451      *
452      * 0x00000000..0x003fffff  SSRAM1
453      * 0x00400000..0x007fffff  alias of SSRAM1
454      * 0x28000000..0x283fffff  4MB SSRAM2 + SSRAM3
455      * 0x40100000..0x4fffffff  AHB Master Expansion 1 interface devices
456      * 0x80000000..0x80ffffff  16MB PSRAM
457      */
458 
459     /* The FPGA images have an odd combination of different RAMs,
460      * because in hardware they are different implementations and
461      * connected to different buses, giving varying performance/size
462      * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
463      * call the 16MB our "system memory", as it's the largest lump.
464      */
465     memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
466 
467     /* The overflow IRQs for all UARTs are ORed together.
468      * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
469      * Create the OR gate for this.
470      */
471     object_initialize_child(OBJECT(mms), "uart-irq-orgate",
472                             &mms->uart_irq_orgate, TYPE_OR_IRQ);
473     object_property_set_int(OBJECT(&mms->uart_irq_orgate), "num-lines", 10,
474                             &error_fatal);
475     qdev_realize(DEVICE(&mms->uart_irq_orgate), NULL, &error_fatal);
476     qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
477                           get_sse_irq_in(mms, 15));
478 
479     /* Most of the devices in the FPGA are behind Peripheral Protection
480      * Controllers. The required order for initializing things is:
481      *  + initialize the PPC
482      *  + initialize, configure and realize downstream devices
483      *  + connect downstream device MemoryRegions to the PPC
484      *  + realize the PPC
485      *  + map the PPC's MemoryRegions to the places in the address map
486      *    where the downstream devices should appear
487      *  + wire up the PPC's control lines to the IoTKit object
488      */
489 
490     const PPCInfo ppcs[] = { {
491             .name = "apb_ppcexp0",
492             .ports = {
493                 { "ssram-0", make_mpc, &mms->ssram_mpc[0], 0x58007000, 0x1000 },
494                 { "ssram-1", make_mpc, &mms->ssram_mpc[1], 0x58008000, 0x1000 },
495                 { "ssram-2", make_mpc, &mms->ssram_mpc[2], 0x58009000, 0x1000 },
496             },
497         }, {
498             .name = "apb_ppcexp1",
499             .ports = {
500                 { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000 },
501                 { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000 },
502                 { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000 },
503                 { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000 },
504                 { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000 },
505                 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000 },
506                 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000 },
507                 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000 },
508                 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000 },
509                 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000 },
510                 { "i2c0", make_i2c, &mms->i2c[0], 0x40207000, 0x1000 },
511                 { "i2c1", make_i2c, &mms->i2c[1], 0x40208000, 0x1000 },
512                 { "i2c2", make_i2c, &mms->i2c[2], 0x4020c000, 0x1000 },
513                 { "i2c3", make_i2c, &mms->i2c[3], 0x4020d000, 0x1000 },
514             },
515         }, {
516             .name = "apb_ppcexp2",
517             .ports = {
518                 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
519                 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
520                   0x40301000, 0x1000 },
521                 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
522             },
523         }, {
524             .name = "ahb_ppcexp0",
525             .ports = {
526                 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
527                 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
528                 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
529                 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
530                 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
531                 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000 },
532             },
533         }, {
534             .name = "ahb_ppcexp1",
535             .ports = {
536                 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000 },
537                 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000 },
538                 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000 },
539                 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000 },
540             },
541         },
542     };
543 
544     for (i = 0; i < ARRAY_SIZE(ppcs); i++) {
545         const PPCInfo *ppcinfo = &ppcs[i];
546         TZPPC *ppc = &mms->ppc[i];
547         DeviceState *ppcdev;
548         int port;
549         char *gpioname;
550 
551         object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
552                                 TYPE_TZ_PPC);
553         ppcdev = DEVICE(ppc);
554 
555         for (port = 0; port < TZ_NUM_PORTS; port++) {
556             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
557             MemoryRegion *mr;
558             char *portname;
559 
560             if (!pinfo->devfn) {
561                 continue;
562             }
563 
564             mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
565             portname = g_strdup_printf("port[%d]", port);
566             object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
567                                      &error_fatal);
568             g_free(portname);
569         }
570 
571         sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
572 
573         for (port = 0; port < TZ_NUM_PORTS; port++) {
574             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
575 
576             if (!pinfo->devfn) {
577                 continue;
578             }
579             sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
580 
581             gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
582             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
583                                         qdev_get_gpio_in_named(ppcdev,
584                                                                "cfg_nonsec",
585                                                                port));
586             g_free(gpioname);
587             gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
588             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
589                                         qdev_get_gpio_in_named(ppcdev,
590                                                                "cfg_ap", port));
591             g_free(gpioname);
592         }
593 
594         gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
595         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
596                                     qdev_get_gpio_in_named(ppcdev,
597                                                            "irq_enable", 0));
598         g_free(gpioname);
599         gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
600         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
601                                     qdev_get_gpio_in_named(ppcdev,
602                                                            "irq_clear", 0));
603         g_free(gpioname);
604         gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
605         qdev_connect_gpio_out_named(ppcdev, "irq", 0,
606                                     qdev_get_gpio_in_named(iotkitdev,
607                                                            gpioname, 0));
608         g_free(gpioname);
609 
610         qdev_connect_gpio_out(dev_splitter, i,
611                               qdev_get_gpio_in_named(ppcdev,
612                                                      "cfg_sec_resp", 0));
613     }
614 
615     create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
616 
617     armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x400000);
618 }
619 
620 static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
621                                int *iregion, bool *exempt, bool *ns, bool *nsc)
622 {
623     /*
624      * The MPS2 TZ FPGA images have IDAUs in them which are connected to
625      * the Master Security Controllers. Thes have the same logic as
626      * is used by the IoTKit for the IDAU connected to the CPU, except
627      * that MSCs don't care about the NSC attribute.
628      */
629     int region = extract32(address, 28, 4);
630 
631     *ns = !(region & 1);
632     *nsc = false;
633     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
634     *exempt = (address & 0xeff00000) == 0xe0000000;
635     *iregion = region;
636 }
637 
638 static void mps2tz_class_init(ObjectClass *oc, void *data)
639 {
640     MachineClass *mc = MACHINE_CLASS(oc);
641     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
642 
643     mc->init = mps2tz_common_init;
644     iic->check = mps2_tz_idau_check;
645     mc->default_ram_size = 16 * MiB;
646     mc->default_ram_id = "mps.ram";
647 }
648 
649 static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
650 {
651     MachineClass *mc = MACHINE_CLASS(oc);
652     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
653 
654     mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
655     mc->default_cpus = 1;
656     mc->min_cpus = mc->default_cpus;
657     mc->max_cpus = mc->default_cpus;
658     mmc->fpga_type = FPGA_AN505;
659     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
660     mmc->scc_id = 0x41045050;
661     mmc->armsse_type = TYPE_IOTKIT;
662 }
663 
664 static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
665 {
666     MachineClass *mc = MACHINE_CLASS(oc);
667     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
668 
669     mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
670     mc->default_cpus = 2;
671     mc->min_cpus = mc->default_cpus;
672     mc->max_cpus = mc->default_cpus;
673     mmc->fpga_type = FPGA_AN521;
674     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
675     mmc->scc_id = 0x41045210;
676     mmc->armsse_type = TYPE_SSE200;
677 }
678 
679 static const TypeInfo mps2tz_info = {
680     .name = TYPE_MPS2TZ_MACHINE,
681     .parent = TYPE_MACHINE,
682     .abstract = true,
683     .instance_size = sizeof(MPS2TZMachineState),
684     .class_size = sizeof(MPS2TZMachineClass),
685     .class_init = mps2tz_class_init,
686     .interfaces = (InterfaceInfo[]) {
687         { TYPE_IDAU_INTERFACE },
688         { }
689     },
690 };
691 
692 static const TypeInfo mps2tz_an505_info = {
693     .name = TYPE_MPS2TZ_AN505_MACHINE,
694     .parent = TYPE_MPS2TZ_MACHINE,
695     .class_init = mps2tz_an505_class_init,
696 };
697 
698 static const TypeInfo mps2tz_an521_info = {
699     .name = TYPE_MPS2TZ_AN521_MACHINE,
700     .parent = TYPE_MPS2TZ_MACHINE,
701     .class_init = mps2tz_an521_class_init,
702 };
703 
704 static void mps2tz_machine_init(void)
705 {
706     type_register_static(&mps2tz_info);
707     type_register_static(&mps2tz_an505_info);
708     type_register_static(&mps2tz_an521_info);
709 }
710 
711 type_init(mps2tz_machine_init);
712